slab.c 106.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171 172 173 174 175 176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
A
Andrew Morton 已提交
195 196 197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198 199 200 201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
202
			 */
L
Linus Torvalds 已提交
203 204
};

J
Joonsoo Kim 已提交
205 206 207 208 209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

227 228 229
/*
 * Need this for bootstrapping a per node allocator.
 */
230
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
231
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
232
#define	CACHE_CACHE 0
233
#define	SIZE_NODE (MAX_NUMNODES)
234

235
static int drain_freelist(struct kmem_cache *cache,
236
			struct kmem_cache_node *n, int tofree);
237
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
238 239
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
240
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
241
static void cache_reap(struct work_struct *unused);
242

243 244
static int slab_early_init = 1;

245
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
246

247
static void kmem_cache_node_init(struct kmem_cache_node *parent)
248 249 250 251 252 253
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
254
	parent->colour_next = 0;
255 256 257 258 259
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
260 261 262
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
263
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
264 265
	} while (0)

A
Andrew Morton 已提交
266 267
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
268 269 270 271
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
272 273 274

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
275
#define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
L
Linus Torvalds 已提交
276 277

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
278 279 280
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
281
 *
A
Adrian Bunk 已提交
282
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
283 284
 * which could lock up otherwise freeable slabs.
 */
285 286
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
287 288 289 290 291 292

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
293
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
294 295 296 297 298
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
299 300
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
301
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
302
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
303 304 305 306 307
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
308 309 310 311 312 313 314 315 316
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
317
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
318 319 320
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
321
#define	STATS_INC_NODEFREES(x)	do { } while (0)
322
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
323
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
324 325 326 327 328 329 330 331
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
332 333
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
334
 * 0		: objp
335
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
336 337
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
338
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
339
 * 		redzone word.
340
 * cachep->obj_offset: The real object.
341 342
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
343
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
344
 */
345
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
346
{
347
	return cachep->obj_offset;
L
Linus Torvalds 已提交
348 349
}

350
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
351 352
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
353 354
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
355 356
}

357
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
358 359 360
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
361
		return (unsigned long long *)(objp + cachep->size -
362
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
363
					      REDZONE_ALIGN);
364
	return (unsigned long long *) (objp + cachep->size -
365
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
366 367
}

368
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
369 370
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
371
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
372 373 374 375
}

#else

376
#define obj_offset(x)			0
377 378
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
379 380 381 382
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

383 384
#ifdef CONFIG_DEBUG_SLAB_LEAK

385
static inline bool is_store_user_clean(struct kmem_cache *cachep)
386
{
387 388
	return atomic_read(&cachep->store_user_clean) == 1;
}
389

390 391 392 393
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
394

395 396 397 398
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
399 400 401
}

#else
402
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
403 404 405

#endif

L
Linus Torvalds 已提交
406
/*
407 408
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
409
 */
410 411 412
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
413
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
414

415 416
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
417
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
418
	return page->slab_cache;
419 420
}

421
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
422 423
				 unsigned int idx)
{
424
	return page->s_mem + cache->size * idx;
425 426
}

427
/*
428 429 430
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
431 432 433
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
434
					const struct page *page, void *obj)
435
{
436
	u32 offset = (obj - page->s_mem);
437
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
438 439
}

440
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
441
/* internal cache of cache description objs */
442
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
443 444 445
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
446
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
447
	.name = "kmem_cache",
L
Linus Torvalds 已提交
448 449
};

450 451
#define BAD_ALIEN_MAGIC 0x01020304ul

452
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
453

454
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
455
{
456
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
457 458
}

A
Andrew Morton 已提交
459 460 461
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
462
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
463
		unsigned long flags, size_t *left_over, unsigned int *num)
464 465
{
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
466

467 468 469 470 471 472
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
473 474 475 476 477
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
478 479 480 481 482 483 484
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
485 486
		*num = slab_size / buffer_size;
		*left_over = slab_size % buffer_size;
487
	} else {
488 489 490
		*num = slab_size / (buffer_size + sizeof(freelist_idx_t));
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
491
	}
L
Linus Torvalds 已提交
492 493
}

494
#if DEBUG
495
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
496

A
Andrew Morton 已提交
497 498
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
499 500
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
501
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
502
	dump_stack();
503
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
504
}
505
#endif
L
Linus Torvalds 已提交
506

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

523 524 525 526 527 528 529 530 531 532 533
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

534 535 536 537 538 539 540
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
541
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
542 543 544 545 546

static void init_reap_node(int cpu)
{
	int node;

547
	node = next_node(cpu_to_mem(cpu), node_online_map);
548
	if (node == MAX_NUMNODES)
549
		node = first_node(node_online_map);
550

551
	per_cpu(slab_reap_node, cpu) = node;
552 553 554 555
}

static void next_reap_node(void)
{
556
	int node = __this_cpu_read(slab_reap_node);
557 558 559 560

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
561
	__this_cpu_write(slab_reap_node, node);
562 563 564 565 566 567 568
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
569 570 571 572 573 574 575
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
576
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
577
{
578
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
579 580 581 582 583 584

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
585
	if (keventd_up() && reap_work->work.func == NULL) {
586
		init_reap_node(cpu);
587
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
588 589
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
590 591 592
	}
}

593
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
594
{
595 596
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
597
	 * However, when such objects are allocated or transferred to another
598 599 600 601
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
602 603 604 605 606 607
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
608
	}
609 610 611 612 613
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
614
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
615 616 617 618 619
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
620 621
}

622
static inline bool is_slab_pfmemalloc(struct page *page)
623 624 625 626 627 628 629 630
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
631
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
632
	struct page *page;
633 634 635 636 637
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

638
	spin_lock_irqsave(&n->list_lock, flags);
639 640
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
641 642
			goto out;

643 644
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
645 646
			goto out;

647 648
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
649 650 651 652
			goto out;

	pfmemalloc_active = false;
out:
653
	spin_unlock_irqrestore(&n->list_lock, flags);
654 655
}

