slab.c 117.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
L
Linus Torvalds 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
178 179
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
181
#else
182
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
183 184
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

207
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
208 209
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
210 211
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268
	spinlock_t lock;
A
Andrew Morton 已提交
269 270 271 272 273 274
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
275 276
};

A
Andrew Morton 已提交
277 278 279
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
280 281 282 283
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
284
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
285 286 287
};

/*
288
 * The slab lists for all objects.
L
Linus Torvalds 已提交
289 290
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
291 292 293 294 295
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
296
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
297 298 299
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
300 301
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
302 303
};

304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

313 314 315 316
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
317
static int enable_cpucache(struct kmem_cache *cachep);
318
static void cache_reap(struct work_struct *unused);
319

320
/*
A
Andrew Morton 已提交
321 322
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
323
 */
324
static __always_inline int index_of(const size_t size)
325
{
326 327
	extern void __bad_size(void);

328 329 330 331 332 333 334 335 336 337
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
338
		__bad_size();
339
	} else
340
		__bad_size();
341 342 343
	return 0;
}

344 345
static int slab_early_init = 1;

346 347
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
348

P
Pekka Enberg 已提交
349
static void kmem_list3_init(struct kmem_list3 *parent)
350 351 352 353 354 355
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
356
	parent->colour_next = 0;
357 358 359 360 361
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
362 363 364 365
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
366 367
	} while (0)

A
Andrew Morton 已提交
368 369
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
370 371 372 373
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
374 375

/*
376
 * struct kmem_cache
L
Linus Torvalds 已提交
377 378 379
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
380

381
struct kmem_cache {
L
Linus Torvalds 已提交
382
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
383
	struct array_cache *array[NR_CPUS];
384
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
385 386 387
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
388

389
	unsigned int buffer_size;
390
	u32 reciprocal_buffer_size;
391 392
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
393 394
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
395

396
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
397
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
398
	unsigned int gfporder;
L
Linus Torvalds 已提交
399 400

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
401
	gfp_t gfpflags;
L
Linus Torvalds 已提交
402

A
Andrew Morton 已提交
403
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
404
	unsigned int colour_off;	/* colour offset */
405
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
406
	unsigned int slab_size;
A
Andrew Morton 已提交
407
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
408 409

	/* constructor func */
410
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
411 412

	/* de-constructor func */
413
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
414

415
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
416 417
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
418

419
/* 6) statistics */
L
Linus Torvalds 已提交
420
#if STATS
P
Pekka Enberg 已提交
421 422 423 424 425 426 427 428 429
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
430
	unsigned long node_overflow;
P
Pekka Enberg 已提交
431 432 433 434
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
435 436
#endif
#if DEBUG
437 438 439 440 441 442 443 444
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
445
#endif
E
Eric Dumazet 已提交
446 447 448 449 450 451 452 453 454 455 456
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
457 458 459 460 461 462
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
463 464 465
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
466
 *
A
Adrian Bunk 已提交
467
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
468 469 470 471 472 473 474 475 476 477
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
478
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
479 480 481 482 483
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
484 485
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
486
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
487
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
488 489 490 491 492
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
493 494 495 496 497 498 499 500 501
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
502
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
503 504 505
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
506
#define	STATS_INC_NODEFREES(x)	do { } while (0)
507
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
508
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
509 510 511 512 513 514 515 516
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
517 518
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
519
 * 0		: objp
520
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
521 522
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
523
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
524
 * 		redzone word.
525 526
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
527 528
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
529
 */
530
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
531
{
532
	return cachep->obj_offset;
L
Linus Torvalds 已提交
533 534
}

535
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
536
{
537
	return cachep->obj_size;
L
Linus Torvalds 已提交
538 539
}

540
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
541 542
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
543
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
544 545
}

546
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
547 548 549
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
550
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
551
					 2 * BYTES_PER_WORD);
552
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
553 554
}

555
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
556 557
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
559 560 561 562
}

#else

563 564
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
565 566 567 568 569 570 571
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
572 573
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
593 594 595 596
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
597
 */
598 599 600 601 602 603 604
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
605
	page = compound_head(page);
606
	BUG_ON(!PageSlab(page));
607 608 609 610 611 612 613 614 615 616
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
617
	page = compound_head(page);
618
	BUG_ON(!PageSlab(page));
619 620
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
621

622 623 624 625 626 627 628 629 630 631 632 633
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

634 635 636 637 638 639
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

640 641 642 643 644 645 646 647
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
648
{
649 650
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
651 652
}

A
Andrew Morton 已提交
653 654 655
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
673
	{NULL,}
L
Linus Torvalds 已提交
674 675 676 677
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
678
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
679
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
680
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
681 682

/* internal cache of cache description objs */
683
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
684 685 686
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
687
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
688
	.name = "kmem_cache",
L
Linus Torvalds 已提交
689 690
};

691 692
#define BAD_ALIEN_MAGIC 0x01020304ul

693 694 695 696 697 698 699 700
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
701 702 703 704
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
705
 */
706 707 708 709
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
710 711 712

{
	int q;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
740 741 742
	}
}
#else
743
static inline void init_lock_keys(void)
744 745 746 747
{
}
#endif

748 749 750 751
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
I
Ingo Molnar 已提交
752
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
753 754 755 756 757 758 759 760
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
761 762
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
763 764 765
	FULL
} g_cpucache_up;

766 767 768 769 770 771 772 773
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

774
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
775

776
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
777 778 779 780
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
781 782
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
783 784 785 786 787
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
788 789 790
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
791
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
792 793 794 795 796
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
797
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
798 799 800
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
801
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
802 803
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
804
#endif
L
Linus Torvalds 已提交
805 806 807
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
808
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
809 810 811 812
{
	return __find_general_cachep(size, gfpflags);
}

813
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
814
{
815 816
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
817

A
Andrew Morton 已提交
818 819 820
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
821 822 823 824 825 826 827
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
828

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
877 878 879 880
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
881 882
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
883 884
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
885
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
886 887 888
	dump_stack();
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
920
		node = first_node(node_online_map);
921

922
	per_cpu(reap_node, cpu) = node;
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
946 947 948 949 950 951 952 953 954
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
955
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
956 957 958 959 960 961

