entry_64.S 49.2 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <asm/fsgsbase.h>
42
#include <linux/err.h>
L
Linus Torvalds 已提交
43

44 45
#include "calling.h"

46 47
.code64
.section .entry.text, "ax"
48

49
#ifdef CONFIG_PARAVIRT
50
ENTRY(native_usergs_sysret64)
51
	UNWIND_HINT_EMPTY
52 53
	swapgs
	sysretq
54
END(native_usergs_sysret64)
55 56
#endif /* CONFIG_PARAVIRT */

57
.macro TRACE_IRQS_FLAGS flags:req
58
#ifdef CONFIG_TRACE_IRQFLAGS
59
	btl	$9, \flags		/* interrupts off? */
60
	jnc	1f
61 62 63 64 65
	TRACE_IRQS_ON
1:
#endif
.endm

66 67 68 69
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

70 71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
84
	call	debug_stack_set_zero
85
	TRACE_IRQS_OFF
86
	call	debug_stack_reset
87 88 89
.endm

.macro TRACE_IRQS_ON_DEBUG
90
	call	debug_stack_set_zero
91
	TRACE_IRQS_ON
92
	call	debug_stack_reset
93 94
.endm

95
.macro TRACE_IRQS_IRETQ_DEBUG
96
	btl	$9, EFLAGS(%rsp)		/* interrupts off? */
97
	jnc	1f
98 99 100 101 102
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
103 104 105
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
106 107
#endif

L
Linus Torvalds 已提交
108
/*
109
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
110
 *
111 112 113 114 115 116 117 118 119 120
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
121
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
122 123 124 125 126 127
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
128
 * rax  system call number
129 130
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
131 132
 * rdi  arg0
 * rsi  arg1
133
 * rdx  arg2
134
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
135 136
 * r8   arg4
 * r9   arg5
137
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
138
 *
L
Linus Torvalds 已提交
139 140
 * Only called from user space.
 *
141
 * When user can change pt_regs->foo always force IRET. That is because
142 143
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
144
 */
L
Linus Torvalds 已提交
145

146
ENTRY(entry_SYSCALL_64)
147
	UNWIND_HINT_EMPTY
148 149 150 151 152
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
153

154
	swapgs
155
	/* tss.sp2 is scratch space. */
156
	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
157
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
158
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
159 160

	/* Construct struct pt_regs on stack */
161 162 163 164 165
	pushq	$__USER_DS				/* pt_regs->ss */
	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
	pushq	%r11					/* pt_regs->flags */
	pushq	$__USER_CS				/* pt_regs->cs */
	pushq	%rcx					/* pt_regs->ip */
166
GLOBAL(entry_SYSCALL_64_after_hwframe)
167
	pushq	%rax					/* pt_regs->orig_ax */
168 169

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
170

171 172
	TRACE_IRQS_OFF

173
	/* IRQs are off. */
174 175
	movq	%rax, %rdi
	movq	%rsp, %rsi
176 177
	call	do_syscall_64		/* returns with IRQs disabled */

178
	TRACE_IRQS_IRETQ		/* we're about to change IF */
179 180 181

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
182 183
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
184
	 */
185 186
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
187 188 189

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
190 191 192 193

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
194
	 * the kernel, since userspace controls RSP.
195
	 *
196
	 * If width of "canonical tail" ever becomes variable, this will need
197
	 * to be updated to remain correct on both old and new CPUs.
198
	 *
199 200
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
201
	 */
202
#ifdef CONFIG_X86_5LEVEL
203 204
	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
205
#else
206 207
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
208
#endif
209

210 211
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
212
	jne	swapgs_restore_regs_and_return_to_usermode
213

214
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
215
	jne	swapgs_restore_regs_and_return_to_usermode
216

217 218
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
219
	jne	swapgs_restore_regs_and_return_to_usermode
220 221

	/*
222 223 224 225 226 227 228 229 230
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
231
	 *
232
	 *           movq	$stuck_here, %rcx
233 234 235 236 237 238
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
239
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
240
	jnz	swapgs_restore_regs_and_return_to_usermode
241 242 243

	/* nothing to check for RSP */

244
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
245
	jne	swapgs_restore_regs_and_return_to_usermode
246 247

