entry_64.S 43.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <linux/err.h>
L
Linus Torvalds 已提交
41

42 43
.code64
.section .entry.text, "ax"
44

45
#ifdef CONFIG_PARAVIRT
46
ENTRY(native_usergs_sysret64)
47
	UNWIND_HINT_EMPTY
48 49
	swapgs
	sysretq
50
END(native_usergs_sysret64)
51 52
#endif /* CONFIG_PARAVIRT */

53
.macro TRACE_IRQS_IRETQ
54
#ifdef CONFIG_TRACE_IRQFLAGS
55 56
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
57 58 59 60 61
	TRACE_IRQS_ON
1:
#endif
.endm

62 63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
76
	call	debug_stack_set_zero
77
	TRACE_IRQS_OFF
78
	call	debug_stack_reset
79 80 81
.endm

.macro TRACE_IRQS_ON_DEBUG
82
	call	debug_stack_set_zero
83
	TRACE_IRQS_ON
84
	call	debug_stack_reset
85 86
.endm

87
.macro TRACE_IRQS_IRETQ_DEBUG
88 89
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
90 91 92 93 94
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
95 96 97
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
98 99
#endif

L
Linus Torvalds 已提交
100
/*
101
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
102
 *
103 104 105 106 107 108 109 110 111 112
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
113
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
114 115 116 117 118 119
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
120
 * rax  system call number
121 122
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
123 124
 * rdi  arg0
 * rsi  arg1
125
 * rdx  arg2
126
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
127 128
 * r8   arg4
 * r9   arg5
129
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
130
 *
L
Linus Torvalds 已提交
131 132
 * Only called from user space.
 *
133
 * When user can change pt_regs->foo always force IRET. That is because
134 135
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
136
 */
L
Linus Torvalds 已提交
137

138
ENTRY(entry_SYSCALL_64)
139
	UNWIND_HINT_EMPTY
140 141 142 143 144
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
145

146
	swapgs
147 148
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
149

150 151
	TRACE_IRQS_OFF

152
	/* Construct struct pt_regs on stack */
153 154 155 156 157
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
158
GLOBAL(entry_SYSCALL_64_after_hwframe)
159 160 161 162 163 164 165 166 167 168 169
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
170
	UNWIND_HINT_REGS extra=0
171

172 173 174 175
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
176 177
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
178 179
	jnz	entry_SYSCALL64_slow_path

180
entry_SYSCALL_64_fastpath:
181 182 183 184 185 186 187
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
188
#if __SYSCALL_MASK == ~0
189
	cmpq	$__NR_syscall_max, %rax
190
#else
191 192
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
193
#endif
194 195
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
196 197 198

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
199 200
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
201
	 */
202
	call	*sys_call_table(, %rax, 8)
203 204
.Lentry_SYSCALL_64_after_fastpath_call:

205
	movq	%rax, RAX(%rsp)
206
1:
207 208

	/*
209 210 211
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
212
	 */
213
	DISABLE_INTERRUPTS(CLBR_ANY)
214
	TRACE_IRQS_OFF
215 216
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
217
	jnz	1f
218

219 220
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
221 222 223
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
224
	movq	RSP(%rsp), %rsp
225
	UNWIND_HINT_EMPTY
226
	USERGS_SYSRET64
L
Linus Torvalds 已提交
227

228 229 230 231 232 233
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
234
	TRACE_IRQS_ON
235
	ENABLE_INTERRUPTS(CLBR_ANY)
236
	SAVE_EXTRA_REGS
237
	movq	%rsp, %rdi
238 239
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
240

241 242
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
243
	SAVE_EXTRA_REGS
244
	movq	%rsp, %rdi
245 246 247
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
248
	RESTORE_EXTRA_REGS
249
	TRACE_IRQS_IRETQ		/* we're about to change IF */
250 251 252 253 254

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
255 256 257 258
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
259 260 261 262

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
263
	 * the kernel, since userspace controls RSP.
264
	 *
265
	 * If width of "canonical tail" ever becomes variable, this will need
266
	 * to be updated to remain correct on both old and new CPUs.
267
	 *
268 269
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
270
	 */
271 272
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273