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
962
	if (keventd_up() && reap_work->work.func == NULL) {
963
		init_reap_node(cpu);
964
		INIT_DELAYED_WORK(reap_work, cache_reap);
965 966
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
967 968 969
	}
}

970
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
971
					    int batchcount)
L
Linus Torvalds 已提交
972
{
P
Pekka Enberg 已提交
973
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
974 975
	struct array_cache *nc = NULL;

976
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
977 978 979 980 981
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
982
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
983 984 985 986
	}
	return nc;
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1036
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1037 1038 1039 1040 1041 1042 1043
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1044
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1045
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1046

P
Pekka Enberg 已提交
1047
static struct array_cache **alloc_alien_cache(int node, int limit)
1048 1049
{
	struct array_cache **ac_ptr;
1050
	int memsize = sizeof(void *) * nr_node_ids;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1064
				for (i--; i <= 0; i--)
1065 1066 1067 1068 1069 1070 1071 1072 1073
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1074
static void free_alien_cache(struct array_cache **ac_ptr)
1075 1076 1077 1078 1079 1080
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1081
	    kfree(ac_ptr[i]);
1082 1083 1084
	kfree(ac_ptr);
}

1085
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1086
				struct array_cache *ac, int node)
1087 1088 1089 1090 1091
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1092 1093 1094 1095 1096
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1097 1098
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1099

1100
		free_block(cachep, ac->entry, ac->avail, node);
1101 1102 1103 1104 1105
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1106 1107 1108 1109 1110 1111 1112 1113 1114
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1115 1116

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1117 1118 1119 1120 1121 1122
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1123 1124
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1125
{
P
Pekka Enberg 已提交
1126
	int i = 0;
1127 1128 1129 1130
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1131
		ac = alien[i];
1132 1133 1134 1135 1136 1137 1138
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1139

1140
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1141 1142 1143 1144 1145
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1146 1147 1148
	int node;

	node = numa_node_id();
1149 1150 1151 1152 1153

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1154
	if (likely(slabp->nodeid == node))
1155 1156
		return 0;

P
Pekka Enberg 已提交
1157
	l3 = cachep->nodelists[node];
1158 1159 1160
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1161
		spin_lock(&alien->lock);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1175 1176
#endif

1177
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1178
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1179 1180
{
	long cpu = (long)hcpu;
1181
	struct kmem_cache *cachep;
1182 1183 1184
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1185 1186 1187

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1188
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1189 1190
		/*
		 * We need to do this right in the beginning since
1191 1192 1193 1194 1195
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1196
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1197 1198
			/*
			 * Set up the size64 kmemlist for cpu before we can
1199 1200 1201 1202
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1203 1204
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1205 1206 1207
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1208
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1209

1210 1211 1212 1213 1214
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1215 1216
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1217

1218 1219
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1220 1221
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1222 1223 1224
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1225 1226 1227 1228
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1229
		list_for_each_entry(cachep, &cache_chain, next) {
1230
			struct array_cache *nc;
1231
			struct array_cache *shared = NULL;
1232
			struct array_cache **alien = NULL;
1233

1234
			nc = alloc_arraycache(node, cachep->limit,
1235
						cachep->batchcount);
L
Linus Torvalds 已提交
1236 1237
			if (!nc)
				goto bad;
1238 1239
			if (cachep->shared) {
				shared = alloc_arraycache(node,
1240 1241
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
1242 1243 1244
				if (!shared)
					goto bad;
			}
1245 1246 1247 1248 1249
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
L
Linus Torvalds 已提交
1250
			cachep->array[cpu] = nc;
1251 1252 1253
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1254 1255 1256 1257 1258 1259 1260 1261
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1262
			}
1263 1264 1265 1266 1267 1268 1269 1270 1271
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1272 1273 1274
		}
		break;
	case CPU_ONLINE:
1275
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1276 1277 1278
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1279 1280 1281 1282 1283 1284
	case CPU_DOWN_PREPARE:
		mutex_lock(&cache_chain_mutex);
		break;
	case CPU_DOWN_FAILED:
		mutex_unlock(&cache_chain_mutex);
		break;
L
Linus Torvalds 已提交
1285
	case CPU_DEAD:
1286 1287 1288 1289 1290 1291 1292 1293
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1294
		/* fall thru */
1295
#endif
L
Linus Torvalds 已提交
1296 1297 1298
	case CPU_UP_CANCELED:
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1299 1300
			struct array_cache *shared;
			struct array_cache **alien;
1301
			cpumask_t mask;
L
Linus Torvalds 已提交
1302

1303
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1304 1305 1306
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1307 1308 1309
			l3 = cachep->nodelists[node];

			if (!l3)
1310
				goto free_array_cache;
1311

1312
			spin_lock_irq(&l3->list_lock);
1313 1314 1315 1316

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1317
				free_block(cachep, nc->entry, nc->avail, node);
1318 1319

			if (!cpus_empty(mask)) {
1320
				spin_unlock_irq(&l3->list_lock);
1321
				goto free_array_cache;
P
Pekka Enberg 已提交
1322
			}
1323

1324 1325
			shared = l3->shared;
			if (shared) {
1326 1327
				free_block(cachep, shared->entry,
					   shared->avail, node);
1328 1329 1330
				l3->shared = NULL;
			}

1331 1332 1333 1334 1335 1336 1337 1338 1339
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1340
			}
1341
free_array_cache:
L
Linus Torvalds 已提交
1342 1343
			kfree(nc);
		}
1344 1345 1346 1347 1348 1349 1350 1351 1352
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1353
			drain_freelist(cachep, l3, l3->free_objects);
1354
		}
I
Ingo Molnar 已提交
1355
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1356 1357 1358
		break;
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1359
bad:
L
Linus Torvalds 已提交
1360 1361 1362
	return NOTIFY_BAD;
}

1363 1364 1365
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1366

1367 1368 1369
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1370 1371
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1372 1373 1374 1375 1376 1377 1378 1379
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1380 1381 1382 1383 1384
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1385 1386 1387 1388 1389
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1390 1391 1392
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1393 1394 1395 1396 1397 1398
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1399
	int i;
1400
	int order;
P
Pekka Enberg 已提交
1401
	int node;
1402

1403 1404 1405
	if (num_possible_nodes() == 1)
		use_alien_caches = 0;

