slab.c 105.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
30
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
54
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
55 56 57 58
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
59
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68 69 70 71
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
72
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
73 74 75 76 77 78
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
79 80 81 82 83 84 85 86 87
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
88 89 90 91
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
119
#include	<linux/sched/task_stack.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

131 132
#include	"slab.h"

L
Linus Torvalds 已提交
133
/*
134
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
155
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
156 157 158 159 160

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

161 162 163 164 165 166 167 168 169
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

170
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171

L
Linus Torvalds 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
189
	void *entry[];	/*
A
Andrew Morton 已提交
190 191 192 193
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
194 195
};

J
Joonsoo Kim 已提交
196 197 198 199 200
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

201 202 203
/*
 * Need this for bootstrapping a per node allocator.
 */
204
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206
#define	CACHE_CACHE 0
207
#define	SIZE_NODE (MAX_NUMNODES)
208

209
static int drain_freelist(struct kmem_cache *cache,
210
			struct kmem_cache_node *n, int tofree);
211
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 213
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215
static void cache_reap(struct work_struct *unused);
216

217 218 219 220 221
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
222 223
static int slab_early_init = 1;

224
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
225

226
static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 228 229 230
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
231
	parent->total_slabs = 0;
232
	parent->free_slabs = 0;
233 234
	parent->shared = NULL;
	parent->alien = NULL;
235
	parent->colour_next = 0;
236 237 238 239 240
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
241 242 243
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
244
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 246
	} while (0)

A
Andrew Morton 已提交
247 248
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
249 250 251 252
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
253

254 255
#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
257 258 259
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
260 261 262
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
263
 *
A
Adrian Bunk 已提交
264
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
265 266
 * which could lock up otherwise freeable slabs.
 */
267 268
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
269 270 271 272 273 274

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
275
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
276 277 278 279 280
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
281 282
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
285 286 287 288 289
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
290 291 292 293 294 295 296 297 298
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
299
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
300 301 302
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303
#define	STATS_INC_NODEFREES(x)	do { } while (0)
304
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
305
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
306 307 308 309 310 311 312 313
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
314 315
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
316
 * 0		: objp
317
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
318 319
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
320
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
321
 * 		redzone word.
322
 * cachep->obj_offset: The real object.
323 324
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
325
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
326
 */
327
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
328
{
329
	return cachep->obj_offset;
L
Linus Torvalds 已提交
330 331
}

332
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 336
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
337 338
}

339
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
340 341 342
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
343
		return (unsigned long long *)(objp + cachep->size -
344
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
345
					      REDZONE_ALIGN);
346
	return (unsigned long long *) (objp + cachep->size -
347
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
348 349
}

350
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
351 352
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
354 355 356 357
}

#else

358
#define obj_offset(x)			0
359 360
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
361 362 363 364 365
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
366 367
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
368
 */
369 370 371
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
372
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
373

374
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
375 376
				 unsigned int idx)
{
377
	return page->s_mem + cache->size * idx;
378 379
}

380
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
381
/* internal cache of cache description objs */
382
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
383 384 385
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
386
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
387
	.name = "kmem_cache",
L
Linus Torvalds 已提交
388 389
};

390
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
391

392
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
393
{
394
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
395 396
}

A
Andrew Morton 已提交
397 398 399
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
400
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
401
		slab_flags_t flags, size_t *left_over)
402
{
403
	unsigned int num;
404
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
405

406 407 408 409 410 411
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
412 413 414 415 416
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
417 418 419 420 421 422
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
423
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
424
		num = slab_size / buffer_size;
425
		*left_over = slab_size % buffer_size;
426
	} else {
427
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
428 429
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
430
	}
431 432

	return num;
L
Linus Torvalds 已提交
433 434
}

435
#if DEBUG
436
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
437

A
Andrew Morton 已提交
438 439
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
440
{
441
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
442
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
443
	dump_stack();
444
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
445
}
446
#endif
L
Linus Torvalds 已提交
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

464 465 466 467 468 469 470 471 472 473 474
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

475 476 477 478 479 480 481
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
482
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
483 484 485

static void init_reap_node(int cpu)
{
486 487
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
488 489 490 491
}

static void next_reap_node(void)
{
492
	int node = __this_cpu_read(slab_reap_node);
493

494
	node = next_node_in(node, node_online_map);
495
	__this_cpu_write(slab_reap_node, node);
496 497 498 499 500 501 502
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
503 504 505 506 507 508 509
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
510
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
511
{
512
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
513

514
	if (reap_work->work.func == NULL) {
515
		init_reap_node(cpu);
516
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
517 518
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
519 520 521
	}
}

522
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
523
{
524 525 526 527 528
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
529
	}
530 531 532 533 534
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
535
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
536 537 538
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
539 540 541 542 543 544 545 546
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transferred to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(ac);
547 548
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
549 550
}

551 552
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
553
{
554 555 556
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
557

558 559
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
560

561 562 563
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
564

565
	slabs_destroy(cachep, &list);
566 567
}

568 569 570 571 572 573 574 575 576 577
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
578
	int nr = min3(from->avail, max, to->limit - to->avail);
579 580 581 582 583 584 585 586 587 588 589 590

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

591 592 593 594 595 596 597 598 599 600
/* &alien->lock must be held by alien callers. */
static __always_inline void __free_one(struct array_cache *ac, void *objp)
{
	/* Avoid trivial double-free. */
	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
		return;
	ac->entry[ac->avail++] = objp;
}

601 602 603
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
604
#define reap_alien(cachep, n) do { } while (0)
605

J
Joonsoo Kim 已提交
606 607
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
608
{
609
	return NULL;
610 611
}

J
Joonsoo Kim 已提交
612
static inline void free_alien_cache(struct alien_cache **ac_ptr)
613 614 615 616 617 618 619 620 621 622 623 624 625 626
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

627
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
628 629 630 631 632
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
633 634
static inline gfp_t gfp_exact_node(gfp_t flags)
{
635
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
636 637
}

638 639
#else	/* CONFIG_NUMA */

640
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
641
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
642

J
Joonsoo Kim 已提交
643 644 645
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
646
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
647 648 649
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
650
	if (alc) {
651
		kmemleak_no_scan(alc);
652 653 654
		init_arraycache(&alc->ac, entries, batch);
		spin_lock_init(&alc->lock);
	}
J
Joonsoo Kim 已提交
655 656 657 658
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
659
{
J
Joonsoo Kim 已提交
660
	struct alien_cache **alc_ptr;
661 662 663 664
	int i;

	if (limit > 1)
		limit = 12;
665
	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
J
Joonsoo Kim 已提交
666 667 668 669 670 671 672 673 674 675 676 677
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
678 679
		}
	}
J
Joonsoo Kim 已提交
680
	return alc_ptr;
681 682
}

J
Joonsoo Kim 已提交
683
static void free_alien_cache(struct alien_cache **alc_ptr)
684 685 686
{
	int i;

J
Joonsoo Kim 已提交
687
	if (!alc_ptr)
688 689
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
690 691
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
692 693
}

694
static void __drain_alien_cache(struct kmem_cache *cachep,
695 696
				struct array_cache *ac, int node,
				struct list_head *list)
697
{
698
	struct kmem_cache_node *n = get_node(cachep, node);
699 700

	if (ac->avail) {
701
		spin_lock(&n->list_lock);
702 703 704 705 706
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
707 708
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
709

710
		free_block(cachep, ac->entry, ac->avail, node, list);
711
		ac->avail = 0;
712
		spin_unlock(&n->list_lock);
713 714 715
	}
}

716 717 718
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
719
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
720
{
721
	int node = __this_cpu_read(slab_reap_node);
722

723
	if (n->alien) {
J
Joonsoo Kim 已提交
724 725 726 727 728
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
729
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
730 731 732
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
733
				spin_unlock_irq(&alc->lock);
734
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
735
			}
736 737 738 739
		}
	}
}

A
Andrew Morton 已提交
740
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
741
				struct alien_cache **alien)
742
{
P
Pekka Enberg 已提交
743
	int i = 0;
J
Joonsoo Kim 已提交
744
	struct alien_cache *alc;
745 746 747 748
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
749 750
		alc = alien[i];
		if (alc) {
751 752
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
753
			ac = &alc->ac;
754
			spin_lock_irqsave(&alc->lock, flags);
755
			__drain_alien_cache(cachep, ac, i, &list);
756
			spin_unlock_irqrestore(&alc->lock, flags);
757
			slabs_destroy(cachep, &list);
758 759 760
		}
	}
}
761

