machine.c 53.4 KB
Newer Older
1
#include <dirent.h>
2
#include <errno.h>
3
#include <inttypes.h>
4
#include <regex.h>
5
#include "callchain.h"
6 7
#include "debug.h"
#include "event.h"
8 9
#include "evsel.h"
#include "hist.h"
10 11
#include "machine.h"
#include "map.h"
12
#include "sort.h"
13
#include "strlist.h"
14
#include "thread.h"
15
#include "vdso.h"
16
#include <stdbool.h>
17 18 19
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
20
#include "unwind.h"
21
#include "linux/hash.h"
22
#include "asm/bug.h"
23

24 25 26
#include "sane_ctype.h"
#include <symbol/kallsyms.h>

27 28
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

29 30 31 32
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
33
	pthread_rwlock_init(&dsos->lock, NULL);
34 35
}

36 37
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
38
	memset(machine, 0, sizeof(*machine));
39
	map_groups__init(&machine->kmaps, machine);
40
	RB_CLEAR_NODE(&machine->rb_node);
41
	dsos__init(&machine->dsos);
42 43

	machine->threads = RB_ROOT;
44
	pthread_rwlock_init(&machine->threads_lock, NULL);
45
	machine->nr_threads = 0;
46 47 48
	INIT_LIST_HEAD(&machine->dead_threads);
	machine->last_match = NULL;

49
	machine->vdso_info = NULL;
50
	machine->env = NULL;
51

52 53
	machine->pid = pid;

54
	machine->id_hdr_size = 0;
55
	machine->kptr_restrict_warned = false;
56
	machine->comm_exec = false;
57
	machine->kernel_start = 0;
58

59 60
	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));

61 62 63 64 65
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
66
		struct thread *thread = machine__findnew_thread(machine, -1,
67
								pid);
68 69 70 71 72 73
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
74
		thread__set_comm(thread, comm, 0);
75
		thread__put(thread);
76 77
	}

78 79
	machine->current_tid = NULL;

80 81 82
	return 0;
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
	 *    functions and data objects.
	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

119
static void dsos__purge(struct dsos *dsos)
120 121 122
{
	struct dso *pos, *n;

123 124
	pthread_rwlock_wrlock(&dsos->lock);

125
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
126
		RB_CLEAR_NODE(&pos->rb_node);
127
		pos->root = NULL;
128 129
		list_del_init(&pos->node);
		dso__put(pos);
130
	}
131 132

	pthread_rwlock_unlock(&dsos->lock);
133
}
134

135 136 137
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
138
	pthread_rwlock_destroy(&dsos->lock);
139 140
}

141 142
void machine__delete_threads(struct machine *machine)
{
143
	struct rb_node *nd;
144

145 146
	pthread_rwlock_wrlock(&machine->threads_lock);
	nd = rb_first(&machine->threads);
147 148 149 150
	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		nd = rb_next(nd);
151
		__machine__remove_thread(machine, t, false);
152
	}
153
	pthread_rwlock_unlock(&machine->threads_lock);
154 155
}

156 157
void machine__exit(struct machine *machine)
{
158
	machine__destroy_kernel_maps(machine);
159
	map_groups__exit(&machine->kmaps);
160
	dsos__exit(&machine->dsos);
161
	machine__exit_vdso(machine);
162
	zfree(&machine->root_dir);
163
	zfree(&machine->current_tid);
164
	pthread_rwlock_destroy(&machine->threads_lock);
165 166 167 168
}

void machine__delete(struct machine *machine)
{
169 170 171 172
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
188 189
			      const char *root_dir)
{
190
	struct rb_node **p = &machines->guests.rb_node;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
212
	rb_insert_color(&machine->rb_node, &machines->guests);
213 214 215 216

	return machine;
}

217 218 219 220 221 222 223 224 225 226 227 228 229
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

230
struct machine *machines__find(struct machines *machines, pid_t pid)
231
{
232
	struct rb_node **p = &machines->guests.rb_node;
233 234 235 236
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

