slab.c 110.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
119
#include	<linux/sched/task_stack.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

131 132
#include	"slab.h"

L
Linus Torvalds 已提交
133
/*
134
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
155
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
156 157 158 159 160

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

161 162 163 164 165 166 167 168 169
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

170
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171

L
Linus Torvalds 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
189
	void *entry[];	/*
A
Andrew Morton 已提交
190 191 192 193
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
194 195
};

J
Joonsoo Kim 已提交
196 197 198 199 200
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

201 202 203
/*
 * Need this for bootstrapping a per node allocator.
 */
204
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206
#define	CACHE_CACHE 0
207
#define	SIZE_NODE (MAX_NUMNODES)
208

209
static int drain_freelist(struct kmem_cache *cache,
210
			struct kmem_cache_node *n, int tofree);
211
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 213
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215
static void cache_reap(struct work_struct *unused);
216

217 218 219 220 221
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
222 223
static int slab_early_init = 1;

224
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
225

226
static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 228 229 230
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
231
	parent->total_slabs = 0;
232
	parent->free_slabs = 0;
233 234
	parent->shared = NULL;
	parent->alien = NULL;
235
	parent->colour_next = 0;
236 237 238 239 240
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
241 242 243
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
244
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 246
	} while (0)

A
Andrew Morton 已提交
247 248
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
249 250 251 252
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
253

254
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
L
Linus Torvalds 已提交
255
#define CFLGS_OFF_SLAB		(0x80000000UL)
256
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
257 258 259
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
260 261 262
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
263
 *
A
Adrian Bunk 已提交
264
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
265 266
 * which could lock up otherwise freeable slabs.
 */
267 268
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
269 270 271 272 273 274

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
275
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
276 277 278 279 280
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
281 282
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
285 286 287 288 289
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
290 291 292 293 294 295 296 297 298
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
299
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
300 301 302
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303
#define	STATS_INC_NODEFREES(x)	do { } while (0)
304
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
305
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
306 307 308 309 310 311 312 313
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
314 315
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
316
 * 0		: objp
317
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
318 319
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
320
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
321
 * 		redzone word.
322
 * cachep->obj_offset: The real object.
323 324
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
325
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
326
 */
327
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
328
{
329
	return cachep->obj_offset;
L
Linus Torvalds 已提交
330 331
}

332
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 336
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
337 338
}

339
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
340 341 342
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
343
		return (unsigned long long *)(objp + cachep->size -
344
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
345
					      REDZONE_ALIGN);
346
	return (unsigned long long *) (objp + cachep->size -
347
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
348 349
}

350
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
351 352
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
354 355 356 357
}

#else

358
#define obj_offset(x)			0
359 360
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
361 362 363 364
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

365 366
#ifdef CONFIG_DEBUG_SLAB_LEAK

367
static inline bool is_store_user_clean(struct kmem_cache *cachep)
368
{
369 370
	return atomic_read(&cachep->store_user_clean) == 1;
}
371

372 373 374 375
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
376

377 378 379 380
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
381 382 383
}

#else
384
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385 386 387

#endif

L
Linus Torvalds 已提交
388
/*
389 390
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
391
 */
392 393 394
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
395
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
396

397 398
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
399
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
400
	return page->slab_cache;
401 402
}

403
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 405
				 unsigned int idx)
{
406
	return page->s_mem + cache->size * idx;
407 408
}

409
/*
410 411 412
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
413 414 415
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416
					const struct page *page, void *obj)
417
{
418
	u32 offset = (obj - page->s_mem);
419
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 421
}

422
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
423
/* internal cache of cache description objs */
424
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
425 426 427
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
428
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
429
	.name = "kmem_cache",
L
Linus Torvalds 已提交
430 431
};

432
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
433

434
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
435
{
436
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
437 438
}

A
Andrew Morton 已提交
439 440 441
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
442 443
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
444
{
445
	unsigned int num;
446
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
447

448 449 450 451 452 453
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
454 455 456 457 458
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
459 460 461 462 463 464
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
465
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466
		num = slab_size / buffer_size;
467
		*left_over = slab_size % buffer_size;
468
	} else {
469
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 471
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
472
	}
473 474

	return num;
L
Linus Torvalds 已提交
475 476
}

477
#if DEBUG
478
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
479

A
Andrew Morton 已提交
480 481
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
482
{
483
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
484
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
485
	dump_stack();
486
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
487
}
488
#endif
L
Linus Torvalds 已提交
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

506 507 508 509 510 511 512 513 514 515 516
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

517 518 519 520 521 522 523
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
524
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525 526 527

static void init_reap_node(int cpu)
{
528 529
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
530 531 532 533
}

static void next_reap_node(void)
{
534
	int node = __this_cpu_read(slab_reap_node);
535

536
	node = next_node_in(node, node_online_map);
537
	__this_cpu_write(slab_reap_node, node);
538 539 540 541 542 543 544
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
545 546 547 548 549 550 551
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
552
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
553
{
554
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
555

556
	if (reap_work->work.func == NULL) {
557
		init_reap_node(cpu);
558
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 560
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
561 562 563
	}
}

564
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
565
{
566 567
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
568
	 * However, when such objects are allocated or transferred to another
569 570 571 572
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
573 574 575 576 577 578
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
579
	}
580 581 582 583 584
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
585
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 587 588 589 590
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
591 592
}

593 594
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
595
{
596 597 598
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
599

600 601
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
602

603 604 605
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
606

607
	slabs_destroy(cachep, &list);
608 609
}

610 611 612 613 614 615 616 617 618 619
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
620
	int nr = min3(from->avail, max, to->limit - to->avail);
621 622 623 624 625 626 627 628 629 630 631 632

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

633 634 635
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
636
#define reap_alien(cachep, n) do { } while (0)
637

J
Joonsoo Kim 已提交
638 639
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
640
{
641
	return NULL;
642 643
}

J
Joonsoo Kim 已提交
644
static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 646 647 648 649 650 651 652 653 654 655 656 657 658
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

659
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 661 662 663 664
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
665 666
static inline gfp_t gfp_exact_node(gfp_t flags)
{
667
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
668 669
}

670 671
#else	/* CONFIG_NUMA */

672
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674

J
Joonsoo Kim 已提交
675 676 677
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
678
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
679 680 681 682
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
683
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
684 685 686 687
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688
{
J
Joonsoo Kim 已提交
689
	struct alien_cache **alc_ptr;
690
	size_t memsize = sizeof(void *) * nr_node_ids;
691 692 693 694
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
708 709
		}
	}
J
Joonsoo Kim 已提交
710
	return alc_ptr;
711 712
}

J
Joonsoo Kim 已提交
713
static void free_alien_cache(struct alien_cache **alc_ptr)
714 715 716
{
	int i;

J
Joonsoo Kim 已提交
717
	if (!alc_ptr)
718 719
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
720 721
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
722 723
}

724
static void __drain_alien_cache(struct kmem_cache *cachep,
725 726
				struct array_cache *ac, int node,
				struct list_head *list)
727
{
728
	struct kmem_cache_node *n = get_node(cachep, node);
729 730

	if (ac->avail) {
731
		spin_lock(&n->list_lock);
732 733 734 735 736
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
737 738
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
739

740
		free_block(cachep, ac->entry, ac->avail, node, list);
741
		ac->avail = 0;
742
		spin_unlock(&n->list_lock);
743 744 745
	}
}

746 747 748
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
749
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750
{
751
	int node = __this_cpu_read(slab_reap_node);
752

753
	if (n->alien) {
J
Joonsoo Kim 已提交
754 755 756 757 758
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
759
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 761 762
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
763
				spin_unlock_irq(&alc->lock);
764
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
765
			}
766 767 768 769
		}
	}
}