	/*
248 249
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
250 251
	 */
syscall_return_via_sysret:
252
	/* rcx and r11 are already restored (see code above) */
253
	UNWIND_HINT_EMPTY
254
	POP_REGS pop_rdi=0 skip_r11rcx=1
255 256 257 258 259 260

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
261
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
262 263 264 265 266 267 268 269

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
270 271
	STACKLEAK_ERASE_NOCLOBBER

272
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
273

274
	popq	%rdi
275
	popq	%rsp
276
	USERGS_SYSRET64
277
END(entry_SYSCALL_64)
278

279 280 281 282 283
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
284
	UNWIND_HINT_FUNC
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

300
#ifdef CONFIG_STACKPROTECTOR
301
	movq	TASK_stack_canary(%rsi), %rbx
302
	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
303 304
#endif

305 306 307 308 309 310 311 312
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
313
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
314 315
#endif

316 317 318 319 320 321 322 323 324 325 326
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

327 328 329
/*
 * A newly forked process directly context switches into this address.
 *
330
 * rax: prev task we switched from
331 332
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
333 334
 */
ENTRY(ret_from_fork)
335
	UNWIND_HINT_EMPTY
336
	movq	%rax, %rdi
337
	call	schedule_tail			/* rdi: 'prev' task parameter */
338

339 340
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
341

342
2:
343
	UNWIND_HINT_REGS
344
	movq	%rsp, %rdi
345 346
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
347
	jmp	swapgs_restore_regs_and_return_to_usermode
348 349 350

1:
	/* kernel thread */
351
	UNWIND_HINT_EMPTY
352
	movq	%r12, %rdi
353
	CALL_NOSPEC %rbx
354 355 356 357 358 359 360
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
361 362
END(ret_from_fork)

363
/*
364 365
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
366
 */
367
	.align 8
368
ENTRY(irq_entries_start)
369 370
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
371
	UNWIND_HINT_IRET_REGS
372
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
373 374
	jmp	common_interrupt
	.align	8
375
	vector=vector+1
376
    .endr
377 378
END(irq_entries_start)

379 380
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
381 382 383
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
384 385 386
	jz .Lokay_\@
	ud2
.Lokay_\@:
387
	popq %rax
388 389 390 391 392 393 394 395 396 397
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
398
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
399
	DEBUG_ENTRY_ASSERT_IRQS_OFF
400 401 402 403 404 405 406 407 408

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
409
	movq	%rsp, \old_rsp
410
	.endif
411 412 413 414 415

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

416
	incl	PER_CPU_VAR(irq_count)
417
	jnz	.Lirq_stack_push_old_rsp_\@
418 419 420 421 422 423 424 425 426

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
427 428 429 430 431 432 433
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

434
	movq	\old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
435
	movq	PER_CPU_VAR(hardirq_stack_ptr), %rsp
436 437 438 439 440 441 442

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
443
	 */
444 445 446 447 448
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
449

450
.Lirq_stack_push_old_rsp_\@:
451
	pushq	\old_rsp
452 453 454 455

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
456 457 458 459 460 461 462 463 464

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
465 466 467 468 469
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
470
.macro LEAVE_IRQ_STACK regs=1
471 472 473 474
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

475 476 477 478
	.if \regs
	UNWIND_HINT_REGS
	.endif

479 480 481 482 483 484 485 486
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

487
/*
488
 * Interrupt entry helper function.
489
 *
490 491 492 493 494 495 496 497 498 499 500 501
 * Entry runs with interrupts off. Stack layout at entry:
 * +----------------------------------------------------+
 * | regs->ss						|
 * | regs->rsp						|
 * | regs->eflags					|
 * | regs->cs						|
 * | regs->ip						|
 * +----------------------------------------------------+
 * | regs->orig_ax = ~(interrupt number)		|
 * +----------------------------------------------------+
 * | return address					|
 * +----------------------------------------------------+
502
 */
503 504 505
ENTRY(interrupt_entry)
	UNWIND_HINT_FUNC
	ASM_CLAC
506
	cld
507

508
	testb	$3, CS-ORIG_RAX+8(%rsp)
509 510
	jz	1f
	SWAPGS
511 512 513 514 515 516 517

	/*
	 * Switch to the thread stack. The IRET frame and orig_ax are
	 * on the stack, as well as the return address. RDI..R12 are
	 * not (yet) on the stack and space has not (yet) been
	 * allocated for them.
	 */
518
	pushq	%rdi
519