237 238 239
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

256
struct machine *machines__findnew(struct machines *machines, pid_t pid)
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
273
				seen = strlist__new(NULL, NULL);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

290 291
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
292 293 294
{
	struct rb_node *nd;

295
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

315
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
316 317 318 319
{
	struct rb_node *node;
	struct machine *machine;

320 321 322
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
323 324 325 326 327 328 329
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

330 331 332 333 334 335 336 337 338 339 340 341 342
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

343
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
344 345 346 347
	if (!leader)
		goto out_err;

	if (!leader->mg)
348
		leader->mg = map_groups__new(machine);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
365
		map_groups__put(th->mg);
366 367 368
	}

	th->mg = map_groups__get(leader->mg);
369 370
out_put:
	thread__put(leader);
371 372 373
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
374
	goto out_put;
375 376
}

377
/*
378
 * Caller must eventually drop thread->refcnt returned with a successful
379 380
 * lookup/new thread inserted.
 */
381 382 383
static struct thread *____machine__findnew_thread(struct machine *machine,
						  pid_t pid, pid_t tid,
						  bool create)
384 385 386 387 388 389
{
	struct rb_node **p = &machine->threads.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
390
	 * Front-end cache - TID lookups come in blocks,
391 392 393
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
394
	th = machine->last_match;
395 396 397
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
398
			return thread__get(th);
399 400
		}

401
		machine->last_match = NULL;
402
	}
403 404 405 406 407

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

408
		if (th->tid == tid) {
409
			machine->last_match = th;
410
			machine__update_thread_pid(machine, th, pid);
411
			return thread__get(th);
412 413
		}

414
		if (tid < th->tid)
415 416 417 418 419 420 421 422
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

423
	th = thread__new(pid, tid);
424 425 426
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &machine->threads);
427 428 429 430 431 432 433 434 435

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
436
		if (thread__init_map_groups(th, machine)) {
437
			rb_erase_init(&th->rb_node, &machine->threads);
438
			RB_CLEAR_NODE(&th->rb_node);
439
			thread__put(th);
440
			return NULL;
441
		}
442 443 444 445
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
446
		machine->last_match = th;
447
		++machine->nr_threads;
448 449 450 451 452
	}

	return th;
}

453 454 455 456 457
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, pid, tid, true);
}

458 459
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
460
{
461 462 463
	struct thread *th;

	pthread_rwlock_wrlock(&machine->threads_lock);
464
	th = __machine__findnew_thread(machine, pid, tid);
465 466
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
467 468
}

469 470
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
471
{
472 473
	struct thread *th;
	pthread_rwlock_rdlock(&machine->threads_lock);
474
	th =  ____machine__findnew_thread(machine, pid, tid, false);
475 476
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
477
}
478

479 480 481 482 483 484 485 486 487
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

488 489
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
490
{
491 492 493
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
494
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
495
	int err = 0;
496

497 498 499
	if (exec)
		machine->comm_exec = true;

500 501 502
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

503 504
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
505
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
506
		err = -1;
507 508
	}

509 510 511
	thread__put(thread);

	return err;
512 513
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

545
int machine__process_lost_event(struct machine *machine __maybe_unused,
546
				union perf_event *event, struct perf_sample *sample __maybe_unused)
547 548 549 550 551 552
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

553 554 555 556 557 558 559 560
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

561 562 563
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
564 565 566
{
	struct dso *dso;

567 568 569
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
570
	if (!dso) {
571
		dso = __dsos__addnew(&machine->dsos, m->name);
572
		if (dso == NULL)
573
			goto out_unlock;
574

575
		dso__set_module_info(dso, m, machine);
576
		dso__set_long_name(dso, strdup(filename), true);
577 578
	}

579
	dso__get(dso);
580 581
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
582 583 584
	return dso;
}

585 586 587 588 589 590 591 592
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

593 594 595 596 597 598 599 600
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

601 602 603 604 605 606 607 608
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

