entry_64.S 44.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <linux/err.h>
L
Linus Torvalds 已提交
41

42 43
.code64
.section .entry.text, "ax"
44

45
#ifdef CONFIG_PARAVIRT
46
ENTRY(native_usergs_sysret64)
47
	UNWIND_HINT_EMPTY
48 49
	swapgs
	sysretq
50
END(native_usergs_sysret64)
51 52
#endif /* CONFIG_PARAVIRT */

53
.macro TRACE_IRQS_IRETQ
54
#ifdef CONFIG_TRACE_IRQFLAGS
55 56
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
57 58 59 60 61
	TRACE_IRQS_ON
1:
#endif
.endm

62 63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
76
	call	debug_stack_set_zero
77
	TRACE_IRQS_OFF
78
	call	debug_stack_reset
79 80 81
.endm

.macro TRACE_IRQS_ON_DEBUG
82
	call	debug_stack_set_zero
83
	TRACE_IRQS_ON
84
	call	debug_stack_reset
85 86
.endm

87
.macro TRACE_IRQS_IRETQ_DEBUG
88 89
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
90 91 92 93 94
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
95 96 97
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
98 99
#endif

L
Linus Torvalds 已提交
100
/*
101
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
102
 *
103 104 105 106 107 108 109 110 111 112
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
113
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
114 115 116 117 118 119
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
120
 * rax  system call number
121 122
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
123 124
 * rdi  arg0
 * rsi  arg1
125
 * rdx  arg2
126
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
127 128
 * r8   arg4
 * r9   arg5
129
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
130
 *
L
Linus Torvalds 已提交
131 132
 * Only called from user space.
 *
133
 * When user can change pt_regs->foo always force IRET. That is because
134 135
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
136
 */
L
Linus Torvalds 已提交
137

138
ENTRY(entry_SYSCALL_64)
139
	UNWIND_HINT_EMPTY
140 141 142 143 144
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
145 146 147 148 149 150
	SWAPGS_UNSAFE_STACK
	/*
	 * A hypervisor implementation might want to use a label
	 * after the swapgs, so that it can do the swapgs
	 * for the guest and jump here on syscall.
	 */
151
GLOBAL(entry_SYSCALL_64_after_swapgs)
152

153 154
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
155

156 157
	TRACE_IRQS_OFF

158
	/* Construct struct pt_regs on stack */
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
175
	UNWIND_HINT_REGS extra=0
176

177 178 179 180
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
181 182
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
183 184
	jnz	entry_SYSCALL64_slow_path

185
entry_SYSCALL_64_fastpath:
186 187 188 189 190 191 192
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
193
#if __SYSCALL_MASK == ~0
194
	cmpq	$__NR_syscall_max, %rax
195
#else
196 197
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
198
#endif
199 200
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
201 202 203

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
204 205
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
206
	 */
207
	call	*sys_call_table(, %rax, 8)
208 209
.Lentry_SYSCALL_64_after_fastpath_call:

210
	movq	%rax, RAX(%rsp)
211
1:
212 213

	/*
214 215 216
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
217
	 */
218
	DISABLE_INTERRUPTS(CLBR_ANY)
219
	TRACE_IRQS_OFF
220 221
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
222
	jnz	1f
223

224 225
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
226 227 228
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
229
	movq	RSP(%rsp), %rsp
230
	UNWIND_HINT_EMPTY
231
	USERGS_SYSRET64
L
Linus Torvalds 已提交
232

233 234 235 236 237 238
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
239
	TRACE_IRQS_ON
240
	ENABLE_INTERRUPTS(CLBR_ANY)
241
	SAVE_EXTRA_REGS
242
	movq	%rsp, %rdi
243 244
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
245

246 247
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
248
	SAVE_EXTRA_REGS
249
	movq	%rsp, %rdi
250 251 252
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
253
	RESTORE_EXTRA_REGS
254
	TRACE_IRQS_IRETQ		/* we're about to change IF */
255 256 257 258 259

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
260 261 262 263
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
264 265 266 267

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
268
	 * the kernel, since userspace controls RSP.
269
	 *
270
	 * If width of "canonical tail" ever becomes variable, this will need
271
	 * to be updated to remain correct on both old and new CPUs.
272
	 *
273 274
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
275
	 */
276 277
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
278