762 763
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
764
{
765
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
766 767
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
768
	LIST_HEAD(list);
P
Pekka Enberg 已提交
769

770
	n = get_node(cachep, node);
771
	STATS_INC_NODEFREES(cachep);
772 773
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
774
		ac = &alien->ac;
775
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
776
		if (unlikely(ac->avail == ac->limit)) {
777
			STATS_INC_ACOVERFLOW(cachep);
778
			__drain_alien_cache(cachep, ac, page_node, &list);
779
		}
780
		__free_one(ac, objp);
781
		spin_unlock(&alien->lock);
782
		slabs_destroy(cachep, &list);
783
	} else {
784
		n = get_node(cachep, page_node);
785
		spin_lock(&n->list_lock);
786
		free_block(cachep, &objp, 1, page_node, &list);
787
		spin_unlock(&n->list_lock);
788
		slabs_destroy(cachep, &list);
789 790 791
	}
	return 1;
}
792 793 794 795 796 797 798 799 800 801 802 803 804 805

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
806 807

/*
808 809
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
810 811 812
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
813
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
814
}
815 816
#endif

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

857
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
858
/*
859
 * Allocates and initializes node for a node on each slab cache, used for
860
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
861
 * will be allocated off-node since memory is not yet online for the new node.
862
 * When hotplugging memory or a cpu, existing node are not replaced if
863 864
 * already in use.
 *
865
 * Must hold slab_mutex.
866
 */
867
static int init_cache_node_node(int node)
868
{
869
	int ret;
870 871
	struct kmem_cache *cachep;

872
	list_for_each_entry(cachep, &slab_caches, list) {
873 874 875
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
876
	}
877

878 879
	return 0;
}
880
#endif
881

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

931 932 933 934
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
935
	 * freed after synchronize_rcu().
936
	 */
937
	if (old_shared && force_change)
938
		synchronize_rcu();
939

940 941 942 943 944 945 946 947
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

948 949
#ifdef CONFIG_SMP

950
static void cpuup_canceled(long cpu)
951 952
{
	struct kmem_cache *cachep;
953
	struct kmem_cache_node *n = NULL;
954
	int node = cpu_to_mem(cpu);
955
	const struct cpumask *mask = cpumask_of_node(node);
956

957
	list_for_each_entry(cachep, &slab_caches, list) {
958 959
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
960
		struct alien_cache **alien;
961
		LIST_HEAD(list);
962

963
		n = get_node(cachep, node);
964
		if (!n)
965
			continue;
966

967
		spin_lock_irq(&n->list_lock);
968

969 970
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
971 972 973

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
974 975
		free_block(cachep, nc->entry, nc->avail, node, &list);
		nc->avail = 0;
976

977
		if (!cpumask_empty(mask)) {
978
			spin_unlock_irq(&n->list_lock);
979
			goto free_slab;
980 981
		}

982
		shared = n->shared;
983 984
		if (shared) {
			free_block(cachep, shared->entry,
985
				   shared->avail, node, &list);
986
			n->shared = NULL;
987 988
		}

989 990
		alien = n->alien;
		n->alien = NULL;
991

992
		spin_unlock_irq(&n->list_lock);
993 994 995 996 997 998

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
999 1000

free_slab:
1001
		slabs_destroy(cachep, &list);
1002 1003 1004 1005 1006 1007
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1008
	list_for_each_entry(cachep, &slab_caches, list) {
1009
		n = get_node(cachep, node);
1010
		if (!n)
1011
			continue;
1012
		drain_freelist(cachep, n, INT_MAX);
1013 1014 1015
	}
}

1016
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1017
{
1018
	struct kmem_cache *cachep;
1019
	int node = cpu_to_mem(cpu);
1020
	int err;
L
Linus Torvalds 已提交
1021

1022 1023 1024 1025
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1026
	 * kmem_cache_node and not this cpu's kmem_cache_node
1027
	 */
1028
	err = init_cache_node_node(node);
1029 1030
	if (err < 0)
		goto bad;
1031 1032 1033 1034 1035

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1036
	list_for_each_entry(cachep, &slab_caches, list) {
1037 1038 1039
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1040
	}
1041

1042 1043
	return 0;
bad:
1044
	cpuup_canceled(cpu);
1045 1046 1047
	return -ENOMEM;
}

1048
int slab_prepare_cpu(unsigned int cpu)
1049
{
1050
	int err;
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
1063
 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
1064
 * a kmalloc allocation from another cpu for memory from the node of
C
Chen Tao 已提交
1065
 * the cpu going down.  The kmem_cache_node structure is usually allocated from
1066 1067 1068 1069 1070 1071 1072 1073 1074
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1075
#endif
1076 1077 1078 1079 1080

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
L
Linus Torvalds 已提交
1081 1082
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
L
Linus Torvalds 已提交
1096

1097 1098 1099 1100 1101 1102
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1103
 * Must hold slab_mutex.
1104
 */
1105
static int __meminit drain_cache_node_node(int node)
1106 1107 1108 1109
{
	struct kmem_cache *cachep;
	int ret = 0;

1110
	list_for_each_entry(cachep, &slab_caches, list) {
1111
		struct kmem_cache_node *n;
1112

1113
		n = get_node(cachep, node);
1114
		if (!n)
1115 1116
			continue;

1117
		drain_freelist(cachep, n, INT_MAX);
1118

1119 1120
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1141
		mutex_lock(&slab_mutex);
1142
		ret = init_cache_node_node(nid);
1143
		mutex_unlock(&slab_mutex);
1144 1145
		break;
	case MEM_GOING_OFFLINE:
1146
		mutex_lock(&slab_mutex);
1147
		ret = drain_cache_node_node(nid);
1148
		mutex_unlock(&slab_mutex);
1149 1150 1151 1152 1153 1154 1155 1156
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1157
	return notifier_from_errno(ret);
1158 1159 1160
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1161
/*
1162
 * swap the static kmem_cache_node with kmalloced memory
1163
 */
1164
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1165
				int nodeid)
1166
{
1167
	struct kmem_cache_node *ptr;
1168

1169
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1170 1171
	BUG_ON(!ptr);

1172
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1173 1174 1175 1176 1177
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1178
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1179
	cachep->node[nodeid] = ptr;
1180 1181
}

1182
/*
1183 1184
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1185
 */
1186
static void __init set_up_node(struct kmem_cache *cachep, int index)
1187 1188 1189 1190
{
	int node;

	for_each_online_node(node) {
1191
		cachep->node[node] = &init_kmem_cache_node[index + node];
1192
		cachep->node[node]->next_reap = jiffies +
1193 1194
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1195 1196 1197
	}
}

A
Andrew Morton 已提交
1198 1199 1200
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1201 1202 1203
 */
void __init kmem_cache_init(void)
{
1204 1205
	int i;

1206 1207
	kmem_cache = &kmem_cache_boot;

1208
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1209 1210
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1211
	for (i = 0; i < NUM_INIT_LISTS; i++)
1212
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1213

L
Linus Torvalds 已提交
1214 1215
	/*
	 * Fragmentation resistance on low memory - only use bigger
1216 1217
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1218
	 */
1219
	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1220
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1221 1222 1223

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1224 1225 1226
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1227
	 *    Initially an __init data area is used for the head array and the
1228
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1229
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1230
	 * 2) Create the first kmalloc cache.
1231
	 *    The struct kmem_cache for the new cache is allocated normally.
1232 1233 1234
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1235
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1236
	 *    kmalloc cache with kmalloc allocated arrays.
1237
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1238 1239
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1240 1241
	 */

1242
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1243

E
Eric Dumazet 已提交
1244
	/*
1245
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1246
	 */
1247
	create_boot_cache(kmem_cache, "kmem_cache",
1248
		offsetof(struct kmem_cache, node) +
1249
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1250
				  SLAB_HWCACHE_ALIGN, 0, 0);
1251
	list_add(&kmem_cache->list, &slab_caches);
1252
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1253

A
Andrew Morton 已提交
1254
	/*
1255 1256
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1257
	 */
1258
	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1259
				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1260 1261 1262
				kmalloc_info[INDEX_NODE].size,
				ARCH_KMALLOC_FLAGS, 0,
				kmalloc_info[INDEX_NODE].size);
1263
	slab_state = PARTIAL_NODE;
1264
	setup_kmalloc_cache_index_table();
1265

1266 1267
	slab_early_init = 0;

1268
	/* 5) Replace the bootstrap kmem_cache_node */
1269
	{
P
Pekka Enberg 已提交
1270 1271
		int nid;