624
	dso__set_long_name(dso, dup_filename, true);
625 626
}

627 628
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
629
{
630
	struct map *map = NULL;
631
	struct dso *dso = NULL;
632
	struct kmod_path m;
633

634
	if (kmod_path__parse_name(&m, filename))
635 636
		return NULL;

637 638
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
639 640 641 642 643 644 645
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
646
		goto out;
647
	}
648

649
	dso = machine__findnew_module_dso(machine, &m, filename);
650 651 652
	if (dso == NULL)
		goto out;

653 654
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
655
		goto out;
656 657

	map_groups__insert(&machine->kmaps, map);
658

659 660
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
661
out:
662 663
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
664
	free(m.name);
665 666 667
	return map;
}

668
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
669 670
{
	struct rb_node *nd;
671
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
672

673
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
674
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
675
		ret += __dsos__fprintf(&pos->dsos.head, fp);
676 677 678 679 680
	}

	return ret;
}

681
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
682 683
				     bool (skip)(struct dso *dso, int parm), int parm)
{
684
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
685 686
}

687
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
688 689 690
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
691
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
692

693
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
694 695 696 697 698 699 700 701 702 703
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
704
	struct dso *kdso = machine__kernel_map(machine)->dso;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
721
	size_t ret;
722 723
	struct rb_node *nd;

724 725
	pthread_rwlock_rdlock(&machine->threads_lock);

726 727
	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);

728 729 730 731 732 733
	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		struct thread *pos = rb_entry(nd, struct thread, rb_node);

		ret += thread__fprintf(pos, fp);
	}

734 735
	pthread_rwlock_unlock(&machine->threads_lock);

736 737 738 739 740 741 742 743 744 745 746
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
747
			vmlinux_name = DSO__NAME_KALLSYMS;
748

749 750
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
751 752 753 754 755 756 757 758 759
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

760 761 762
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
763 764 765 766 767 768 769 770 771 772 773 774
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

775 776 777 778 779 780 781 782 783
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

784 785 786 787 788 789
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
790 791
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
792
{
793
	char filename[PATH_MAX];
794
	int i, err = -1;
795 796
	const char *name;
	u64 addr = 0;
797

798
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
799 800 801 802

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

803
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
804 805
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
806 807 808
			break;
	}

809 810 811
	if (err)
		return -1;

812 813
	if (symbol_name)
		*symbol_name = name;
814

815 816
	*start = addr;
	return 0;
817 818 819 820
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
821
	int type;
822 823 824 825
	u64 start = 0;

	if (machine__get_running_kernel_start(machine, NULL, &start))
		return -1;
826

827 828 829
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

830 831
	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
832
		struct map *map;
833 834 835 836 837 838 839 840

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
841
		map = __machine__kernel_map(machine, type);
842
		kmap = map__kmap(map);
843 844 845
		if (!kmap)
			return -1;

846
		kmap->kmaps = &machine->kmaps;
847
		map_groups__insert(&machine->kmaps, map);
848 849 850 851 852 853 854
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
855
	int type;
856 857 858

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
859
		struct map *map = __machine__kernel_map(machine, type);
860

861
		if (map == NULL)
862 863
			continue;

864 865
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
866
		if (kmap && kmap->ref_reloc_sym) {
867 868 869 870 871
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
872 873 874 875
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
876 877
		}

878
		map__put(machine->vmlinux_maps[type]);
879 880 881 882
		machine->vmlinux_maps[type] = NULL;
	}
}

883
int machines__create_guest_kernel_maps(struct machines *machines)
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

932
void machines__destroy_kernel_maps(struct machines *machines)
933
{
934 935 936
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
937 938 939 940 941

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
942
		rb_erase(&pos->rb_node, &machines->guests);
943 944 945 946
		machine__delete(pos);
	}
}

947
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
948 949 950 951 952 953 954 955 956
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