A
Andrew Morton 已提交
770
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
771
				struct alien_cache **alien)
772
{
P
Pekka Enberg 已提交
773
	int i = 0;
J
Joonsoo Kim 已提交
774
	struct alien_cache *alc;
775 776 777 778
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
779 780
		alc = alien[i];
		if (alc) {
781 782
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
783
			ac = &alc->ac;
784
			spin_lock_irqsave(&alc->lock, flags);
785
			__drain_alien_cache(cachep, ac, i, &list);
786
			spin_unlock_irqrestore(&alc->lock, flags);
787
			slabs_destroy(cachep, &list);
788 789 790
		}
	}
}
791

792 793
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
794
{
795
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
796 797
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
798
	LIST_HEAD(list);
P
Pekka Enberg 已提交
799

800
	n = get_node(cachep, node);
801
	STATS_INC_NODEFREES(cachep);
802 803
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
804
		ac = &alien->ac;
805
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
806
		if (unlikely(ac->avail == ac->limit)) {
807
			STATS_INC_ACOVERFLOW(cachep);
808
			__drain_alien_cache(cachep, ac, page_node, &list);
809
		}
810
		ac->entry[ac->avail++] = objp;
811
		spin_unlock(&alien->lock);
812
		slabs_destroy(cachep, &list);
813
	} else {
814
		n = get_node(cachep, page_node);
815
		spin_lock(&n->list_lock);
816
		free_block(cachep, &objp, 1, page_node, &list);
817
		spin_unlock(&n->list_lock);
818
		slabs_destroy(cachep, &list);
819 820 821
	}
	return 1;
}
822 823 824 825 826 827 828 829 830 831 832 833 834 835

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
836 837

/*
838 839
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
840 841 842
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
843
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
844
}
845 846
#endif

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

887
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888
/*
889
 * Allocates and initializes node for a node on each slab cache, used for
890
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
891
 * will be allocated off-node since memory is not yet online for the new node.
892
 * When hotplugging memory or a cpu, existing node are not replaced if
893 894
 * already in use.
 *
895
 * Must hold slab_mutex.
896
 */
897
static int init_cache_node_node(int node)
898
{
899
	int ret;
900 901
	struct kmem_cache *cachep;

902
	list_for_each_entry(cachep, &slab_caches, list) {
903 904 905
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
906
	}
907

908 909
	return 0;
}
910
#endif
911

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

961 962 963 964 965 966
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
967
	if (old_shared && force_change)
968 969
		synchronize_sched();

970 971 972 973 974 975 976 977
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

978 979
#ifdef CONFIG_SMP

980
static void cpuup_canceled(long cpu)
981 982
{
	struct kmem_cache *cachep;
983
	struct kmem_cache_node *n = NULL;
984
	int node = cpu_to_mem(cpu);
985
	const struct cpumask *mask = cpumask_of_node(node);
986

987
	list_for_each_entry(cachep, &slab_caches, list) {
988 989
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
990
		struct alien_cache **alien;
991
		LIST_HEAD(list);
992

993
		n = get_node(cachep, node);
994
		if (!n)
995
			continue;
996

997
		spin_lock_irq(&n->list_lock);
998

999 1000
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1001 1002 1003 1004

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1005
			free_block(cachep, nc->entry, nc->avail, node, &list);
1006 1007
			nc->avail = 0;
		}
1008

1009
		if (!cpumask_empty(mask)) {
1010
			spin_unlock_irq(&n->list_lock);
1011
			goto free_slab;
1012 1013
		}

1014
		shared = n->shared;
1015 1016
		if (shared) {
			free_block(cachep, shared->entry,
1017
				   shared->avail, node, &list);
1018
			n->shared = NULL;
1019 1020
		}

1021 1022
		alien = n->alien;
		n->alien = NULL;
1023

1024
		spin_unlock_irq(&n->list_lock);
1025 1026 1027 1028 1029 1030

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1031 1032

free_slab:
1033
		slabs_destroy(cachep, &list);
1034 1035 1036 1037 1038 1039
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1040
	list_for_each_entry(cachep, &slab_caches, list) {
1041
		n = get_node(cachep, node);
1042
		if (!n)
1043
			continue;
1044
		drain_freelist(cachep, n, INT_MAX);
1045 1046 1047
	}
}

1048
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1049
{
1050
	struct kmem_cache *cachep;
1051
	int node = cpu_to_mem(cpu);
1052
	int err;
L
Linus Torvalds 已提交
1053

1054 1055 1056 1057
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1058
	 * kmem_cache_node and not this cpu's kmem_cache_node
1059
	 */
1060
	err = init_cache_node_node(node);
1061 1062
	if (err < 0)
		goto bad;
1063 1064 1065 1066 1067

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1068
	list_for_each_entry(cachep, &slab_caches, list) {
1069 1070 1071
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1072
	}
1073

1074 1075
	return 0;
bad:
1076
	cpuup_canceled(cpu);
1077 1078 1079
	return -ENOMEM;
}

1080
int slab_prepare_cpu(unsigned int cpu)
1081
{
1082
	int err;
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1107
#endif
1108 1109 1110 1111 1112

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
L
Linus Torvalds 已提交
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
L
Linus Torvalds 已提交
1128

1129 1130 1131 1132 1133 1134
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1135
 * Must hold slab_mutex.
1136
 */
1137
static int __meminit drain_cache_node_node(int node)
1138 1139 1140 1141
{
	struct kmem_cache *cachep;
	int ret = 0;

1142
	list_for_each_entry(cachep, &slab_caches, list) {
1143
		struct kmem_cache_node *n;
1144

1145
		n = get_node(cachep, node);
1146
		if (!n)
1147 1148
			continue;

1149
		drain_freelist(cachep, n, INT_MAX);
1150

1151 1152
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1173
		mutex_lock(&slab_mutex);
1174
		ret = init_cache_node_node(nid);
1175
		mutex_unlock(&slab_mutex);
1176 1177
		break;
	case MEM_GOING_OFFLINE:
1178
		mutex_lock(&slab_mutex);
1179
		ret = drain_cache_node_node(nid);
1180
		mutex_unlock(&slab_mutex);
1181 1182 1183 1184 1185 1186 1187 1188
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1189
	return notifier_from_errno(ret);
1190 1191 1192
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1193
/*
1194
 * swap the static kmem_cache_node with kmalloced memory
1195
 */
1196
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197
				int nodeid)
1198
{
1199
	struct kmem_cache_node *ptr;
1200

1201
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 1203
	BUG_ON(!ptr);

1204
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 1206 1207 1208 1209
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1210
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211
	cachep->node[nodeid] = ptr;
1212 1213
}

1214
/*
1215 1216
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1217
 */
1218
static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 1220 1221 1222
{
	int node;

	for_each_online_node(node) {
1223
		cachep->node[node] = &init_kmem_cache_node[index + node];
1224
		cachep->node[node]->next_reap = jiffies +
1225 1226
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 1228 1229
	}
}

A
Andrew Morton 已提交
1230 1231 1232
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1233 1234 1235
 */
void __init kmem_cache_init(void)
{
1236 1237
	int i;

1238 1239
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1240 1241
	kmem_cache = &kmem_cache_boot;

1242
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 1244
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1245
	for (i = 0; i < NUM_INIT_LISTS; i++)
1246
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1247

L
Linus Torvalds 已提交
1248 1249
	/*
	 * Fragmentation resistance on low memory - only use bigger
1250 1251
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1252
	 */
1253
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1255 1256 1257

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1258 1259 1260
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1261
	 *    Initially an __init data area is used for the head array and the
1262
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1263
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1264
	 * 2) Create the first kmalloc cache.
1265
	 *    The struct kmem_cache for the new cache is allocated normally.
1266 1267 1268
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1269
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1270
	 *    kmalloc cache with kmalloc allocated arrays.
1271
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272 1273
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1274 1275
	 */

1276
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1277

E
Eric Dumazet 已提交
1278
	/*
1279
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1280
	 */
1281
	create_boot_cache(kmem_cache, "kmem_cache",
1282
		offsetof(struct kmem_cache, node) +
1283
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1284 1285
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1286
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1287