656
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
657 658 659 660 661 662 663
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
664
		struct kmem_cache_node *n;
665 666 667 668 669 670 671

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
672
		for (i = 0; i < ac->avail; i++) {
673 674 675 676 677 678 679 680 681 682 683 684 685
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
686
		n = get_node(cachep, numa_mem_id());
687
		if (!list_empty(&n->slabs_free) && force_refill) {
688
			struct page *page = virt_to_head_page(objp);
689
			ClearPageSlabPfmemalloc(page);
690 691 692 693 694 695 696 697 698 699 700 701 702
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

703 704 705 706 707 708 709 710 711 712 713 714 715
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

J
Joonsoo Kim 已提交
716 717
static noinline void *__ac_put_obj(struct kmem_cache *cachep,
			struct array_cache *ac, void *objp)
718 719 720
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
721
		struct page *page = virt_to_head_page(objp);
722 723 724 725
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

726 727 728 729 730 731 732 733 734
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

735 736 737
	ac->entry[ac->avail++] = objp;
}

738 739 740 741 742 743 744 745 746 747
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
748
	int nr = min3(from->avail, max, to->limit - to->avail);
749 750 751 752 753 754 755 756 757 758 759 760

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

761 762 763
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
764
#define reap_alien(cachep, n) do { } while (0)
765

J
Joonsoo Kim 已提交
766 767
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
768
{
769
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
770 771
}

J
Joonsoo Kim 已提交
772
static inline void free_alien_cache(struct alien_cache **ac_ptr)
773 774 775 776 777 778 779 780 781 782 783 784 785 786
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

787
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
788 789 790 791 792
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
793 794 795 796 797
static inline gfp_t gfp_exact_node(gfp_t flags)
{
	return flags;
}

798 799
#else	/* CONFIG_NUMA */

800
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
801
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
802

J
Joonsoo Kim 已提交
803 804 805
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
806
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
807 808 809 810
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
811
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
812 813 814 815
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
816
{
J
Joonsoo Kim 已提交
817
	struct alien_cache **alc_ptr;
818
	size_t memsize = sizeof(void *) * nr_node_ids;
819 820 821 822
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
836 837
		}
	}
J
Joonsoo Kim 已提交
838
	return alc_ptr;
839 840
}

J
Joonsoo Kim 已提交
841
static void free_alien_cache(struct alien_cache **alc_ptr)
842 843 844
{
	int i;

J
Joonsoo Kim 已提交
845
	if (!alc_ptr)
846 847
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
848 849
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
850 851
}

852
static void __drain_alien_cache(struct kmem_cache *cachep,
853 854
				struct array_cache *ac, int node,
				struct list_head *list)
855
{
856
	struct kmem_cache_node *n = get_node(cachep, node);
857 858

	if (ac->avail) {
859
		spin_lock(&n->list_lock);
860 861 862 863 864
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
865 866
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
867

868
		free_block(cachep, ac->entry, ac->avail, node, list);
869
		ac->avail = 0;
870
		spin_unlock(&n->list_lock);
871 872 873
	}
}

874 875 876
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
877
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
878
{
879
	int node = __this_cpu_read(slab_reap_node);
880

881
	if (n->alien) {
J
Joonsoo Kim 已提交
882 883 884 885 886
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
887
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
888 889 890
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
891
				spin_unlock_irq(&alc->lock);
892
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
893
			}
894 895 896 897
		}
	}
}

A
Andrew Morton 已提交
898
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
899
				struct alien_cache **alien)
900
{
P
Pekka Enberg 已提交
901
	int i = 0;
J
Joonsoo Kim 已提交
902
	struct alien_cache *alc;
903 904 905 906
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
907 908
		alc = alien[i];
		if (alc) {
909 910
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
911
			ac = &alc->ac;
912
			spin_lock_irqsave(&alc->lock, flags);
913
			__drain_alien_cache(cachep, ac, i, &list);
914
			spin_unlock_irqrestore(&alc->lock, flags);
915
			slabs_destroy(cachep, &list);
916 917 918
		}
	}
}
919

920 921
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
922
{
923
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
924 925
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
926
	LIST_HEAD(list);
P
Pekka Enberg 已提交
927

928
	n = get_node(cachep, node);
929
	STATS_INC_NODEFREES(cachep);
930 931
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
932
		ac = &alien->ac;
933
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
934
		if (unlikely(ac->avail == ac->limit)) {
935
			STATS_INC_ACOVERFLOW(cachep);
936
			__drain_alien_cache(cachep, ac, page_node, &list);
937
		}
J
Joonsoo Kim 已提交
938
		ac_put_obj(cachep, ac, objp);
939
		spin_unlock(&alien->lock);
940
		slabs_destroy(cachep, &list);
941
	} else {
942
		n = get_node(cachep, page_node);
943
		spin_lock(&n->list_lock);
944
		free_block(cachep, &objp, 1, page_node, &list);
945
		spin_unlock(&n->list_lock);
946
		slabs_destroy(cachep, &list);
947 948 949
	}
	return 1;
}
950 951 952 953 954 955 956 957 958 959 960 961 962 963

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
964 965

/*
966 967
 * Construct gfp mask to allocate from a specific node but do not direct reclaim
 * or warn about failures. kswapd may still wake to reclaim in the background.
D
David Rientjes 已提交
968 969 970
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
971
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
D
David Rientjes 已提交
972
}
973 974
#endif

975
/*
976
 * Allocates and initializes node for a node on each slab cache, used for
977
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
978
 * will be allocated off-node since memory is not yet online for the new node.
979
 * When hotplugging memory or a cpu, existing node are not replaced if
980 981
 * already in use.
 *
982
 * Must hold slab_mutex.
983
 */
984
static int init_cache_node_node(int node)
985 986
{
	struct kmem_cache *cachep;
987
	struct kmem_cache_node *n;
988
	const size_t memsize = sizeof(struct kmem_cache_node);
989

