entry_64.S 39.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <linux/err.h>
L
Linus Torvalds 已提交
39

R
Roland McGrath 已提交
40 41
/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this.  */
#include <linux/elf-em.h>
42 43 44
#define AUDIT_ARCH_X86_64			(EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
#define __AUDIT_ARCH_64BIT			0x80000000
#define __AUDIT_ARCH_LE				0x40000000
J
Jiri Olsa 已提交
45

46 47
.code64
.section .entry.text, "ax"
48

49
#ifdef CONFIG_PARAVIRT
50
ENTRY(native_usergs_sysret64)
51 52
	swapgs
	sysretq
53
ENDPROC(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_IRETQ
57
#ifdef CONFIG_TRACE_IRQFLAGS
58 59
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
79
	call	debug_stack_set_zero
80
	TRACE_IRQS_OFF
81
	call	debug_stack_reset
82 83 84
.endm

.macro TRACE_IRQS_ON_DEBUG
85
	call	debug_stack_set_zero
86
	TRACE_IRQS_ON
87
	call	debug_stack_reset
88 89
.endm

90
.macro TRACE_IRQS_IRETQ_DEBUG
91 92
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
93 94 95 96 97
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
98 99 100
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
101 102
#endif

L
Linus Torvalds 已提交
103
/*
104
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
105
 *
106
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
107 108 109 110 111 112
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
113
 * rax  system call number
114 115
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
116 117
 * rdi  arg0
 * rsi  arg1
118
 * rdx  arg2
119
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
120 121
 * r8   arg4
 * r9   arg5
122
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
123
 *
L
Linus Torvalds 已提交
124 125
 * Only called from user space.
 *
126
 * When user can change pt_regs->foo always force IRET. That is because
127 128
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
129
 */
L
Linus Torvalds 已提交
130

131
ENTRY(entry_SYSCALL_64)
132 133 134 135 136
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
137 138 139 140 141 142
	SWAPGS_UNSAFE_STACK
	/*
	 * A hypervisor implementation might want to use a label
	 * after the swapgs, so that it can do the swapgs
	 * for the guest and jump here on syscall.
	 */
143
GLOBAL(entry_SYSCALL_64_after_swapgs)
144

145 146
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
147

148 149
	TRACE_IRQS_OFF

150
	/* Construct struct pt_regs on stack */
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */

168 169 170 171 172 173 174
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
	jnz	entry_SYSCALL64_slow_path

175
entry_SYSCALL_64_fastpath:
176 177 178 179 180 181 182
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
183
#if __SYSCALL_MASK == ~0
184
	cmpq	$__NR_syscall_max, %rax
185
#else
186 187
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
188
#endif
189 190
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
191 192 193

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
194 195
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
196
	 */
197
	call	*sys_call_table(, %rax, 8)
198 199
.Lentry_SYSCALL_64_after_fastpath_call:

200
	movq	%rax, RAX(%rsp)
201
1:
202 203

	/*
204 205 206
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
207
	 */
208 209
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
210
	testl	$_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
211
	jnz	1f
212

213 214
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
215 216 217
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
218
	movq	RSP(%rsp), %rsp
219
	USERGS_SYSRET64
L
Linus Torvalds 已提交
220

221 222 223 224 225 226
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
227 228
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
229
	SAVE_EXTRA_REGS
230
	movq	%rsp, %rdi
231 232
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
233

234 235
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
236
	SAVE_EXTRA_REGS
237
	movq	%rsp, %rdi
238 239 240
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
241
	RESTORE_EXTRA_REGS
242
	TRACE_IRQS_IRETQ		/* we're about to change IF */
243 244 245 246 247

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
248 249 250 251
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
252 253 254 255

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
256
	 * the kernel, since userspace controls RSP.
257
	 *
258
	 * If width of "canonical tail" ever becomes variable, this will need
259 260 261 262 263
	 * to be updated to remain correct on both old and new CPUs.
	 */
	.ifne __VIRTUAL_MASK_SHIFT - 47
	.error "virtual address width changed -- SYSRET checks need update"
	.endif
264