274 275 276
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
277

278 279
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
280

281 282 283
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
284 285

	/*
286 287 288 289 290 291 292 293 294
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
295
	 *
296
	 *           movq	$stuck_here, %rcx
297 298 299 300 301 302
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
303 304
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
305 306 307

	/* nothing to check for RSP */

308 309
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
310 311

	/*
312 313
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
314 315
	 */
syscall_return_via_sysret:
316 317
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
318
	movq	RSP(%rsp), %rsp
319
	UNWIND_HINT_EMPTY
320 321 322 323 324
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
325
END(entry_SYSCALL_64)
326

327 328 329
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
330 331 332
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
333 334
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
335
	 * IRQs are on.
336 337 338 339
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

340 341 342 343
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
344
	DISABLE_INTERRUPTS(CLBR_ANY)
345
	TRACE_IRQS_OFF
346
	popq	%rax
347
	UNWIND_HINT_REGS extra=0
348
	jmp	entry_SYSCALL64_slow_path
349 350

1:
351
	jmp	*%rax				/* Called from C */
352 353 354 355
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
356
	UNWIND_HINT_FUNC
357 358 359 360 361 362 363 364 365 366
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
367

368 369 370 371 372
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
373
	UNWIND_HINT_FUNC
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

405 406 407
/*
 * A newly forked process directly context switches into this address.
 *
408
 * rax: prev task we switched from
409 410
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
411 412
 */
ENTRY(ret_from_fork)
413
	UNWIND_HINT_EMPTY
414
	movq	%rax, %rdi
415
	call	schedule_tail			/* rdi: 'prev' task parameter */
416

417 418
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
419

420
2:
421
	UNWIND_HINT_REGS
422
	movq	%rsp, %rdi
423 424 425 426
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
	jmp	restore_regs_and_iret
427 428 429 430 431 432 433 434 435 436 437 438

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
439 440
END(ret_from_fork)

441
/*
442 443
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
444
 */
445
	.align 8
446
ENTRY(irq_entries_start)
447 448
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
449
	UNWIND_HINT_IRET_REGS
450
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
451 452
	jmp	common_interrupt
	.align	8
453
	vector=vector+1
454
    .endr
455 456
END(irq_entries_start)

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
	pushfq
	testl $X86_EFLAGS_IF, (%rsp)
	jz .Lokay_\@
	ud2
.Lokay_\@:
	addq $8, %rsp
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
475
.macro ENTER_IRQ_STACK regs=1 old_rsp
476 477
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
478 479 480 481 482

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

483
	incl	PER_CPU_VAR(irq_count)
484
	jnz	.Lirq_stack_push_old_rsp_\@
485 486 487 488 489 490 491 492 493

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
510
	 */
511 512 513 514 515
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
516

517
.Lirq_stack_push_old_rsp_\@:
518
	pushq	\old_rsp
519 520 521 522

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
523 524 525 526 527
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
528
.macro LEAVE_IRQ_STACK regs=1
529 530 531 532
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

533 534 535 536
	.if \regs
	UNWIND_HINT_REGS
	.endif

537 538 539 540 541 542 543 544
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

545
/*
L
Linus Torvalds 已提交
546 547 548
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
549 550 551
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
552

553
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
554
	.macro interrupt func
555
	cld
556 557 558
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
559
	ENCODE_FRAME_POINTER
560

561
	testb	$3, CS(%rsp)
562
	jz	1f
563 564 565 566 567

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
568
	SWAPGS
569 570 571 572 573 574 575 576 577 578 579

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

580
	CALL_enter_from_user_mode
581

582
1:
583
	ENTER_IRQ_STACK old_rsp=%rdi
584 585 586
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

587
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
588 589
	.endm

590 591 592 593
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
594 595
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
596
	ASM_CLAC
597
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
598
	interrupt do_IRQ
599
	/* 0(%rsp): old RSP */
600
ret_from_intr:
601
	DISABLE_INTERRUPTS(CLBR_ANY)
602
	TRACE_IRQS_OFF
603

604
	LEAVE_IRQ_STACK
605

606
	testb	$3, CS(%rsp)
607
	jz	retint_kernel
608

609 610 611 612
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
613
	TRACE_IRQS_IRETQ
614
	SWAPGS
615
	jmp	restore_regs_and_iret
616