990
	list_for_each_entry(cachep, &slab_caches, list) {
991
		/*
992
		 * Set up the kmem_cache_node for cpu before we can
993 994 995
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
996 997
		n = get_node(cachep, node);
		if (!n) {
998 999
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1000
				return -ENOMEM;
1001
			kmem_cache_node_init(n);
1002 1003
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1004 1005

			/*
1006 1007
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1008 1009
			 * protection here.
			 */
1010
			cachep->node[node] = n;
1011 1012
		}

1013 1014
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1015 1016
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1017
		spin_unlock_irq(&n->list_lock);
1018 1019 1020 1021
	}
	return 0;
}

1022 1023 1024 1025 1026 1027
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1028
static void cpuup_canceled(long cpu)
1029 1030
{
	struct kmem_cache *cachep;
1031
	struct kmem_cache_node *n = NULL;
1032
	int node = cpu_to_mem(cpu);
1033
	const struct cpumask *mask = cpumask_of_node(node);
1034

1035
	list_for_each_entry(cachep, &slab_caches, list) {
1036 1037
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
1038
		struct alien_cache **alien;
1039
		LIST_HEAD(list);
1040

1041
		n = get_node(cachep, node);
1042
		if (!n)
1043
			continue;
1044

1045
		spin_lock_irq(&n->list_lock);
1046

1047 1048
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1049 1050 1051 1052

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1053
			free_block(cachep, nc->entry, nc->avail, node, &list);
1054 1055
			nc->avail = 0;
		}
1056

1057
		if (!cpumask_empty(mask)) {
1058
			spin_unlock_irq(&n->list_lock);
1059
			goto free_slab;
1060 1061
		}

1062
		shared = n->shared;
1063 1064
		if (shared) {
			free_block(cachep, shared->entry,
1065
				   shared->avail, node, &list);
1066
			n->shared = NULL;
1067 1068
		}

1069 1070
		alien = n->alien;
		n->alien = NULL;
1071

1072
		spin_unlock_irq(&n->list_lock);
1073 1074 1075 1076 1077 1078

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1079 1080

free_slab:
1081
		slabs_destroy(cachep, &list);
1082 1083 1084 1085 1086 1087
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1088
	list_for_each_entry(cachep, &slab_caches, list) {
1089
		n = get_node(cachep, node);
1090
		if (!n)
1091
			continue;
1092
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1093 1094 1095
	}
}

1096
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1097
{
1098
	struct kmem_cache *cachep;
1099
	struct kmem_cache_node *n = NULL;
1100
	int node = cpu_to_mem(cpu);
1101
	int err;
L
Linus Torvalds 已提交
1102

1103 1104 1105 1106
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1107
	 * kmem_cache_node and not this cpu's kmem_cache_node
1108
	 */
1109
	err = init_cache_node_node(node);
1110 1111
	if (err < 0)
		goto bad;
1112 1113 1114 1115 1116

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1117
	list_for_each_entry(cachep, &slab_caches, list) {
1118
		struct array_cache *shared = NULL;
J
Joonsoo Kim 已提交
1119
		struct alien_cache **alien = NULL;
1120 1121 1122 1123

		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1124
				0xbaadf00d, GFP_KERNEL);
1125
			if (!shared)
L
Linus Torvalds 已提交
1126
				goto bad;
1127 1128
		}
		if (use_alien_caches) {
1129
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1130 1131
			if (!alien) {
				kfree(shared);
1132
				goto bad;
1133
			}
1134
		}
1135
		n = get_node(cachep, node);
1136
		BUG_ON(!n);
1137

1138 1139
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1140 1141 1142 1143
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1144
			n->shared = shared;
1145 1146
			shared = NULL;
		}
1147
#ifdef CONFIG_NUMA
1148 1149
		if (!n->alien) {
			n->alien = alien;
1150
			alien = NULL;
L
Linus Torvalds 已提交
1151
		}
1152
#endif
1153
		spin_unlock_irq(&n->list_lock);
1154 1155 1156
		kfree(shared);
		free_alien_cache(alien);
	}
1157

1158 1159
	return 0;
bad:
1160
	cpuup_canceled(cpu);
1161 1162 1163
	return -ENOMEM;
}

1164
static int cpuup_callback(struct notifier_block *nfb,
1165 1166 1167 1168 1169 1170 1171 1172
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1173
		mutex_lock(&slab_mutex);
1174
		err = cpuup_prepare(cpu);
1175
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1176 1177
		break;
	case CPU_ONLINE:
1178
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1179 1180 1181
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1182
  	case CPU_DOWN_PREPARE:
1183
  	case CPU_DOWN_PREPARE_FROZEN:
1184
		/*
1185
		 * Shutdown cache reaper. Note that the slab_mutex is
1186 1187 1188 1189
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1190
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1191
		/* Now the cache_reaper is guaranteed to be not running. */
1192
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1193 1194
  		break;
  	case CPU_DOWN_FAILED:
1195
  	case CPU_DOWN_FAILED_FROZEN:
1196 1197
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1198
	case CPU_DEAD:
1199
	case CPU_DEAD_FROZEN:
1200 1201
		/*
		 * Even if all the cpus of a node are down, we don't free the
1202
		 * kmem_cache_node of any cache. This to avoid a race between
1203
		 * cpu_down, and a kmalloc allocation from another cpu for
1204
		 * memory from the node of the cpu going down.  The node
1205 1206 1207
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1208
		/* fall through */
1209
#endif
L
Linus Torvalds 已提交
1210
	case CPU_UP_CANCELED:
1211
	case CPU_UP_CANCELED_FROZEN:
1212
		mutex_lock(&slab_mutex);
1213
		cpuup_canceled(cpu);
1214
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1215 1216
		break;
	}
1217
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1218 1219
}

1220
static struct notifier_block cpucache_notifier = {
1221 1222
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1223

1224 1225 1226 1227 1228 1229
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1230
 * Must hold slab_mutex.
1231
 */
1232
static int __meminit drain_cache_node_node(int node)
1233 1234 1235 1236
{
	struct kmem_cache *cachep;
	int ret = 0;