957
int __machine__load_kallsyms(struct machine *machine, const char *filename,
958
			     enum map_type type, bool no_kcore)
959
{
960
	struct map *map = machine__kernel_map(machine);
961
	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
962 963 964 965 966 967 968 969 970 971 972 973 974 975

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

976
int machine__load_kallsyms(struct machine *machine, const char *filename,
977
			   enum map_type type)
978
{
979
	return __machine__load_kallsyms(machine, filename, type, false);
980 981
}

982
int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
983
{
984
	struct map *map = machine__kernel_map(machine);
985
	int ret = dso__load_vmlinux_path(map->dso, map);
986

987
	if (ret > 0)
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1060
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1061
				const char *dir_name, int depth)
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1086 1087 1088 1089 1090 1091 1092 1093 1094
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1095 1096 1097
			if (ret < 0)
				goto out;
		} else {
1098
			struct kmod_path m;
1099

1100 1101 1102
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1103

1104 1105
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1106

1107
			free(m.name);
1108

1109
			if (ret)
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1128
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1129 1130 1131
		 machine->root_dir, version);
	free(version);

1132
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1133
}
1134 1135 1136 1137 1138
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1139

1140
static int machine__create_module(void *arg, const char *name, u64 start)
1141
{
1142
	struct machine *machine = arg;
1143
	struct map *map;
1144

1145 1146 1147
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1148
	map = machine__findnew_module_map(machine, start, name);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	if (map == NULL)
		return -1;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1159 1160 1161
	const char *modules;
	char path[PATH_MAX];

1162
	if (machine__is_default_guest(machine)) {
1163
		modules = symbol_conf.default_guest_modules;
1164 1165
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1166 1167 1168
		modules = path;
	}

1169
	if (symbol__restricted_filename(modules, "/proc/modules"))
1170 1171
		return -1;

1172
	if (modules__parse(modules, machine, machine__create_module))
1173 1174
		return -1;

1175 1176
	if (!machine__set_modules_path(machine))
		return 0;
1177

1178
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1179

1180
	return 0;
1181 1182 1183 1184 1185
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1186 1187
	const char *name = NULL;
	u64 addr = 0;
1188 1189
	int ret;

1190
	if (kernel == NULL)
1191
		return -1;
1192

1193 1194 1195
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1211

1212 1213 1214 1215 1216 1217
	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
			machine__destroy_kernel_maps(machine);
			return -1;
		}
1218 1219
	}

1220 1221 1222
	return 0;
}

1223 1224 1225
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1239 1240
}

1241 1242 1243 1244
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1245
	list_for_each_entry(dso, &machine->dsos.head, node) {
1246 1247 1248 1249 1250 1251 1252
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1253 1254 1255 1256 1257 1258 1259 1260
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1261 1262 1263 1264
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1276 1277
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1289 1290 1291
		struct dso *kernel = NULL;
		struct dso *dso;

1292 1293
		pthread_rwlock_rdlock(&machine->dsos.lock);

1294
		list_for_each_entry(dso, &machine->dsos.head, node) {
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1315 1316
				continue;

1317

1318 1319 1320 1321
			kernel = dso;
			break;
		}

1322 1323
		pthread_rwlock_unlock(&machine->dsos.lock);

1324
		if (kernel == NULL)
1325
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1326 1327 1328 1329
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1330 1331
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1332
			goto out_problem;
1333
		}
1334

1335 1336
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1355
			dso__load(kernel, machine__kernel_map(machine));
1356 1357 1358 1359 1360 1361 1362
		}
	}
	return 0;
out_problem:
	return -1;
}

1363
int machine__process_mmap2_event(struct machine *machine,
1364
				 union perf_event *event,
1365
				 struct perf_sample *sample)
1366 1367 1368 1369 1370 1371 1372 1373 1374
{
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1375 1376
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1377 1378 1379 1380 1381 1382 1383
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1384
					event->mmap2.tid);
1385 1386 1387 1388 1389 1390 1391 1392
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1393
	map = map__new(machine, event->mmap2.start,
1394 1395 1396 1397
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.pid, event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1398 1399
			event->mmap2.prot,
			event->mmap2.flags,
1400
			event->mmap2.filename, type, thread);
1401 1402

	if (map == NULL)
1403
		goto out_problem_map;
1404

1405 1406 1407 1408
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1409
	thread__put(thread);
1410
	map__put(map);
1411 1412
	return 0;