520 521 522 523
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
524 525 526 527 528 529

	 /*
	  * We have RDI, return address, and orig_ax on the stack on
	  * top of the IRET frame. That means offset=24
	  */
	UNWIND_HINT_IRET_REGS base=%rdi offset=24
530 531 532 533 534 535 536 537 538 539 540

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
541 542
1:

543 544
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
545

546
	testb	$3, CS+8(%rsp)
547
	jz	1f
548 549

	/*
550 551
	 * IRQ from user mode.
	 *
552 553
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
554
	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
555 556 557 558 559 560
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

561
	CALL_enter_from_user_mode
562

563
1:
564
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
565 566 567
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

568 569
	ret
END(interrupt_entry)
570
_ASM_NOKPROBE(interrupt_entry)
571

572 573

/* Interrupt entry/exit. */
L
Linus Torvalds 已提交
574

575 576 577 578
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
579 580
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
581
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
582 583 584
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
585
	/* 0(%rsp): old RSP */
586
ret_from_intr:
587
	DISABLE_INTERRUPTS(CLBR_ANY)
588
	TRACE_IRQS_OFF
589

590
	LEAVE_IRQ_STACK
591

592
	testb	$3, CS(%rsp)
593
	jz	retint_kernel
594

595 596 597 598
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
599
	TRACE_IRQS_IRETQ
600

601
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
602 603
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
604
	testb	$3, CS(%rsp)
605 606 607 608
	jnz	1f
	ud2
1:
#endif
609
	POP_REGS pop_rdi=0
610 611 612 613 614 615

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
616
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
632
	STACKLEAK_ERASE_NOCLOBBER
633

634
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
635

636 637 638
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
639 640
	INTERRUPT_RETURN

641

642
/* Returning to kernel space */
643
retint_kernel:
644 645 646
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
647
	btl	$9, EFLAGS(%rsp)		/* were interrupts off? */
648
	jnc	1f
649
	cmpl	$0, PER_CPU_VAR(__preempt_count)
650
	jnz	1f
651
	call	preempt_schedule_irq
652
1:
653
#endif
654 655 656 657
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
658

659 660 661
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
662
	testb	$3, CS(%rsp)
663 664 665 666
	jz	1f
	ud2
1:
#endif
667
	POP_REGS
668
	addq	$8, %rsp	/* skip regs->orig_ax */
669 670 671 672
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
673 674 675
	INTERRUPT_RETURN

ENTRY(native_iret)
676
	UNWIND_HINT_IRET_REGS
677 678 679 680
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
681
#ifdef CONFIG_X86_ESPFIX64
682 683
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
684
#endif
685

686
.global native_irq_return_iret
687
native_irq_return_iret:
A
Andy Lutomirski 已提交
688 689 690 691 692 693
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
694
	iretq
I
Ingo Molnar 已提交
695

696
#ifdef CONFIG_X86_ESPFIX64
697
native_irq_return_ldt:
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
720 721 722
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

723
	movq	PER_CPU_VAR(espfix_waddr), %rdi
724 725
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
726
	movq	%rax, (1*8)(%rdi)
727
	movq	(2*8)(%rsp), %rax		/* user CS */
728
	movq	%rax, (2*8)(%rdi)
729
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
730
	movq	%rax, (3*8)(%rdi)
731
	movq	(5*8)(%rsp), %rax		/* user SS */
732
	movq	%rax, (5*8)(%rdi)
733
	movq	(4*8)(%rsp), %rax		/* user RSP */
734
	movq	%rax, (4*8)(%rdi)
735 736 737 738 739 740 741 742 743 744 745 746
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
747
	orq	PER_CPU_VAR(espfix_stack), %rax
748

749
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
750 751 752
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

753
	movq	%rax, %rsp
754
	UNWIND_HINT_IRET_REGS offset=8
755 756 757 758 759 760 761 762 763 764 765 766

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
767
	jmp	native_irq_return_iret
768
#endif
769
END(common_interrupt)
770
_ASM_NOKPROBE(common_interrupt)
771