1237
	list_for_each_entry(cachep, &slab_caches, list) {
1238
		struct kmem_cache_node *n;
1239

1240
		n = get_node(cachep, node);
1241
		if (!n)
1242 1243
			continue;

1244
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1245

1246 1247
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1268
		mutex_lock(&slab_mutex);
1269
		ret = init_cache_node_node(nid);
1270
		mutex_unlock(&slab_mutex);
1271 1272
		break;
	case MEM_GOING_OFFLINE:
1273
		mutex_lock(&slab_mutex);
1274
		ret = drain_cache_node_node(nid);
1275
		mutex_unlock(&slab_mutex);
1276 1277 1278 1279 1280 1281 1282 1283
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1284
	return notifier_from_errno(ret);
1285 1286 1287
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1288
/*
1289
 * swap the static kmem_cache_node with kmalloced memory
1290
 */
1291
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1292
				int nodeid)
1293
{
1294
	struct kmem_cache_node *ptr;
1295

1296
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1297 1298
	BUG_ON(!ptr);

1299
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1300 1301 1302 1303 1304
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1305
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1306
	cachep->node[nodeid] = ptr;
1307 1308
}

1309
/*
1310 1311
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1312
 */
1313
static void __init set_up_node(struct kmem_cache *cachep, int index)
1314 1315 1316 1317
{
	int node;

	for_each_online_node(node) {
1318
		cachep->node[node] = &init_kmem_cache_node[index + node];
1319
		cachep->node[node]->next_reap = jiffies +
1320 1321
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1322 1323 1324
	}
}

A
Andrew Morton 已提交
1325 1326 1327
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1328 1329 1330
 */
void __init kmem_cache_init(void)
{
1331 1332
	int i;

1333 1334
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1335 1336
	kmem_cache = &kmem_cache_boot;

1337
	if (num_possible_nodes() == 1)
1338 1339
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1340
	for (i = 0; i < NUM_INIT_LISTS; i++)
1341
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1342

L
Linus Torvalds 已提交
1343 1344
	/*
	 * Fragmentation resistance on low memory - only use bigger
1345 1346
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1347
	 */
1348
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1349
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1350 1351 1352

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1353 1354 1355
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1356
	 *    Initially an __init data area is used for the head array and the
1357
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1358
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1359
	 * 2) Create the first kmalloc cache.
1360
	 *    The struct kmem_cache for the new cache is allocated normally.
1361 1362 1363
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1364
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1365
	 *    kmalloc cache with kmalloc allocated arrays.
1366
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1367 1368
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1369 1370
	 */

1371
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1372

E
Eric Dumazet 已提交
1373
	/*
1374
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1375
	 */
1376
	create_boot_cache(kmem_cache, "kmem_cache",
1377
		offsetof(struct kmem_cache, node) +
1378
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1379 1380
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1381
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1382

A
Andrew Morton 已提交
1383
	/*
1384 1385
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1386
	 */
1387
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1388
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1389
	slab_state = PARTIAL_NODE;
1390
	setup_kmalloc_cache_index_table();
1391

1392 1393
	slab_early_init = 0;

1394
	/* 5) Replace the bootstrap kmem_cache_node */
1395
	{
P
Pekka Enberg 已提交
1396 1397
		int nid;

1398
		for_each_online_node(nid) {
1399
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1400

1401
			init_list(kmalloc_caches[INDEX_NODE],
1402
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1403 1404
		}
	}
L
Linus Torvalds 已提交
1405

1406
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1407 1408 1409 1410 1411 1412
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1413
	slab_state = UP;
P
Peter Zijlstra 已提交
1414

1415
	/* 6) resize the head arrays to their final sizes */
1416 1417
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1418 1419
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1420
	mutex_unlock(&slab_mutex);
1421

1422 1423 1424
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1425 1426 1427
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1428 1429 1430
	 */
	register_cpu_notifier(&cpucache_notifier);

1431 1432 1433
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1434
	 * node.
1435 1436 1437 1438
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1439 1440 1441
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447 1448
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1449 1450
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1451
	 */
1452
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1453
		start_cpu_timer(cpu);
1454 1455

	/* Done! */
1456
	slab_state = FULL;
L
Linus Torvalds 已提交
1457 1458 1459 1460
	return 0;
}
__initcall(cpucache_init);

1461 1462 1463
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1464
#if DEBUG
1465
	struct kmem_cache_node *n;
1466
	struct page *page;
1467 1468
	unsigned long flags;
	int node;
1469 1470 1471 1472 1473
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1474 1475 1476 1477 1478

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1479
		cachep->name, cachep->size, cachep->gfporder);
1480

1481
	for_each_kmem_cache_node(cachep, node, n) {
1482 1483 1484
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1485
		spin_lock_irqsave(&n->list_lock, flags);
1486
		list_for_each_entry(page, &n->slabs_full, lru) {
1487 1488 1489
			active_objs += cachep->num;
			active_slabs++;
		}
1490 1491
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1492 1493
			active_slabs++;
		}
1494
		list_for_each_entry(page, &n->slabs_free, lru)
1495 1496
			num_slabs++;

1497 1498
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1499 1500 1501 1502 1503 1504 1505 1506

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1507
#endif
1508 1509
}

L
Linus Torvalds 已提交
1510
/*
W
Wang Sheng-Hui 已提交
1511 1512
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1513 1514 1515 1516 1517
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1518 1519
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1520 1521
{
	struct page *page;
1522
	int nr_pages;
1523

1524
	flags |= cachep->allocflags;
1525 1526
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1527

1528
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1529
	if (!page) {
1530
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1531
		return NULL;
1532
	}
L
Linus Torvalds 已提交
1533

1534 1535 1536 1537 1538
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1539
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1540
	if (page_is_pfmemalloc(page))
1541 1542
		pfmemalloc_active = true;

1543
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1544
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1545 1546 1547 1548 1549
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1550
	__SetPageSlab(page);
1551
	if (page_is_pfmemalloc(page))
1552
		SetPageSlabPfmemalloc(page);
1553