1413 1414
out_problem_insert:
	map__put(map);
1415 1416
out_problem_map:
	thread__put(thread);
1417 1418 1419 1420 1421
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1422
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1423
				struct perf_sample *sample)
1424 1425 1426
{
	struct thread *thread;
	struct map *map;
1427
	enum map_type type;
1428 1429 1430 1431 1432
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1433 1434
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1435 1436 1437 1438 1439 1440
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1441
	thread = machine__findnew_thread(machine, event->mmap.pid,
1442
					 event->mmap.tid);
1443 1444
	if (thread == NULL)
		goto out_problem;
1445 1446 1447 1448 1449 1450

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1451
	map = map__new(machine, event->mmap.start,
1452
			event->mmap.len, event->mmap.pgoff,
1453
			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1454
			event->mmap.filename,
1455
			type, thread);
1456

1457
	if (map == NULL)
1458
		goto out_problem_map;
1459

1460 1461 1462 1463
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1464
	thread__put(thread);
1465
	map__put(map);
1466 1467
	return 0;

1468 1469
out_problem_insert:
	map__put(map);
1470 1471
out_problem_map:
	thread__put(thread);
1472 1473 1474 1475 1476
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1477
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1478
{
1479
	if (machine->last_match == th)
1480
		machine->last_match = NULL;
1481

1482
	BUG_ON(refcount_read(&th->refcnt) == 0);
1483 1484
	if (lock)
		pthread_rwlock_wrlock(&machine->threads_lock);
1485
	rb_erase_init(&th->rb_node, &machine->threads);
1486
	RB_CLEAR_NODE(&th->rb_node);
1487
	--machine->nr_threads;
1488
	/*
1489 1490 1491
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1492 1493
	 */
	list_add_tail(&th->node, &machine->dead_threads);
1494 1495
	if (lock)
		pthread_rwlock_unlock(&machine->threads_lock);
1496
	thread__put(th);
1497 1498
}

1499 1500 1501 1502 1503
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1504 1505
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1506
{
1507 1508 1509
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1510 1511 1512
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1513
	int err = 0;
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1533
	/* if a thread currently exists for the thread id remove it */
1534
	if (thread != NULL) {
1535
		machine__remove_thread(machine, thread);
1536 1537
		thread__put(thread);
	}
1538

1539 1540
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1541 1542

	if (thread == NULL || parent == NULL ||
1543
	    thread__fork(thread, parent, sample->time) < 0) {
1544
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1545
		err = -1;
1546
	}
1547 1548
	thread__put(thread);
	thread__put(parent);
1549

1550
	return err;
1551 1552
}

1553 1554
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1555
{
1556 1557 1558
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1559 1560 1561 1562

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1563
	if (thread != NULL) {
1564
		thread__exited(thread);
1565 1566
		thread__put(thread);
	}
1567 1568 1569 1570

	return 0;
}

1571 1572
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1573 1574 1575 1576 1577
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1578
		ret = machine__process_comm_event(machine, event, sample); break;
1579
	case PERF_RECORD_MMAP:
1580
		ret = machine__process_mmap_event(machine, event, sample); break;
1581 1582
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1583
	case PERF_RECORD_MMAP2:
1584
		ret = machine__process_mmap2_event(machine, event, sample); break;
1585
	case PERF_RECORD_FORK:
1586
		ret = machine__process_fork_event(machine, event, sample); break;
1587
	case PERF_RECORD_EXIT:
1588
		ret = machine__process_exit_event(machine, event, sample); break;
1589
	case PERF_RECORD_LOST:
1590
		ret = machine__process_lost_event(machine, event, sample); break;
1591 1592
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1593
	case PERF_RECORD_ITRACE_START:
1594
		ret = machine__process_itrace_start_event(machine, event); break;
1595 1596
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1597 1598 1599
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1600 1601 1602 1603 1604 1605 1606
	default:
		ret = -1;
		break;
	}

	return ret;
}
1607

1608
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1609
{
1610
	if (!regexec(regex, sym->name, 0, NULL, 0))
1611 1612 1613 1614
		return 1;
	return 0;
}