L
Linus Torvalds 已提交
772 773
/*
 * APIC interrupts.
774
 */
775
.macro apicinterrupt3 num sym do_sym
776
ENTRY(\sym)
777
	UNWIND_HINT_IRET_REGS
778
	pushq	$~(\num)
779
.Lcommon_\sym:
780 781 782
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
783
	jmp	ret_from_intr
784
END(\sym)
785
_ASM_NOKPROBE(\sym)
786
.endm
L
Linus Torvalds 已提交
787

788
/* Make sure APIC interrupt handlers end up in the irqentry section: */
789 790
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
791

792
.macro apicinterrupt num sym do_sym
793
PUSH_SECTION_IRQENTRY
794
apicinterrupt3 \num \sym \do_sym
795
POP_SECTION_IRQENTRY
796 797
.endm

798
#ifdef CONFIG_SMP
799 800
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
801
#endif
L
Linus Torvalds 已提交
802

N
Nick Piggin 已提交
803
#ifdef CONFIG_X86_UV
804
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
805
#endif
806 807 808

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
809

810
#ifdef CONFIG_HAVE_KVM
811 812
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
813
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
814 815
#endif

816
#ifdef CONFIG_X86_MCE_THRESHOLD
817
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
818 819
#endif

820
#ifdef CONFIG_X86_MCE_AMD
821
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
822 823
#endif

824
#ifdef CONFIG_X86_THERMAL_VECTOR
825
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
826
#endif
827

828
#ifdef CONFIG_SMP
829 830 831
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
832
#endif
L
Linus Torvalds 已提交
833

834 835
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
836

837
#ifdef CONFIG_IRQ_WORK
838
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
839 840
#endif

L
Linus Torvalds 已提交
841 842
/*
 * Exception entry points.
843
 */
844
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)
845

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/**
 * idtentry - Generate an IDT entry stub
 * @sym:		Name of the generated entry point
 * @do_sym: 		C function to be called
 * @has_error_code: 	True if this IDT vector has an error code on the stack
 * @paranoid: 		non-zero means that this vector may be invoked from
 *			kernel mode with user GSBASE and/or user CR3.
 *			2 is special -- see below.
 * @shift_ist:		Set to an IST index if entries from kernel mode should
 *             		decrement the IST stack so that nested entries get a
 *			fresh stack.  (This is for #DB, which has a nasty habit
 *             		of recursing.)
 *
 * idtentry generates an IDT stub that sets up a usable kernel context,
 * creates struct pt_regs, and calls @do_sym.  The stub has the following
 * special behaviors:
 *
 * On an entry from user mode, the stub switches from the trampoline or
 * IST stack to the normal thread stack.  On an exit to user mode, the
 * normal exit-to-usermode path is invoked.
 *
 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
 * whereas we omit the preemption check if @paranoid != 0.  This is purely
 * because the implementation is simpler this way.  The kernel only needs
 * to check for asynchronous kernel preemption when IRQ handlers return.
 *
 * If @paranoid == 0, then the stub will handle IRET faults by pretending
 * that the fault came from user mode.  It will handle gs_change faults by
 * pretending that the fault happened with kernel GSBASE.  Since this handling
 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
 * @paranoid == 0.  This special handling will do the wrong thing for
 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
 *
 * @paranoid == 2 is special: the stub will never switch stacks.  This is for
 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
 */
882
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 ist_offset=0 create_gap=0
883
ENTRY(\sym)
884
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
885

886 887 888 889 890
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

891
	ASM_CLAC
892

893
	.if \has_error_code == 0
894
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
895 896
	.endif

897
	.if \paranoid == 1
898
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
899
	jnz	.Lfrom_usermode_switch_stack_\@
900
	.endif
901

902 903 904 905 906 907 908 909 910 911 912 913 914 915
	.if \create_gap == 1
	/*
	 * If coming from kernel space, create a 6-word gap to allow the
	 * int3 handler to emulate a call instruction.
	 */
	testb	$3, CS-ORIG_RAX(%rsp)
	jnz	.Lfrom_usermode_no_gap_\@
	.rept	6
	pushq	5*8(%rsp)
	.endr
	UNWIND_HINT_IRET_REGS offset=8
.Lfrom_usermode_no_gap_\@:
	.endif

916
	.if \paranoid
917
	call	paranoid_entry
918
	.else
919
	call	error_entry
920
	.endif
921
	UNWIND_HINT_REGS
922
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
923 924