A
Andrew Morton 已提交
1288
	/*
1289 1290
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1291
	 */
1292 1293
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
				kmalloc_info[INDEX_NODE].name,
1294
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1295
	slab_state = PARTIAL_NODE;
1296
	setup_kmalloc_cache_index_table();
1297

1298 1299
	slab_early_init = 0;

1300
	/* 5) Replace the bootstrap kmem_cache_node */
1301
	{
P
Pekka Enberg 已提交
1302 1303
		int nid;

1304
		for_each_online_node(nid) {
1305
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306

1307
			init_list(kmalloc_caches[INDEX_NODE],
1308
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309 1310
		}
	}
L
Linus Torvalds 已提交
1311

1312
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313 1314 1315 1316 1317 1318
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1319
	slab_state = UP;
P
Peter Zijlstra 已提交
1320

1321
	/* 6) resize the head arrays to their final sizes */
1322 1323
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1324 1325
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1326
	mutex_unlock(&slab_mutex);
1327

1328 1329 1330
	/* Done! */
	slab_state = FULL;

1331 1332 1333
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1334
	 * node.
1335 1336 1337 1338
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1339 1340 1341
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1342 1343 1344 1345 1346
	 */
}

static int __init cpucache_init(void)
{
1347
	int ret;
L
Linus Torvalds 已提交
1348

A
Andrew Morton 已提交
1349 1350
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1351
	 */
1352 1353 1354
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1355 1356

	/* Done! */
1357
	slab_state = FULL;
L
Linus Torvalds 已提交
1358 1359 1360 1361
	return 0;
}
__initcall(cpucache_init);

1362 1363 1364
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1365
#if DEBUG
1366
	struct kmem_cache_node *n;
1367 1368
	unsigned long flags;
	int node;
1369 1370 1371 1372 1373
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1374

1375 1376 1377
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1378
		cachep->name, cachep->size, cachep->gfporder);
1379

1380
	for_each_kmem_cache_node(cachep, node, n) {
1381
		unsigned long total_slabs, free_slabs, free_objs;
1382

1383
		spin_lock_irqsave(&n->list_lock, flags);
1384 1385 1386
		total_slabs = n->total_slabs;
		free_slabs = n->free_slabs;
		free_objs = n->free_objects;
1387
		spin_unlock_irqrestore(&n->list_lock, flags);
1388

1389 1390 1391 1392
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
			node, total_slabs - free_slabs, total_slabs,
			(total_slabs * cachep->num) - free_objs,
			total_slabs * cachep->num);
1393
	}
1394
#endif
1395 1396
}

L
Linus Torvalds 已提交
1397
/*
W
Wang Sheng-Hui 已提交
1398 1399
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1400 1401 1402 1403 1404
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1405 1406
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1407 1408
{
	struct page *page;
1409
	int nr_pages;
1410

1411
	flags |= cachep->allocflags;
1412 1413
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1414

1415
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1416
	if (!page) {
1417
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1418
		return NULL;
1419
	}
L
Linus Torvalds 已提交
1420

1421 1422 1423 1424 1425
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1426
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1427
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1428
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1429
	else
1430
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1431

1432
	__SetPageSlab(page);
1433 1434
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1435
		SetPageSlabPfmemalloc(page);
1436

1437 1438 1439 1440 1441 1442 1443 1444
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1445

1446
	return page;
L
Linus Torvalds 已提交
1447 1448 1449 1450 1451
}

/*
 * Interface to system's page release.
 */
1452
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1453
{
1454 1455
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1456

1457
	kmemcheck_free_shadow(page, order);
P
Pekka Enberg 已提交
1458

1459
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1460
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1461
	else
1462
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
J
Joonsoo Kim 已提交
1463

1464
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1465
	__ClearPageSlabPfmemalloc(page);
1466
	__ClearPageSlab(page);
1467 1468
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1469

L
Linus Torvalds 已提交
1470 1471
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1472 1473
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1474 1475 1476 1477
}

static void kmem_rcu_free(struct rcu_head *head)
{
1478 1479
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1480

1481 1482 1483 1484
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1485 1486 1487
}

#if DEBUG
1488 1489 1490 1491 1492 1493 1494 1495
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1496 1497

#ifdef CONFIG_DEBUG_PAGEALLOC
1498
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1499
			    unsigned long caller)
L
Linus Torvalds 已提交
1500
{
1501
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1502

1503
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1504

P
Pekka Enberg 已提交
1505
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1506 1507
		return;

P
Pekka Enberg 已提交
1508 1509 1510 1511
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1512 1513 1514 1515 1516 1517 1518
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1519
				*addr++ = svalue;
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524 1525 1526
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1527
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1528
}
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1546 1547
#endif

1548
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1549
{
1550
	int size = cachep->object_size;
1551
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1552 1553

	memset(addr, val, size);
P
Pekka Enberg 已提交
1554
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1555 1556 1557 1558 1559
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1560 1561 1562
	unsigned char error = 0;
	int bad_count = 0;

1563
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1564 1565 1566 1567 1568 1569
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1570 1571
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1572 1573 1574 1575

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1576
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1577
#ifdef CONFIG_X86
1578
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1579
#else
1580
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1581 1582 1583
#endif
		}
	}
L
Linus Torvalds 已提交
1584 1585 1586 1587 1588
}
#endif

#if DEBUG

1589
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1590 1591 1592 1593 1594
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1595 1596 1597
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1598 1599 1600
	}

	if (cachep->flags & SLAB_STORE_USER) {
1601
		pr_err("Last user: [<%p>](%pSR)\n",
J
Joe Perches 已提交
1602 1603
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1604
	}
1605
	realobj = (char *)objp + obj_offset(cachep);
1606
	size = cachep->object_size;
P
Pekka Enberg 已提交
1607
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1608 1609
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1610 1611
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1612 1613 1614 1615
		dump_line(realobj, i, limit);
	}
}

1616
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621
{
	char *realobj;
	int size, i;
	int lines = 0;

1622 1623 1624
	if (is_debug_pagealloc_cache(cachep))
		return;

1625
	realobj = (char *)objp + obj_offset(cachep);
1626
	size = cachep->object_size;
L
Linus Torvalds 已提交
1627

P
Pekka Enberg 已提交
1628
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1629
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1630
		if (i == size - 1)
L
Linus Torvalds 已提交
1631 1632 1633 1634 1635 1636
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1637 1638 1639
				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1640 1641 1642
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1643
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1644
			limit = 16;
P
Pekka Enberg 已提交
1645 1646
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1659
		struct page *page = virt_to_head_page(objp);
1660
		unsigned int objnr;
L
Linus Torvalds 已提交
1661

1662
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1663
		if (objnr) {
1664
			objp = index_to_obj(cachep, page, objnr - 1);
1665
			realobj = (char *)objp + obj_offset(cachep);
1666
			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1667 1668
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1669
		if (objnr + 1 < cachep->num) {
1670
			objp = index_to_obj(cachep, page, objnr + 1);
1671
			realobj = (char *)objp + obj_offset(cachep);
1672
			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677 1678
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1679
#if DEBUG
1680 1681
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1682 1683
{
	int i;
1684 1685 1686 1687 1688 1689

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1690
	for (i = 0; i < cachep->num; i++) {
1691
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1692 1693 1694

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1695
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1696 1697 1698
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1699
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1700
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1701
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1702 1703
		}
	}
1704
}
L
Linus Torvalds 已提交
1705
#else
1706 1707
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1708 1709
{
}
L
Linus Torvalds 已提交
1710 1711
#endif

1712 1713 1714
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1715
 * @page: page pointer being destroyed
1716
 *
W
Wang Sheng-Hui 已提交
1717 1718 1719
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1720
 */
1721
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1722
{
1723
	void *freelist;
1724

1725 1726
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1727
	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1728 1729
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1730
		kmem_freepages(cachep, page);
1731 1732

	/*
1733
	 * From now on, we don't use freelist
1734 1735 1736
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1737
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1738 1739
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1750
/**
1751 1752 1753 1754 1755 1756
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1757 1758 1759 1760 1761
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1762
static size_t calculate_slab_order(struct kmem_cache *cachep,
1763
				size_t size, unsigned long flags)
1764 1765
{
	size_t left_over = 0;
1766
	int gfporder;
1767