1615
static void ip__resolve_ams(struct thread *thread,
1616 1617 1618 1619 1620 1621
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1622 1623 1624 1625 1626 1627 1628
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1629
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1630 1631 1632 1633 1634 1635 1636

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1637
static void ip__resolve_data(struct thread *thread,
1638 1639 1640 1641 1642 1643
			     u8 m, struct addr_map_symbol *ams, u64 addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1644
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1645 1646 1647 1648 1649 1650
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1651
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1652 1653
	}

1654 1655 1656 1657 1658 1659
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1660 1661
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1662 1663 1664 1665 1666 1667
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1668 1669
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1670 1671 1672 1673 1674
	mi->data_src.val = sample->data_src;

	return mi;
}

1675
static int add_callchain_ip(struct thread *thread,
1676
			    struct callchain_cursor *cursor,
1677 1678
			    struct symbol **parent,
			    struct addr_location *root_al,
1679
			    u8 *cpumode,
1680 1681 1682 1683 1684
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
			    int nr_loop_iter,
			    int samples)
1685 1686 1687 1688 1689
{
	struct addr_location al;

	al.filtered = 0;
	al.sym = NULL;
1690
	if (!cpumode) {
1691 1692
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1693
	} else {
1694 1695 1696
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1697
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1698 1699
				break;
			case PERF_CONTEXT_KERNEL:
1700
				*cpumode = PERF_RECORD_MISC_KERNEL;
1701 1702
				break;
			case PERF_CONTEXT_USER:
1703
				*cpumode = PERF_RECORD_MISC_USER;
1704 1705 1706 1707 1708 1709 1710 1711
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1712
				callchain_cursor_reset(cursor);
1713 1714 1715 1716
				return 1;
			}
			return 0;
		}
1717 1718
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1719 1720
	}

1721
	if (al.sym != NULL) {
1722
		if (perf_hpp_list.parent && !*parent &&
1723 1724 1725 1726 1727 1728 1729
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1730
			callchain_cursor_reset(cursor);
1731 1732 1733
		}
	}

1734 1735
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1736 1737
	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
				       branch, flags, nr_loop_iter, samples);
1738 1739
}

1740 1741
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1742 1743
{
	unsigned int i;
1744 1745
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1746 1747 1748 1749 1750

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1751 1752
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1753 1754 1755 1756 1757
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				memmove(l + i, l + i + off,
					(nr - (i + off)) * sizeof(*l));
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1799 1800 1801 1802 1803 1804 1805 1806
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
1807
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
1808 1809 1810 1811
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1812
{
K
Kan Liang 已提交
1813
	struct ip_callchain *chain = sample->callchain;
1814
	int chain_nr = min(max_stack, (int)chain->nr), i;
1815
	u8 cpumode = PERF_RECORD_MISC_USER;
K
Kan Liang 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	u64 ip;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
1826 1827 1828
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
1842
			int err;
1843 1844 1845
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
1846 1847 1848
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
1849 1850 1851 1852 1853 1854
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
1855
					ip = lbr_stack->entries[0].to;
1856 1857 1858
					branch = true;
					flags = &lbr_stack->entries[0].flags;
				}
K
Kan Liang 已提交
1859
			} else {
1860 1861 1862 1863 1864 1865
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
1866 1867
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
1868
				else {
K
Kan Liang 已提交
1869
					ip = lbr_stack->entries[0].to;
1870 1871 1872
					branch = true;
					flags = &lbr_stack->entries[0].flags;
				}
K
Kan Liang 已提交
1873 1874
			}