1272
		for_each_online_node(nid) {
1273
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1274

1275
			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1276
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1277 1278
		}
	}
L
Linus Torvalds 已提交
1279

1280
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1281 1282 1283 1284 1285 1286 1287
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
1288 1289
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1290 1291
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1292
	mutex_unlock(&slab_mutex);
1293

1294 1295 1296
	/* Done! */
	slab_state = FULL;

1297 1298 1299
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1300
	 * node.
1301 1302 1303 1304
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1305 1306 1307
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1308 1309 1310 1311 1312
	 */
}

static int __init cpucache_init(void)
{
1313
	int ret;
L
Linus Torvalds 已提交
1314

A
Andrew Morton 已提交
1315 1316
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1317
	 */
1318 1319 1320
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1321

L
Linus Torvalds 已提交
1322 1323 1324 1325
	return 0;
}
__initcall(cpucache_init);

1326 1327 1328
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1329
#if DEBUG
1330
	struct kmem_cache_node *n;
1331 1332
	unsigned long flags;
	int node;
1333 1334 1335 1336 1337
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1338

1339 1340 1341
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1342
		cachep->name, cachep->size, cachep->gfporder);
1343

1344
	for_each_kmem_cache_node(cachep, node, n) {
1345
		unsigned long total_slabs, free_slabs, free_objs;
1346

1347
		spin_lock_irqsave(&n->list_lock, flags);
1348 1349 1350
		total_slabs = n->total_slabs;
		free_slabs = n->free_slabs;
		free_objs = n->free_objects;
1351
		spin_unlock_irqrestore(&n->list_lock, flags);
1352

1353 1354 1355 1356
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
			node, total_slabs - free_slabs, total_slabs,
			(total_slabs * cachep->num) - free_objs,
			total_slabs * cachep->num);
1357
	}
1358
#endif
1359 1360
}

L
Linus Torvalds 已提交
1361
/*
W
Wang Sheng-Hui 已提交
1362 1363
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1364 1365 1366 1367 1368
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1369 1370
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1371 1372
{
	struct page *page;
1373

1374
	flags |= cachep->allocflags;
1375

1376
	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1377
	if (!page) {
1378
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1379
		return NULL;
1380
	}
L
Linus Torvalds 已提交
1381

1382
	account_slab_page(page, cachep->gfporder, cachep);
1383
	__SetPageSlab(page);
1384 1385
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1386
		SetPageSlabPfmemalloc(page);
1387

1388
	return page;
L
Linus Torvalds 已提交
1389 1390 1391 1392 1393
}

/*
 * Interface to system's page release.
 */
1394
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1395
{
1396
	int order = cachep->gfporder;
J
Joonsoo Kim 已提交
1397

1398
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1399
	__ClearPageSlabPfmemalloc(page);
1400
	__ClearPageSlab(page);
1401 1402
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1403

L
Linus Torvalds 已提交
1404
	if (current->reclaim_state)
1405
		current->reclaim_state->reclaimed_slab += 1 << order;
1406
	unaccount_slab_page(page, order, cachep);
1407
	__free_pages(page, order);
L
Linus Torvalds 已提交
1408 1409 1410 1411
}

static void kmem_rcu_free(struct rcu_head *head)
{
1412 1413
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1414

1415 1416 1417 1418
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1419 1420 1421
}

#if DEBUG
1422 1423
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
1424
	if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1425 1426 1427 1428 1429
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1430 1431

#ifdef CONFIG_DEBUG_PAGEALLOC
Q
Qian Cai 已提交
1432
static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1433 1434 1435 1436 1437 1438 1439 1440 1441
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
Q
Qian Cai 已提交
1442
				int map) {}
1443

L
Linus Torvalds 已提交
1444 1445
#endif

1446
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1447
{
1448
	int size = cachep->object_size;
1449
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1450 1451

	memset(addr, val, size);
P
Pekka Enberg 已提交
1452
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1453 1454 1455 1456 1457
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1458 1459 1460
	unsigned char error = 0;
	int bad_count = 0;

1461
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1462 1463 1464 1465 1466 1467
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1468 1469
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1470 1471 1472 1473

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1474
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1475
#ifdef CONFIG_X86
1476
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1477
#else
1478
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1479 1480 1481
#endif
		}
	}
L
Linus Torvalds 已提交
1482 1483 1484 1485 1486
}
#endif

#if DEBUG

1487
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1488 1489 1490 1491 1492
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1493 1494 1495
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1496 1497
	}

1498 1499
	if (cachep->flags & SLAB_STORE_USER)
		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1500
	realobj = (char *)objp + obj_offset(cachep);
1501
	size = cachep->object_size;
P
Pekka Enberg 已提交
1502
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1503 1504
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1505 1506
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1507 1508 1509 1510
		dump_line(realobj, i, limit);
	}
}

1511
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1512 1513 1514 1515 1516
{
	char *realobj;
	int size, i;
	int lines = 0;

1517 1518 1519
	if (is_debug_pagealloc_cache(cachep))
		return;

1520
	realobj = (char *)objp + obj_offset(cachep);
1521
	size = cachep->object_size;
L
Linus Torvalds 已提交
1522

P
Pekka Enberg 已提交
1523
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1524
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1525
		if (i == size - 1)
L
Linus Torvalds 已提交
1526 1527 1528 1529 1530 1531
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1532
				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1533 1534
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1535 1536 1537
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1538
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1539
			limit = 16;
P
Pekka Enberg 已提交
1540 1541
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1554
		struct page *page = virt_to_head_page(objp);
1555
		unsigned int objnr;
L
Linus Torvalds 已提交
1556

1557
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1558
		if (objnr) {
1559
			objp = index_to_obj(cachep, page, objnr - 1);
1560
			realobj = (char *)objp + obj_offset(cachep);
1561
			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1562 1563
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1564
		if (objnr + 1 < cachep->num) {
1565
			objp = index_to_obj(cachep, page, objnr + 1);
1566
			realobj = (char *)objp + obj_offset(cachep);
1567
			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1568 1569 1570 1571 1572 1573
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1574
#if DEBUG
1575 1576
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1577 1578
{
	int i;
1579 1580 1581 1582 1583 1584

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1585
	for (i = 0; i < cachep->num; i++) {
1586
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1587 1588 1589

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
Q
Qian Cai 已提交
1590
			slab_kernel_map(cachep, objp, 1);
L
Linus Torvalds 已提交
1591 1592 1593
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1594
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1595
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1596
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1597 1598
		}
	}
1599
}
L
Linus Torvalds 已提交
1600
#else
1601 1602
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1603 1604
{
}
L
Linus Torvalds 已提交
1605 1606
#endif

1607 1608 1609
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1610
 * @page: page pointer being destroyed
1611
 *
W
Wang Sheng-Hui 已提交
1612 1613 1614
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1615
 */
1616
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1617
{
1618
	void *freelist;
1619

1620 1621
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1622
	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1623 1624
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1625
		kmem_freepages(cachep, page);
1626 1627

	/*
1628
	 * From now on, we don't use freelist
1629 1630 1631
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1632
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1633 1634
}

1635 1636 1637 1638
/*
 * Update the size of the caches before calling slabs_destroy as it may
 * recursively call kfree.
 */
1639 1640 1641 1642
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

1643 1644
	list_for_each_entry_safe(page, n, list, slab_list) {
		list_del(&page->slab_list);
1645 1646 1647 1648
		slab_destroy(cachep, page);
	}
}

1649
/**
1650 1651 1652 1653 1654 1655
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1656 1657 1658 1659
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
1660 1661
 *
 * Return: number of left-over bytes in a slab
1662
 */
A
Andrew Morton 已提交
1663
static size_t calculate_slab_order(struct kmem_cache *cachep,
1664
				size_t size, slab_flags_t flags)
1665 1666
{
	size_t left_over = 0;
1667
	int gfporder;
1668

1669
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1670 1671 1672
		unsigned int num;
		size_t remainder;

1673
		num = cache_estimate(gfporder, size, flags, &remainder);
1674 1675
		if (!num)
			continue;
1676

1677 1678 1679 1680
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1681
		if (flags & CFLGS_OFF_SLAB) {
1682 1683 1684 1685 1686 1687 1688 1689
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1690
			/*
1691
			 * Needed to avoid possible looping condition
1692
			 * in cache_grow_begin()
1693
			 */
1694 1695
			if (OFF_SLAB(freelist_cache))
				continue;
1696

1697 1698 1699
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1700
		}
1701