265 266 267
	/* Change top 16 bits to be the sign-extension of 47th bit */
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
268

269 270 271
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
272

273 274
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
275

276 277 278
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
279 280 281 282 283 284 285 286

	/*
	 * SYSRET can't restore RF.  SYSRET can restore TF, but unlike IRET,
	 * restoring TF results in a trap from userspace immediately after
	 * SYSRET.  This would cause an infinite loop whenever #DB happens
	 * with register state that satisfies the opportunistic SYSRET
	 * conditions.  For example, single-stepping this user code:
	 *
287
	 *           movq	$stuck_here, %rcx
288 289 290 291 292 293
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
294 295
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
296 297 298

	/* nothing to check for RSP */

299 300
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
301 302

	/*
303 304
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
305 306
	 */
syscall_return_via_sysret:
307 308
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
309
	movq	RSP(%rsp), %rsp
310 311 312 313 314
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
315
END(entry_SYSCALL_64)
316

317 318 319
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
320 321 322
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
323 324
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
325
	 * IRQs are on.
326 327 328 329
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

330 331 332 333 334 335
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
336
	popq	%rax
337
	jmp	entry_SYSCALL64_slow_path
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

1:
	/* Called from C */
	jmp	*%rax				/* called from C */
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
356

357 358 359 360 361 362
/*
 * A newly forked process directly context switches into this address.
 *
 * rdi: prev task we switched from
 */
ENTRY(ret_from_fork)
363
	LOCK ; btr $TIF_FORK, TI_flags(%r8)
364

365 366
	pushq	$0x0002
	popfq					/* reset kernel eflags */
367

368
	call	schedule_tail			/* rdi: 'prev' task parameter */
369

370
	testb	$3, CS(%rsp)			/* from kernel_thread? */
371
	jnz	1f
372

373
	/*
374 375 376 377 378 379
	 * We came from kernel_thread.  This code path is quite twisted, and
	 * someone should clean it up.
	 *
	 * copy_thread_tls stashes the function pointer in RBX and the
	 * parameter to be passed in RBP.  The called function is permitted
	 * to call do_execve and thereby jump to user mode.
380
	 */
381 382 383
	movq	RBP(%rsp), %rdi
	call	*RBX(%rsp)
	movl	$0, RAX(%rsp)
384

385
	/*
386 387
	 * Fall through as though we're exiting a syscall.  This makes a
	 * twisted sort of sense if we just called do_execve.
388
	 */
389 390 391 392 393 394 395

1:
	movq	%rsp, %rdi
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
	jmp	restore_regs_and_iret
396 397
END(ret_from_fork)

398
/*
399 400
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
401
 */
402
	.align 8
403
ENTRY(irq_entries_start)
404 405
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
406
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
407 408 409 410
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
411 412
END(irq_entries_start)

413
/*
L
Linus Torvalds 已提交
414 415 416
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
417 418 419
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
420

421
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
422
	.macro interrupt func
423
	cld
424 425 426
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
427

428
	testb	$3, CS(%rsp)
429
	jz	1f
430 431 432 433 434

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
435
	SWAPGS
436 437 438 439 440 441 442 443 444 445 446

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

447
	CALL_enter_from_user_mode
448

449
1:
450
	/*
D
Denys Vlasenko 已提交
451
	 * Save previous stack pointer, optionally switch to interrupt stack.
452 453 454 455 456
	 * irq_count is used to check if a CPU is already on an interrupt stack
	 * or not. While this is essentially redundant with preempt_count it is
	 * a little cheaper to use a separate counter in the PDA (short of
	 * moving irq_enter into assembly, which would be too much work)
	 */
457
	movq	%rsp, %rdi
458 459
	incl	PER_CPU_VAR(irq_count)
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
460
	pushq	%rdi
461 462 463
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

464
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
465 466
	.endm

467 468 469 470
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
471 472
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
473
	ASM_CLAC
474
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
475
	interrupt do_IRQ
476
	/* 0(%rsp): old RSP */
477
ret_from_intr:
478
	DISABLE_INTERRUPTS(CLBR_NONE)
479
	TRACE_IRQS_OFF
480
	decl	PER_CPU_VAR(irq_count)
481