279 280 281
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
282

283 284
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
285

286 287 288
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
289 290

	/*
291 292 293 294 295 296 297 298 299
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
300
	 *
301
	 *           movq	$stuck_here, %rcx
302 303 304 305 306 307
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
308 309
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
310 311 312

	/* nothing to check for RSP */

313 314
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
315 316

	/*
317 318
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
319 320
	 */
syscall_return_via_sysret:
321 322
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
323
	movq	RSP(%rsp), %rsp
324
	UNWIND_HINT_EMPTY
325 326 327 328 329
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
330
END(entry_SYSCALL_64)
331

332 333 334
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
335 336 337
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
338 339
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
340
	 * IRQs are on.
341 342 343 344
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

345 346 347 348
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
349
	DISABLE_INTERRUPTS(CLBR_ANY)
350
	TRACE_IRQS_OFF
351
	popq	%rax
352
	UNWIND_HINT_REGS extra=0
353
	jmp	entry_SYSCALL64_slow_path
354 355

1:
356
	jmp	*%rax				/* Called from C */
357 358 359 360
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
361
	UNWIND_HINT_FUNC
362 363 364 365 366 367 368 369 370 371
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
372

373 374 375 376 377
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
378
	UNWIND_HINT_FUNC
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

410 411 412
/*
 * A newly forked process directly context switches into this address.
 *
413
 * rax: prev task we switched from
414 415
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
416 417
 */
ENTRY(ret_from_fork)
418
	UNWIND_HINT_EMPTY
419
	movq	%rax, %rdi
420
	call	schedule_tail			/* rdi: 'prev' task parameter */
421

422 423
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
424

425
2:
426
	UNWIND_HINT_REGS
427
	movq	%rsp, %rdi
428 429 430 431
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
	jmp	restore_regs_and_iret
432 433 434 435 436 437 438 439 440 441 442 443

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
444 445
END(ret_from_fork)

446
/*
447 448
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
449
 */
450
	.align 8
451
ENTRY(irq_entries_start)
452 453
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
454
	UNWIND_HINT_IRET_REGS
455
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
456 457
	jmp	common_interrupt
	.align	8
458
	vector=vector+1
459
    .endr
460 461
END(irq_entries_start)

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
	pushfq
	testl $X86_EFLAGS_IF, (%rsp)
	jz .Lokay_\@
	ud2
.Lokay_\@:
	addq $8, %rsp
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
480
.macro ENTER_IRQ_STACK regs=1 old_rsp
481 482
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
483 484 485 486 487

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

488
	incl	PER_CPU_VAR(irq_count)
489
	jnz	.Lirq_stack_push_old_rsp_\@
490 491 492 493 494 495 496 497 498

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
515
	 */
516 517 518 519 520
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
521

522
.Lirq_stack_push_old_rsp_\@:
523
	pushq	\old_rsp
524 525 526 527

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
528 529 530 531 532
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
533
.macro LEAVE_IRQ_STACK regs=1
534 535 536 537
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

538 539 540 541
	.if \regs
	UNWIND_HINT_REGS
	.endif

542 543 544 545 546 547 548 549
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

550
/*
L
Linus Torvalds 已提交
551 552 553
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
554 555 556
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
557

558
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
559
	.macro interrupt func
560
	cld
561 562 563
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
564
	ENCODE_FRAME_POINTER
565

566
	testb	$3, CS(%rsp)
567
	jz	1f
568 569 570 571 572

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
573
	SWAPGS
574 575 576 577 578 579 580 581 582 583 584

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

585
	CALL_enter_from_user_mode
586

587
1:
588
	ENTER_IRQ_STACK old_rsp=%rdi
589 590 591
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

592
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
593 594
	.endm

595 596 597 598
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
599 600
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
601
	ASM_CLAC
602
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
603
	interrupt do_IRQ
604
	/* 0(%rsp): old RSP */
605
ret_from_intr:
606
	DISABLE_INTERRUPTS(CLBR_ANY)
607
	TRACE_IRQS_OFF
608

609
	LEAVE_IRQ_STACK
610

611
	testb	$3, CS(%rsp)
612
	jz	retint_kernel
613

614 615 616 617
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
618
	TRACE_IRQS_IRETQ
619
	SWAPGS
620
	jmp	restore_regs_and_iret
621

622
/* Returning to kernel space */
623
retint_kernel:
624 625 626
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
627
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
628
	jnc	1f
629
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
630
	jnz	1f
631
	call	preempt_schedule_irq
632
	jmp	0b
633
1:
634
#endif
635 636 637 638
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
639 640 641 642 643