1554 1555 1556 1557 1558 1559 1560 1561
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1562

1563
	return page;
L
Linus Torvalds 已提交
1564 1565 1566 1567 1568
}

/*
 * Interface to system's page release.
 */
1569
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1570
{
1571
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1572

1573
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1574

1575 1576 1577 1578 1579 1580
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1581

1582
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1583
	__ClearPageSlabPfmemalloc(page);
1584
	__ClearPageSlab(page);
1585 1586
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1587

L
Linus Torvalds 已提交
1588 1589
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1590
	__free_kmem_pages(page, cachep->gfporder);
L
Linus Torvalds 已提交
1591 1592 1593 1594
}

static void kmem_rcu_free(struct rcu_head *head)
{
1595 1596
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1597

1598 1599 1600 1601
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1602 1603 1604
}

#if DEBUG
1605 1606 1607 1608 1609 1610 1611 1612
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1613 1614

#ifdef CONFIG_DEBUG_PAGEALLOC
1615
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1616
			    unsigned long caller)
L
Linus Torvalds 已提交
1617
{
1618
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1619

1620
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1621

P
Pekka Enberg 已提交
1622
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1623 1624
		return;

P
Pekka Enberg 已提交
1625 1626 1627 1628
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1629 1630 1631 1632 1633 1634 1635
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1636
				*addr++ = svalue;
L
Linus Torvalds 已提交
1637 1638 1639 1640 1641 1642 1643
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1644
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1645
}
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1663 1664
#endif

1665
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1666
{
1667
	int size = cachep->object_size;
1668
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1669 1670

	memset(addr, val, size);
P
Pekka Enberg 已提交
1671
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1672 1673 1674 1675 1676
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1677 1678 1679
	unsigned char error = 0;
	int bad_count = 0;

1680
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1681 1682 1683 1684 1685 1686
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1687 1688
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1703 1704 1705 1706 1707
}
#endif

#if DEBUG

1708
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1709 1710 1711 1712 1713
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1714
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1715 1716
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1717 1718 1719
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1720 1721 1722
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1723
	}
1724
	realobj = (char *)objp + obj_offset(cachep);
1725
	size = cachep->object_size;
P
Pekka Enberg 已提交
1726
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1727 1728
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1729 1730
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1731 1732 1733 1734
		dump_line(realobj, i, limit);
	}
}

1735
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1736 1737 1738 1739 1740
{
	char *realobj;
	int size, i;
	int lines = 0;

1741 1742 1743
	if (is_debug_pagealloc_cache(cachep))
		return;

1744
	realobj = (char *)objp + obj_offset(cachep);
1745
	size = cachep->object_size;
L
Linus Torvalds 已提交
1746

P
Pekka Enberg 已提交
1747
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1748
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1749
		if (i == size - 1)
L
Linus Torvalds 已提交
1750 1751 1752 1753 1754 1755
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1756
				printk(KERN_ERR
1757 1758
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1759 1760 1761
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1762
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1763
			limit = 16;
P
Pekka Enberg 已提交
1764 1765
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1778
		struct page *page = virt_to_head_page(objp);
1779
		unsigned int objnr;
L
Linus Torvalds 已提交
1780

1781
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1782
		if (objnr) {
1783
			objp = index_to_obj(cachep, page, objnr - 1);
1784
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1785
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1786
			       realobj, size);
L
Linus Torvalds 已提交
1787 1788
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1789
		if (objnr + 1 < cachep->num) {
1790
			objp = index_to_obj(cachep, page, objnr + 1);
1791
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1792
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1793
			       realobj, size);
L
Linus Torvalds 已提交
1794 1795 1796 1797 1798 1799
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1800
#if DEBUG
1801 1802
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1803 1804 1805
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1806
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1807 1808 1809

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1810
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1811 1812 1813 1814
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1815
					   "was overwritten");
L
Linus Torvalds 已提交
1816 1817
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1818
					   "was overwritten");
L
Linus Torvalds 已提交
1819 1820
		}
	}
1821
}
L
Linus Torvalds 已提交
1822
#else
1823 1824
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1825 1826
{
}
L
Linus Torvalds 已提交
1827 1828
#endif

1829 1830 1831
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1832
 * @page: page pointer being destroyed
1833
 *
W
Wang Sheng-Hui 已提交
1834 1835 1836
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1837
 */
1838
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1839
{
1840
	void *freelist;
1841

1842 1843
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1844 1845 1846
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1847
		kmem_freepages(cachep, page);
1848 1849

	/*
1850
	 * From now on, we don't use freelist
1851 1852 1853
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1854
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1855 1856
}

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1867
/**
1868 1869 1870 1871 1872 1873
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1874 1875 1876 1877 1878
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1879
static size_t calculate_slab_order(struct kmem_cache *cachep,
1880
				size_t size, unsigned long flags)
1881
{
1882
	unsigned long offslab_limit;
1883
	size_t left_over = 0;
1884
	int gfporder;
1885

1886
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1887 1888 1889
		unsigned int num;
		size_t remainder;

1890
		cache_estimate(gfporder, size, flags, &remainder, &num);
1891 1892
		if (!num)
			continue;
1893

1894 1895 1896 1897
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1898 1899 1900 1901 1902 1903
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
1904
			offslab_limit = size;
1905
			offslab_limit /= sizeof(freelist_idx_t);
1906 1907 1908 1909

 			if (num > offslab_limit)
				break;
		}
1910

1911
		/* Found something acceptable - save it away */
1912
		cachep->num = num;
1913
		cachep->gfporder = gfporder;
1914 1915
		left_over = remainder;

1916 1917 1918 1919 1920 1921 1922 1923
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1924 1925 1926 1927
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1928
		if (gfporder >= slab_max_order)
1929 1930
			break;

1931 1932 1933
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1934
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1935 1936 1937 1938 1939
			break;
	}
	return left_over;
}