	.if \paranoid
925
	.if \shift_ist != -1
926
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
927
	.else
928
	TRACE_IRQS_OFF
929
	.endif
930
	.endif
931

932
	movq	%rsp, %rdi			/* pt_regs pointer */
933 934

	.if \has_error_code
935 936
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
937
	.else
938
	xorl	%esi, %esi			/* no error code */
939 940
	.endif

941
	.if \shift_ist != -1
942
	subq	$\ist_offset, CPU_TSS_IST(\shift_ist)
943 944
	.endif

945
	call	\do_sym
946

947
	.if \shift_ist != -1
948
	addq	$\ist_offset, CPU_TSS_IST(\shift_ist)
949 950
	.endif

951
	.if \paranoid
952
	jmp	paranoid_exit
953
	.else
954
	jmp	error_exit
955 956
	.endif

957
	.if \paranoid == 1
958
	/*
959
	 * Entry from userspace.  Switch stacks and treat it
960 961 962
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
963
.Lfrom_usermode_switch_stack_\@:
964
	call	error_entry
965

966
	movq	%rsp, %rdi			/* pt_regs pointer */
967 968

	.if \has_error_code
969 970
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
971
	.else
972
	xorl	%esi, %esi			/* no error code */
973 974
	.endif

975
	call	\do_sym
976

977
	jmp	error_exit
978
	.endif
979
_ASM_NOKPROBE(\sym)
980
END(\sym)
981
.endm
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1002
ENTRY(native_load_gs_index)
1003
	FRAME_BEGIN
1004
	pushfq
1005
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1006
	TRACE_IRQS_OFF
1007
	SWAPGS
1008
.Lgs_change:
1009
	movl	%edi, %gs
1010
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1011
	SWAPGS
1012
	TRACE_IRQS_FLAGS (%rsp)
1013
	popfq
1014
	FRAME_END
1015
	ret
1016
ENDPROC(native_load_gs_index)
1017
EXPORT_SYMBOL(native_load_gs_index)
1018

1019
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1020
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1021
	/* running with kernelgs */
1022
bad_gs:
1023
	SWAPGS					/* switch back to user gs */
1024 1025 1026 1027 1028 1029
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1030 1031 1032
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1033
	.previous
1034

1035
/* Call softirq on interrupt stack. Interrupts are off. */
1036
ENTRY(do_softirq_own_stack)
1037 1038
	pushq	%rbp
	mov	%rsp, %rbp
1039
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1040
	call	__do_softirq
1041
	LEAVE_IRQ_STACK regs=0
1042
	leaveq
1043
	ret
1044
ENDPROC(do_softirq_own_stack)
1045

1046
#ifdef CONFIG_XEN_PV
1047
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1048 1049

/*
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1062 1063
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1064 1065 1066 1067
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1068
	UNWIND_HINT_FUNC
1069
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1070
	UNWIND_HINT_REGS
1071 1072

	ENTER_IRQ_STACK old_rsp=%r10
1073
	call	xen_evtchn_do_upcall
1074 1075
	LEAVE_IRQ_STACK

1076
#ifndef CONFIG_PREEMPT
1077
	call	xen_maybe_preempt_hcall
1078
#endif
1079
	jmp	error_exit
1080
END(xen_do_hypervisor_callback)
1081 1082

/*
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1095
ENTRY(xen_failsafe_callback)
1096
	UNWIND_HINT_EMPTY
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1109
	/* All segments match their saved values => Category 2 (Bad IRET). */
1110 1111 1112 1113
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1114
	UNWIND_HINT_IRET_REGS offset=8
1115
	jmp	general_protection
1116
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1117 1118 1119
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1120
	UNWIND_HINT_IRET_REGS
1121
	pushq	$-1 /* orig_ax = -1 => not a system call */
1122
	PUSH_AND_CLEAR_REGS
1123
	ENCODE_FRAME_POINTER
1124
	jmp	error_exit
1125
END(xen_failsafe_callback)
1126
#endif /* CONFIG_XEN_PV */
1127

1128
#ifdef CONFIG_XEN_PVHVM
1129
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1130
	xen_hvm_callback_vector xen_evtchn_do_upcall
1131
#endif
1132

1133

1134
#if IS_ENABLED(CONFIG_HYPERV)
1135
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1136
	hyperv_callback_vector hyperv_vector_handler
1137 1138 1139