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
644
GLOBAL(restore_regs_and_iret)
645
	RESTORE_EXTRA_REGS
646
restore_c_regs_and_iret:
647 648
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
649 650 651
	INTERRUPT_RETURN

ENTRY(native_iret)
652
	UNWIND_HINT_IRET_REGS
653 654 655 656
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
657
#ifdef CONFIG_X86_ESPFIX64
658 659
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
660
#endif
661

662
.global native_irq_return_iret
663
native_irq_return_iret:
A
Andy Lutomirski 已提交
664 665 666 667 668 669
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
670
	iretq
I
Ingo Molnar 已提交
671

672
#ifdef CONFIG_X86_ESPFIX64
673
native_irq_return_ldt:
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
696
	SWAPGS
697
	movq	PER_CPU_VAR(espfix_waddr), %rdi
698 699
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
700
	movq	%rax, (1*8)(%rdi)
701
	movq	(2*8)(%rsp), %rax		/* user CS */
702
	movq	%rax, (2*8)(%rdi)
703
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
704
	movq	%rax, (3*8)(%rdi)
705
	movq	(5*8)(%rsp), %rax		/* user SS */
706
	movq	%rax, (5*8)(%rdi)
707
	movq	(4*8)(%rsp), %rax		/* user RSP */
708
	movq	%rax, (4*8)(%rdi)
709 710 711 712 713 714 715 716 717 718 719 720 721
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
	popq	%rdi				/* Restore user RDI */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
722
	orq	PER_CPU_VAR(espfix_stack), %rax
723
	SWAPGS
724
	movq	%rax, %rsp
725
	UNWIND_HINT_IRET_REGS offset=8
726 727 728 729 730 731 732 733 734 735 736 737

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
738
	jmp	native_irq_return_iret
739
#endif
740
END(common_interrupt)
741

L
Linus Torvalds 已提交
742 743
/*
 * APIC interrupts.
744
 */
745
.macro apicinterrupt3 num sym do_sym
746
ENTRY(\sym)
747
	UNWIND_HINT_IRET_REGS
748
	ASM_CLAC
749
	pushq	$~(\num)
750
.Lcommon_\sym:
751
	interrupt \do_sym
752
	jmp	ret_from_intr
753 754
END(\sym)
.endm
L
Linus Torvalds 已提交
755

756 757 758 759 760 761 762 763 764 765 766 767
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym

.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif

768 769 770 771 772 773 774 775 776
/* Make sure APIC interrupt handlers end up in the irqentry section: */
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
# define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
# define POP_SECTION_IRQENTRY	.popsection
#else
# define PUSH_SECTION_IRQENTRY
# define POP_SECTION_IRQENTRY
#endif

777
.macro apicinterrupt num sym do_sym
778
PUSH_SECTION_IRQENTRY
779 780
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
781
POP_SECTION_IRQENTRY
782 783
.endm

784
#ifdef CONFIG_SMP
785 786
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
787
#endif
L
Linus Torvalds 已提交
788

N
Nick Piggin 已提交
789
#ifdef CONFIG_X86_UV
790
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
791
#endif
792 793 794

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
795

796
#ifdef CONFIG_HAVE_KVM
797 798
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
799
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
800 801
#endif

802
#ifdef CONFIG_X86_MCE_THRESHOLD
803
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
804 805
#endif

806
#ifdef CONFIG_X86_MCE_AMD
807
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
808 809
#endif

810
#ifdef CONFIG_X86_THERMAL_VECTOR
811
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
812
#endif
813

814
#ifdef CONFIG_SMP
815 816 817
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
818
#endif
L
Linus Torvalds 已提交
819

820 821
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
822

823
#ifdef CONFIG_IRQ_WORK
824
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
825 826
#endif

L
Linus Torvalds 已提交
827 828
/*
 * Exception entry points.
829
 */
830
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
831 832

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
833
ENTRY(\sym)
834 835
	UNWIND_HINT_IRET_REGS offset=8

836 837 838 839 840
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

841
	ASM_CLAC
842
	PARAVIRT_ADJUST_EXCEPTION_FRAME
843 844

	.ifeq \has_error_code
845
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
846 847
	.endif

848
	ALLOC_PT_GPREGS_ON_STACK
849 850

	.if \paranoid
851
	.if \paranoid == 1
852 853
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
854
	.endif
855
	call	paranoid_entry
856
	.else
857
	call	error_entry
858
	.endif
859
	UNWIND_HINT_REGS
860
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
861 862