1406 1407 1408 1409 1410
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1421 1422 1423
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1424 1425 1426
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1427
	 * 2) Create the first kmalloc cache.
1428
	 *    The struct kmem_cache for the new cache is allocated normally.
1429 1430 1431
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1432 1433
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1434 1435 1436
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1437 1438
	 */

P
Pekka Enberg 已提交
1439 1440
	node = numa_node_id();

L
Linus Torvalds 已提交
1441 1442 1443 1444 1445
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1446
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1447

E
Eric Dumazet 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1457 1458
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1459 1460
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1461

1462 1463 1464 1465 1466 1467
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1468
	BUG_ON(!cache_cache.num);
1469
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1470 1471 1472
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1473 1474 1475 1476 1477

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1478 1479 1480 1481
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1482 1483 1484
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1485 1486 1487 1488
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1489

A
Andrew Morton 已提交
1490
	if (INDEX_AC != INDEX_L3) {
1491
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1492 1493 1494 1495 1496 1497
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1498

1499 1500
	slab_early_init = 0;

L
Linus Torvalds 已提交
1501
	while (sizes->cs_size != ULONG_MAX) {
1502 1503
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1504 1505 1506
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1507 1508
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1509
		if (!sizes->cs_cachep) {
1510
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1511 1512 1513 1514 1515
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1516 1517 1518
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1519 1520 1521 1522 1523
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
1524
#endif
L
Linus Torvalds 已提交
1525 1526 1527 1528 1529
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1530
		struct array_cache *ptr;
1531

L
Linus Torvalds 已提交
1532
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1533

L
Linus Torvalds 已提交
1534
		local_irq_disable();
1535 1536
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1537
		       sizeof(struct arraycache_init));
1538 1539 1540 1541 1542
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1543 1544
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1545

L
Linus Torvalds 已提交
1546
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1547

L
Linus Torvalds 已提交
1548
		local_irq_disable();
1549
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1550
		       != &initarray_generic.cache);
1551
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1552
		       sizeof(struct arraycache_init));
1553 1554 1555 1556 1557
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1558
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1559
		    ptr;
L
Linus Torvalds 已提交
1560 1561
		local_irq_enable();
	}
1562 1563
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1564 1565
		int nid;

1566
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1567
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1568

P
Pekka Enberg 已提交
1569
		for_each_online_node(nid) {
1570
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1571
				  &initkmem_list3[SIZE_AC + nid], nid);
1572 1573 1574

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1575
					  &initkmem_list3[SIZE_L3 + nid], nid);
1576 1577 1578
			}
		}
	}
L
Linus Torvalds 已提交
1579

1580
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1581
	{
1582
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1583
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1584
		list_for_each_entry(cachep, &cache_chain, next)
1585 1586
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1587
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1588 1589
	}

1590 1591 1592 1593
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1594 1595 1596
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1597 1598 1599
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1600 1601 1602
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1603 1604 1605
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1606 1607 1608 1609 1610 1611 1612
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1613 1614
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1615
	 */
1616
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1617
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1629
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1630 1631
{
	struct page *page;
1632
	int nr_pages;
L
Linus Torvalds 已提交
1633 1634
	int i;

1635
#ifndef CONFIG_MMU
1636 1637 1638
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1639
	 */
1640
	flags |= __GFP_COMP;
1641
#endif
1642

1643
	flags |= cachep->gfpflags;
1644 1645

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1646 1647 1648
	if (!page)
		return NULL;

1649
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1650
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1651 1652 1653 1654 1655
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1656 1657 1658
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663
}

/*
 * Interface to system's page release.
 */
1664
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1665
{
P
Pekka Enberg 已提交
1666
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1667 1668 1669
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1670 1671 1672 1673 1674 1675
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1676
	while (i--) {
N
Nick Piggin 已提交
1677 1678
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1688
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1689
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1699
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1700
			    unsigned long caller)
L
Linus Torvalds 已提交
1701
{
1702
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1703

1704
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1705

P
Pekka Enberg 已提交
1706
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1707 1708
		return;

P
Pekka Enberg 已提交
1709 1710 1711 1712
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1713 1714 1715 1716 1717 1718 1719
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1720
				*addr++ = svalue;
L
Linus Torvalds 已提交
1721 1722 1723 1724 1725 1726 1727
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1728
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1729 1730 1731
}
#endif

1732
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1733
{
1734 1735
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1736 1737

	memset(addr, val, size);
P
Pekka Enberg 已提交
1738
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1739 1740 1741 1742 1743
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1744 1745 1746
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1747
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1748 1749 1750 1751 1752
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1753
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1754
	}
L
Linus Torvalds 已提交
1755
	printk("\n");
D
Dave Jones 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1770 1771 1772 1773 1774
}
#endif

#if DEBUG

1775
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1776 1777 1778 1779 1780 1781
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1782 1783
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1784 1785 1786 1787
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1788
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1789
		print_symbol("(%s)",
A
Andrew Morton 已提交
1790
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1791 1792
		printk("\n");
	}
1793 1794
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1795
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1796 1797
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1798 1799
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1800 1801 1802 1803
		dump_line(realobj, i, limit);
	}
}

1804
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1805 1806 1807 1808 1809
{
	char *realobj;
	int size, i;
	int lines = 0;

1810 1811
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1812

P
Pekka Enberg 已提交
1813
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1814
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1815
		if (i == size - 1)
L
Linus Torvalds 已提交
1816 1817 1818 1819 1820 1821
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1822
				printk(KERN_ERR
1823 1824
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1825 1826 1827
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1828
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1829
			limit = 16;
P
Pekka Enberg 已提交
1830 1831
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1844
		struct slab *slabp = virt_to_slab(objp);
1845
		unsigned int objnr;
L
Linus Torvalds 已提交
1846

1847
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1848
		if (objnr) {
1849
			objp = index_to_obj(cachep, slabp, objnr - 1);
1850
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1851
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1852
			       realobj, size);
L
Linus Torvalds 已提交
1853 1854
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1855
		if (objnr + 1 < cachep->num) {
1856
			objp = index_to_obj(cachep, slabp, objnr + 1);
1857
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1858
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1859
			       realobj, size);
L
Linus Torvalds 已提交
1860 1861 1862 1863 1864 1865
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1866 1867
#if DEBUG
/**
1868 1869 1870 1871 1872 1873
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1874
 */
1875
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1876 1877 1878
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1879
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1880 1881 1882