1940 1941 1942 1943 1944 1945 1946 1947
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1948
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1961
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1962
{
1963
	if (slab_state >= FULL)
1964
		return enable_cpucache(cachep, gfp);
1965

1966 1967 1968 1969
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1970
	if (slab_state == DOWN) {
1971 1972
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1973
	} else if (slab_state == PARTIAL) {
1974 1975
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1976
	} else {
1977
		int node;
1978

1979 1980 1981 1982 1983
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1984 1985
		}
	}
1986

1987
	cachep->node[numa_mem_id()]->next_reap =
1988 1989
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1990 1991 1992 1993 1994 1995 1996

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1997
	return 0;
1998 1999
}

J
Joonsoo Kim 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
	 */
	if (size < OFF_SLAB_MIN_SIZE)
		return false;

	if (slab_early_init)
		return false;

	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
2084
/**
2085
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2086
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2087 2088 2089 2090
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2091
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2105
int
2106
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2107
{
2108
	size_t ralign = BYTES_PER_WORD;
2109
	gfp_t gfp;
2110
	int err;
2111
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2121 2122
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2123
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2124 2125 2126 2127 2128
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2129 2130
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2131 2132 2133
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2134 2135 2136
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2137 2138
	}

D
David Woodhouse 已提交
2139 2140 2141 2142 2143 2144 2145
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2146

2147
	/* 3) caller mandated alignment */
2148 2149
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2150
	}
2151 2152
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2153
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2154
	/*
2155
	 * 4) Store it.
L
Linus Torvalds 已提交
2156
	 */
2157
	cachep->align = ralign;
2158 2159 2160 2161
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2162

2163 2164 2165 2166 2167
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2168 2169
#if DEBUG

2170 2171 2172 2173
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2174 2175
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2176 2177
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2178 2179
	}
	if (flags & SLAB_STORE_USER) {
2180
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2181 2182
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2183
		 */
D
David Woodhouse 已提交
2184 2185 2186 2187
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2188
	}
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
#endif

	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2200 2201 2202 2203 2204 2205 2206
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2207
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2208
		!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2209
		size >= 256 && cachep->object_size > cache_line_size() &&
2210 2211
		size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2212 2213 2214 2215
		size = PAGE_SIZE;
	}
#endif

2216
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2217
		flags |= CFLGS_OFF_SLAB;
2218
		goto done;
2219
	}
L
Linus Torvalds 已提交
2220

2221 2222
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2223

2224
	return -E2BIG;
L
Linus Torvalds 已提交
2225

2226 2227
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2228
	cachep->flags = flags;
2229
	cachep->allocflags = __GFP_COMP;
2230
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2231
		cachep->allocflags |= GFP_DMA;
2232
	cachep->size = size;
2233
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2234

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2248 2249
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2250
		/*
2251
		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2252
		 * But since we go off slab only for object size greater than
2253
		 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
2254
		 * in ascending order,this should not happen at all.
2255 2256
		 * But leave a BUG_ON for some lucky dude.
		 */
2257
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2258
	}
L
Linus Torvalds 已提交
2259

2260 2261
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2262
		__kmem_cache_release(cachep);
2263
		return err;
2264
	}
L
Linus Torvalds 已提交
2265

2266
	return 0;
L
Linus Torvalds 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2280
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2281 2282 2283
{
#ifdef CONFIG_SMP
	check_irq_off();
2284
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2285 2286
#endif
}
2287

2288
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2289 2290 2291
{
#ifdef CONFIG_SMP
	check_irq_off();
2292
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2293 2294 2295
#endif
}

L
Linus Torvalds 已提交
2296 2297 2298 2299
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2300
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2301 2302
#endif

2303
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2304 2305 2306
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2307 2308
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2309
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2310
	struct array_cache *ac;
2311
	int node = numa_mem_id();
2312
	struct kmem_cache_node *n;
2313
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2314 2315

	check_irq_off();
2316
	ac = cpu_cache_get(cachep);
2317 2318
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2319
	free_block(cachep, ac->entry, ac->avail, node, &list);
2320
	spin_unlock(&n->list_lock);
2321
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2322 2323 2324
	ac->avail = 0;
}

2325
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2326
{
2327
	struct kmem_cache_node *n;
2328 2329
	int node;

2330
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2331
	check_irq_on();
2332 2333
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2334
			drain_alien_cache(cachep, n->alien);
2335

2336 2337
	for_each_kmem_cache_node(cachep, node, n)
		drain_array(cachep, n, n->shared, 1, node);
L
Linus Torvalds 已提交
2338 2339
}

2340 2341 2342 2343 2344 2345 2346
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2347
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2348
{
2349 2350
	struct list_head *p;
	int nr_freed;
2351
	struct page *page;
L
Linus Torvalds 已提交
2352

2353
	nr_freed = 0;
2354
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2355

2356 2357 2358 2359
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2360 2361
			goto out;
		}
L
Linus Torvalds 已提交
2362

2363 2364
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2365 2366 2367 2368
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2369 2370
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2371
		slab_destroy(cache, page);
2372
		nr_freed++;
L
Linus Torvalds 已提交
2373
	}
2374 2375
out:
	return nr_freed;
L
Linus Torvalds 已提交
2376 2377
}

2378
int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2379
{
2380 2381
	int ret = 0;
	int node;
2382
	struct kmem_cache_node *n;
2383 2384 2385 2386

	drain_cpu_caches(cachep);

	check_irq_on();
2387
	for_each_kmem_cache_node(cachep, node, n) {
2388
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2389

2390 2391
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2392 2393 2394 2395
	}
	return (ret ? 1 : 0);
}

2396
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2397 2398 2399 2400 2401
{
	return __kmem_cache_shrink(cachep, false);
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2402
{
2403
	int i;
2404
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2405

2406
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2407

2408
	/* NUMA: free the node structures */
2409 2410 2411 2412 2413
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2414
	}
L
Linus Torvalds 已提交
2415 2416
}