1702
		/* Found something acceptable - save it away */
1703
		cachep->num = num;
1704
		cachep->gfporder = gfporder;
1705 1706
		left_over = remainder;

1707 1708 1709 1710 1711 1712 1713 1714
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1715 1716 1717 1718
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1719
		if (gfporder >= slab_max_order)
1720 1721
			break;

1722 1723 1724
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1725
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1726 1727 1728 1729 1730
			break;
	}
	return left_over;
}

1731 1732 1733 1734 1735 1736 1737 1738
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1739
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1752
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1753
{
1754
	if (slab_state >= FULL)
1755
		return enable_cpucache(cachep, gfp);
1756

1757 1758 1759 1760
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1761
	if (slab_state == DOWN) {
1762 1763
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1764
	} else if (slab_state == PARTIAL) {
1765 1766
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1767
	} else {
1768
		int node;
1769

1770 1771 1772 1773 1774
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1775 1776
		}
	}
1777

1778
	cachep->node[numa_mem_id()]->next_reap =
1779 1780
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1781 1782 1783 1784 1785 1786 1787

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1788
	return 0;
1789 1790
}

1791
slab_flags_t kmem_cache_flags(unsigned int object_size,
1792
	slab_flags_t flags, const char *name,
J
Joonsoo Kim 已提交
1793 1794 1795 1796 1797 1798
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
1799
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1800
		   slab_flags_t flags, void (*ctor)(void *))
J
Joonsoo Kim 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1817
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1818
			size_t size, slab_flags_t flags)
1819 1820 1821 1822 1823
{
	size_t left;

	cachep->num = 0;

1824 1825 1826 1827 1828 1829 1830 1831
	/*
	 * If slab auto-initialization on free is enabled, store the freelist
	 * off-slab, so that its contents don't end up in one of the allocated
	 * objects.
	 */
	if (unlikely(slab_want_init_on_free(cachep)))
		return false;

1832
	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1848
static bool set_off_slab_cache(struct kmem_cache *cachep,
1849
			size_t size, slab_flags_t flags)
1850 1851 1852 1853 1854 1855
{
	size_t left;

	cachep->num = 0;

	/*
1856 1857
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
1883
			size_t size, slab_flags_t flags)
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1898
/**
1899
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1900
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1901 1902 1903 1904
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1905
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
1918 1919
 *
 * Return: a pointer to the created cache or %NULL in case of error
L
Linus Torvalds 已提交
1920
 */
1921
int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
L
Linus Torvalds 已提交
1922
{
1923
	size_t ralign = BYTES_PER_WORD;
1924
	gfp_t gfp;
1925
	int err;
1926
	unsigned int size = cachep->size;
L
Linus Torvalds 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
1936 1937
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
1938
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1939
	if (!(flags & SLAB_TYPESAFE_BY_RCU))
L
Linus Torvalds 已提交
1940 1941 1942 1943
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
1944 1945
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
1946 1947 1948
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
1949
	size = ALIGN(size, BYTES_PER_WORD);
L
Linus Torvalds 已提交
1950

D
David Woodhouse 已提交
1951 1952 1953 1954
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
1955
		size = ALIGN(size, REDZONE_ALIGN);
D
David Woodhouse 已提交
1956
	}
1957

1958
	/* 3) caller mandated alignment */
1959 1960
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
1961
	}
1962 1963
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
1964
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
1965
	/*
1966
	 * 4) Store it.
L
Linus Torvalds 已提交
1967
	 */
1968
	cachep->align = ralign;
1969 1970 1971 1972
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
1973

1974 1975 1976 1977 1978
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
1979 1980
#if DEBUG

1981 1982 1983 1984
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
1985 1986
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
1987 1988
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
1989 1990
	}
	if (flags & SLAB_STORE_USER) {
1991
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
1992 1993
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
1994
		 */
D
David Woodhouse 已提交
1995 1996 1997 1998
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
1999
	}
2000 2001
#endif

A
Alexander Potapenko 已提交
2002 2003
	kasan_cache_create(cachep, &size, &flags);

2004 2005 2006 2007 2008 2009 2010 2011 2012
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2013 2014 2015 2016 2017 2018 2019
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2020
	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2032 2033 2034
	}
#endif

2035 2036 2037 2038 2039
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2040
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2041
		flags |= CFLGS_OFF_SLAB;
2042
		goto done;
2043
	}
L
Linus Torvalds 已提交
2044

2045 2046
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2047

2048
	return -E2BIG;
L
Linus Torvalds 已提交
2049

2050 2051
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2052
	cachep->flags = flags;
2053
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2054
	if (flags & SLAB_CACHE_DMA)
2055
		cachep->allocflags |= GFP_DMA;
2056 2057
	if (flags & SLAB_CACHE_DMA32)
		cachep->allocflags |= GFP_DMA32;
2058 2059
	if (flags & SLAB_RECLAIM_ACCOUNT)
		cachep->allocflags |= __GFP_RECLAIMABLE;
2060
	cachep->size = size;
2061
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2062

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2076 2077
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2078
	}
L
Linus Torvalds 已提交
2079

2080 2081
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2082
		__kmem_cache_release(cachep);
2083
		return err;
2084
	}
L
Linus Torvalds 已提交
2085

2086
	return 0;
L
Linus Torvalds 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2100 2101 2102 2103 2104
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2105
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2106 2107 2108
{
#ifdef CONFIG_SMP
	check_irq_off();
2109
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2110 2111
#endif
}
2112

2113
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2114 2115 2116
{
#ifdef CONFIG_SMP
	check_irq_off();
2117
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2118 2119 2120
#endif
}

L
Linus Torvalds 已提交
2121 2122 2123
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2124
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2125
#define check_spinlock_acquired(x) do { } while(0)
2126
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2127 2128
#endif

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2145

L
Linus Torvalds 已提交
2146 2147
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2148
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2149
	struct array_cache *ac;
2150
	int node = numa_mem_id();
2151
	struct kmem_cache_node *n;
2152
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2153 2154

	check_irq_off();
2155
	ac = cpu_cache_get(cachep);
2156 2157
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2158
	free_block(cachep, ac->entry, ac->avail, node, &list);
2159
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2160
	ac->avail = 0;
2161
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2162 2163
}

2164
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2165
{
2166
	struct kmem_cache_node *n;
2167
	int node;
2168
	LIST_HEAD(list);
2169

2170
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2171
	check_irq_on();
2172 2173
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2174
			drain_alien_cache(cachep, n->alien);
2175

2176 2177 2178 2179 2180 2181 2182
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2183 2184
}

2185 2186 2187 2188 2189 2190 2191
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2192
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2193
{
2194 2195
	struct list_head *p;
	int nr_freed;
2196
	struct page *page;
L
Linus Torvalds 已提交
2197

2198
	nr_freed = 0;
2199
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2200

2201 2202 2203 2204
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2205 2206
			goto out;
		}
L
Linus Torvalds 已提交
2207

2208 2209
		page = list_entry(p, struct page, slab_list);
		list_del(&page->slab_list);
2210
		n->free_slabs--;
2211
		n->total_slabs--;
2212 2213 2214 2215
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2216 2217
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2218
		slab_destroy(cache, page);
2219
		nr_freed++;
L
Linus Torvalds 已提交
2220
	}
2221 2222
out:
	return nr_freed;
L
Linus Torvalds 已提交
2223 2224
}

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial))
			return false;
	return true;
}

2237
int __kmem_cache_shrink(struct kmem_cache *cachep)
2238
{
2239 2240
	int ret = 0;
	int node;
2241
	struct kmem_cache_node *n;
2242 2243 2244 2245

	drain_cpu_caches(cachep);

	check_irq_on();
2246
	for_each_kmem_cache_node(cachep, node, n) {
2247
		drain_freelist(cachep, n, INT_MAX);
2248

2249 2250
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2251 2252 2253 2254
	}
	return (ret ? 1 : 0);
}

2255
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2256
{
2257
	return __kmem_cache_shrink(cachep);
2258 2259 2260
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2261
{
2262
	int i;
2263
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2264

T
Thomas Garnier 已提交
2265 2266
	cache_random_seq_destroy(cachep);

2267
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2268

2269
	/* NUMA: free the node structures */
2270 2271 2272 2273 2274
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2275
	}
L
Linus Torvalds 已提交
2276 2277
}

2278 2279
/*
 * Get the memory for a slab management obj.
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2291
 */
2292
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2293 2294
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2295
{
2296
	void *freelist;
2297
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2298

2299
	page->s_mem = addr + colour_off;
2300 2301
	page->active = 0;