482
	/* Restore saved previous stack */
483
	popq	%rsp
484

485
	testb	$3, CS(%rsp)
486
	jz	retint_kernel
487

488 489 490 491
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
492
	TRACE_IRQS_IRETQ
493
	SWAPGS
494
	jmp	restore_regs_and_iret
495

496
/* Returning to kernel space */
497
retint_kernel:
498 499 500
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
501
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
502
	jnc	1f
503
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
504
	jnz	1f
505
	call	preempt_schedule_irq
506
	jmp	0b
507
1:
508
#endif
509 510 511 512
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
513 514 515 516 517

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
518
GLOBAL(restore_regs_and_iret)
519
	RESTORE_EXTRA_REGS
520
restore_c_regs_and_iret:
521 522
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
523 524 525
	INTERRUPT_RETURN

ENTRY(native_iret)
526 527 528 529
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
530
#ifdef CONFIG_X86_ESPFIX64
531 532
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
533
#endif
534

535
.global native_irq_return_iret
536
native_irq_return_iret:
A
Andy Lutomirski 已提交
537 538 539 540 541 542
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
543
	iretq
I
Ingo Molnar 已提交
544

545
#ifdef CONFIG_X86_ESPFIX64
546
native_irq_return_ldt:
547 548
	pushq	%rax
	pushq	%rdi
549
	SWAPGS
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	movq	PER_CPU_VAR(espfix_waddr), %rdi
	movq	%rax, (0*8)(%rdi)		/* RAX */
	movq	(2*8)(%rsp), %rax		/* RIP */
	movq	%rax, (1*8)(%rdi)
	movq	(3*8)(%rsp), %rax		/* CS */
	movq	%rax, (2*8)(%rdi)
	movq	(4*8)(%rsp), %rax		/* RFLAGS */
	movq	%rax, (3*8)(%rdi)
	movq	(6*8)(%rsp), %rax		/* SS */
	movq	%rax, (5*8)(%rdi)
	movq	(5*8)(%rsp), %rax		/* RSP */
	movq	%rax, (4*8)(%rdi)
	andl	$0xffff0000, %eax
	popq	%rdi
	orq	PER_CPU_VAR(espfix_stack), %rax
565
	SWAPGS
566 567 568
	movq	%rax, %rsp
	popq	%rax
	jmp	native_irq_return_iret
569
#endif
570
END(common_interrupt)
571

L
Linus Torvalds 已提交
572 573
/*
 * APIC interrupts.
574
 */
575
.macro apicinterrupt3 num sym do_sym
576
ENTRY(\sym)
577
	ASM_CLAC
578
	pushq	$~(\num)
579
.Lcommon_\sym:
580
	interrupt \do_sym
581
	jmp	ret_from_intr
582 583
END(\sym)
.endm
L
Linus Torvalds 已提交
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym

.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif

.macro apicinterrupt num sym do_sym
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
.endm

602
#ifdef CONFIG_SMP
603 604
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
605
#endif
L
Linus Torvalds 已提交
606

N
Nick Piggin 已提交
607
#ifdef CONFIG_X86_UV
608
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
609
#endif
610 611 612

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
613

614
#ifdef CONFIG_HAVE_KVM
615 616
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
617 618
#endif

619
#ifdef CONFIG_X86_MCE_THRESHOLD
620
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
621 622
#endif

623
#ifdef CONFIG_X86_MCE_AMD
624
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
625 626
#endif

627
#ifdef CONFIG_X86_THERMAL_VECTOR
628
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
629
#endif
630

631
#ifdef CONFIG_SMP
632 633 634
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
635
#endif
L
Linus Torvalds 已提交
636

637 638
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
639

640
#ifdef CONFIG_IRQ_WORK
641
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
642 643
#endif

L
Linus Torvalds 已提交
644 645
/*
 * Exception entry points.
646
 */
647
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
648 649

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
650
ENTRY(\sym)
651 652 653 654 655
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