2417 2418
/*
 * Get the memory for a slab management obj.
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2430
 */
2431
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2432 2433
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2434
{
2435
	void *freelist;
2436
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2437

2438 2439 2440
	page->s_mem = addr + colour_off;
	page->active = 0;

L
Linus Torvalds 已提交
2441 2442
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2443
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2444
					      local_flags, nodeid);
2445
		if (!freelist)
L
Linus Torvalds 已提交
2446 2447
			return NULL;
	} else {
2448 2449 2450
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2451
	}
2452

2453
	return freelist;
L
Linus Torvalds 已提交
2454 2455
}

2456
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2457
{
2458
	return ((freelist_idx_t *)page->freelist)[idx];
2459 2460 2461
}

static inline void set_free_obj(struct page *page,
2462
					unsigned int idx, freelist_idx_t val)
2463
{
2464
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2465 2466
}

2467
static void cache_init_objs(struct kmem_cache *cachep,
2468
			    struct page *page)
L
Linus Torvalds 已提交
2469 2470 2471 2472
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2473
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482
#if DEBUG
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2483 2484 2485
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2486 2487
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2488
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2489 2490 2491 2492

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2493
					   " end of an object");
L
Linus Torvalds 已提交
2494 2495
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2496
					   " start of an object");
L
Linus Torvalds 已提交
2497
		}
2498 2499 2500 2501 2502
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
L
Linus Torvalds 已提交
2503 2504
#else
		if (cachep->ctor)
2505
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2506
#endif
2507
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2508 2509 2510
	}
}

2511
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2512
{
2513 2514
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2515
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2516
		else
2517
			BUG_ON(cachep->allocflags & GFP_DMA);
2518
	}
L
Linus Torvalds 已提交
2519 2520
}

2521
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2522
{
2523
	void *objp;
2524

2525
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2526
	page->active++;
2527

2528 2529 2530 2531 2532
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2533 2534 2535
	return objp;
}

2536 2537
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2538
{
2539
	unsigned int objnr = obj_to_index(cachep, page, objp);
2540
#if DEBUG
J
Joonsoo Kim 已提交
2541
	unsigned int i;
2542 2543

	/* Verify double free bug */
2544
	for (i = page->active; i < cachep->num; i++) {
2545
		if (get_free_obj(page, i) == objnr) {
2546 2547 2548 2549
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2550 2551
	}
#endif
2552
	page->active--;
2553
	set_free_obj(page, page->active, objnr);
2554 2555
}

2556 2557 2558
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2559
 * virtual address for kfree, ksize, and slab debugging.
2560
 */
2561
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2562
			   void *freelist)
L
Linus Torvalds 已提交
2563
{
2564
	page->slab_cache = cache;
2565
	page->freelist = freelist;
L
Linus Torvalds 已提交
2566 2567 2568 2569 2570 2571
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2572
static int cache_grow(struct kmem_cache *cachep,
2573
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2574
{
2575
	void *freelist;
P
Pekka Enberg 已提交
2576 2577
	size_t offset;
	gfp_t local_flags;
2578
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2579

A
Andrew Morton 已提交
2580 2581 2582
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2583
	 */
2584 2585 2586 2587
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
2588
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2589

2590
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2591
	check_irq_off();
2592
	n = get_node(cachep, nodeid);
2593
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2594 2595

	/* Get colour for the slab, and cal the next value. */
2596 2597 2598 2599 2600
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2601

2602
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2603

2604
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2615 2616 2617
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2618
	 */
2619 2620 2621
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2622 2623 2624
		goto failed;

	/* Get slab management. */
2625
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2626
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2627
	if (!freelist)
L
Linus Torvalds 已提交
2628 2629
		goto opps1;

2630
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2631

2632
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2633

2634
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2635 2636
		local_irq_disable();
	check_irq_off();
2637
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2638 2639

	/* Make slab active. */
2640
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2641
	STATS_INC_GROWN(cachep);
2642 2643
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2644
	return 1;
A
Andrew Morton 已提交
2645
opps1:
2646
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2647
failed:
2648
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2664 2665
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2666 2667 2668
	}
}

2669 2670
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2671
	unsigned long long redzone1, redzone2;
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2687
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2688 2689 2690
			obj, redzone1, redzone2);
}

2691
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2692
				   unsigned long caller)
L
Linus Torvalds 已提交
2693 2694
{
	unsigned int objnr;
2695
	struct page *page;
L
Linus Torvalds 已提交
2696

2697 2698
	BUG_ON(virt_to_cache(objp) != cachep);

2699
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2700
	kfree_debugcheck(objp);
2701
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2702 2703

	if (cachep->flags & SLAB_RED_ZONE) {
2704
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2705 2706 2707
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2708 2709
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2710
		*dbg_userword(cachep, objp) = (void *)caller;
2711
	}
L
Linus Torvalds 已提交
2712

2713
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2714 2715

	BUG_ON(objnr >= cachep->num);
2716
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2717 2718 2719

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2720
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
static struct page *get_first_slab(struct kmem_cache_node *n)
{
	struct page *page;

	page = list_first_entry_or_null(&n->slabs_partial,
			struct page, lru);
	if (!page) {
		n->free_touched = 1;
		page = list_first_entry_or_null(&n->slabs_free,
				struct page, lru);
	}

	return page;
}

2745 2746
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2747 2748
{
	int batchcount;
2749
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2750
	struct array_cache *ac;
P
Pekka Enberg 已提交
2751 2752
	int node;

L
Linus Torvalds 已提交
2753
	check_irq_off();
2754
	node = numa_mem_id();
2755 2756 2757
	if (unlikely(force_refill))
		goto force_grow;
retry:
2758
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2759 2760
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2761 2762 2763 2764
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2765 2766 2767
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2768
	n = get_node(cachep, node);
2769

2770 2771
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2772

2773
	/* See if we can refill from the shared array */
2774 2775
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2776
		goto alloc_done;
2777
	}
2778