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1883 1884
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1885
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1886
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1896
					   "was overwritten");
L
Linus Torvalds 已提交
1897 1898
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1899
					   "was overwritten");
L
Linus Torvalds 已提交
1900 1901
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1902
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1903
	}
1904
}
L
Linus Torvalds 已提交
1905
#else
1906
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1907
{
L
Linus Torvalds 已提交
1908 1909 1910
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1911
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1912
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1913 1914
		}
	}
1915
}
L
Linus Torvalds 已提交
1916 1917
#endif

1918 1919 1920 1921 1922
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1923
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1924 1925
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1926
 */
1927
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1928 1929 1930 1931
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1932 1933 1934
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1935
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1936 1937 1938 1939 1940
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1941 1942
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1943 1944 1945
	}
}

A
Andrew Morton 已提交
1946 1947 1948 1949
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1950
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1951 1952 1953 1954
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1955
		cachep->nodelists[node] = &initkmem_list3[index + node];
1956
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1957 1958
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1959 1960 1961
	}
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1983
/**
1984 1985 1986 1987 1988 1989 1990
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1991 1992 1993 1994 1995
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1996
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1997
			size_t size, size_t align, unsigned long flags)
1998
{
1999
	unsigned long offslab_limit;
2000
	size_t left_over = 0;
2001
	int gfporder;
2002

A
Andrew Morton 已提交
2003
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
2004 2005 2006
		unsigned int num;
		size_t remainder;

2007
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2008 2009
		if (!num)
			continue;
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2023

2024
		/* Found something acceptable - save it away */
2025
		cachep->num = num;
2026
		cachep->gfporder = gfporder;
2027 2028
		left_over = remainder;

2029 2030 2031 2032 2033 2034 2035 2036
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2037 2038 2039 2040
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2041
		if (gfporder >= slab_break_gfp_order)
2042 2043
			break;

2044 2045 2046
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2047
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2048 2049 2050 2051 2052
			break;
	}
	return left_over;
}

2053
static int setup_cpu_cache(struct kmem_cache *cachep)
2054
{
2055 2056 2057
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2104
	return 0;
2105 2106
}

L
Linus Torvalds 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2122 2123
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2136
struct kmem_cache *
L
Linus Torvalds 已提交
2137
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2138 2139
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2140
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2141 2142
{
	size_t left_over, slab_size, ralign;
2143
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2144 2145 2146 2147

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2148
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2149
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2150 2151
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2152 2153
		BUG();
	}
L
Linus Torvalds 已提交
2154

2155
	/*
2156 2157
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2158
	 */
I
Ingo Molnar 已提交
2159
	mutex_lock(&cache_chain_mutex);
2160

2161
	list_for_each_entry(pc, &cache_chain, next) {
2162 2163 2164 2165 2166 2167 2168 2169
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2170
		res = probe_kernel_address(pc->name, tmp);
2171 2172
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
2173
			       pc->buffer_size);
2174 2175 2176
			continue;
		}

P
Pekka Enberg 已提交
2177
		if (!strcmp(pc->name, name)) {
2178 2179 2180 2181 2182 2183
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2184 2185 2186 2187 2188
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2189
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2199
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2200
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2211 2212
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2213
	 */
2214
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2215

A
Andrew Morton 已提交
2216 2217
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2218 2219 2220
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2221 2222 2223
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2224 2225
	}

A
Andrew Morton 已提交
2226 2227
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2228 2229
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2230 2231 2232 2233
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2234 2235
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2236
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2237 2238 2239 2240
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2241 2242 2243 2244 2245 2246 2247 2248 2249

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

2250
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2251 2252 2253
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2254
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2255 2256 2257
	if (ralign < align) {
		ralign = align;
	}
2258 2259 2260
	/* disable debug if necessary */
	if (ralign > BYTES_PER_WORD)
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2261
	/*
2262
	 * 4) Store it.
L
Linus Torvalds 已提交
2263 2264 2265 2266
	 */
	align = ralign;

	/* Get cache's description obj. */
2267
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2268
	if (!cachep)
2269
		goto oops;
L
Linus Torvalds 已提交
2270 2271

#if DEBUG
2272
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2273

2274 2275 2276 2277
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2278 2279
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2280
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2281
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2282 2283
	}
	if (flags & SLAB_STORE_USER) {
2284 2285
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2286 2287 2288 2289
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2290
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2291 2292
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2293 2294 2295 2296 2297
		size = PAGE_SIZE;
	}
#endif
#endif

2298 2299 2300 2301 2302 2303
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2304 2305 2306 2307 2308 2309 2310 2311
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2312
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2313 2314 2315 2316 2317

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2318
		goto oops;
L
Linus Torvalds 已提交
2319
	}
P
Pekka Enberg 已提交
2320 2321
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2334 2335
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2336 2337 2338 2339 2340 2341
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2342
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2343 2344 2345
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2346
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2347
		cachep->gfpflags |= GFP_DMA;
2348
	cachep->buffer_size = size;
2349
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2350

2351
	if (flags & CFLGS_OFF_SLAB) {
2352
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2353 2354 2355 2356 2357 2358 2359 2360 2361
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2362 2363 2364 2365
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2366 2367 2368 2369 2370
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2371 2372 2373

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2374
oops:
L
Linus Torvalds 已提交
2375 2376
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2377
		      name);
I
Ingo Molnar 已提交
2378
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2394
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2395 2396 2397
{
#ifdef CONFIG_SMP
	check_irq_off();
2398
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2399 2400
#endif
}
2401

2402
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2403 2404 2405 2406 2407 2408 2409
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2410 2411 2412 2413
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2414
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2415 2416
#endif

2417 2418 2419 2420
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2421 2422
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2423
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2424
	struct array_cache *ac;
2425
	int node = numa_node_id();
L
Linus Torvalds 已提交
2426 2427

	check_irq_off();
2428
	ac = cpu_cache_get(cachep);
2429 2430 2431
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2432 2433 2434
	ac->avail = 0;
}

2435
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2436
{
2437 2438 2439
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2440
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2441
	check_irq_on();
P
Pekka Enberg 已提交
2442
	for_each_online_node(node) {
2443
		l3 = cachep->nodelists[node];
2444 2445 2446 2447 2448 2449 2450
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2451
			drain_array(cachep, l3, l3->shared, 1, node);
2452
	}
L
Linus Torvalds 已提交
2453 2454
}