656
	ASM_CLAC
657
	PARAVIRT_ADJUST_EXCEPTION_FRAME
658 659

	.ifeq \has_error_code
660
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
661 662
	.endif

663
	ALLOC_PT_GPREGS_ON_STACK
664 665

	.if \paranoid
666
	.if \paranoid == 1
667 668
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
669
	.endif
670
	call	paranoid_entry
671
	.else
672
	call	error_entry
673
	.endif
674
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
675 676

	.if \paranoid
677
	.if \shift_ist != -1
678
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
679
	.else
680
	TRACE_IRQS_OFF
681
	.endif
682
	.endif
683

684
	movq	%rsp, %rdi			/* pt_regs pointer */
685 686

	.if \has_error_code
687 688
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
689
	.else
690
	xorl	%esi, %esi			/* no error code */
691 692
	.endif

693
	.if \shift_ist != -1
694
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
695 696
	.endif

697
	call	\do_sym
698

699
	.if \shift_ist != -1
700
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
701 702
	.endif

703
	/* these procedures expect "no swapgs" flag in ebx */
704
	.if \paranoid
705
	jmp	paranoid_exit
706
	.else
707
	jmp	error_exit
708 709
	.endif

710 711 712 713 714 715 716
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
717
	call	error_entry
718 719


720 721 722
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
723

724
	movq	%rsp, %rdi			/* pt_regs pointer */
725 726

	.if \has_error_code
727 728
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
729
	.else
730
	xorl	%esi, %esi			/* no error code */
731 732
	.endif

733
	call	\do_sym
734

735
	jmp	error_exit			/* %ebx: no swapgs flag */
736
	.endif
737
END(\sym)
738
.endm
739

740
#ifdef CONFIG_TRACING
741 742 743
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
744 745
.endm
#else
746 747
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
748 749 750
.endm
#endif

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
770
ENTRY(native_load_gs_index)
771
	pushfq
772
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
773
	SWAPGS
774
gs_change:
775 776
	movl	%edi, %gs
2:	mfence					/* workaround */
777
	SWAPGS
778
	popfq
779
	ret
780
END(native_load_gs_index)
781

782 783
	_ASM_EXTABLE(gs_change, bad_gs)
	.section .fixup, "ax"
L
Linus Torvalds 已提交
784
	/* running with kernelgs */
785
bad_gs:
786 787 788 789
	SWAPGS					/* switch back to user gs */
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
790
	.previous
791

792
/* Call softirq on interrupt stack. Interrupts are off. */
793
ENTRY(do_softirq_own_stack)
794 795 796 797 798 799
	pushq	%rbp
	mov	%rsp, %rbp
	incl	PER_CPU_VAR(irq_count)
	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
	push	%rbp				/* frame pointer backlink */
	call	__do_softirq
800
	leaveq
801
	decl	PER_CPU_VAR(irq_count)
802
	ret
803
END(do_softirq_own_stack)
804

805
#ifdef CONFIG_XEN
806
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
807 808

/*
809 810 811 812 813 814 815 816 817 818 819 820
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
821 822
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

823 824 825 826
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
827 828 829 830 831 832 833 834
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
11:	incl	PER_CPU_VAR(irq_count)
	movq	%rsp, %rbp
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
	pushq	%rbp				/* frame pointer backlink */
	call	xen_evtchn_do_upcall
	popq	%rsp
	decl	PER_CPU_VAR(irq_count)
835
#ifndef CONFIG_PREEMPT
836
	call	xen_maybe_preempt_hcall
837
#endif
838
	jmp	error_exit
839
END(xen_do_hypervisor_callback)
840 841

/*
842 843 844 845 846 847 848 849 850 851 852 853
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
854
ENTRY(xen_failsafe_callback)
855 856 857 858 859 860 861 862 863 864 865 866
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
867
	/* All segments match their saved values => Category 2 (Bad IRET). */
868 869 870 871 872 873 874
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
	pushq	%r11
	pushq	%rcx
	jmp	general_protection
875
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
876 877 878 879
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$-1 /* orig_ax = -1 => not a system call */
880 881 882
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
883
	jmp	error_exit
884 885
END(xen_failsafe_callback)