617
/* Returning to kernel space */
618
retint_kernel:
619 620 621
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
622
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
623
	jnc	1f
624
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
625
	jnz	1f
626
	call	preempt_schedule_irq
627
	jmp	0b
628
1:
629
#endif
630 631 632 633
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
634 635 636 637 638

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
639
GLOBAL(restore_regs_and_iret)
640
	RESTORE_EXTRA_REGS
641
restore_c_regs_and_iret:
642 643
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
644 645 646
	INTERRUPT_RETURN

ENTRY(native_iret)
647
	UNWIND_HINT_IRET_REGS
648 649 650 651
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
652
#ifdef CONFIG_X86_ESPFIX64
653 654
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
655
#endif
656

657
.global native_irq_return_iret
658
native_irq_return_iret:
A
Andy Lutomirski 已提交
659 660 661 662 663 664
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
665
	iretq
I
Ingo Molnar 已提交
666

667
#ifdef CONFIG_X86_ESPFIX64
668
native_irq_return_ldt:
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
691
	SWAPGS
692
	movq	PER_CPU_VAR(espfix_waddr), %rdi
693 694
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
695
	movq	%rax, (1*8)(%rdi)
696
	movq	(2*8)(%rsp), %rax		/* user CS */
697
	movq	%rax, (2*8)(%rdi)
698
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
699
	movq	%rax, (3*8)(%rdi)
700
	movq	(5*8)(%rsp), %rax		/* user SS */
701
	movq	%rax, (5*8)(%rdi)
702
	movq	(4*8)(%rsp), %rax		/* user RSP */
703
	movq	%rax, (4*8)(%rdi)
704 705 706 707 708 709 710 711 712 713 714 715 716
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
	popq	%rdi				/* Restore user RDI */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
717
	orq	PER_CPU_VAR(espfix_stack), %rax
718
	SWAPGS
719
	movq	%rax, %rsp
720
	UNWIND_HINT_IRET_REGS offset=8
721 722 723 724 725 726 727 728 729 730 731 732

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
733
	jmp	native_irq_return_iret
734
#endif
735
END(common_interrupt)
736

L
Linus Torvalds 已提交
737 738
/*
 * APIC interrupts.
739
 */
740
.macro apicinterrupt3 num sym do_sym
741
ENTRY(\sym)
742
	UNWIND_HINT_IRET_REGS
743
	ASM_CLAC
744
	pushq	$~(\num)
745
.Lcommon_\sym:
746
	interrupt \do_sym
747
	jmp	ret_from_intr
748 749
END(\sym)
.endm
L
Linus Torvalds 已提交
750

751
/* Make sure APIC interrupt handlers end up in the irqentry section: */
752 753
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
754

755
.macro apicinterrupt num sym do_sym
756
PUSH_SECTION_IRQENTRY
757
apicinterrupt3 \num \sym \do_sym
758
POP_SECTION_IRQENTRY
759 760
.endm

761
#ifdef CONFIG_SMP
762 763
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
764
#endif
L
Linus Torvalds 已提交
765

N
Nick Piggin 已提交
766
#ifdef CONFIG_X86_UV
767
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
768
#endif
769 770 771

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
772

773
#ifdef CONFIG_HAVE_KVM
774 775
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
776
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
777 778
#endif

779
#ifdef CONFIG_X86_MCE_THRESHOLD
780
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
781 782
#endif

783
#ifdef CONFIG_X86_MCE_AMD
784
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
785 786
#endif

787
#ifdef CONFIG_X86_THERMAL_VECTOR
788
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
789
#endif
790

791
#ifdef CONFIG_SMP
792 793 794
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
795
#endif
L
Linus Torvalds 已提交
796

797 798
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
799

800
#ifdef CONFIG_IRQ_WORK
801
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
802 803
#endif

L
Linus Torvalds 已提交
804 805
/*
 * Exception entry points.
806
 */
807
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
808 809

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
810
ENTRY(\sym)
811 812
	UNWIND_HINT_IRET_REGS offset=8

813 814 815 816 817
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

818
	ASM_CLAC
819 820

	.ifeq \has_error_code
821
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
822 823
	.endif