2455 2456 2457 2458 2459 2460 2461 2462
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2463
{
2464 2465
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2466 2467
	struct slab *slabp;

2468 2469
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2470

2471
		spin_lock_irq(&l3->list_lock);
2472
		p = l3->slabs_free.prev;
2473 2474 2475 2476
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2477

2478
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2479
#if DEBUG
2480
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2481 2482
#endif
		list_del(&slabp->list);
2483 2484 2485 2486 2487
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2488
		spin_unlock_irq(&l3->list_lock);
2489 2490
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2491
	}
2492 2493
out:
	return nr_freed;
L
Linus Torvalds 已提交
2494 2495
}

2496
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2497
static int __cache_shrink(struct kmem_cache *cachep)
2498 2499 2500 2501 2502 2503 2504 2505 2506
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2507 2508 2509 2510 2511 2512 2513
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2514 2515 2516 2517
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2518 2519 2520 2521 2522 2523 2524
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2525
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2526
{
2527
	int ret;
2528
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2529

2530 2531 2532 2533
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
	return ret;
L
Linus Torvalds 已提交
2534 2535 2536 2537 2538 2539 2540
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2541
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2553
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2554
{
2555
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2556 2557

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2558
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2559 2560 2561 2562 2563 2564
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2565
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2566
		mutex_unlock(&cache_chain_mutex);
2567
		return;
L
Linus Torvalds 已提交
2568 2569 2570
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2571
		synchronize_rcu();
L
Linus Torvalds 已提交
2572

2573
	__kmem_cache_destroy(cachep);
2574
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2575 2576 2577
}
EXPORT_SYMBOL(kmem_cache_destroy);

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2589
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2590 2591
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2592 2593
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2594

L
Linus Torvalds 已提交
2595 2596
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2597
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2598
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2599 2600 2601
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2602
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2603 2604 2605 2606
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2607
	slabp->s_mem = objp + colour_off;
2608
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2609 2610 2611 2612 2613
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2614
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2615 2616
}

2617
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2618
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2619 2620 2621 2622
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2623
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2636 2637 2638
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2639 2640
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2641
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2642
				     ctor_flags);
L
Linus Torvalds 已提交
2643 2644 2645 2646

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2647
					   " end of an object");
L
Linus Torvalds 已提交
2648 2649
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2650
					   " start of an object");
L
Linus Torvalds 已提交
2651
		}
A
Andrew Morton 已提交
2652 2653
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2654
			kernel_map_pages(virt_to_page(objp),
2655
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2656 2657 2658 2659
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2660
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2661
	}
P
Pekka Enberg 已提交
2662
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2663 2664 2665
	slabp->free = 0;
}

2666
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2667
{
2668 2669 2670 2671 2672 2673
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2674 2675
}

A
Andrew Morton 已提交
2676 2677
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2678
{
2679
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2693 2694
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2695
{
2696
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2697 2698 2699 2700 2701

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2702
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2703
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2704
				"'%s', objp %p\n", cachep->name, objp);
2705 2706 2707 2708 2709 2710 2711 2712
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2713 2714 2715 2716 2717 2718 2719
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2720
{
2721
	int nr_pages;
L
Linus Torvalds 已提交
2722 2723
	struct page *page;

2724
	page = virt_to_page(addr);
2725

2726
	nr_pages = 1;
2727
	if (likely(!PageCompound(page)))
2728 2729
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2730
	do {
2731 2732
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2733
		page++;
2734
	} while (--nr_pages);
L
Linus Torvalds 已提交
2735 2736 2737 2738 2739 2740
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2741 2742
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2743
{
P
Pekka Enberg 已提交
2744 2745 2746 2747
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2748
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2749

A
Andrew Morton 已提交
2750 2751 2752
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2753
	 */
C
Christoph Lameter 已提交
2754
	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2755
	if (flags & __GFP_NO_GROW)
L
Linus Torvalds 已提交
2756 2757 2758
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2759
	local_flags = (flags & GFP_LEVEL_MASK);
L
Linus Torvalds 已提交
2760 2761 2762 2763 2764 2765 2766
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2767
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2768
	check_irq_off();
2769 2770
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2771 2772

	/* Get colour for the slab, and cal the next value. */
2773 2774 2775 2776 2777
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2778

2779
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2792 2793 2794
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2795
	 */
2796 2797
	if (!objp)
		objp = kmem_getpages(cachep, flags, nodeid);
A
Andrew Morton 已提交
2798
	if (!objp)
L
Linus Torvalds 已提交
2799 2800 2801
		goto failed;

	/* Get slab management. */
2802 2803
	slabp = alloc_slabmgmt(cachep, objp, offset,
			local_flags & ~GFP_THISNODE, nodeid);
A
Andrew Morton 已提交
2804
	if (!slabp)
L
Linus Torvalds 已提交
2805 2806
		goto opps1;

2807
	slabp->nodeid = nodeid;
2808
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2809 2810 2811 2812 2813 2814

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2815
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2816 2817

	/* Make slab active. */
2818
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2819
	STATS_INC_GROWN(cachep);
2820 2821
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2822
	return 1;
A
Andrew Morton 已提交
2823
opps1:
L
Linus Torvalds 已提交
2824
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2825
failed:
L
Linus Torvalds 已提交
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2843 2844
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2845 2846 2847
	}
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2870
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2871
				   void *caller)
L
Linus Torvalds 已提交
2872 2873 2874 2875 2876
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2877
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2878 2879 2880
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2881
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2882 2883

	if (cachep->flags & SLAB_RED_ZONE) {
2884
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2885 2886 2887 2888 2889 2890
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2891
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2892 2893

	BUG_ON(objnr >= cachep->num);
2894
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2895 2896

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2897 2898 2899 2900
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2901
		 */
2902
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2903
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2904 2905 2906 2907 2908
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2909
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2910
	}
2911 2912 2913
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2914 2915
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2916
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2917
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2918
			kernel_map_pages(virt_to_page(objp),
2919
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2930
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2931 2932 2933
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2934