	.if \paranoid
863
	.if \shift_ist != -1
864
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
865
	.else
866
	TRACE_IRQS_OFF
867
	.endif
868
	.endif
869

870
	movq	%rsp, %rdi			/* pt_regs pointer */
871 872

	.if \has_error_code
873 874
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
875
	.else
876
	xorl	%esi, %esi			/* no error code */
877 878
	.endif

879
	.if \shift_ist != -1
880
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
881 882
	.endif

883
	call	\do_sym
884

885
	.if \shift_ist != -1
886
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
887 888
	.endif

889
	/* these procedures expect "no swapgs" flag in ebx */
890
	.if \paranoid
891
	jmp	paranoid_exit
892
	.else
893
	jmp	error_exit
894 895
	.endif

896 897 898 899 900 901 902
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
903
	call	error_entry
904 905


906 907 908
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
909

910
	movq	%rsp, %rdi			/* pt_regs pointer */
911 912

	.if \has_error_code
913 914
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
915
	.else
916
	xorl	%esi, %esi			/* no error code */
917 918
	.endif

919
	call	\do_sym
920

921
	jmp	error_exit			/* %ebx: no swapgs flag */
922
	.endif
923
END(\sym)
924
.endm
925

926
#ifdef CONFIG_TRACING
927 928 929
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
930 931
.endm
#else
932 933
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
934 935 936
.endm
#endif

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
956
ENTRY(native_load_gs_index)
957
	FRAME_BEGIN
958
	pushfq
959
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
960
	SWAPGS
961
.Lgs_change:
962
	movl	%edi, %gs
963
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
964
	SWAPGS
965
	popfq
966
	FRAME_END
967
	ret
968
ENDPROC(native_load_gs_index)
969
EXPORT_SYMBOL(native_load_gs_index)
970

971
	_ASM_EXTABLE(.Lgs_change, bad_gs)
972
	.section .fixup, "ax"
L
Linus Torvalds 已提交
973
	/* running with kernelgs */
974
bad_gs:
975
	SWAPGS					/* switch back to user gs */
976 977 978 979 980 981
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
982 983 984
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
985
	.previous
986

987
/* Call softirq on interrupt stack. Interrupts are off. */
988
ENTRY(do_softirq_own_stack)
989 990
	pushq	%rbp
	mov	%rsp, %rbp
991
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
992
	call	__do_softirq
993
	LEAVE_IRQ_STACK regs=0
994
	leaveq
995
	ret
996
ENDPROC(do_softirq_own_stack)
997

998
#ifdef CONFIG_XEN
999
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1000 1001

/*
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1014 1015
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1016 1017 1018 1019
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1020
	UNWIND_HINT_FUNC
1021
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1022
	UNWIND_HINT_REGS
1023 1024

	ENTER_IRQ_STACK old_rsp=%r10
1025
	call	xen_evtchn_do_upcall
1026 1027
	LEAVE_IRQ_STACK

1028
#ifndef CONFIG_PREEMPT
1029
	call	xen_maybe_preempt_hcall
1030
#endif
1031
	jmp	error_exit
1032
END(xen_do_hypervisor_callback)
1033 1034

/*
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1047
ENTRY(xen_failsafe_callback)
1048
	UNWIND_HINT_EMPTY
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1061
	/* All segments match their saved values => Category 2 (Bad IRET). */
1062 1063 1064 1065 1066 1067
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
	pushq	%r11
	pushq	%rcx
1068
	UNWIND_HINT_IRET_REGS offset=8
1069
	jmp	general_protection
1070
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1071 1072 1073
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1074
	UNWIND_HINT_IRET_REGS
1075
	pushq	$-1 /* orig_ax = -1 => not a system call */
1076 1077 1078
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1079
	ENCODE_FRAME_POINTER
1080
	jmp	error_exit
1081 1082
END(xen_failsafe_callback)

1083
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1084 1085
	xen_hvm_callback_vector xen_evtchn_do_upcall