2302 2303 2304
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2305
		/* Slab management obj is off-slab. */
2306
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2307
					      local_flags, nodeid);
L
Linus Torvalds 已提交
2308
	} else {
2309 2310 2311
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2312
	}
2313

2314
	return freelist;
L
Linus Torvalds 已提交
2315 2316
}

2317
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2318
{
2319
	return ((freelist_idx_t *)page->freelist)[idx];
2320 2321 2322
}

static inline void set_free_obj(struct page *page,
2323
					unsigned int idx, freelist_idx_t val)
2324
{
2325
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2326 2327
}

2328
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2329
{
2330
#if DEBUG
L
Linus Torvalds 已提交
2331 2332 2333
	int i;

	for (i = 0; i < cachep->num; i++) {
2334
		void *objp = index_to_obj(cachep, page, i);
2335

L
Linus Torvalds 已提交
2336 2337 2338 2339 2340 2341 2342 2343
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2344 2345 2346
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2347
		 */
A
Alexander Potapenko 已提交
2348 2349 2350
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2351
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2352 2353 2354
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2355 2356 2357

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2358
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2359
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2360
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2361
		}
2362 2363 2364
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
Q
Qian Cai 已提交
2365
			slab_kernel_map(cachep, objp, 0);
2366
		}
2367
	}
L
Linus Torvalds 已提交
2368
#endif
2369 2370
}

T
Thomas Garnier 已提交
2371 2372 2373 2374 2375
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2376
		unsigned int *list;
T
Thomas Garnier 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
		unsigned int count;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2394
	rand = get_random_int();
T
Thomas Garnier 已提交
2395 2396 2397 2398 2399 2400 2401 2402

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
2403
		state->pos = rand % count;
T
Thomas Garnier 已提交
2404 2405 2406 2407 2408 2409 2410 2411
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
2412 2413 2414
	if (state->pos >= state->count)
		state->pos = 0;
	return state->list[state->pos++];
T
Thomas Garnier 已提交
2415 2416
}

2417 2418 2419 2420 2421 2422 2423
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2424 2425 2426 2427 2428 2429
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2430
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2455 2456 2457 2458 2459 2460 2461 2462 2463
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2482 2483 2484 2485
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2486
	void *objp;
T
Thomas Garnier 已提交
2487
	bool shuffled;
2488 2489 2490

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2491 2492 2493 2494
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2495 2496 2497 2498
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2499
	for (i = 0; i < cachep->num; i++) {
2500
		objp = index_to_obj(cachep, page, i);
2501
		objp = kasan_init_slab_obj(cachep, objp);
2502

2503
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2504 2505 2506 2507 2508
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2509

T
Thomas Garnier 已提交
2510 2511
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2512 2513 2514
	}
}

2515
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2516
{
2517
	void *objp;
2518

2519
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2520
	page->active++;
2521 2522 2523 2524

	return objp;
}

2525 2526
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2527
{
2528
	unsigned int objnr = obj_to_index(cachep, page, objp);
2529
#if DEBUG
J
Joonsoo Kim 已提交
2530
	unsigned int i;
2531 2532

	/* Verify double free bug */
2533
	for (i = page->active; i < cachep->num; i++) {
2534
		if (get_free_obj(page, i) == objnr) {
2535
			pr_err("slab: double free detected in cache '%s', objp %px\n",
J
Joe Perches 已提交
2536
			       cachep->name, objp);
2537 2538
			BUG();
		}
2539 2540
	}
#endif
2541
	page->active--;
2542 2543 2544
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2545
	set_free_obj(page, page->active, objnr);
2546 2547
}

2548 2549 2550
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2551
 * virtual address for kfree, ksize, and slab debugging.
2552
 */
2553
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2554
			   void *freelist)
L
Linus Torvalds 已提交
2555
{
2556
	page->slab_cache = cache;
2557
	page->freelist = freelist;
L
Linus Torvalds 已提交
2558 2559 2560 2561 2562 2563
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2564 2565
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2566
{
2567
	void *freelist;
P
Pekka Enberg 已提交
2568 2569
	size_t offset;
	gfp_t local_flags;
2570
	int page_node;
2571
	struct kmem_cache_node *n;
2572
	struct page *page;
L
Linus Torvalds 已提交
2573

A
Andrew Morton 已提交
2574 2575 2576
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2577
	 */
2578 2579 2580
	if (unlikely(flags & GFP_SLAB_BUG_MASK))
		flags = kmalloc_fix_flags(flags);

2581
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
C
Christoph Lameter 已提交
2582
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2583 2584

	check_irq_off();
2585
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2586 2587
		local_irq_enable();

A
Andrew Morton 已提交
2588 2589 2590
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2591
	 */
2592
	page = kmem_getpages(cachep, local_flags, nodeid);
2593
	if (!page)
L
Linus Torvalds 已提交
2594 2595
		goto failed;

2596 2597
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

2610 2611 2612 2613 2614 2615 2616
	/*
	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
	 * page_address() in the latter returns a non-tagged pointer,
	 * as it should be for slab pages.
	 */
	kasan_poison_slab(page);

L
Linus Torvalds 已提交
2617
	/* Get slab management. */
2618
	freelist = alloc_slabmgmt(cachep, page, offset,
2619
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2620
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2621 2622
		goto opps1;

2623
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2624

2625
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2626

2627
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2628 2629
		local_irq_disable();

2630 2631
	return page;

A
Andrew Morton 已提交
2632
opps1:
2633
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2634
failed:
2635
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2636
		local_irq_disable();
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

2650
	INIT_LIST_HEAD(&page->slab_list);
2651 2652 2653
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
2654
	n->total_slabs++;
2655
	if (!page->active) {
2656
		list_add_tail(&page->slab_list, &n->slabs_free);
2657
		n->free_slabs++;
2658
	} else
2659
		fixup_slab_list(cachep, n, page, &list);
2660

2661 2662 2663 2664 2665
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2678
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2679 2680
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2681 2682 2683
	}
}

2684 2685
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2686
	unsigned long long redzone1, redzone2;
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2702
	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2703
	       obj, redzone1, redzone2);
2704 2705
}

2706
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2707
				   unsigned long caller)
L
Linus Torvalds 已提交
2708 2709
{
	unsigned int objnr;
2710
	struct page *page;
L
Linus Torvalds 已提交
2711

2712 2713
	BUG_ON(virt_to_cache(objp) != cachep);

2714
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2715
	kfree_debugcheck(objp);
2716
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2717 2718

	if (cachep->flags & SLAB_RED_ZONE) {
2719
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2720 2721 2722
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
Q
Qian Cai 已提交
2723
	if (cachep->flags & SLAB_STORE_USER)
2724
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2725

2726
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2727 2728

	BUG_ON(objnr >= cachep->num);
2729
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2730 2731 2732

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
Q
Qian Cai 已提交
2733
		slab_kernel_map(cachep, objp, 0);
L
Linus Torvalds 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2758
static inline void fixup_slab_list(struct kmem_cache *cachep,
2759 2760
				struct kmem_cache_node *n, struct page *page,
				void **list)
2761 2762
{
	/* move slabp to correct slabp list: */
2763
	list_del(&page->slab_list);
2764
	if (page->active == cachep->num) {
2765
		list_add(&page->slab_list, &n->slabs_full);
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2779
		list_add(&page->slab_list, &n->slabs_partial);
2780 2781
}

2782 2783
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2784
					struct page *page, bool pfmemalloc)
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
2802
	list_del(&page->slab_list);
2803
	if (!page->active) {
2804
		list_add_tail(&page->slab_list, &n->slabs_free);
2805
		n->free_slabs++;
2806
	} else
2807
		list_add_tail(&page->slab_list, &n->slabs_partial);
2808

2809
	list_for_each_entry(page, &n->slabs_partial, slab_list) {
2810 2811 2812 2813
		if (!PageSlabPfmemalloc(page))
			return page;
	}

2814
	n->free_touched = 1;
2815
	list_for_each_entry(page, &n->slabs_free, slab_list) {
2816
		if (!PageSlabPfmemalloc(page)) {
2817
			n->free_slabs--;
2818
			return page;
2819
		}
2820 2821 2822 2823 2824 2825
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2826 2827 2828
{
	struct page *page;

2829
	assert_spin_locked(&n->list_lock);
2830 2831
	page = list_first_entry_or_null(&n->slabs_partial, struct page,
					slab_list);
2832 2833
	if (!page) {
		n->free_touched = 1;
2834
		page = list_first_entry_or_null(&n->slabs_free, struct page,
2835
						slab_list);
2836
		if (page)
2837
			n->free_slabs--;
2838 2839
	}