L
Linus Torvalds 已提交
2935 2936 2937 2938 2939 2940 2941
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2942 2943 2944 2945
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2946
		for (i = 0;
2947
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2948
		     i++) {
A
Andrew Morton 已提交
2949
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2950
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2951
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2963
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2964 2965 2966 2967
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2968 2969 2970
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2971 2972

	check_irq_off();
2973
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2974
retry:
L
Linus Torvalds 已提交
2975 2976
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2977 2978 2979 2980
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2981 2982 2983
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2984
	l3 = cachep->nodelists[node];
2985 2986 2987

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2988

2989 2990 2991 2992
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3008 3009 3010 3011 3012 3013 3014 3015

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
3016 3017 3018 3019 3020
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3021
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3022
							    node);
L
Linus Torvalds 已提交
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3034
must_grow:
L
Linus Torvalds 已提交
3035
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3036
alloc_done:
3037
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3038 3039 3040

	if (unlikely(!ac->avail)) {
		int x;
3041
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3042

A
Andrew Morton 已提交
3043
		/* cache_grow can reenable interrupts, then ac could change. */
3044
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3045
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3046 3047
			return NULL;

A
Andrew Morton 已提交
3048
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3049 3050 3051
			goto retry;
	}
	ac->touched = 1;
3052
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3053 3054
}

A
Andrew Morton 已提交
3055 3056
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3057 3058 3059 3060 3061 3062 3063 3064
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3065 3066
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3067
{
P
Pekka Enberg 已提交
3068
	if (!objp)
L
Linus Torvalds 已提交
3069
		return objp;
P
Pekka Enberg 已提交
3070
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3071
#ifdef CONFIG_DEBUG_PAGEALLOC
3072
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3073
			kernel_map_pages(virt_to_page(objp),
3074
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3086 3087 3088 3089
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3090
			printk(KERN_ERR
A
Andrew Morton 已提交
3091 3092 3093
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3094 3095 3096 3097
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3108
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
3109
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
3110
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
3111 3112 3113 3114 3115

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
3116
	}
3117 3118 3119 3120 3121 3122
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3123 3124 3125 3126 3127 3128
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3142
	.ignore_gfp_wait = 1,
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

       	err = init_fault_attr_dentries(&failslab.attr, "failslab");
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3202
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3203
{
P
Pekka Enberg 已提交
3204
	void *objp;
L
Linus Torvalds 已提交
3205 3206
	struct array_cache *ac;

3207
	check_irq_off();
3208 3209 3210 3211

	if (should_failslab(cachep, flags))
		return NULL;

3212
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3213 3214 3215
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3216
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3217 3218 3219 3220
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3221 3222 3223
	return objp;
}

3224
#ifdef CONFIG_NUMA
3225
/*
3226
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3227 3228 3229 3230 3231 3232 3233 3234
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3235
	if (in_interrupt() || (flags & __GFP_THISNODE))
3236 3237 3238 3239 3240 3241 3242
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3243
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3244 3245 3246
	return NULL;
}

3247 3248
/*
 * Fallback function if there was no memory available and no objects on a
3249 3250 3251 3252 3253
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3254
 */
3255
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3256
{
3257 3258
	struct zonelist *zonelist;
	gfp_t local_flags;
3259 3260
	struct zone **z;
	void *obj = NULL;
3261
	int nid;
3262 3263 3264 3265 3266 3267 3268

	if (flags & __GFP_THISNODE)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
			->node_zonelists[gfp_zone(flags)];
	local_flags = (flags & GFP_LEVEL_MASK);
3269

3270 3271 3272 3273 3274
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3275
	for (z = zonelist->zones; *z && !obj; z++) {
3276
		nid = zone_to_nid(*z);
3277

3278
		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3279 3280 3281 3282 3283 3284
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3285
	if (!obj && !(flags & __GFP_NO_GROW)) {
3286 3287 3288 3289 3290 3291
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3292 3293 3294
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3295
		obj = kmem_getpages(cache, flags, -1);
3296 3297
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3314
				/* cache_grow already freed obj */
3315 3316 3317
				obj = NULL;
			}
		}
3318
	}
3319 3320 3321
	return obj;
}

3322 3323
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3324
 */
3325
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3326
				int nodeid)
3327 3328
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3329 3330 3331 3332 3333 3334 3335 3336
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3337
retry:
3338
	check_irq_off();
P
Pekka Enberg 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3358
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3359 3360 3361 3362 3363
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3364
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3365
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3366
	else
P
Pekka Enberg 已提交
3367
		list_add(&slabp->list, &l3->slabs_partial);
3368

P
Pekka Enberg 已提交
3369 3370
	spin_unlock(&l3->list_lock);
	goto done;
3371

A
Andrew Morton 已提交
3372
must_grow:
P
Pekka Enberg 已提交
3373
	spin_unlock(&l3->list_lock);
3374
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3375 3376
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3377

3378
	return fallback_alloc(cachep, flags);
3379

A
Andrew Morton 已提交
3380
done:
P
Pekka Enberg 已提交
3381
	return obj;
3382
}
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

	return objp;
}
3482 3483 3484 3485

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3486
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3487
		       int node)
L
Linus Torvalds 已提交
3488 3489
{
	int i;
3490
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3491 3492 3493 3494 3495

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3496
		slabp = virt_to_slab(objp);
3497
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3498
		list_del(&slabp->list);
3499
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3500
		check_slabp(cachep, slabp);
3501
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3502
		STATS_DEC_ACTIVE(cachep);
3503
		l3->free_objects++;
L
Linus Torvalds 已提交
3504 3505 3506 3507
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3508 3509
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3510 3511 3512 3513 3514 3515
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3516 3517
				slab_destroy(cachep, slabp);
			} else {
3518
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3519 3520 3521 3522 3523 3524
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3525
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3526 3527 3528 3529
		}
	}
}

3530
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3531 3532
{
	int batchcount;
3533
	struct kmem_list3 *l3;
3534
	int node = numa_node_id();
L
Linus Torvalds 已提交
3535 3536 3537 3538 3539 3540

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3541
	l3 = cachep->nodelists[node];
3542
	spin_lock(&l3->list_lock);
3543 3544
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3545
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3546 3547 3548
		if (max) {
			if (batchcount > max)
				batchcount = max;
3549
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3550
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3551 3552 3553 3554 3555
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3556
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3557
free_done:
L
Linus Torvalds 已提交
3558 3559 3560 3561 3562
#if STATS
	{
		int i = 0;
		struct list_head *p;