886
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
887 888
	xen_hvm_callback_vector xen_evtchn_do_upcall

889
#endif /* CONFIG_XEN */
890

891
#if IS_ENABLED(CONFIG_HYPERV)
892
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
893 894 895
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

896 897 898 899
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

900
#ifdef CONFIG_XEN
901 902 903
idtentry xen_debug		do_debug		has_error_code=0
idtentry xen_int3		do_int3			has_error_code=0
idtentry xen_stack_segment	do_stack_segment	has_error_code=1
904
#endif
905 906 907 908

idtentry general_protection	do_general_protection	has_error_code=1
trace_idtentry page_fault	do_page_fault		has_error_code=1

G
Gleb Natapov 已提交
909
#ifdef CONFIG_KVM_GUEST
910
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
911
#endif
912

913
#ifdef CONFIG_X86_MCE
914
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
915 916
#endif

917 918 919 920 921 922
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
923 924 925
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
926 927
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
928
	rdmsr
929 930
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
931
	SWAPGS
932
	xorl	%ebx, %ebx
933
1:	ret
934
END(paranoid_entry)
935

936 937 938 939 940 941 942 943 944
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
945 946
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
947
 */
948 949
ENTRY(paranoid_exit)
	DISABLE_INTERRUPTS(CLBR_NONE)
950
	TRACE_IRQS_OFF_DEBUG
951 952
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
953
	TRACE_IRQS_IRETQ
954
	SWAPGS_UNSAFE_STACK
955
	jmp	paranoid_exit_restore
956
paranoid_exit_no_swapgs:
957
	TRACE_IRQS_IRETQ_DEBUG
958
paranoid_exit_restore:
959 960 961
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
962
	INTERRUPT_RETURN
963 964 965
END(paranoid_exit)

/*
966
 * Save all registers in pt_regs, and switch gs if needed.
967
 * Return: EBX=0: came from user mode; EBX=1: otherwise
968 969 970
 */
ENTRY(error_entry)
	cld
971 972
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
973
	xorl	%ebx, %ebx
974
	testb	$3, CS+8(%rsp)
975
	jz	.Lerror_kernelspace
976

977 978 979 980 981
.Lerror_entry_from_usermode_swapgs:
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
982
	SWAPGS
983

984
.Lerror_entry_from_usermode_after_swapgs:
985 986 987 988 989 990
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
991
	CALL_enter_from_user_mode
992
	ret
993

994
.Lerror_entry_done:
995 996 997
	TRACE_IRQS_OFF
	ret

998 999 1000 1001 1002 1003
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1004
.Lerror_kernelspace:
1005 1006 1007
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1008
	je	.Lerror_bad_iret
1009 1010
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1011
	je	.Lbstep_iret
1012
	cmpq	$gs_change, RIP+8(%rsp)
1013
	jne	.Lerror_entry_done
1014 1015 1016 1017 1018 1019

	/*
	 * hack: gs_change can fail with user gsbase.  If this happens, fix up
	 * gsbase and proceed.  We'll fix up the exception and land in
	 * gs_change's error handler with kernel gsbase.
	 */
1020
	jmp	.Lerror_entry_from_usermode_swapgs
1021

1022
.Lbstep_iret:
1023
	/* Fix truncated RIP */
1024
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1025 1026
	/* fall through */

1027
.Lerror_bad_iret:
1028 1029 1030 1031
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1032
	SWAPGS
1033 1034 1035 1036 1037 1038

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1039 1040 1041
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1042
	decl	%ebx
1043
	jmp	.Lerror_entry_from_usermode_after_swapgs
1044 1045 1046
END(error_entry)


1047 1048 1049 1050 1051
/*
 * On entry, EBS is a "return to kernel mode" flag:
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1052
ENTRY(error_exit)
1053
	movl	%ebx, %eax
1054 1055
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
1056 1057 1058
	testl	%eax, %eax
	jnz	retint_kernel
	jmp	retint_user
1059 1060
END(error_exit)