2840
	if (sk_memalloc_socks())
2841
		page = get_valid_first_slab(n, page, pfmemalloc);
2842

2843 2844 2845
	return page;
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2898
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2899 2900
{
	int batchcount;
2901
	struct kmem_cache_node *n;
2902
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
2903
	int node;
2904
	void *list = NULL;
2905
	struct page *page;
P
Pekka Enberg 已提交
2906

L
Linus Torvalds 已提交
2907
	check_irq_off();
2908
	node = numa_mem_id();
2909

2910
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2911 2912
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2913 2914 2915 2916
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2917 2918 2919
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2920
	n = get_node(cachep, node);
2921

2922
	BUG_ON(ac->avail > 0 || !n);
2923 2924 2925 2926
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

2927
	spin_lock(&n->list_lock);
2928
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
2929

2930
	/* See if we can refill from the shared array */
2931 2932
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
2933
		goto alloc_done;
2934
	}
2935

L
Linus Torvalds 已提交
2936 2937
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
2938
		page = get_first_slab(n, false);
2939 2940
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
2941 2942

		check_spinlock_acquired(cachep);
2943

2944
		batchcount = alloc_block(cachep, ac, page, batchcount);
2945
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
2946 2947
	}

A
Andrew Morton 已提交
2948
must_grow:
2949
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2950
alloc_done:
2951
	spin_unlock(&n->list_lock);
2952
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2953

2954
direct_grow:
L
Linus Torvalds 已提交
2955
	if (unlikely(!ac->avail)) {
2956 2957 2958 2959 2960 2961 2962 2963
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

2964
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2965

2966 2967 2968 2969
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
2970
		ac = cpu_cache_get(cachep);
2971 2972 2973
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
2974

2975
		if (!ac->avail)
L
Linus Torvalds 已提交
2976 2977 2978
			return NULL;
	}
	ac->touched = 1;
2979

2980
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2981 2982
}

A
Andrew Morton 已提交
2983 2984
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2985
{
2986
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
2987 2988 2989
}

#if DEBUG
A
Andrew Morton 已提交
2990
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2991
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2992
{
2993
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
P
Pekka Enberg 已提交
2994
	if (!objp)
L
Linus Torvalds 已提交
2995
		return objp;
P
Pekka Enberg 已提交
2996
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2997
		check_poison_obj(cachep, objp);
Q
Qian Cai 已提交
2998
		slab_kernel_map(cachep, objp, 1);
L
Linus Torvalds 已提交
2999 3000 3001
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3002
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3003 3004

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3005 3006
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3007
			slab_error(cachep, "double free, or memory outside object was overwritten");
3008
			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3009 3010
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3011 3012 3013 3014
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3015

3016
	objp += obj_offset(cachep);
3017
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3018
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3019 3020
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3021
		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3022
		       objp, (int)ARCH_SLAB_MINALIGN);
3023
	}
L
Linus Torvalds 已提交
3024 3025 3026 3027 3028 3029
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3030
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3031
{
P
Pekka Enberg 已提交
3032
	void *objp;
L
Linus Torvalds 已提交
3033 3034
	struct array_cache *ac;

3035
	check_irq_off();
3036

3037
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3038 3039
	if (likely(ac->avail)) {
		ac->touched = 1;
3040
		objp = ac->entry[--ac->avail];
3041

3042 3043
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3044
	}
3045 3046

	STATS_INC_ALLOCMISS(cachep);
3047
	objp = cache_alloc_refill(cachep, flags);
3048 3049 3050 3051 3052 3053 3054
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3055 3056 3057 3058 3059
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3060 3061
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3062 3063 3064
	return objp;
}

3065
#ifdef CONFIG_NUMA
3066
/*
3067
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3068 3069 3070 3071 3072 3073 3074 3075
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3076
	if (in_interrupt() || (flags & __GFP_THISNODE))
3077
		return NULL;
3078
	nid_alloc = nid_here = numa_mem_id();
3079
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3080
		nid_alloc = cpuset_slab_spread_node();
3081
	else if (current->mempolicy)
3082
		nid_alloc = mempolicy_slab_node();
3083
	if (nid_alloc != nid_here)
3084
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3085 3086 3087
	return NULL;
}

3088 3089
/*
 * Fallback function if there was no memory available and no objects on a
3090
 * certain node and fall back is permitted. First we scan all the
3091
 * available node for available objects. If that fails then we
3092 3093 3094
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3095
 */
3096
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3097
{
3098
	struct zonelist *zonelist;
3099
	struct zoneref *z;
3100
	struct zone *zone;
3101
	enum zone_type highest_zoneidx = gfp_zone(flags);
3102
	void *obj = NULL;
3103
	struct page *page;
3104
	int nid;
3105
	unsigned int cpuset_mems_cookie;
3106 3107 3108 3109

	if (flags & __GFP_THISNODE)
		return NULL;

3110
retry_cpuset:
3111
	cpuset_mems_cookie = read_mems_allowed_begin();
3112
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3113

3114 3115 3116 3117 3118
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3119
	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3120
		nid = zone_to_nid(zone);
3121

3122
		if (cpuset_zone_allowed(zone, flags) &&
3123 3124
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3125
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3126
					gfp_exact_node(flags), nid);
3127 3128 3129
				if (obj)
					break;
		}
3130 3131
	}

3132
	if (!obj) {
3133 3134 3135 3136 3137 3138
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3139 3140 3141 3142
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3143 3144
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3145

3146
			/*
3147 3148
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3149
			 */
3150 3151
			if (!obj)
				goto retry;
3152
		}
3153
	}
3154

3155
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3156
		goto retry_cpuset;
3157 3158 3159
	return obj;
}

3160 3161
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3162
 */
3163
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3164
				int nodeid)
3165
{
3166
	struct page *page;
3167
	struct kmem_cache_node *n;
3168
	void *obj = NULL;
3169
	void *list = NULL;
P
Pekka Enberg 已提交
3170

3171
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3172
	n = get_node(cachep, nodeid);
3173
	BUG_ON(!n);
P
Pekka Enberg 已提交
3174

3175
	check_irq_off();
3176
	spin_lock(&n->list_lock);
3177
	page = get_first_slab(n, false);
3178 3179
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3180 3181 3182 3183 3184 3185 3186

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3187
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3188

3189
	obj = slab_get_obj(cachep, page);
3190
	n->free_objects--;
P
Pekka Enberg 已提交
3191

3192
	fixup_slab_list(cachep, n, page, &list);
3193

3194
	spin_unlock(&n->list_lock);
3195
	fixup_objfreelist_debug(cachep, &list);
3196
	return obj;
3197

A
Andrew Morton 已提交
3198
must_grow:
3199
	spin_unlock(&n->list_lock);
3200
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3201 3202 3203 3204
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3205
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3206

3207
	return obj ? obj : fallback_alloc(cachep, flags);
3208
}
3209 3210

static __always_inline void *
3211
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3212
		   unsigned long caller)
3213 3214 3215
{
	unsigned long save_flags;
	void *ptr;
3216
	int slab_node = numa_mem_id();
3217
	struct obj_cgroup *objcg = NULL;
3218

3219
	flags &= gfp_allowed_mask;
3220
	cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3221
	if (unlikely(!cachep))
3222 3223
		return NULL;

3224 3225 3226
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3227
	if (nodeid == NUMA_NO_NODE)
3228
		nodeid = slab_node;
3229

3230
	if (unlikely(!get_node(cachep, nodeid))) {
3231 3232 3233 3234 3235
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3236
	if (nodeid == slab_node) {
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3253
	if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr)
3254
		memset(ptr, 0, cachep->object_size);
3255

3256
	slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr);
3257 3258 3259 3260 3261 3262 3263 3264
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3265
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3276 3277
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3293
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3294 3295 3296
{
	unsigned long save_flags;
	void *objp;
3297
	struct obj_cgroup *objcg = NULL;
3298

3299
	flags &= gfp_allowed_mask;
3300
	cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3301
	if (unlikely(!cachep))
3302 3303
		return NULL;

3304 3305 3306 3307 3308 3309 3310
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3311
	if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp)
3312
		memset(objp, 0, cachep->object_size);
3313

3314
	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp);
3315 3316
	return objp;
}
3317 3318