824
	ALLOC_PT_GPREGS_ON_STACK
825 826

	.if \paranoid
827
	.if \paranoid == 1
828 829
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
830
	.endif
831
	call	paranoid_entry
832
	.else
833
	call	error_entry
834
	.endif
835
	UNWIND_HINT_REGS
836
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
837 838

	.if \paranoid
839
	.if \shift_ist != -1
840
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
841
	.else
842
	TRACE_IRQS_OFF
843
	.endif
844
	.endif
845

846
	movq	%rsp, %rdi			/* pt_regs pointer */
847 848

	.if \has_error_code
849 850
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
851
	.else
852
	xorl	%esi, %esi			/* no error code */
853 854
	.endif

855
	.if \shift_ist != -1
856
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
857 858
	.endif

859
	call	\do_sym
860

861
	.if \shift_ist != -1
862
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
863 864
	.endif

865
	/* these procedures expect "no swapgs" flag in ebx */
866
	.if \paranoid
867
	jmp	paranoid_exit
868
	.else
869
	jmp	error_exit
870 871
	.endif

872 873 874 875 876 877 878
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
879
	call	error_entry
880 881


882 883 884
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
885

886
	movq	%rsp, %rdi			/* pt_regs pointer */
887 888

	.if \has_error_code
889 890
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
891
	.else
892
	xorl	%esi, %esi			/* no error code */
893 894
	.endif

895
	call	\do_sym
896

897
	jmp	error_exit			/* %ebx: no swapgs flag */
898
	.endif
899
END(\sym)
900
.endm
901

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
921
ENTRY(native_load_gs_index)
922
	FRAME_BEGIN
923
	pushfq
924
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
925
	SWAPGS
926
.Lgs_change:
927
	movl	%edi, %gs
928
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
929
	SWAPGS
930
	popfq
931
	FRAME_END
932
	ret
933
ENDPROC(native_load_gs_index)
934
EXPORT_SYMBOL(native_load_gs_index)
935

936
	_ASM_EXTABLE(.Lgs_change, bad_gs)
937
	.section .fixup, "ax"
L
Linus Torvalds 已提交
938
	/* running with kernelgs */
939
bad_gs:
940
	SWAPGS					/* switch back to user gs */
941 942 943 944 945 946
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
947 948 949
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
950
	.previous
951

952
/* Call softirq on interrupt stack. Interrupts are off. */
953
ENTRY(do_softirq_own_stack)
954 955
	pushq	%rbp
	mov	%rsp, %rbp
956
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
957
	call	__do_softirq
958
	LEAVE_IRQ_STACK regs=0
959
	leaveq
960
	ret
961
ENDPROC(do_softirq_own_stack)
962

963
#ifdef CONFIG_XEN
964
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
965 966

/*
967 968 969 970 971 972 973 974 975 976 977 978
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
979 980
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

981 982 983 984
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
985
	UNWIND_HINT_FUNC
986
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
987
	UNWIND_HINT_REGS
988 989

	ENTER_IRQ_STACK old_rsp=%r10
990
	call	xen_evtchn_do_upcall
991 992
	LEAVE_IRQ_STACK

993
#ifndef CONFIG_PREEMPT
994
	call	xen_maybe_preempt_hcall
995
#endif
996
	jmp	error_exit
997
END(xen_do_hypervisor_callback)
998 999

/*
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1012
ENTRY(xen_failsafe_callback)
1013
	UNWIND_HINT_EMPTY
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1026
	/* All segments match their saved values => Category 2 (Bad IRET). */
1027 1028 1029 1030
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1031
	UNWIND_HINT_IRET_REGS offset=8
1032
	jmp	general_protection
1033
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1034 1035 1036
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1037
	UNWIND_HINT_IRET_REGS
1038
	pushq	$-1 /* orig_ax = -1 => not a system call */
1039 1040 1041
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1042
	ENCODE_FRAME_POINTER
1043
	jmp	error_exit
1044 1045
END(xen_failsafe_callback)

1046
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1047 1048
	xen_hvm_callback_vector xen_evtchn_do_upcall

1049
#endif /* CONFIG_XEN */
1050

1051
#if IS_ENABLED(CONFIG_HYPERV)
1052
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1053 1054 1055
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1056 1057 1058 1059
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1060
#ifdef CONFIG_XEN
1061 1062
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1063
#endif
1064 1065

idtentry general_protection	do_general_protection	has_error_code=1
1066
idtentry page_fault		do_page_fault		has_error_code=1
1067