1768
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1769 1770 1771
		unsigned int num;
		size_t remainder;

1772
		num = cache_estimate(gfporder, size, flags, &remainder);
1773 1774
		if (!num)
			continue;
1775

1776 1777 1778 1779
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1780
		if (flags & CFLGS_OFF_SLAB) {
1781 1782 1783 1784 1785 1786 1787 1788
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1789
			/*
1790
			 * Needed to avoid possible looping condition
1791
			 * in cache_grow_begin()
1792
			 */
1793 1794
			if (OFF_SLAB(freelist_cache))
				continue;
1795

1796 1797 1798
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1799
		}
1800

1801
		/* Found something acceptable - save it away */
1802
		cachep->num = num;
1803
		cachep->gfporder = gfporder;
1804 1805
		left_over = remainder;

1806 1807 1808 1809 1810 1811 1812 1813
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1814 1815 1816 1817
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1818
		if (gfporder >= slab_max_order)
1819 1820
			break;

1821 1822 1823
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1824
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1825 1826 1827 1828 1829
			break;
	}
	return left_over;
}

1830 1831 1832 1833 1834 1835 1836 1837
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1838
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1851
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1852
{
1853
	if (slab_state >= FULL)
1854
		return enable_cpucache(cachep, gfp);
1855

1856 1857 1858 1859
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1860
	if (slab_state == DOWN) {
1861 1862
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1863
	} else if (slab_state == PARTIAL) {
1864 1865
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1866
	} else {
1867
		int node;
1868

1869 1870 1871 1872 1873
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1874 1875
		}
	}
1876

1877
	cachep->node[numa_mem_id()]->next_reap =
1878 1879
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1880 1881 1882 1883 1884 1885 1886

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1887
	return 0;
1888 1889
}

J
Joonsoo Kim 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1916 1917 1918 1919 1920 1921 1922
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

1923
	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1939 1940 1941 1942 1943 1944 1945 1946
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
1947 1948
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1989
/**
1990
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1991
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1992 1993 1994 1995
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1996
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2010
int
2011
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2012
{
2013
	size_t ralign = BYTES_PER_WORD;
2014
	gfp_t gfp;
2015
	int err;
2016
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2017 2018 2019 2020 2021 2022 2023 2024 2025

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2026 2027
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2028
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2029
	if (!(flags & SLAB_TYPESAFE_BY_RCU))
L
Linus Torvalds 已提交
2030 2031 2032 2033
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2034 2035
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2036 2037 2038
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
2039
	size = ALIGN(size, BYTES_PER_WORD);
L
Linus Torvalds 已提交
2040

D
David Woodhouse 已提交
2041 2042 2043 2044
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
2045
		size = ALIGN(size, REDZONE_ALIGN);
D
David Woodhouse 已提交
2046
	}
2047

2048
	/* 3) caller mandated alignment */
2049 2050
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2051
	}
2052 2053
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2054
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2055
	/*
2056
	 * 4) Store it.
L
Linus Torvalds 已提交
2057
	 */
2058
	cachep->align = ralign;
2059 2060 2061 2062
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2063

2064 2065 2066 2067 2068
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2069 2070
#if DEBUG

2071 2072 2073 2074
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2075 2076
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2077 2078
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2079 2080
	}
	if (flags & SLAB_STORE_USER) {
2081
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2082 2083
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2084
		 */
D
David Woodhouse 已提交
2085 2086 2087 2088
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2089
	}
2090 2091
#endif

A
Alexander Potapenko 已提交
2092 2093
	kasan_cache_create(cachep, &size, &flags);

2094 2095 2096 2097 2098 2099 2100 2101 2102
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2103 2104 2105 2106 2107 2108 2109
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2110
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2122 2123 2124
	}
#endif

2125 2126 2127 2128 2129
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2130
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2131
		flags |= CFLGS_OFF_SLAB;
2132
		goto done;
2133
	}
L
Linus Torvalds 已提交
2134

2135 2136
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2137

2138
	return -E2BIG;
L
Linus Torvalds 已提交
2139

2140 2141
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2142
	cachep->flags = flags;
2143
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2144
	if (flags & SLAB_CACHE_DMA)
2145
		cachep->allocflags |= GFP_DMA;
2146
	cachep->size = size;
2147
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2148

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2162 2163
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2164
	}
L
Linus Torvalds 已提交
2165

2166 2167
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2168
		__kmem_cache_release(cachep);
2169
		return err;
2170
	}
L
Linus Torvalds 已提交
2171

2172
	return 0;
L
Linus Torvalds 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2186 2187 2188 2189 2190
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2191
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2192 2193 2194
{
#ifdef CONFIG_SMP
	check_irq_off();
2195
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2196 2197
#endif
}
2198

2199
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2200 2201 2202
{
#ifdef CONFIG_SMP
	check_irq_off();
2203
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2204 2205 2206
#endif
}

L
Linus Torvalds 已提交
2207 2208 2209
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2210
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2211
#define check_spinlock_acquired(x) do { } while(0)
2212
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2213 2214
#endif

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2231

L
Linus Torvalds 已提交
2232 2233
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2234
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2235
	struct array_cache *ac;
2236
	int node = numa_mem_id();
2237
	struct kmem_cache_node *n;
2238
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2239 2240

	check_irq_off();
2241
	ac = cpu_cache_get(cachep);
2242 2243
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2244
	free_block(cachep, ac->entry, ac->avail, node, &list);
2245
	spin_unlock(&n->list_lock);
2246
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2247 2248 2249
	ac->avail = 0;
}

2250
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2251
{
2252
	struct kmem_cache_node *n;
2253
	int node;
2254
	LIST_HEAD(list);
2255

2256
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2257
	check_irq_on();
2258 2259
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2260
			drain_alien_cache(cachep, n->alien);
2261

2262 2263 2264 2265 2266 2267 2268
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2269 2270
}

2271 2272 2273 2274 2275 2276 2277
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2278
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2279
{
2280 2281
	struct list_head *p;
	int nr_freed;
2282
	struct page *page;
L
Linus Torvalds 已提交
2283

2284
	nr_freed = 0;
2285
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2286

2287 2288 2289 2290
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2291 2292
			goto out;
		}
L
Linus Torvalds 已提交
2293

2294 2295
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2296
		n->free_slabs--;
2297
		n->total_slabs--;
2298 2299 2300 2301
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2302 2303
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2304
		slab_destroy(cache, page);
2305
		nr_freed++;
L
Linus Torvalds 已提交
2306
	}
2307 2308
out:
	return nr_freed;
L
Linus Torvalds 已提交
2309 2310
}

2311
int __kmem_cache_shrink(struct kmem_cache *cachep)
2312
{
2313 2314
	int ret = 0;
	int node;
2315
	struct kmem_cache_node *n;
2316 2317 2318 2319

	drain_cpu_caches(cachep);

	check_irq_on();
2320
	for_each_kmem_cache_node(cachep, node, n) {
2321
		drain_freelist(cachep, n, INT_MAX);
2322

2323 2324
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2325 2326 2327 2328
	}
	return (ret ? 1 : 0);
}

2329 2330 2331 2332 2333 2334 2335
#ifdef CONFIG_MEMCG
void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
{
	__kmem_cache_shrink(cachep);
}
#endif

2336
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2337
{
2338
	return __kmem_cache_shrink(cachep);
2339 2340 2341
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2342
{
2343
	int i;
2344
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2345

T
Thomas Garnier 已提交
2346 2347
	cache_random_seq_destroy(cachep);

2348
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2349

2350
	/* NUMA: free the node structures */
2351 2352 2353 2354 2355
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2356
	}
L
Linus Torvalds 已提交
2357 2358
}

2359 2360
/*
 * Get the memory for a slab management obj.
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2372
 */
2373
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2374 2375
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2376
{
2377
	void *freelist;
2378
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2379