3563 3564
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3576
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3577
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3578
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3579 3580 3581
}

/*
A
Andrew Morton 已提交
3582 3583
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3584
 */
3585
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3586
{
3587
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3588 3589 3590 3591

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3592
	if (use_alien_caches && cache_free_alien(cachep, objp))
3593 3594
		return;

L
Linus Torvalds 已提交
3595 3596
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3597
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3598 3599 3600 3601
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3602
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3614
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3615
{
3616
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3617 3618 3619
}
EXPORT_SYMBOL(kmem_cache_alloc);

3620
/**
3621
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3651
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3652
{
P
Pekka Enberg 已提交
3653
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3654
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3655
	unsigned long align_mask = BYTES_PER_WORD - 1;
3656
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3672
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3673 3674
		goto out;
	return 1;
A
Andrew Morton 已提交
3675
out:
L
Linus Torvalds 已提交
3676 3677 3678 3679
	return 0;
}

#ifdef CONFIG_NUMA
3680 3681 3682 3683 3684
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3685 3686
EXPORT_SYMBOL(kmem_cache_alloc_node);

3687 3688
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3689
{
3690
	struct kmem_cache *cachep;
3691 3692 3693 3694 3695 3696

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3697 3698 3699 3700 3701 3702 3703

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3704
EXPORT_SYMBOL(__kmalloc_node);
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3720 3721

/**
3722
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3723
 * @size: how many bytes of memory are required.
3724
 * @flags: the type of memory to allocate (see kmalloc).
3725
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3726
 */
3727 3728
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3729
{
3730
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3731

3732 3733 3734 3735 3736 3737
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3738 3739
	if (unlikely(cachep == NULL))
		return NULL;
3740 3741 3742 3743
	return __cache_alloc(cachep, flags, caller);
}


3744
#ifdef CONFIG_DEBUG_SLAB
3745 3746
void *__kmalloc(size_t size, gfp_t flags)
{
3747
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3748 3749 3750
}
EXPORT_SYMBOL(__kmalloc);

3751 3752 3753 3754 3755
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3756 3757 3758 3759 3760 3761 3762

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3763 3764
#endif

P
Pekka Enberg 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 *
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	struct kmem_cache *cache, *new_cache;
	void *ret;

	if (unlikely(!p))
		return kmalloc_track_caller(new_size, flags);

	if (unlikely(!new_size)) {
		kfree(p);
		return NULL;
	}

	cache = virt_to_cache(p);
	new_cache = __find_general_cachep(new_size, flags);

	/*
 	 * If new size fits in the current cache, bail out.
 	 */
	if (likely(cache == new_cache))
		return (void *)p;

	/*
 	 * We are on the slow-path here so do not use __cache_alloc
 	 * because it bloats kernel text.
 	 */
	ret = kmalloc_track_caller(new_size, flags);
	if (ret) {
		memcpy(ret, p, min(new_size, ksize(p)));
		kfree(p);
	}
	return ret;
}
EXPORT_SYMBOL(krealloc);

L
Linus Torvalds 已提交
3812 3813 3814 3815 3816 3817 3818 3819
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3820
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3821 3822 3823
{
	unsigned long flags;

3824 3825
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3826
	local_irq_save(flags);
3827
	debug_check_no_locks_freed(objp, obj_size(cachep));
3828
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3829 3830 3831 3832 3833 3834 3835 3836
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3837 3838
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3839 3840 3841 3842 3843
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3844
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3845 3846 3847 3848 3849 3850
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3851
	c = virt_to_cache(objp);
3852
	debug_check_no_locks_freed(objp, obj_size(c));
3853
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3854 3855 3856 3857
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3858
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3859
{
3860
	return obj_size(cachep);
L
Linus Torvalds 已提交
3861 3862 3863
}
EXPORT_SYMBOL(kmem_cache_size);

3864
const char *kmem_cache_name(struct kmem_cache *cachep)
3865 3866 3867 3868 3869
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3870
/*
3871
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3872
 */
3873
static int alloc_kmemlist(struct kmem_cache *cachep)
3874 3875 3876
{
	int node;
	struct kmem_list3 *l3;
3877
	struct array_cache *new_shared;
3878
	struct array_cache **new_alien = NULL;
3879 3880

	for_each_online_node(node) {
3881

3882 3883 3884 3885 3886
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3887

3888 3889 3890
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3891
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3892
					0xbaadf00d);
3893 3894 3895 3896
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3897
		}
3898

A
Andrew Morton 已提交
3899 3900
		l3 = cachep->nodelists[node];
		if (l3) {
3901 3902
			struct array_cache *shared = l3->shared;

3903 3904
			spin_lock_irq(&l3->list_lock);

3905
			if (shared)
3906 3907
				free_block(cachep, shared->entry,
						shared->avail, node);
3908

3909 3910
			l3->shared = new_shared;
			if (!l3->alien) {
3911 3912 3913
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3914
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3915
					cachep->batchcount + cachep->num;
3916
			spin_unlock_irq(&l3->list_lock);
3917
			kfree(shared);
3918 3919 3920
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3921
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3922 3923 3924
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3925
			goto fail;
3926
		}
3927 3928 3929

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3930
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3931
		l3->shared = new_shared;
3932
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3933
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3934
					cachep->batchcount + cachep->num;
3935 3936
		cachep->nodelists[node] = l3;
	}
3937
	return 0;
3938

A
Andrew Morton 已提交
3939
fail:
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3955
	return -ENOMEM;
3956 3957
}

L
Linus Torvalds 已提交
3958
struct ccupdate_struct {
3959
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3960 3961 3962 3963 3964
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3965
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3966 3967 3968
	struct array_cache *old;

	check_irq_off();
3969
	old = cpu_cache_get(new->cachep);
3970

L
Linus Torvalds 已提交
3971 3972 3973 3974
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3975
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3976 3977
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3978
{
3979
	struct ccupdate_struct *new;
3980
	int i;
L
Linus Torvalds 已提交
3981