G
Gleb Natapov 已提交
1068
#ifdef CONFIG_KVM_GUEST
1069
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1070
#endif
1071

1072
#ifdef CONFIG_X86_MCE
1073
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1074 1075
#endif

1076 1077 1078 1079 1080 1081
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1082
	UNWIND_HINT_FUNC
1083 1084 1085
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1086
	ENCODE_FRAME_POINTER 8
1087 1088
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1089
	rdmsr
1090 1091
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1092
	SWAPGS
1093
	xorl	%ebx, %ebx
1094
1:	ret
1095
END(paranoid_entry)
1096

1097 1098 1099 1100 1101 1102 1103 1104 1105
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1106 1107
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1108
 */
1109
ENTRY(paranoid_exit)
1110
	UNWIND_HINT_REGS
1111
	DISABLE_INTERRUPTS(CLBR_ANY)
1112
	TRACE_IRQS_OFF_DEBUG
1113 1114
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
1115
	TRACE_IRQS_IRETQ
1116
	SWAPGS_UNSAFE_STACK
1117
	jmp	paranoid_exit_restore
1118
paranoid_exit_no_swapgs:
1119
	TRACE_IRQS_IRETQ_DEBUG
1120
paranoid_exit_restore:
1121 1122 1123
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
1124
	INTERRUPT_RETURN
1125 1126 1127
END(paranoid_exit)

/*
1128
 * Save all registers in pt_regs, and switch gs if needed.
1129
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1130 1131
 */
ENTRY(error_entry)
1132
	UNWIND_HINT_FUNC
1133
	cld
1134 1135
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1136
	ENCODE_FRAME_POINTER 8
1137
	xorl	%ebx, %ebx
1138
	testb	$3, CS+8(%rsp)
1139
	jz	.Lerror_kernelspace
1140

1141 1142 1143 1144
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1145
	SWAPGS
1146

1147
.Lerror_entry_from_usermode_after_swapgs:
1148 1149 1150 1151 1152 1153
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1154
	CALL_enter_from_user_mode
1155
	ret
1156

1157
.Lerror_entry_done:
1158 1159 1160
	TRACE_IRQS_OFF
	ret

1161 1162 1163 1164 1165 1166
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1167
.Lerror_kernelspace:
1168 1169 1170
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1171
	je	.Lerror_bad_iret
1172 1173
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1174
	je	.Lbstep_iret
1175
	cmpq	$.Lgs_change, RIP+8(%rsp)
1176
	jne	.Lerror_entry_done
1177 1178

	/*
1179
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1180
	 * gsbase and proceed.  We'll fix up the exception and land in
1181
	 * .Lgs_change's error handler with kernel gsbase.
1182
	 */
1183 1184
	SWAPGS
	jmp .Lerror_entry_done
1185

1186
.Lbstep_iret:
1187
	/* Fix truncated RIP */
1188
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1189 1190
	/* fall through */

1191
.Lerror_bad_iret:
1192 1193 1194 1195
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1196
	SWAPGS
1197 1198 1199 1200 1201 1202

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1203 1204 1205
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1206
	decl	%ebx
1207
	jmp	.Lerror_entry_from_usermode_after_swapgs
1208 1209 1210
END(error_entry)


1211
/*
1212
 * On entry, EBX is a "return to kernel mode" flag:
1213 1214 1215
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1216
ENTRY(error_exit)
1217
	UNWIND_HINT_REGS
1218
	DISABLE_INTERRUPTS(CLBR_ANY)
1219
	TRACE_IRQS_OFF
1220
	testl	%ebx, %ebx
1221 1222
	jnz	retint_kernel
	jmp	retint_user
1223 1224
END(error_exit)

1225
/* Runs on exception stack */
1226
/* XXX: broken on Xen PV */
1227
ENTRY(nmi)
1228
	UNWIND_HINT_IRET_REGS
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1246 1247 1248
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1249 1250
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1251
	 *    o Modify the "iret" location to jump to the repeat_nmi
1252 1253 1254 1255 1256 1257 1258 1259
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1260 1261 1262 1263 1264
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1265 1266
	 */