2380 2381 2382
	page->s_mem = addr + colour_off;
	page->active = 0;

2383 2384 2385
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2386
		/* Slab management obj is off-slab. */
2387
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2388
					      local_flags, nodeid);
2389
		if (!freelist)
L
Linus Torvalds 已提交
2390 2391
			return NULL;
	} else {
2392 2393 2394
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2395
	}
2396

2397
	return freelist;
L
Linus Torvalds 已提交
2398 2399
}

2400
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2401
{
2402
	return ((freelist_idx_t *)page->freelist)[idx];
2403 2404 2405
}

static inline void set_free_obj(struct page *page,
2406
					unsigned int idx, freelist_idx_t val)
2407
{
2408
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2409 2410
}

2411
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2412
{
2413
#if DEBUG
L
Linus Torvalds 已提交
2414 2415 2416
	int i;

	for (i = 0; i < cachep->num; i++) {
2417
		void *objp = index_to_obj(cachep, page, i);
2418

L
Linus Torvalds 已提交
2419 2420 2421 2422 2423 2424 2425 2426
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2427 2428 2429
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2430
		 */
A
Alexander Potapenko 已提交
2431 2432 2433
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2434
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2435 2436 2437
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2438 2439 2440

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2441
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2442
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2443
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2444
		}
2445 2446 2447 2448 2449
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2450
	}
L
Linus Torvalds 已提交
2451
#endif
2452 2453
}

T
Thomas Garnier 已提交
2454 2455 2456 2457 2458
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2459
		unsigned int *list;
T
Thomas Garnier 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
		unsigned int count;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2477
	rand = get_random_int();
T
Thomas Garnier 已提交
2478 2479 2480 2481 2482 2483 2484 2485

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
2486
		state->pos = rand % count;
T
Thomas Garnier 已提交
2487 2488 2489 2490 2491 2492 2493 2494
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
2495 2496 2497
	if (state->pos >= state->count)
		state->pos = 0;
	return state->list[state->pos++];
T
Thomas Garnier 已提交
2498 2499
}

2500 2501 2502 2503 2504 2505 2506
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2507 2508 2509 2510 2511 2512
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2513
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2538 2539 2540 2541 2542 2543 2544 2545 2546
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2565 2566 2567 2568
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2569
	void *objp;
T
Thomas Garnier 已提交
2570
	bool shuffled;
2571 2572 2573

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2574 2575 2576 2577
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2578 2579 2580 2581
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2582
	for (i = 0; i < cachep->num; i++) {
2583 2584 2585
		objp = index_to_obj(cachep, page, i);
		kasan_init_slab_obj(cachep, objp);

2586
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2587 2588 2589 2590 2591
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2592

T
Thomas Garnier 已提交
2593 2594
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2595 2596 2597
	}
}

2598
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2599
{
2600
	void *objp;
2601

2602
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2603
	page->active++;
2604

2605 2606 2607 2608 2609
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2610 2611 2612
	return objp;
}

2613 2614
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2615
{
2616
	unsigned int objnr = obj_to_index(cachep, page, objp);
2617
#if DEBUG
J
Joonsoo Kim 已提交
2618
	unsigned int i;
2619 2620

	/* Verify double free bug */
2621
	for (i = page->active; i < cachep->num; i++) {
2622
		if (get_free_obj(page, i) == objnr) {
2623
			pr_err("slab: double free detected in cache '%s', objp %p\n",
J
Joe Perches 已提交
2624
			       cachep->name, objp);
2625 2626
			BUG();
		}
2627 2628
	}
#endif
2629
	page->active--;
2630 2631 2632
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2633
	set_free_obj(page, page->active, objnr);
2634 2635
}

2636 2637 2638
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2639
 * virtual address for kfree, ksize, and slab debugging.
2640
 */
2641
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2642
			   void *freelist)
L
Linus Torvalds 已提交
2643
{
2644
	page->slab_cache = cache;
2645
	page->freelist = freelist;
L
Linus Torvalds 已提交
2646 2647 2648 2649 2650 2651
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2652 2653
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2654
{
2655
	void *freelist;
P
Pekka Enberg 已提交
2656 2657
	size_t offset;
	gfp_t local_flags;
2658
	int page_node;
2659
	struct kmem_cache_node *n;
2660
	struct page *page;
L
Linus Torvalds 已提交
2661

A
Andrew Morton 已提交
2662 2663 2664
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2665
	 */
2666
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2667
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2668 2669 2670 2671
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2672
	}
C
Christoph Lameter 已提交
2673
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2674 2675

	check_irq_off();
2676
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2677 2678
		local_irq_enable();

A
Andrew Morton 已提交
2679 2680 2681
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2682
	 */
2683
	page = kmem_getpages(cachep, local_flags, nodeid);
2684
	if (!page)
L
Linus Torvalds 已提交
2685 2686
		goto failed;

2687 2688
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

L
Linus Torvalds 已提交
2701
	/* Get slab management. */
2702
	freelist = alloc_slabmgmt(cachep, page, offset,
2703
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2704
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2705 2706
		goto opps1;

2707
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2708

A
Alexander Potapenko 已提交
2709
	kasan_poison_slab(page);
2710
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2711

2712
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2713 2714
		local_irq_disable();

2715 2716
	return page;

A
Andrew Morton 已提交
2717
opps1:
2718
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2719
failed:
2720
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2721
		local_irq_disable();
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
2739
	n->total_slabs++;
2740
	if (!page->active) {
2741
		list_add_tail(&page->lru, &(n->slabs_free));
2742
		n->free_slabs++;
2743
	} else
2744
		fixup_slab_list(cachep, n, page, &list);
2745

2746 2747 2748 2749 2750
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2763
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2764 2765
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2766 2767 2768
	}
}

2769 2770
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2771
	unsigned long long redzone1, redzone2;
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2787 2788
	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
2789 2790
}

2791
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2792
				   unsigned long caller)
L
Linus Torvalds 已提交
2793 2794
{
	unsigned int objnr;
2795
	struct page *page;
L
Linus Torvalds 已提交
2796

2797 2798
	BUG_ON(virt_to_cache(objp) != cachep);

2799
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2800
	kfree_debugcheck(objp);
2801
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2802 2803

	if (cachep->flags & SLAB_RED_ZONE) {
2804
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2805 2806 2807
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2808 2809
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2810
		*dbg_userword(cachep, objp) = (void *)caller;
2811
	}
L
Linus Torvalds 已提交
2812

2813
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2814 2815

	BUG_ON(objnr >= cachep->num);
2816
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2817 2818 2819

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2820
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2821 2822 2823 2824 2825 2826 2827 2828 2829
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2845
static inline void fixup_slab_list(struct kmem_cache *cachep,
2846 2847
				struct kmem_cache_node *n, struct page *page,
				void **list)
2848 2849 2850
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2851
	if (page->active == cachep->num) {
2852
		list_add(&page->lru, &n->slabs_full);
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2866 2867 2868
		list_add(&page->lru, &n->slabs_partial);
}

2869 2870
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2871
					struct page *page, bool pfmemalloc)
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
2890
	if (!page->active) {
2891
		list_add_tail(&page->lru, &n->slabs_free);
2892
		n->free_slabs++;
2893
	} else
2894 2895 2896 2897 2898 2899 2900
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

2901
	n->free_touched = 1;
2902
	list_for_each_entry(page, &n->slabs_free, lru) {
2903
		if (!PageSlabPfmemalloc(page)) {
2904
			n->free_slabs--;
2905
			return page;
2906
		}
2907 2908 2909 2910 2911 2912
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2913 2914 2915
{
	struct page *page;

2916
	assert_spin_locked(&n->list_lock);
2917
	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2918 2919
	if (!page) {
		n->free_touched = 1;
2920 2921
		page = list_first_entry_or_null(&n->slabs_free, struct page,
						lru);
2922
		if (page)
2923
			n->free_slabs--;
2924 2925
	}

