提交 9b6e6a83 编写于 作者: A Andy Lutomirski 提交者: Ingo Molnar

x86/nmi/64: Switch stacks on userspace NMI entry

Returning to userspace is tricky: IRET can fail, and ESPFIX can
rearrange the stack prior to IRET.

The NMI nesting fixup relies on a precise stack layout and
atomic IRET.  Rather than trying to teach the NMI nesting fixup
to handle ESPFIX and failed IRET, punt: run NMIs that came from
user mode on the normal kernel stack.

This will make some nested NMIs visible to C code, but the C
code is okay with that.

As a side effect, this should speed up perf: it eliminates an
RDMSR when NMIs come from user mode.
Signed-off-by: NAndy Lutomirski <luto@kernel.org>
Reviewed-by: NSteven Rostedt <rostedt@goodmis.org>
Reviewed-by: NBorislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: NIngo Molnar <mingo@kernel.org>
上级 0e181bb5
......@@ -1250,18 +1250,72 @@ ENTRY(nmi)
* a nested NMI that updated the copy interrupt stack frame, a
* jump will be made to the repeat_nmi code that will handle the second
* NMI.
*
* However, espfix prevents us from directly returning to userspace
* with a single IRET instruction. Similarly, IRET to user mode
* can fault. We therefore handle NMIs from user space like
* other IST entries.
*/
/* Use %rdx as our temp variable throughout */
pushq %rdx
testb $3, CS-RIP+8(%rsp)
jz .Lnmi_from_kernel
/*
* NMI from user mode. We need to run on the thread stack, but we
* can't go through the normal entry paths: NMIs are masked, and
* we don't want to enable interrupts, because then we'll end
* up in an awkward situation in which IRQs are on but NMIs
* are off.
*/
SWAPGS
cld
movq %rsp, %rdx
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
pushq 5*8(%rdx) /* pt_regs->ss */
pushq 4*8(%rdx) /* pt_regs->rsp */
pushq 3*8(%rdx) /* pt_regs->flags */
pushq 2*8(%rdx) /* pt_regs->cs */
pushq 1*8(%rdx) /* pt_regs->rip */
pushq $-1 /* pt_regs->orig_ax */
pushq %rdi /* pt_regs->di */
pushq %rsi /* pt_regs->si */
pushq (%rdx) /* pt_regs->dx */
pushq %rcx /* pt_regs->cx */
pushq %rax /* pt_regs->ax */
pushq %r8 /* pt_regs->r8 */
pushq %r9 /* pt_regs->r9 */
pushq %r10 /* pt_regs->r10 */
pushq %r11 /* pt_regs->r11 */
pushq %rbx /* pt_regs->rbx */
pushq %rbp /* pt_regs->rbp */
pushq %r12 /* pt_regs->r12 */
pushq %r13 /* pt_regs->r13 */
pushq %r14 /* pt_regs->r14 */
pushq %r15 /* pt_regs->r15 */
/*
* If %cs was not the kernel segment, then the NMI triggered in user
* space, which means it is definitely not nested.
* At this point we no longer need to worry about stack damage
* due to nesting -- we're on the normal thread stack and we're
* done with the NMI stack.
*/
cmpl $__KERNEL_CS, 16(%rsp)
jne first_nmi
movq %rsp, %rdi
movq $-1, %rsi
call do_nmi
/*
* Return back to user mode. We must *not* do the normal exit
* work, because we don't want to enable interrupts. Fortunately,
* do_nmi doesn't modify pt_regs.
*/
SWAPGS
jmp restore_c_regs_and_iret
.Lnmi_from_kernel:
/*
* Check the special variable on the stack to see if NMIs are
* executing.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册