1061
/* Runs on exception stack */
1062
ENTRY(nmi)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	/*
	 * Fix up the exception frame if we're on Xen.
	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
	 * one value to the stack on native, so it may clobber the rdx
	 * scratch slot, but it won't clobber any of the important
	 * slots past it.
	 *
	 * Xen is a different story, because the Xen frame itself overlaps
	 * the "NMI executing" variable.
	 */
1073
	PARAVIRT_ADJUST_EXCEPTION_FRAME
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1092 1093 1094
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1095 1096
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1097
	 *    o Modify the "iret" location to jump to the repeat_nmi
1098 1099 1100 1101 1102 1103 1104 1105
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1106 1107 1108 1109 1110
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1111 1112
	 */

1113
	/* Use %rdx as our temp variable throughout */
1114
	pushq	%rdx
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1125 1126 1127
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1128 1129
	 */

1130
	SWAPGS_UNSAFE_STACK
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1166
	/*
1167 1168 1169
	 * Return back to user mode.  We must *not* do the normal exit
	 * work, because we don't want to enable interrupts.  Fortunately,
	 * do_nmi doesn't modify pt_regs.
1170
	 */
1171 1172
	SWAPGS
	jmp	restore_c_regs_and_iret
1173

1174
.Lnmi_from_kernel:
1175
	/*
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1216
	/*
1217 1218
	 * Determine whether we're a nested NMI.
	 *
1219 1220 1221 1222 1223 1224
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1225
	 */
1226 1227 1228 1229 1230 1231 1232 1233

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1234

1235
	/*
1236
	 * Now check "NMI executing".  If it's set, then we're nested.
1237 1238
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1239
	 */
1240 1241
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1242 1243

	/*
1244 1245
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1246 1247 1248 1249 1250 1251 1252 1253
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1254
	 */
1255 1256 1257 1258 1259
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1260

1261 1262 1263 1264
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1265 1266 1267 1268 1269 1270 1271

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1272

1273 1274
nested_nmi:
	/*
1275 1276
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1277
	 */
1278
	subq	$8, %rsp
1279 1280 1281
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1282
	pushfq
1283 1284
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1285 1286

	/* Put stack back */
1287
	addq	$(6*8), %rsp
1288 1289

nested_nmi_out:
1290
	popq	%rdx
1291

1292
	/* We are returning to kernel mode, so this cannot result in a fault. */
1293 1294 1295
	INTERRUPT_RETURN

first_nmi:
1296
	/* Restore rdx. */
1297
	movq	(%rsp), %rdx
1298

1299 1300
	/* Make room for "NMI executing". */
	pushq	$0
1301

1302
	/* Leave room for the "iret" frame */
1303
	subq	$(5*8), %rsp
1304

1305
	/* Copy the "original" frame to the "outermost" frame */
1306
	.rept 5
1307
	pushq	11*8(%rsp)
1308
	.endr
1309

1310 1311
	/* Everything up to here is safe from nested NMIs */

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1:
#endif

1327
repeat_nmi:
1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1336 1337 1338 1339
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1340 1341
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1342
	 */
1343
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1344

1345
	/*
1346 1347 1348
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1349
	 */
1350
	addq	$(10*8), %rsp
1351
	.rept 5
1352
	pushq	-6*8(%rsp)
1353
	.endr
1354
	subq	$(5*8), %rsp
1355
end_repeat_nmi:
1356 1357

	/*
1358 1359 1360
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1361
	 */
1362
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1363 1364
	ALLOC_PT_GPREGS_ON_STACK

1365
	/*
1366
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1367 1368 1369 1370 1371
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1372
	call	paranoid_entry
1373

1374
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1375 1376 1377
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1378

1379 1380
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1381 1382 1383
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1384 1385
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1386 1387

	/* Point RSP at the "iret" frame. */
1388
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1400 1401 1402 1403 1404 1405

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1406
	INTERRUPT_RETURN
1407 1408 1409
END(nmi)

ENTRY(ignore_sysret)
1410
	mov	$-ENOSYS, %eax
1411 1412
	sysret
END(ignore_sysret)