2926
	if (sk_memalloc_socks())
2927
		page = get_valid_first_slab(n, page, pfmemalloc);
2928

2929 2930 2931
	return page;
}

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2984
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2985 2986
{
	int batchcount;
2987
	struct kmem_cache_node *n;
2988
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
2989
	int node;
2990
	void *list = NULL;
2991
	struct page *page;
P
Pekka Enberg 已提交
2992

L
Linus Torvalds 已提交
2993
	check_irq_off();
2994
	node = numa_mem_id();
2995

2996
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2997 2998
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2999 3000 3001 3002
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3003 3004 3005
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3006
	n = get_node(cachep, node);
3007

3008
	BUG_ON(ac->avail > 0 || !n);
3009 3010 3011 3012
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

3013
	spin_lock(&n->list_lock);
3014
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
3015

3016
	/* See if we can refill from the shared array */
3017 3018
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
3019
		goto alloc_done;
3020
	}
3021

L
Linus Torvalds 已提交
3022 3023
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
3024
		page = get_first_slab(n, false);
3025 3026
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
3027 3028

		check_spinlock_acquired(cachep);
3029

3030
		batchcount = alloc_block(cachep, ac, page, batchcount);
3031
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
3032 3033
	}

A
Andrew Morton 已提交
3034
must_grow:
3035
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3036
alloc_done:
3037
	spin_unlock(&n->list_lock);
3038
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
3039

3040
direct_grow:
L
Linus Torvalds 已提交
3041
	if (unlikely(!ac->avail)) {
3042 3043 3044 3045 3046 3047 3048 3049
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3050
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3051

3052 3053 3054 3055
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3056
		ac = cpu_cache_get(cachep);
3057 3058 3059
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3060

3061
		if (!ac->avail)
L
Linus Torvalds 已提交
3062 3063 3064
			return NULL;
	}
	ac->touched = 1;
3065

3066
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3067 3068
}

A
Andrew Morton 已提交
3069 3070
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3071
{
3072
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3073 3074 3075
}

#if DEBUG
A
Andrew Morton 已提交
3076
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3077
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3078
{
P
Pekka Enberg 已提交
3079
	if (!objp)
L
Linus Torvalds 已提交
3080
		return objp;
P
Pekka Enberg 已提交
3081
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3082
		check_poison_obj(cachep, objp);
3083
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
3084 3085 3086
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3087
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3088 3089

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3090 3091
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3092
			slab_error(cachep, "double free, or memory outside object was overwritten");
3093 3094 3095
			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3096 3097 3098 3099
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3100

3101
	objp += obj_offset(cachep);
3102
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3103
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3104 3105
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3106
		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3107
		       objp, (int)ARCH_SLAB_MINALIGN);
3108
	}
L
Linus Torvalds 已提交
3109 3110 3111 3112 3113 3114
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3115
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3116
{
P
Pekka Enberg 已提交
3117
	void *objp;
L
Linus Torvalds 已提交
3118 3119
	struct array_cache *ac;

3120
	check_irq_off();
3121

3122
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3123 3124
	if (likely(ac->avail)) {
		ac->touched = 1;
3125
		objp = ac->entry[--ac->avail];
3126

3127 3128
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3129
	}
3130 3131

	STATS_INC_ALLOCMISS(cachep);
3132
	objp = cache_alloc_refill(cachep, flags);
3133 3134 3135 3136 3137 3138 3139
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3140 3141 3142 3143 3144
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3145 3146
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3147 3148 3149
	return objp;
}

3150
#ifdef CONFIG_NUMA
3151
/*
3152
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3153 3154 3155 3156 3157 3158 3159 3160
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3161
	if (in_interrupt() || (flags & __GFP_THISNODE))
3162
		return NULL;
3163
	nid_alloc = nid_here = numa_mem_id();
3164
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3165
		nid_alloc = cpuset_slab_spread_node();
3166
	else if (current->mempolicy)
3167
		nid_alloc = mempolicy_slab_node();
3168
	if (nid_alloc != nid_here)
3169
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3170 3171 3172
	return NULL;
}

3173 3174
/*
 * Fallback function if there was no memory available and no objects on a
3175
 * certain node and fall back is permitted. First we scan all the
3176
 * available node for available objects. If that fails then we
3177 3178 3179
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3180
 */
3181
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3182
{
3183
	struct zonelist *zonelist;
3184
	struct zoneref *z;
3185 3186
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3187
	void *obj = NULL;
3188
	struct page *page;
3189
	int nid;
3190
	unsigned int cpuset_mems_cookie;
3191 3192 3193 3194

	if (flags & __GFP_THISNODE)
		return NULL;

3195
retry_cpuset:
3196
	cpuset_mems_cookie = read_mems_allowed_begin();
3197
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3198

3199 3200 3201 3202 3203
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3204 3205
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3206

3207
		if (cpuset_zone_allowed(zone, flags) &&
3208 3209
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3210
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3211
					gfp_exact_node(flags), nid);
3212 3213 3214
				if (obj)
					break;
		}
3215 3216
	}

3217
	if (!obj) {
3218 3219 3220 3221 3222 3223
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3224 3225 3226 3227
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3228 3229
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3230

3231
			/*
3232 3233
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3234
			 */
3235 3236
			if (!obj)
				goto retry;
3237
		}
3238
	}
3239

3240
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3241
		goto retry_cpuset;
3242 3243 3244
	return obj;
}

3245 3246
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3247
 */
3248
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3249
				int nodeid)
3250
{
3251
	struct page *page;
3252
	struct kmem_cache_node *n;
3253
	void *obj = NULL;
3254
	void *list = NULL;
P
Pekka Enberg 已提交
3255

3256
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3257
	n = get_node(cachep, nodeid);
3258
	BUG_ON(!n);
P
Pekka Enberg 已提交
3259

3260
	check_irq_off();
3261
	spin_lock(&n->list_lock);
3262
	page = get_first_slab(n, false);
3263 3264
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3265 3266 3267 3268 3269 3270 3271

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3272
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3273

3274
	obj = slab_get_obj(cachep, page);
3275
	n->free_objects--;
P
Pekka Enberg 已提交
3276

3277
	fixup_slab_list(cachep, n, page, &list);
3278

3279
	spin_unlock(&n->list_lock);
3280
	fixup_objfreelist_debug(cachep, &list);
3281
	return obj;
3282

A
Andrew Morton 已提交
3283
must_grow:
3284
	spin_unlock(&n->list_lock);
3285
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3286 3287 3288 3289
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3290
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3291

3292
	return obj ? obj : fallback_alloc(cachep, flags);
3293
}
3294 3295

static __always_inline void *
3296
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3297
		   unsigned long caller)
3298 3299 3300
{
	unsigned long save_flags;
	void *ptr;
3301
	int slab_node = numa_mem_id();
3302

3303
	flags &= gfp_allowed_mask;
3304 3305
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3306 3307
		return NULL;

3308 3309 3310
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3311
	if (nodeid == NUMA_NO_NODE)
3312
		nodeid = slab_node;
3313

3314
	if (unlikely(!get_node(cachep, nodeid))) {
3315 3316 3317 3318 3319
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3320
	if (nodeid == slab_node) {
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3337 3338
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3339

3340
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3341 3342 3343 3344 3345 3346 3347 3348
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3349
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3360 3361
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3377
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3378 3379 3380 3381
{
	unsigned long save_flags;
	void *objp;

3382
	flags &= gfp_allowed_mask;
3383 3384
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3385 3386
		return NULL;

3387 3388 3389 3390 3391 3392 3393
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3394 3395
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3396

3397
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3398 3399
	return objp;
}
3400 3401

/*
3402
 * Caller needs to acquire correct kmem_cache_node's list_lock
3403
 * @list: List of detached free slabs should be freed by caller
3404
 */
3405 3406
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3407 3408
{
	int i;
3409
	struct kmem_cache_node *n = get_node(cachep, node);
3410 3411 3412
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3413 3414

	for (i = 0; i < nr_objects; i++) {
3415
		void *objp;
3416
		struct page *page;
L
Linus Torvalds 已提交
3417