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1140 1141 1142

apicinterrupt3 HYPERV_STIMER0_VECTOR \
	hv_stimer0_callback_vector hv_stimer0_vector_handler
1143 1144
#endif /* CONFIG_HYPERV */

1145
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=IST_INDEX_DB ist_offset=DB_STACK_OFFSET
1146
idtentry int3			do_int3			has_error_code=0	create_gap=1
1147 1148
idtentry stack_segment		do_stack_segment	has_error_code=1

1149
#ifdef CONFIG_XEN_PV
1150
idtentry xennmi			do_nmi			has_error_code=0
1151 1152
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1153
#endif
1154 1155

idtentry general_protection	do_general_protection	has_error_code=1
1156
idtentry page_fault		do_page_fault		has_error_code=1
1157

G
Gleb Natapov 已提交
1158
#ifdef CONFIG_KVM_GUEST
1159
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1160
#endif
1161

1162
#ifdef CONFIG_X86_MCE
1163
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1164 1165
#endif

1166
/*
1167 1168 1169 1170 1171 1172 1173 1174
 * Save all registers in pt_regs. Return GSBASE related information
 * in EBX depending on the availability of the FSGSBASE instructions:
 *
 * FSGSBASE	R/EBX
 *     N        0 -> SWAPGS on exit
 *              1 -> no SWAPGS on exit
 *
 *     Y        GSBASE value at entry, must be restored in paranoid_exit
1175 1176
 */
ENTRY(paranoid_entry)
1177
	UNWIND_HINT_FUNC
1178
	cld
1179 1180
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1181

1182 1183
	/*
	 * Always stash CR3 in %r14.  This value will be restored,
1184 1185 1186
	 * verbatim, at exit.  Needed if paranoid_entry interrupted
	 * another entry that already switched to the user CR3 value
	 * but has not yet returned to userspace.
1187 1188 1189
	 *
	 * This is also why CS (stashed in the "iret frame" by the
	 * hardware at entry) can not be used: this may be a return
1190
	 * to kernel code, but with a user CR3 value.
1191 1192 1193 1194 1195
	 *
	 * Switching CR3 does not depend on kernel GSBASE so it can
	 * be done before switching to the kernel GSBASE. This is
	 * required for FSGSBASE because the kernel GSBASE has to
	 * be retrieved from a kernel internal table.
1196
	 */
1197 1198
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        /*
	 * Handling GSBASE depends on the availability of FSGSBASE.
	 *
	 * Without FSGSBASE the kernel enforces that negative GSBASE
	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
	 * can be made about the GSBASE value when entering from user
	 * space.
	*/
	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE

	/*
	 * Read the current GSBASE and store it in in %rbx unconditionally,
	 * retrieve and set the current CPUs kernel GSBASE. The stored value
	 * has to be restored in paranoid_exit unconditionally.
	 */
	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
	ret

.Lparanoid_entry_checkgs:
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	/* EBX = 1 -> kernel GSBASE active, no restore required */
	movl	$1, %ebx
	/*
	 * The kernel-enforced convention is a negative GSBASE indicates
	 * a kernel value. No SWAPGS needed on entry and exit.
	 */
	movl	$MSR_GS_BASE, %ecx
	rdmsr
	testl	%edx, %edx
	jns	.Lparanoid_entry_swapgs
	ret

.Lparanoid_entry_swapgs:
	SWAPGS
	/* EBX = 0 -> SWAPGS required on exit */
	xorl	%ebx, %ebx
1234
	ret
1235
END(paranoid_entry)
1236

1237 1238 1239 1240 1241 1242 1243
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
1244 1245
 * be complicated.  Fortunately, there's no good reason to try
 * to handle preemption here.
1246
 *
1247 1248 1249 1250 1251 1252 1253 1254
 * R/EBX contains the GSBASE related information depending on the
 * availability of the FSGSBASE instructions:
 *
 * FSGSBASE	R/EBX
 *     N        0 -> SWAPGS on exit
 *              1 -> no SWAPGS on exit
 *
 *     Y        User space GSBASE, must be restored unconditionally
1255
 */
1256
ENTRY(paranoid_exit)
1257
	UNWIND_HINT_REGS
1258
	DISABLE_INTERRUPTS(CLBR_ANY)
1259
	TRACE_IRQS_OFF_DEBUG
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