1267 1268
	ASM_CLAC

1269
	/* Use %rdx as our temp variable throughout */
1270
	pushq	%rdx
1271

1272 1273 1274 1275 1276 1277 1278 1279 1280
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1281 1282 1283
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1284 1285
	 */

1286
	SWAPGS_UNSAFE_STACK
1287 1288 1289
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1290
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1291 1292 1293 1294 1295
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1296
	UNWIND_HINT_IRET_REGS
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1313
	UNWIND_HINT_REGS
1314
	ENCODE_FRAME_POINTER
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1326
	/*
1327
	 * Return back to user mode.  We must *not* do the normal exit
1328
	 * work, because we don't want to enable interrupts.
1329
	 */
1330
	SWAPGS
1331
	jmp	restore_regs_and_iret
1332

1333
.Lnmi_from_kernel:
1334
	/*
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1375
	/*
1376 1377
	 * Determine whether we're a nested NMI.
	 *
1378 1379 1380 1381 1382 1383
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1384
	 */
1385 1386 1387 1388 1389 1390 1391 1392

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1393

1394
	/*
1395
	 * Now check "NMI executing".  If it's set, then we're nested.
1396 1397
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1398
	 */
1399 1400
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1401 1402

	/*
1403 1404
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1405 1406 1407 1408 1409 1410 1411 1412
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1413
	 */
1414 1415 1416 1417 1418
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1419

1420 1421 1422 1423
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1424 1425 1426 1427 1428 1429 1430

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1431

1432 1433
nested_nmi:
	/*
1434 1435
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1436
	 */
1437
	subq	$8, %rsp
1438 1439 1440
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1441
	pushfq
1442 1443
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1444 1445

	/* Put stack back */
1446
	addq	$(6*8), %rsp
1447 1448

nested_nmi_out:
1449
	popq	%rdx
1450

1451
	/* We are returning to kernel mode, so this cannot result in a fault. */
1452 1453 1454
	INTERRUPT_RETURN

first_nmi:
1455
	/* Restore rdx. */
1456
	movq	(%rsp), %rdx
1457

1458 1459
	/* Make room for "NMI executing". */
	pushq	$0
1460

1461
	/* Leave room for the "iret" frame */
1462
	subq	$(5*8), %rsp
1463

1464
	/* Copy the "original" frame to the "outermost" frame */
1465
	.rept 5
1466
	pushq	11*8(%rsp)
1467
	.endr
1468
	UNWIND_HINT_IRET_REGS
1469

1470 1471
	/* Everything up to here is safe from nested NMIs */

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1484
	UNWIND_HINT_IRET_REGS
1485 1486 1487
1:
#endif

1488
repeat_nmi:
1489 1490 1491 1492 1493 1494 1495 1496
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1497 1498 1499 1500
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1501 1502
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1503
	 */
1504
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1505

1506
	/*
1507 1508 1509
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1510
	 */
1511
	addq	$(10*8), %rsp
1512
	.rept 5
1513
	pushq	-6*8(%rsp)
1514
	.endr
1515
	subq	$(5*8), %rsp
1516
end_repeat_nmi:
1517 1518

	/*
1519 1520 1521
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1522
	 */
1523
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1524 1525
	ALLOC_PT_GPREGS_ON_STACK

1526
	/*
1527
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1528 1529 1530 1531 1532
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1533
	call	paranoid_entry
1534
	UNWIND_HINT_REGS
1535

1536
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1537 1538 1539
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1540

1541 1542
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1543 1544 1545
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1546 1547
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1548 1549

	/* Point RSP at the "iret" frame. */
1550
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1562 1563 1564 1565 1566 1567

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1568
	INTERRUPT_RETURN
1569 1570 1571
END(nmi)

ENTRY(ignore_sysret)
1572
	UNWIND_HINT_EMPTY
1573
	mov	$-ENOSYS, %eax
1574 1575
	sysret
END(ignore_sysret)
1576 1577

ENTRY(rewind_stack_do_exit)
1578
	UNWIND_HINT_FUNC
1579 1580 1581 1582
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1583 1584
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1585 1586 1587

	call	do_exit
END(rewind_stack_do_exit)