1086
#endif /* CONFIG_XEN */
1087

1088
#if IS_ENABLED(CONFIG_HYPERV)
1089
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1090 1091 1092
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1093 1094 1095 1096
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1097
#ifdef CONFIG_XEN
1098 1099 1100
idtentry xen_debug		do_debug		has_error_code=0
idtentry xen_int3		do_int3			has_error_code=0
idtentry xen_stack_segment	do_stack_segment	has_error_code=1
1101
#endif
1102 1103 1104 1105

idtentry general_protection	do_general_protection	has_error_code=1
trace_idtentry page_fault	do_page_fault		has_error_code=1

G
Gleb Natapov 已提交
1106
#ifdef CONFIG_KVM_GUEST
1107
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1108
#endif
1109

1110
#ifdef CONFIG_X86_MCE
1111
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1112 1113
#endif

1114 1115 1116 1117 1118 1119
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1120
	UNWIND_HINT_FUNC
1121 1122 1123
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1124
	ENCODE_FRAME_POINTER 8
1125 1126
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1127
	rdmsr
1128 1129
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1130
	SWAPGS
1131
	xorl	%ebx, %ebx
1132
1:	ret
1133
END(paranoid_entry)
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1144 1145
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1146
 */
1147
ENTRY(paranoid_exit)
1148
	UNWIND_HINT_REGS
1149
	DISABLE_INTERRUPTS(CLBR_ANY)
1150
	TRACE_IRQS_OFF_DEBUG
1151 1152
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
1153
	TRACE_IRQS_IRETQ
1154
	SWAPGS_UNSAFE_STACK
1155
	jmp	paranoid_exit_restore
1156
paranoid_exit_no_swapgs:
1157
	TRACE_IRQS_IRETQ_DEBUG
1158
paranoid_exit_restore:
1159 1160 1161
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
1162
	INTERRUPT_RETURN
1163 1164 1165
END(paranoid_exit)

/*
1166
 * Save all registers in pt_regs, and switch gs if needed.
1167
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1168 1169
 */
ENTRY(error_entry)
1170
	UNWIND_HINT_FUNC
1171
	cld
1172 1173
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1174
	ENCODE_FRAME_POINTER 8
1175
	xorl	%ebx, %ebx
1176
	testb	$3, CS+8(%rsp)
1177
	jz	.Lerror_kernelspace
1178

1179 1180 1181 1182
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1183
	SWAPGS
1184

1185
.Lerror_entry_from_usermode_after_swapgs:
1186 1187 1188 1189 1190 1191
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1192
	CALL_enter_from_user_mode
1193
	ret
1194

1195
.Lerror_entry_done:
1196 1197 1198
	TRACE_IRQS_OFF
	ret

1199 1200 1201 1202 1203 1204
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1205
.Lerror_kernelspace:
1206 1207 1208
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1209
	je	.Lerror_bad_iret
1210 1211
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1212
	je	.Lbstep_iret
1213
	cmpq	$.Lgs_change, RIP+8(%rsp)
1214
	jne	.Lerror_entry_done
1215 1216

	/*
1217
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1218
	 * gsbase and proceed.  We'll fix up the exception and land in
1219
	 * .Lgs_change's error handler with kernel gsbase.
1220
	 */
1221 1222
	SWAPGS
	jmp .Lerror_entry_done
1223

1224
.Lbstep_iret:
1225
	/* Fix truncated RIP */
1226
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1227 1228
	/* fall through */

1229
.Lerror_bad_iret:
1230 1231 1232 1233
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1234
	SWAPGS
1235 1236 1237 1238 1239 1240

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1241 1242 1243
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1244
	decl	%ebx
1245
	jmp	.Lerror_entry_from_usermode_after_swapgs
1246 1247 1248
END(error_entry)


1249
/*
1250
 * On entry, EBX is a "return to kernel mode" flag:
1251 1252 1253
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1254
ENTRY(error_exit)
1255
	UNWIND_HINT_REGS
1256
	DISABLE_INTERRUPTS(CLBR_ANY)
1257
	TRACE_IRQS_OFF
1258
	testl	%ebx, %ebx
1259 1260
	jnz	retint_kernel
	jmp	retint_user
1261 1262
END(error_exit)

1263
/* Runs on exception stack */
1264
ENTRY(nmi)
1265
	UNWIND_HINT_IRET_REGS
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	/*
	 * Fix up the exception frame if we're on Xen.
	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
	 * one value to the stack on native, so it may clobber the rdx
	 * scratch slot, but it won't clobber any of the important
	 * slots past it.
	 *
	 * Xen is a different story, because the Xen frame itself overlaps
	 * the "NMI executing" variable.
	 */
1276
	PARAVIRT_ADJUST_EXCEPTION_FRAME
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1295 1296 1297
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1298 1299
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1300
	 *    o Modify the "iret" location to jump to the repeat_nmi
1301 1302 1303 1304 1305 1306 1307 1308
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1309 1310 1311 1312 1313
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1314 1315
	 */