	/* Handle GS depending on FSGSBASE availability */
	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "nop",X86_FEATURE_FSGSBASE

	/* With FSGSBASE enabled, unconditionally restore GSBASE */
	wrgsbase	%rbx
	jmp	.Lparanoid_exit_no_swapgs;

.Lparanoid_exit_checkgs:
	/* On non-FSGSBASE systems, conditionally do SWAPGS */
1270
	testl	%ebx, %ebx
1271
	jnz	.Lparanoid_exit_no_swapgs
1272
	TRACE_IRQS_IRETQ
1273
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1274
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1275
	SWAPGS_UNSAFE_STACK
1276
	jmp	.Lparanoid_exit_restore
1277

1278
.Lparanoid_exit_no_swapgs:
1279
	TRACE_IRQS_IRETQ_DEBUG
1280
	/* Always restore stashed CR3 value (see paranoid_entry) */
1281
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1282

1283
.Lparanoid_exit_restore:
1284
	jmp	restore_regs_and_return_to_kernel
1285 1286 1287
END(paranoid_exit)

/*
1288
 * Save all registers in pt_regs, and switch GS if needed.
1289 1290
 */
ENTRY(error_entry)
1291
	UNWIND_HINT_FUNC
1292
	cld
1293 1294
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1295
	testb	$3, CS+8(%rsp)
1296
	jz	.Lerror_kernelspace
1297

1298 1299 1300 1301
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1302
	SWAPGS
1303 1304
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1305

1306
.Lerror_entry_from_usermode_after_swapgs:
1307 1308 1309 1310 1311 1312 1313 1314
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1315 1316 1317 1318 1319 1320
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1321
	CALL_enter_from_user_mode
1322
	ret
1323

1324
.Lerror_entry_done:
1325 1326 1327
	TRACE_IRQS_OFF
	ret

1328 1329 1330 1331 1332 1333
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1334
.Lerror_kernelspace:
1335 1336
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1337
	je	.Lerror_bad_iret
1338 1339
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1340
	je	.Lbstep_iret
1341
	cmpq	$.Lgs_change, RIP+8(%rsp)
1342
	jne	.Lerror_entry_done
1343 1344

	/*
1345
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1346
	 * gsbase and proceed.  We'll fix up the exception and land in
1347
	 * .Lgs_change's error handler with kernel gsbase.
1348
	 */
1349
	SWAPGS
1350
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1351
	jmp .Lerror_entry_done
1352

1353
.Lbstep_iret:
1354
	/* Fix truncated RIP */
1355
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1356 1357
	/* fall through */

1358
.Lerror_bad_iret:
1359
	/*
1360 1361
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1362
	 */
A
Andy Lutomirski 已提交
1363
	SWAPGS
1364
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1365 1366 1367

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
1368
	 * as if we faulted immediately after IRET.
1369
	 */
1370 1371 1372
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1373
	jmp	.Lerror_entry_from_usermode_after_swapgs
1374 1375 1376
END(error_entry)

ENTRY(error_exit)
1377
	UNWIND_HINT_REGS
1378
	DISABLE_INTERRUPTS(CLBR_ANY)
1379
	TRACE_IRQS_OFF
1380 1381
	testb	$3, CS(%rsp)
	jz	retint_kernel
1382
	jmp	retint_user
1383 1384
END(error_exit)

1385 1386 1387
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1388 1389 1390 1391
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1392
 */
1393
ENTRY(nmi)
1394
	UNWIND_HINT_IRET_REGS
1395

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1413 1414 1415
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1416 1417
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1418
	 *    o Modify the "iret" location to jump to the repeat_nmi
1419 1420 1421 1422 1423 1424 1425 1426
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1427 1428 1429 1430 1431
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1432 1433
	 */

1434 1435
	ASM_CLAC

1436
	/* Use %rdx as our temp variable throughout */
1437
	pushq	%rdx
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1448 1449 1450
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1451 1452
	 */