3982 3983 3984 3985
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3986
	for_each_online_cpu(i) {
3987
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3988
						batchcount);
3989
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3990
			for (i--; i >= 0; i--)
3991 3992
				kfree(new->new[i]);
			kfree(new);
3993
			return -ENOMEM;
L
Linus Torvalds 已提交
3994 3995
		}
	}
3996
	new->cachep = cachep;
L
Linus Torvalds 已提交
3997

3998
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3999

L
Linus Torvalds 已提交
4000 4001 4002
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4003
	cachep->shared = shared;
L
Linus Torvalds 已提交
4004

4005
	for_each_online_cpu(i) {
4006
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4007 4008
		if (!ccold)
			continue;
4009
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
4010
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
4011
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
4012 4013
		kfree(ccold);
	}
4014
	kfree(new);
4015
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
4016 4017
}

4018
/* Called with cache_chain_mutex held always */
4019
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
4020 4021 4022 4023
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4024 4025
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4026 4027
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4028
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4029 4030 4031 4032
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4033
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4034
		limit = 1;
4035
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4036
		limit = 8;
4037
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4038
		limit = 24;
4039
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4040 4041 4042 4043
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4044 4045
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4046 4047 4048 4049 4050 4051 4052 4053
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4054
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4055 4056 4057
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4058 4059 4060
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4061 4062 4063 4064
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4065
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4066 4067
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4068
		       cachep->name, -err);
4069
	return err;
L
Linus Torvalds 已提交
4070 4071
}

4072 4073
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4074 4075
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4076 4077 4078
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4079 4080 4081
{
	int tofree;

4082 4083
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4084 4085
	if (ac->touched && !force) {
		ac->touched = 0;
4086
	} else {
4087
		spin_lock_irq(&l3->list_lock);
4088 4089 4090 4091 4092 4093 4094 4095 4096
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4097
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4098 4099 4100 4101 4102
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4103
 * @w: work descriptor
L
Linus Torvalds 已提交
4104 4105 4106 4107 4108 4109
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4110 4111
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4112
 */
4113
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4114
{
4115
	struct kmem_cache *searchp;
4116
	struct kmem_list3 *l3;
4117
	int node = numa_node_id();
4118 4119
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4120

4121
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4122
		/* Give up. Setup the next iteration. */
4123
		goto out;
L
Linus Torvalds 已提交
4124

4125
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4126 4127
		check_irq_on();

4128 4129 4130 4131 4132
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4133
		l3 = searchp->nodelists[node];
4134

4135
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4136

4137
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4138

4139 4140 4141 4142
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4143
		if (time_after(l3->next_reap, jiffies))
4144
			goto next;
L
Linus Torvalds 已提交
4145

4146
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4147

4148
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4149

4150
		if (l3->free_touched)
4151
			l3->free_touched = 0;
4152 4153
		else {
			int freed;
L
Linus Torvalds 已提交
4154

4155 4156 4157 4158
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4159
next:
L
Linus Torvalds 已提交
4160 4161 4162
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4163
	mutex_unlock(&cache_chain_mutex);
4164
	next_reap_node();
4165
	refresh_cpu_vm_stats(smp_processor_id());
4166
out:
A
Andrew Morton 已提交
4167
	/* Set up the next iteration */
4168
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4169 4170 4171 4172
}

#ifdef CONFIG_PROC_FS

4173
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4174
{
4175 4176 4177 4178
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4179
#if STATS
4180
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4181
#else
4182
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4183
#endif
4184 4185 4186 4187
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4188
#if STATS
4189
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4190
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4191
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4192
#endif
4193 4194 4195 4196 4197 4198 4199 4200
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
4201
	mutex_lock(&cache_chain_mutex);
4202 4203
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
4204 4205 4206 4207 4208 4209
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
4210
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
4211 4212 4213 4214
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4215
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
4216
	++*pos;
A
Andrew Morton 已提交
4217 4218
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
4219 4220 4221 4222
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4223
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4224 4225 4226 4227
}

static int s_show(struct seq_file *m, void *p)
{
4228
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
4229 4230 4231 4232 4233
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4234
	const char *name;
L
Linus Torvalds 已提交
4235
	char *error = NULL;
4236 4237
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4238 4239 4240

	active_objs = 0;
	num_slabs = 0;
4241 4242 4243 4244 4245
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4246 4247
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4248

4249
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4250 4251 4252 4253 4254
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4255
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4256 4257 4258 4259 4260 4261 4262
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4263
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4264 4265 4266 4267 4268
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4269 4270
		if (l3->shared)
			shared_avail += l3->shared->avail;
4271

4272
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4273
	}
P
Pekka Enberg 已提交
4274 4275
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4276
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4277 4278
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4279
	name = cachep->name;
L
Linus Torvalds 已提交
4280 4281 4282 4283
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4284
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4285
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4286
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4287
		   cachep->limit, cachep->batchcount, cachep->shared);
4288
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4289
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4290
#if STATS
P
Pekka Enberg 已提交
4291
	{			/* list3 stats */
L
Linus Torvalds 已提交
4292 4293 4294 4295 4296 4297 4298
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4299
		unsigned long node_frees = cachep->node_frees;
4300
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4301

4302
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4303
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4304
				reaped, errors, max_freeable, node_allocs,
4305
				node_frees, overflows);
L
Linus Torvalds 已提交
4306 4307 4308 4309 4310 4311 4312 4313 4314
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4315
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4336
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4337 4338 4339 4340
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4351 4352
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4353
{
P
Pekka Enberg 已提交
4354
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4355
	int limit, batchcount, shared, res;
4356
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4357

L
Linus Torvalds 已提交
4358 4359 4360 4361
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4362
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4373
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4374
	res = -EINVAL;
4375
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4376
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4377 4378
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4379
				res = 0;
L
Linus Torvalds 已提交
4380
			} else {
4381
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4382
						       batchcount, shared);
L
Linus Torvalds 已提交
4383 4384 4385 4386
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4387
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4388 4389 4390 4391
	if (res >= 0)
		res = count;
	return res;
}
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4501
		list_for_each_entry(slabp, &l3->slabs_full, list)
4502
			handle_slab(n, cachep, slabp);
4503
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4530

4531 4532 4533
	return 0;
}

4534
const struct seq_operations slabstats_op = {
4535 4536 4537 4538 4539 4540
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4541 4542
#endif

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4555
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4556
{
4557 4558
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4559

4560
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4561
}