3418 3419
		objp = objpp[i];

3420 3421
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3422
		check_spinlock_acquired_node(cachep, node);
3423
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3424 3425 3426
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3427
		if (page->active == 0) {
3428
			list_add(&page->lru, &n->slabs_free);
3429 3430
			n->free_slabs++;
		} else {
L
Linus Torvalds 已提交
3431 3432 3433 3434
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3435
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3436 3437
		}
	}
3438 3439 3440 3441 3442

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
3443
		list_move(&page->lru, list);
3444
		n->free_slabs--;
3445
		n->total_slabs--;
3446
	}
L
Linus Torvalds 已提交
3447 3448
}

3449
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3450 3451
{
	int batchcount;
3452
	struct kmem_cache_node *n;
3453
	int node = numa_mem_id();
3454
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3455 3456

	batchcount = ac->batchcount;
3457

L
Linus Torvalds 已提交
3458
	check_irq_off();
3459
	n = get_node(cachep, node);
3460 3461 3462
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3463
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3464 3465 3466
		if (max) {
			if (batchcount > max)
				batchcount = max;
3467
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3468
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3469 3470 3471 3472 3473
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3474
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3475
free_done:
L
Linus Torvalds 已提交
3476 3477 3478
#if STATS
	{
		int i = 0;
3479
		struct page *page;
L
Linus Torvalds 已提交
3480

3481
		list_for_each_entry(page, &n->slabs_free, lru) {
3482
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487 3488

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3489
	spin_unlock(&n->list_lock);
3490
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3491
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3492
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3493 3494 3495
}

/*
A
Andrew Morton 已提交
3496 3497
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3498
 */
3499
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3500
				unsigned long caller)
L
Linus Torvalds 已提交
3501
{
3502 3503 3504 3505 3506 3507
	/* Put the object into the quarantine, don't touch it for now. */
	if (kasan_slab_free(cachep, objp))
		return;

	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3508

3509 3510 3511 3512
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3513

L
Linus Torvalds 已提交
3514
	check_irq_off();
3515
	kmemleak_free_recursive(objp, cachep->flags);
3516
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3517

3518
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3519

3520 3521 3522 3523 3524 3525 3526
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3527
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3528 3529
		return;

3530
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3531 3532 3533 3534 3535
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3536

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3557
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3558
{
3559
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3560

3561
	kasan_slab_alloc(cachep, ret, flags);
3562
	trace_kmem_cache_alloc(_RET_IP_, ret,
3563
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3564 3565

	return ret;
L
Linus Torvalds 已提交
3566 3567 3568
}
EXPORT_SYMBOL(kmem_cache_alloc);

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3579
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3580
			  void **p)
3581
{
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3600 3601
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3612
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3613 3614 3615
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3616 3617 3618
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3619
#ifdef CONFIG_TRACING
3620
void *
3621
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3622
{
3623 3624
	void *ret;

3625
	ret = slab_alloc(cachep, flags, _RET_IP_);
3626

3627
	kasan_kmalloc(cachep, ret, size, flags);
3628
	trace_kmalloc(_RET_IP_, ret,
3629
		      size, cachep->size, flags);
3630
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3631
}
3632
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3633 3634
#endif

L
Linus Torvalds 已提交
3635
#ifdef CONFIG_NUMA
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3647 3648
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3649
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3650

3651
	kasan_slab_alloc(cachep, ret, flags);
3652
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3653
				    cachep->object_size, cachep->size,
3654
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3655 3656

	return ret;
3657
}
L
Linus Torvalds 已提交
3658 3659
EXPORT_SYMBOL(kmem_cache_alloc_node);

3660
#ifdef CONFIG_TRACING
3661
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3662
				  gfp_t flags,
3663 3664
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3665
{
3666 3667
	void *ret;

3668
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3669 3670

	kasan_kmalloc(cachep, ret, size, flags);
3671
	trace_kmalloc_node(_RET_IP_, ret,
3672
			   size, cachep->size,
3673 3674
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3675
}
3676
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3677 3678
#endif

3679
static __always_inline void *
3680
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3681
{
3682
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3683
	void *ret;
3684

3685
	cachep = kmalloc_slab(size, flags);
3686 3687
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3688
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3689
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3690 3691

	return ret;
3692
}
3693 3694 3695

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3696
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3697
}
3698
EXPORT_SYMBOL(__kmalloc_node);
3699 3700

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3701
		int node, unsigned long caller)
3702
{
3703
	return __do_kmalloc_node(size, flags, node, caller);
3704 3705 3706
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3707 3708

/**
3709
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3710
 * @size: how many bytes of memory are required.
3711
 * @flags: the type of memory to allocate (see kmalloc).
3712
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3713
 */
3714
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3715
					  unsigned long caller)
L
Linus Torvalds 已提交
3716
{
3717
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3718
	void *ret;
L
Linus Torvalds 已提交
3719

3720
	cachep = kmalloc_slab(size, flags);
3721 3722
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3723
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3724

3725
	kasan_kmalloc(cachep, ret, size, flags);
3726
	trace_kmalloc(caller, ret,
3727
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3728 3729

	return ret;
3730 3731 3732 3733
}

void *__kmalloc(size_t size, gfp_t flags)
{
3734
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3735 3736 3737
}
EXPORT_SYMBOL(__kmalloc);

3738
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3739
{
3740
	return __do_kmalloc(size, flags, caller);
3741 3742
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3743

L
Linus Torvalds 已提交
3744 3745 3746 3747 3748 3749 3750 3751
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3752
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3753 3754
{
	unsigned long flags;
3755 3756 3757
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3758 3759

	local_irq_save(flags);
3760
	debug_check_no_locks_freed(objp, cachep->object_size);
3761
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3762
		debug_check_no_obj_freed(objp, cachep->object_size);
3763
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3764
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3765

3766
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3767 3768 3769
}
EXPORT_SYMBOL(kmem_cache_free);

3770 3771 3772 3773 3774 3775 3776 3777 3778
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3779 3780 3781 3782
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3796 3797 3798 3799
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3800 3801
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3802 3803 3804 3805 3806
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3807
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3808 3809
	unsigned long flags;

3810 3811
	trace_kfree(_RET_IP_, objp);

3812
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3813 3814 3815
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3816
	c = virt_to_cache(objp);
3817 3818 3819
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3820
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3821 3822 3823 3824
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3825
/*
3826
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3827
 */
3828
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3829
{
3830
	int ret;
3831
	int node;
3832
	struct kmem_cache_node *n;
3833

3834
	for_each_online_node(node) {
3835 3836
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3837 3838 3839
			goto fail;

	}
3840

3841
	return 0;
3842

A
Andrew Morton 已提交
3843
fail:
3844
	if (!cachep->list.next) {
3845 3846 3847
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3848 3849
			n = get_node(cachep, node);
			if (n) {
3850 3851 3852
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3853
				cachep->node[node] = NULL;
3854 3855 3856 3857
			}
			node--;
		}
	}
3858
	return -ENOMEM;
3859 3860
}

3861
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3862
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3863
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3864
{
3865 3866
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3867

3868 3869
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3870 3871
		return -ENOMEM;

3872 3873
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
3874 3875 3876 3877 3878 3879
	/*
	 * Without a previous cpu_cache there's no need to synchronize remote
	 * cpus, so skip the IPIs.
	 */
	if (prev)
		kick_all_cpus_sync();
3880

L
Linus Torvalds 已提交
3881 3882 3883
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3884
	cachep->shared = shared;
L
Linus Torvalds 已提交
3885

3886
	if (!prev)
3887
		goto setup_node;
3888 3889

	for_each_online_cpu(cpu) {
3890
		LIST_HEAD(list);
3891 3892
		int node;
		struct kmem_cache_node *n;
3893
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3894

3895
		node = cpu_to_mem(cpu);
3896 3897
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3898
		free_block(cachep, ac->entry, ac->avail, node, &list);
3899
		spin_unlock_irq(&n->list_lock);
3900
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3901
	}
3902 3903
	free_percpu(prev);