1453
	swapgs
1454
	cld
1455
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1456 1457
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1458
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1459 1460 1461 1462 1463
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1464
	UNWIND_HINT_IRET_REGS
1465
	pushq   $-1		/* pt_regs->orig_ax */
1466
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1467
	ENCODE_FRAME_POINTER
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1479
	/*
1480
	 * Return back to user mode.  We must *not* do the normal exit
1481
	 * work, because we don't want to enable interrupts.
1482
	 */
1483
	jmp	swapgs_restore_regs_and_return_to_usermode
1484

1485
.Lnmi_from_kernel:
1486
	/*
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1527
	/*
1528 1529
	 * Determine whether we're a nested NMI.
	 *
1530 1531 1532 1533 1534 1535
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1536
	 */
1537 1538 1539 1540 1541 1542 1543 1544

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1545

1546
	/*
1547
	 * Now check "NMI executing".  If it's set, then we're nested.
1548 1549
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1550
	 */
1551 1552
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1553 1554

	/*
1555 1556
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1557 1558 1559 1560 1561 1562 1563 1564
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1565
	 */
1566 1567 1568 1569 1570
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1571

1572 1573 1574 1575
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1576 1577 1578 1579 1580 1581 1582

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1583

1584 1585
nested_nmi:
	/*
1586 1587
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1588
	 */
1589
	subq	$8, %rsp
1590 1591 1592
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1593
	pushfq
1594 1595
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1596 1597

	/* Put stack back */
1598
	addq	$(6*8), %rsp
1599 1600

nested_nmi_out:
1601
	popq	%rdx
1602

1603
	/* We are returning to kernel mode, so this cannot result in a fault. */
1604
	iretq
1605 1606

first_nmi:
1607
	/* Restore rdx. */
1608
	movq	(%rsp), %rdx
1609

1610 1611
	/* Make room for "NMI executing". */
	pushq	$0
1612

1613
	/* Leave room for the "iret" frame */
1614
	subq	$(5*8), %rsp
1615

1616
	/* Copy the "original" frame to the "outermost" frame */
1617
	.rept 5
1618
	pushq	11*8(%rsp)
1619
	.endr
1620
	UNWIND_HINT_IRET_REGS
1621

1622 1623
	/* Everything up to here is safe from nested NMIs */

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1635
	iretq			/* continues at repeat_nmi below */
1636
	UNWIND_HINT_IRET_REGS
1637 1638 1639
1:
#endif

1640
repeat_nmi:
1641 1642 1643 1644 1645 1646 1647 1648
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1649 1650 1651 1652
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1653 1654
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1655
	 */
1656
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1657

1658
	/*
1659 1660 1661
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1662
	 */
1663
	addq	$(10*8), %rsp
1664
	.rept 5
1665
	pushq	-6*8(%rsp)
1666
	.endr
1667
	subq	$(5*8), %rsp
1668
end_repeat_nmi:
1669 1670

	/*
1671 1672 1673
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1674
	 */
1675
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1676

1677
	/*
1678
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1679 1680 1681 1682 1683
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1684
	call	paranoid_entry
1685
	UNWIND_HINT_REGS
1686

1687
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1688 1689 1690
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1691

1692
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1693
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	/*
	 * The above invocation of paranoid_entry stored the GSBASE
	 * related information in R/EBX depending on the availability
	 * of FSGSBASE.
	 *
	 * If FSGSBASE is enabled, restore the saved GSBASE value
	 * unconditionally, otherwise take the conditional SWAPGS path.
	 */
	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE

	wrgsbase	%rbx
	jmp	nmi_restore

nmi_no_fsgsbase:
	/* EBX == 0 -> invoke SWAPGS */
	testl	%ebx, %ebx
1711
	jnz	nmi_restore
1712

1713 1714
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
1715

1716
nmi_restore:
1717
	POP_REGS
1718

1719 1720 1721 1722 1723
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1724

1725 1726 1727
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1728 1729 1730 1731 1732
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1733 1734 1735
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1736 1737

	/*
1738 1739 1740 1741
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1742
	 */
1743
	iretq
1744 1745 1746
END(nmi)

ENTRY(ignore_sysret)
1747
	UNWIND_HINT_EMPTY
1748
	mov	$-ENOSYS, %eax
1749 1750
	sysret
END(ignore_sysret)
1751 1752

ENTRY(rewind_stack_do_exit)
1753
	UNWIND_HINT_FUNC
1754 1755 1756 1757
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1758 1759
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1760 1761 1762

	call	do_exit
END(rewind_stack_do_exit)