1316 1317
	ASM_CLAC

1318
	/* Use %rdx as our temp variable throughout */
1319
	pushq	%rdx
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1330 1331 1332
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1333 1334
	 */

1335
	SWAPGS_UNSAFE_STACK
1336 1337 1338
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1339
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1340 1341 1342 1343 1344
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1345
	UNWIND_HINT_IRET_REGS
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1362
	UNWIND_HINT_REGS
1363
	ENCODE_FRAME_POINTER
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1375
	/*
1376
	 * Return back to user mode.  We must *not* do the normal exit
1377
	 * work, because we don't want to enable interrupts.
1378
	 */
1379
	SWAPGS
1380
	jmp	restore_regs_and_iret
1381

1382
.Lnmi_from_kernel:
1383
	/*
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1424
	/*
1425 1426
	 * Determine whether we're a nested NMI.
	 *
1427 1428 1429 1430 1431 1432
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1433
	 */
1434 1435 1436 1437 1438 1439 1440 1441

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1442

1443
	/*
1444
	 * Now check "NMI executing".  If it's set, then we're nested.
1445 1446
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1447
	 */
1448 1449
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1450 1451

	/*
1452 1453
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1454 1455 1456 1457 1458 1459 1460 1461
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1462
	 */
1463 1464 1465 1466 1467
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1468

1469 1470 1471 1472
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1473 1474 1475 1476 1477 1478 1479

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1480

1481 1482
nested_nmi:
	/*
1483 1484
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1485
	 */
1486
	subq	$8, %rsp
1487 1488 1489
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1490
	pushfq
1491 1492
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1493 1494

	/* Put stack back */
1495
	addq	$(6*8), %rsp
1496 1497

nested_nmi_out:
1498
	popq	%rdx
1499

1500
	/* We are returning to kernel mode, so this cannot result in a fault. */
1501 1502 1503
	INTERRUPT_RETURN

first_nmi:
1504
	/* Restore rdx. */
1505
	movq	(%rsp), %rdx
1506

1507 1508
	/* Make room for "NMI executing". */
	pushq	$0
1509

1510
	/* Leave room for the "iret" frame */
1511
	subq	$(5*8), %rsp
1512

1513
	/* Copy the "original" frame to the "outermost" frame */
1514
	.rept 5
1515
	pushq	11*8(%rsp)
1516
	.endr
1517
	UNWIND_HINT_IRET_REGS
1518

1519 1520
	/* Everything up to here is safe from nested NMIs */

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1533
	UNWIND_HINT_IRET_REGS
1534 1535 1536
1:
#endif

1537
repeat_nmi:
1538 1539 1540 1541 1542 1543 1544 1545
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1546 1547 1548 1549
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1550 1551
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1552
	 */
1553
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1554

1555
	/*
1556 1557 1558
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1559
	 */
1560
	addq	$(10*8), %rsp
1561
	.rept 5
1562
	pushq	-6*8(%rsp)
1563
	.endr
1564
	subq	$(5*8), %rsp
1565
end_repeat_nmi:
1566 1567

	/*
1568 1569 1570
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1571
	 */
1572
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1573 1574
	ALLOC_PT_GPREGS_ON_STACK

1575
	/*
1576
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1577 1578 1579 1580 1581
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1582
	call	paranoid_entry
1583
	UNWIND_HINT_REGS
1584

1585
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1586 1587 1588
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1589

1590 1591
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1592 1593 1594
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1595 1596
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1597 1598

	/* Point RSP at the "iret" frame. */
1599
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1600

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1611 1612 1613 1614 1615 1616

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1617
	INTERRUPT_RETURN
1618 1619 1620
END(nmi)

ENTRY(ignore_sysret)
1621
	UNWIND_HINT_EMPTY
1622
	mov	$-ENOSYS, %eax
1623 1624
	sysret
END(ignore_sysret)
1625 1626

ENTRY(rewind_stack_do_exit)
1627
	UNWIND_HINT_FUNC
1628 1629 1630 1631
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1632 1633
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1634 1635 1636

	call	do_exit
END(rewind_stack_do_exit)