/*
3319
 * Caller needs to acquire correct kmem_cache_node's list_lock
3320
 * @list: List of detached free slabs should be freed by caller
3321
 */
3322 3323
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3324 3325
{
	int i;
3326
	struct kmem_cache_node *n = get_node(cachep, node);
3327 3328 3329
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3330 3331

	for (i = 0; i < nr_objects; i++) {
3332
		void *objp;
3333
		struct page *page;
L
Linus Torvalds 已提交
3334

3335 3336
		objp = objpp[i];

3337
		page = virt_to_head_page(objp);
3338
		list_del(&page->slab_list);
3339
		check_spinlock_acquired_node(cachep, node);
3340
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3341 3342 3343
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3344
		if (page->active == 0) {
3345
			list_add(&page->slab_list, &n->slabs_free);
3346 3347
			n->free_slabs++;
		} else {
L
Linus Torvalds 已提交
3348 3349 3350 3351
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3352
			list_add_tail(&page->slab_list, &n->slabs_partial);
L
Linus Torvalds 已提交
3353 3354
		}
	}
3355 3356 3357 3358

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

3359 3360
		page = list_last_entry(&n->slabs_free, struct page, slab_list);
		list_move(&page->slab_list, list);
3361
		n->free_slabs--;
3362
		n->total_slabs--;
3363
	}
L
Linus Torvalds 已提交
3364 3365
}

3366
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3367 3368
{
	int batchcount;
3369
	struct kmem_cache_node *n;
3370
	int node = numa_mem_id();
3371
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3372 3373

	batchcount = ac->batchcount;
3374

L
Linus Torvalds 已提交
3375
	check_irq_off();
3376
	n = get_node(cachep, node);
3377 3378 3379
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3380
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3381 3382 3383
		if (max) {
			if (batchcount > max)
				batchcount = max;
3384
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3385
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3386 3387 3388 3389 3390
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3391
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3392
free_done:
L
Linus Torvalds 已提交
3393 3394 3395
#if STATS
	{
		int i = 0;
3396
		struct page *page;
L
Linus Torvalds 已提交
3397

3398
		list_for_each_entry(page, &n->slabs_free, slab_list) {
3399
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3400 3401 3402 3403 3404 3405

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3406
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3407
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3408
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3409
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3410 3411 3412
}

/*
A
Andrew Morton 已提交
3413 3414
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3415
 */
3416 3417
static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
					 unsigned long caller)
L
Linus Torvalds 已提交
3418
{
3419
	/* Put the object into the quarantine, don't touch it for now. */
3420
	if (kasan_slab_free(cachep, objp, _RET_IP_))
3421 3422
		return;

3423 3424 3425 3426 3427
	/* Use KCSAN to help debug racy use-after-free. */
	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
		__kcsan_check_access(objp, cachep->object_size,
				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);

3428 3429
	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3430

3431 3432 3433 3434
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3435

L
Linus Torvalds 已提交
3436
	check_irq_off();
3437 3438
	if (unlikely(slab_want_init_on_free(cachep)))
		memset(objp, 0, cachep->object_size);
3439
	kmemleak_free_recursive(objp, cachep->flags);
3440
	objp = cache_free_debugcheck(cachep, objp, caller);
3441
	memcg_slab_free_hook(cachep, &objp, 1);
L
Linus Torvalds 已提交
3442

3443 3444 3445 3446 3447 3448 3449
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3450
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3451 3452
		return;

3453
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3454 3455 3456 3457 3458
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3459

3460 3461 3462 3463 3464 3465 3466 3467 3468
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

3469
	__free_one(ac, objp);
L
Linus Torvalds 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
3479 3480
 *
 * Return: pointer to the new object or %NULL in case of error
L
Linus Torvalds 已提交
3481
 */
3482
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3483
{
3484
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3485

3486
	trace_kmem_cache_alloc(_RET_IP_, ret,
3487
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3488 3489

	return ret;
L
Linus Torvalds 已提交
3490 3491 3492
}
EXPORT_SYMBOL(kmem_cache_alloc);

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3503
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3504
			  void **p)
3505
{
3506
	size_t i;
3507
	struct obj_cgroup *objcg = NULL;
3508

3509
	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3525 3526
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3527
	/* Clear memory outside IRQ disabled section */
3528
	if (unlikely(slab_want_init_on_alloc(flags, s)))
3529 3530 3531
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

3532
	slab_post_alloc_hook(s, objcg, flags, size, p);
3533 3534 3535 3536
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3537
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3538
	slab_post_alloc_hook(s, objcg, flags, i, p);
3539 3540
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3541 3542 3543
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3544
#ifdef CONFIG_TRACING
3545
void *
3546
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3547
{
3548 3549
	void *ret;

3550
	ret = slab_alloc(cachep, flags, _RET_IP_);
3551

3552
	ret = kasan_kmalloc(cachep, ret, size, flags);
3553
	trace_kmalloc(_RET_IP_, ret,
3554
		      size, cachep->size, flags);
3555
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3556
}
3557
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3558 3559
#endif

L
Linus Torvalds 已提交
3560
#ifdef CONFIG_NUMA
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
3571 3572
 *
 * Return: pointer to the new object or %NULL in case of error
3573
 */
3574 3575
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3576
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3577

3578
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3579
				    cachep->object_size, cachep->size,
3580
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3581 3582

	return ret;
3583
}
L
Linus Torvalds 已提交
3584 3585
EXPORT_SYMBOL(kmem_cache_alloc_node);

3586
#ifdef CONFIG_TRACING
3587
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3588
				  gfp_t flags,
3589 3590
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3591
{
3592 3593
	void *ret;

3594
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3595

3596
	ret = kasan_kmalloc(cachep, ret, size, flags);
3597
	trace_kmalloc_node(_RET_IP_, ret,
3598
			   size, cachep->size,
3599 3600
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3601
}
3602
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3603 3604
#endif

3605
static __always_inline void *
3606
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3607
{
3608
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3609
	void *ret;
3610

3611 3612
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
		return NULL;
3613
	cachep = kmalloc_slab(size, flags);
3614 3615
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3616
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3617
	ret = kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3618 3619

	return ret;
3620
}
3621 3622 3623

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3624
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3625
}
3626
EXPORT_SYMBOL(__kmalloc_node);
3627 3628

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3629
		int node, unsigned long caller)
3630
{
3631
	return __do_kmalloc_node(size, flags, node, caller);
3632 3633 3634
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3635 3636

/**
3637
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3638
 * @size: how many bytes of memory are required.
3639
 * @flags: the type of memory to allocate (see kmalloc).
3640
 * @caller: function caller for debug tracking of the caller
3641 3642
 *
 * Return: pointer to the allocated memory or %NULL in case of error
L
Linus Torvalds 已提交
3643
 */
3644
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3645
					  unsigned long caller)
L
Linus Torvalds 已提交
3646
{
3647
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3648
	void *ret;
L
Linus Torvalds 已提交
3649

3650 3651
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
		return NULL;
3652
	cachep = kmalloc_slab(size, flags);
3653 3654
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3655
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3656

3657
	ret = kasan_kmalloc(cachep, ret, size, flags);
3658
	trace_kmalloc(caller, ret,
3659
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3660 3661

	return ret;
3662 3663 3664 3665
}

void *__kmalloc(size_t size, gfp_t flags)
{
3666
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3667 3668 3669
}
EXPORT_SYMBOL(__kmalloc);

3670
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3671
{
3672
	return __do_kmalloc(size, flags, caller);
3673 3674
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3675

L
Linus Torvalds 已提交
3676 3677 3678 3679 3680 3681 3682 3683
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3684
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3685 3686
{
	unsigned long flags;
3687 3688 3689
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3690 3691

	local_irq_save(flags);
3692
	debug_check_no_locks_freed(objp, cachep->object_size);
3693
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3694
		debug_check_no_obj_freed(objp, cachep->object_size);
3695
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3696
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3697

3698
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3699 3700 3701
}
EXPORT_SYMBOL(kmem_cache_free);

3702 3703 3704 3705 3706 3707 3708 3709 3710
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3711 3712 3713 3714
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3715 3716
		if (!s)
			continue;
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3730 3731 3732 3733
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3734 3735
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3736 3737 3738 3739 3740
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3741
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3742 3743
	unsigned long flags;

3744 3745
	trace_kfree(_RET_IP_, objp);

3746
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3747 3748 3749
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3750
	c = virt_to_cache(objp);
3751 3752 3753 3754
	if (!c) {
		local_irq_restore(flags);
		return;
	}
3755 3756 3757
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3758
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3759 3760 3761 3762
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3763
/*
3764
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3765
 */
3766
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3767
{
3768
	int ret;
3769
	int node;
3770
	struct kmem_cache_node *n;
3771