1875 1876 1877
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
					       branch, flags, 0, 0);
K
Kan Liang 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
1888
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
1889 1890 1891 1892 1893 1894 1895 1896
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1897
	int chain_nr = chain->nr;
1898
	u8 cpumode = PERF_RECORD_MISC_USER;
1899
	int i, j, err, nr_entries;
1900 1901
	int skip_idx = -1;
	int first_call = 0;
1902
	int nr_loop_iter;
1903

1904
	if (perf_evsel__has_branch_callstack(evsel)) {
1905
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
1906 1907 1908 1909 1910
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1911 1912 1913 1914
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
1915
	skip_idx = arch_skip_callchain_idx(thread, chain);
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

1958
		nr_loop_iter = nr;
1959 1960
		nr = remove_loops(be, nr);

1961 1962 1963 1964 1965 1966 1967 1968 1969
		/*
		 * Get the number of iterations.
		 * It's only approximation, but good enough in practice.
		 */
		if (nr_loop_iter > nr)
			nr_loop_iter = nr_loop_iter - nr + 1;
		else
			nr_loop_iter = 0;

1970
		for (i = 0; i < nr; i++) {
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
			if (i == nr - 1)
				err = add_callchain_ip(thread, cursor, parent,
						       root_al,
						       NULL, be[i].to,
						       true, &be[i].flags,
						       nr_loop_iter, 1);
			else
				err = add_callchain_ip(thread, cursor, parent,
						       root_al,
						       NULL, be[i].to,
						       true, &be[i].flags,
						       0, 0);

1984
			if (!err)
1985
				err = add_callchain_ip(thread, cursor, parent, root_al,
1986 1987 1988
						       NULL, be[i].from,
						       true, &be[i].flags,
						       0, 0);
1989 1990 1991 1992 1993 1994 1995 1996 1997
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
		chain_nr -= nr;
	}

check_calls:
1998
	for (i = first_call, nr_entries = 0;
1999
	     i < chain_nr && nr_entries < max_stack; i++) {
2000 2001 2002
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2003
			j = i;
2004
		else
2005 2006 2007 2008 2009 2010 2011
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2012

2013 2014
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2015

2016 2017 2018
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
				       false, NULL, 0, 0);
2019 2020

		if (err)
2021
			return (err < 0) ? err : 0;
2022 2023 2024 2025 2026 2027 2028 2029
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2030 2031 2032

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2033
	return callchain_cursor_append(cursor, entry->ip,
2034 2035
				       entry->map, entry->sym,
				       false, NULL, 0, 0);
2036 2037
}

2038 2039 2040 2041 2042
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2054
	return unwind__get_entries(unwind_entry, cursor,
2055
				   thread, sample, max_stack);
2056
}
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

	callchain_cursor_reset(&callchain_cursor);

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2093
}
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;

	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		thread = rb_entry(nd, struct thread, rb_node);
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}

	list_for_each_entry(thread, &machine->dead_threads, node) {
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}
2117

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2139
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2140
				  struct target *target, struct thread_map *threads,
2141 2142
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
2143
{
2144
	if (target__has_task(target))
2145
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2146
	else if (target__has_cpu(target))
2147
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2148 2149 2150
	/* command specified */
	return 0;
}
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2191
	thread__put(thread);
2192 2193 2194

	return 0;
}
2195 2196 2197

int machine__get_kernel_start(struct machine *machine)
{
2198
	struct map *map = machine__kernel_map(machine);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2211
		err = map__load(map);
2212
		if (!err)
2213 2214 2215 2216
			machine->kernel_start = map->start;
	}
	return err;
}
2217 2218 2219

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2220
	return dsos__findnew(&machine->dsos, filename);
2221
}
2222 2223 2224 2225 2226

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2227
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2228 2229 2230 2231 2232 2233 2234 2235

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}