3904 3905
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3906 3907
}

G
Glauber Costa 已提交
3908 3909 3910 3911
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3912
	struct kmem_cache *c;
G
Glauber Costa 已提交
3913 3914 3915 3916 3917 3918 3919 3920 3921

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3922 3923 3924 3925
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3926 3927 3928 3929 3930
	}

	return ret;
}

3931
/* Called with slab_mutex held always */
3932
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3933 3934
{
	int err;
G
Glauber Costa 已提交
3935 3936 3937 3938
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3939
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3940 3941 3942
	if (err)
		goto end;

G
Glauber Costa 已提交
3943 3944 3945 3946 3947 3948
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3949

G
Glauber Costa 已提交
3950 3951
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3952 3953
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3954 3955
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3956
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3957 3958 3959 3960
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3961
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3962
		limit = 1;
3963
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3964
		limit = 8;
3965
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3966
		limit = 24;
3967
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3968 3969 3970 3971
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3972 3973
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3974 3975 3976 3977 3978 3979 3980 3981
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3982
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3983 3984 3985
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3986 3987 3988
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3989 3990 3991 3992
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3993 3994 3995
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
3996
end:
L
Linus Torvalds 已提交
3997
	if (err)
3998
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
3999
		       cachep->name, -err);
4000
	return err;
L
Linus Torvalds 已提交
4001 4002
}

4003
/*
4004 4005
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4006
 * if drain_array() is used on the shared array.
4007
 */
4008
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4009
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
4010
{
4011
	LIST_HEAD(list);
4012 4013 4014

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
4015

4016 4017
	if (!ac || !ac->avail)
		return;
4018 4019

	if (ac->touched) {
L
Linus Torvalds 已提交
4020
		ac->touched = 0;
4021
		return;
L
Linus Torvalds 已提交
4022
	}
4023 4024 4025 4026 4027 4028

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4029 4030 4031 4032
}

/**
 * cache_reap - Reclaim memory from caches.
4033
 * @w: work descriptor
L
Linus Torvalds 已提交
4034 4035 4036 4037 4038 4039
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4040 4041
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4042
 */
4043
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4044
{
4045
	struct kmem_cache *searchp;
4046
	struct kmem_cache_node *n;
4047
	int node = numa_mem_id();
4048
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4049

4050
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4051
		/* Give up. Setup the next iteration. */
4052
		goto out;
L
Linus Torvalds 已提交
4053

4054
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4055 4056
		check_irq_on();

4057
		/*
4058
		 * We only take the node lock if absolutely necessary and we
4059 4060 4061
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4062
		n = get_node(searchp, node);
4063

4064
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4065

4066
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4067

4068 4069 4070 4071
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4072
		if (time_after(n->next_reap, jiffies))
4073
			goto next;
L
Linus Torvalds 已提交
4074

4075
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4076

4077
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4078

4079 4080
		if (n->free_touched)
			n->free_touched = 0;
4081 4082
		else {
			int freed;
L
Linus Torvalds 已提交
4083

4084
			freed = drain_freelist(searchp, n, (n->free_limit +
4085 4086 4087
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4088
next:
L
Linus Torvalds 已提交
4089 4090 4091
		cond_resched();
	}
	check_irq_on();
4092
	mutex_unlock(&slab_mutex);
4093
	next_reap_node();
4094
out:
A
Andrew Morton 已提交
4095
	/* Set up the next iteration */
4096
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4097 4098
}

4099
#ifdef CONFIG_SLABINFO
4100
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4101
{
4102
	unsigned long active_objs, num_objs, active_slabs;
4103 4104
	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long free_slabs = 0;
4105
	int node;
4106
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4107

4108
	for_each_kmem_cache_node(cachep, node, n) {
4109
		check_irq_on();
4110
		spin_lock_irq(&n->list_lock);
4111

4112 4113
		total_slabs += n->total_slabs;
		free_slabs += n->free_slabs;
4114
		free_objs += n->free_objects;
4115

4116 4117
		if (n->shared)
			shared_avail += n->shared->avail;
4118

4119
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4120
	}
4121 4122
	num_objs = total_slabs * cachep->num;
	active_slabs = total_slabs - free_slabs;
4123
	active_objs = num_objs - free_objs;
L
Linus Torvalds 已提交
4124

4125 4126 4127
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
4128
	sinfo->num_slabs = total_slabs;
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4139
#if STATS
4140
	{			/* node stats */
L
Linus Torvalds 已提交
4141 4142 4143 4144 4145 4146 4147
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4148
		unsigned long node_frees = cachep->node_frees;
4149
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4150

J
Joe Perches 已提交
4151
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4152 4153 4154
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4155 4156 4157 4158 4159 4160 4161 4162 4163
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4164
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4177
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4178
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4179
{
P
Pekka Enberg 已提交
4180
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4181
	int limit, batchcount, shared, res;
4182
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4183

L
Linus Torvalds 已提交
4184 4185 4186 4187
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4188
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4199
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4200
	res = -EINVAL;
4201
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4202
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4203 4204
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4205
				res = 0;
L
Linus Torvalds 已提交
4206
			} else {
4207
				res = do_tune_cpucache(cachep, limit,
4208 4209
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4210 4211 4212 4213
			}
			break;
		}
	}
4214
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4215 4216 4217 4218
	if (res >= 0)
		res = count;
	return res;
}
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4252 4253
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4254 4255
{
	void *p;
4256 4257
	int i, j;
	unsigned long v;
4258

4259 4260
	if (n[0] == n[1])
		return;
4261
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4272
			continue;
4273

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4284 4285 4286 4287 4288 4289 4290 4291
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4292
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4293

4294
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4295
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4296
		if (modname[0])
4297 4298 4299 4300 4301 4302 4303 4304 4305
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4306
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4307
	struct page *page;
4308
	struct kmem_cache_node *n;
4309
	const char *name;
4310
	unsigned long *x = m->private;
4311 4312 4313 4314 4315 4316 4317 4318
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4330

4331
		for_each_kmem_cache_node(cachep, node, n) {
4332

4333 4334
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4335

4336 4337 4338 4339 4340 4341 4342
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4343 4344

	name = cachep->name;
4345
	if (x[0] == x[1]) {
4346
		/* Increase the buffer size */
4347
		mutex_unlock(&slab_mutex);
4348
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4349 4350
		if (!m->private) {
			/* Too bad, we are really out */
4351
			m->private = x;
4352
			mutex_lock(&slab_mutex);
4353 4354
			return -ENOMEM;
		}
4355 4356
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4357
		mutex_lock(&slab_mutex);
4358 4359 4360 4361
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4362 4363 4364
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4365 4366
		seq_putc(m, '\n');
	}
4367

4368 4369 4370
	return 0;
}

4371
static const struct seq_operations slabstats_op = {
4372
	.start = slab_start,
4373 4374
	.next = slab_next,
	.stop = slab_stop,
4375 4376
	.show = leaks_show,
};
4377 4378 4379

static int slabstats_open(struct inode *inode, struct file *file)
{
4380 4381 4382 4383 4384 4385 4386 4387 4388
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4403
#endif
4404 4405 4406
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4407 4408
#endif

K
Kees Cook 已提交
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects objects that are incorrectly sized.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page)
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

	/* Allow address range falling entirely within object size. */
	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
		return NULL;

	return cachep->name;
}
#endif /* CONFIG_HARDENED_USERCOPY */

4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4451
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4452
{
A
Alexander Potapenko 已提交
4453 4454
	size_t size;

4455 4456
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4457
		return 0;
L
Linus Torvalds 已提交
4458

A
Alexander Potapenko 已提交
4459 4460 4461 4462
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4463
	kasan_unpoison_shadow(objp, size);
A
Alexander Potapenko 已提交
4464 4465

	return size;
L
Linus Torvalds 已提交
4466
}
K
Kirill A. Shutemov 已提交
4467
EXPORT_SYMBOL(ksize);