3772
	for_each_online_node(node) {
3773 3774
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3775 3776 3777
			goto fail;

	}
3778

3779
	return 0;
3780

A
Andrew Morton 已提交
3781
fail:
3782
	if (!cachep->list.next) {
3783 3784 3785
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3786 3787
			n = get_node(cachep, node);
			if (n) {
3788 3789 3790
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3791
				cachep->node[node] = NULL;
3792 3793 3794 3795
			}
			node--;
		}
	}
3796
	return -ENOMEM;
3797 3798
}

3799
/* Always called with the slab_mutex held */
3800 3801
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
			    int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3802
{
3803 3804
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3805

3806 3807
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3808 3809
		return -ENOMEM;

3810 3811
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
3812 3813 3814 3815 3816 3817
	/*
	 * Without a previous cpu_cache there's no need to synchronize remote
	 * cpus, so skip the IPIs.
	 */
	if (prev)
		kick_all_cpus_sync();
3818

L
Linus Torvalds 已提交
3819 3820 3821
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3822
	cachep->shared = shared;
L
Linus Torvalds 已提交
3823

3824
	if (!prev)
3825
		goto setup_node;
3826 3827

	for_each_online_cpu(cpu) {
3828
		LIST_HEAD(list);
3829 3830
		int node;
		struct kmem_cache_node *n;
3831
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3832

3833
		node = cpu_to_mem(cpu);
3834 3835
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3836
		free_block(cachep, ac->entry, ac->avail, node, &list);
3837
		spin_unlock_irq(&n->list_lock);
3838
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3839
	}
3840 3841
	free_percpu(prev);

3842 3843
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3844 3845
}

3846
/* Called with slab_mutex held always */
3847
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3848 3849
{
	int err;
G
Glauber Costa 已提交
3850 3851 3852 3853
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3854
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3855 3856 3857
	if (err)
		goto end;

G
Glauber Costa 已提交
3858 3859
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3860 3861
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3862 3863
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3864
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3865 3866 3867 3868
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3869
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3870
		limit = 1;
3871
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3872
		limit = 8;
3873
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3874
		limit = 24;
3875
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3876 3877 3878 3879
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3880 3881
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3882 3883 3884 3885 3886 3887 3888 3889
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3890
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3891 3892 3893
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3894 3895 3896
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3897 3898 3899 3900
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3901 3902 3903
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
3904
end:
L
Linus Torvalds 已提交
3905
	if (err)
3906
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
3907
		       cachep->name, -err);
3908
	return err;
L
Linus Torvalds 已提交
3909 3910
}

3911
/*
3912 3913
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3914
 * if drain_array() is used on the shared array.
3915
 */
3916
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3917
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
3918
{
3919
	LIST_HEAD(list);
3920 3921 3922

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
3923

3924 3925
	if (!ac || !ac->avail)
		return;
3926 3927

	if (ac->touched) {
L
Linus Torvalds 已提交
3928
		ac->touched = 0;
3929
		return;
L
Linus Torvalds 已提交
3930
	}
3931 3932 3933 3934 3935 3936

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3937 3938 3939 3940
}

/**
 * cache_reap - Reclaim memory from caches.
3941
 * @w: work descriptor
L
Linus Torvalds 已提交
3942 3943 3944 3945 3946 3947
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3948 3949
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3950
 */
3951
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3952
{
3953
	struct kmem_cache *searchp;
3954
	struct kmem_cache_node *n;
3955
	int node = numa_mem_id();
3956
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3957

3958
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3959
		/* Give up. Setup the next iteration. */
3960
		goto out;
L
Linus Torvalds 已提交
3961

3962
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3963 3964
		check_irq_on();

3965
		/*
3966
		 * We only take the node lock if absolutely necessary and we
3967 3968 3969
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3970
		n = get_node(searchp, node);
3971

3972
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3973

3974
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
3975

3976 3977 3978 3979
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3980
		if (time_after(n->next_reap, jiffies))
3981
			goto next;
L
Linus Torvalds 已提交
3982

3983
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
3984

3985
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
3986

3987 3988
		if (n->free_touched)
			n->free_touched = 0;
3989 3990
		else {
			int freed;
L
Linus Torvalds 已提交
3991

3992
			freed = drain_freelist(searchp, n, (n->free_limit +
3993 3994 3995
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3996
next:
L
Linus Torvalds 已提交
3997 3998 3999
		cond_resched();
	}
	check_irq_on();
4000
	mutex_unlock(&slab_mutex);
4001
	next_reap_node();
4002
out:
A
Andrew Morton 已提交
4003
	/* Set up the next iteration */
4004 4005
	schedule_delayed_work_on(smp_processor_id(), work,
				round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4006 4007
}

4008
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4009
{
4010
	unsigned long active_objs, num_objs, active_slabs;
4011 4012
	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long free_slabs = 0;
4013
	int node;
4014
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4015

4016
	for_each_kmem_cache_node(cachep, node, n) {
4017
		check_irq_on();
4018
		spin_lock_irq(&n->list_lock);
4019

4020 4021
		total_slabs += n->total_slabs;
		free_slabs += n->free_slabs;
4022
		free_objs += n->free_objects;
4023

4024 4025
		if (n->shared)
			shared_avail += n->shared->avail;
4026

4027
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4028
	}
4029 4030
	num_objs = total_slabs * cachep->num;
	active_slabs = total_slabs - free_slabs;
4031
	active_objs = num_objs - free_objs;
L
Linus Torvalds 已提交
4032

4033 4034 4035
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
4036
	sinfo->num_slabs = total_slabs;
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4047
#if STATS
4048
	{			/* node stats */
L
Linus Torvalds 已提交
4049 4050 4051 4052 4053 4054 4055
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4056
		unsigned long node_frees = cachep->node_frees;
4057
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4058

J
Joe Perches 已提交
4059
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4060 4061 4062
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067 4068 4069 4070 4071
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4072
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
4084 4085
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
4086
 */
4087
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4088
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4089
{
P
Pekka Enberg 已提交
4090
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4091
	int limit, batchcount, shared, res;
4092
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4093

L
Linus Torvalds 已提交
4094 4095 4096 4097
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4098
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4109
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4110
	res = -EINVAL;
4111
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4112
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4113 4114
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4115
				res = 0;
L
Linus Torvalds 已提交
4116
			} else {
4117
				res = do_tune_cpucache(cachep, limit,
4118 4119
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4120 4121 4122 4123
			}
			break;
		}
	}
4124
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4125 4126 4127 4128
	if (res >= 0)
		res = count;
	return res;
}
4129

K
Kees Cook 已提交
4130 4131
#ifdef CONFIG_HARDENED_USERCOPY
/*
4132 4133 4134
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
4135 4136 4137 4138
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
4139 4140
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
4141 4142 4143 4144 4145
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

4146 4147
	ptr = kasan_reset_tag(ptr);

K
Kees Cook 已提交
4148 4149 4150 4151 4152 4153 4154 4155
	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

4156 4157 4158 4159
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= cachep->useroffset &&
	    offset - cachep->useroffset <= cachep->usersize &&
	    n <= cachep->useroffset - offset + cachep->usersize)
4160
		return;
K
Kees Cook 已提交
4161

4162 4163 4164 4165 4166 4167
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
4168 4169
	if (usercopy_fallback &&
	    offset <= cachep->object_size &&
4170 4171 4172 4173
	    n <= cachep->object_size - offset) {
		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
4174

4175
	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
K
Kees Cook 已提交
4176 4177 4178
}
#endif /* CONFIG_HARDENED_USERCOPY */

4179
/**
4180
 * __ksize -- Uninstrumented ksize.
4181
 * @objp: pointer to the object
4182
 *
4183 4184
 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
 * safety checks as ksize() with KASAN instrumentation enabled.
4185 4186
 *
 * Return: size of the actual memory used by @objp in bytes
4187
 */
4188
size_t __ksize(const void *objp)
L
Linus Torvalds 已提交
4189
{
4190
	struct kmem_cache *c;
A
Alexander Potapenko 已提交
4191 4192
	size_t size;

4193 4194
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4195
		return 0;
L
Linus Torvalds 已提交
4196

4197 4198
	c = virt_to_cache(objp);
	size = c ? c->object_size : 0;
A
Alexander Potapenko 已提交
4199 4200

	return size;
L
Linus Torvalds 已提交
4201
}
4202
EXPORT_SYMBOL(__ksize);