L
Linus Torvalds 已提交
2779
	while (batchcount > 0) {
2780
		struct page *page;
L
Linus Torvalds 已提交
2781
		/* Get slab alloc is to come from. */
2782 2783 2784
		page = get_first_slab(n);
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
2785 2786

		check_spinlock_acquired(cachep);
2787 2788 2789 2790 2791 2792

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2793
		BUG_ON(page->active >= cachep->num);
2794

2795
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2796 2797 2798 2799
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2800
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page));
L
Linus Torvalds 已提交
2801 2802 2803
		}

		/* move slabp to correct slabp list: */
2804 2805
		list_del(&page->lru);
		if (page->active == cachep->num)
2806
			list_add(&page->lru, &n->slabs_full);
L
Linus Torvalds 已提交
2807
		else
2808
			list_add(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
2809 2810
	}

A
Andrew Morton 已提交
2811
must_grow:
2812
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2813
alloc_done:
2814
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2815 2816 2817

	if (unlikely(!ac->avail)) {
		int x;
2818
force_grow:
D
David Rientjes 已提交
2819
		x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2820

A
Andrew Morton 已提交
2821
		/* cache_grow can reenable interrupts, then ac could change. */
2822
		ac = cpu_cache_get(cachep);
2823
		node = numa_mem_id();
2824 2825 2826

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2827 2828
			return NULL;

A
Andrew Morton 已提交
2829
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2830 2831 2832
			goto retry;
	}
	ac->touched = 1;
2833 2834

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2835 2836
}

A
Andrew Morton 已提交
2837 2838
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2839
{
2840
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
2841 2842 2843 2844 2845 2846
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2847
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2848
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2849
{
P
Pekka Enberg 已提交
2850
	if (!objp)
L
Linus Torvalds 已提交
2851
		return objp;
P
Pekka Enberg 已提交
2852
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2853
		check_poison_obj(cachep, objp);
2854
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
2855 2856 2857
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2858
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2859 2860

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2861 2862 2863 2864
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2865
			printk(KERN_ERR
2866
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
2867 2868
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2869 2870 2871 2872
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2873

2874
	objp += obj_offset(cachep);
2875
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2876
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2877 2878
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2879
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
2880
		       objp, (int)ARCH_SLAB_MINALIGN);
2881
	}
L
Linus Torvalds 已提交
2882 2883 2884 2885 2886 2887
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2888
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2889
{
P
Pekka Enberg 已提交
2890
	void *objp;
L
Linus Torvalds 已提交
2891
	struct array_cache *ac;
2892
	bool force_refill = false;
L
Linus Torvalds 已提交
2893

2894
	check_irq_off();
2895

2896
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2897 2898
	if (likely(ac->avail)) {
		ac->touched = 1;
2899 2900
		objp = ac_get_obj(cachep, ac, flags, false);

2901
		/*
2902 2903
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
2904
		 */
2905 2906 2907 2908 2909
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
2910
	}
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
2921 2922 2923 2924 2925
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
2926 2927
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
2928 2929 2930
	return objp;
}

2931
#ifdef CONFIG_NUMA
2932
/*
2933
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2934 2935 2936 2937 2938 2939 2940 2941
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

2942
	if (in_interrupt() || (flags & __GFP_THISNODE))
2943
		return NULL;
2944
	nid_alloc = nid_here = numa_mem_id();
2945
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2946
		nid_alloc = cpuset_slab_spread_node();
2947
	else if (current->mempolicy)
2948
		nid_alloc = mempolicy_slab_node();
2949
	if (nid_alloc != nid_here)
2950
		return ____cache_alloc_node(cachep, flags, nid_alloc);
2951 2952 2953
	return NULL;
}

2954 2955
/*
 * Fallback function if there was no memory available and no objects on a
2956
 * certain node and fall back is permitted. First we scan all the
2957
 * available node for available objects. If that fails then we
2958 2959 2960
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
2961
 */
2962
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2963
{
2964 2965
	struct zonelist *zonelist;
	gfp_t local_flags;
2966
	struct zoneref *z;
2967 2968
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
2969
	void *obj = NULL;
2970
	int nid;
2971
	unsigned int cpuset_mems_cookie;
2972 2973 2974 2975

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
2976
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2977

2978
retry_cpuset:
2979
	cpuset_mems_cookie = read_mems_allowed_begin();
2980
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
2981

2982 2983 2984 2985 2986
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
2987 2988
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
2989

2990
		if (cpuset_zone_allowed(zone, flags) &&
2991 2992
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
2993
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
2994
					gfp_exact_node(flags), nid);
2995 2996 2997
				if (obj)
					break;
		}
2998 2999
	}

3000
	if (!obj) {
3001 3002 3003 3004 3005 3006
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3007 3008
		struct page *page;

3009
		if (gfpflags_allow_blocking(local_flags))
3010 3011
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3012
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3013
		if (gfpflags_allow_blocking(local_flags))
3014
			local_irq_disable();
3015
		if (page) {
3016 3017 3018
			/*
			 * Insert into the appropriate per node queues
			 */
3019 3020
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3021
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3022
					gfp_exact_node(flags), nid);
3023 3024 3025 3026 3027 3028 3029 3030
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3031
				/* cache_grow already freed obj */
3032 3033 3034
				obj = NULL;
			}
		}
3035
	}
3036

3037
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3038
		goto retry_cpuset;
3039 3040 3041
	return obj;
}

3042 3043
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3044
 */
3045
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3046
				int nodeid)
3047
{
3048
	struct page *page;
3049
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3050 3051 3052
	void *obj;
	int x;

3053
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3054
	n = get_node(cachep, nodeid);
3055
	BUG_ON(!n);
P
Pekka Enberg 已提交
3056

A
Andrew Morton 已提交
3057
retry:
3058
	check_irq_off();
3059
	spin_lock(&n->list_lock);
3060 3061 3062
	page = get_first_slab(n);
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3063 3064 3065 3066 3067 3068 3069

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3070
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3071

3072
	obj = slab_get_obj(cachep, page);
3073
	n->free_objects--;
P
Pekka Enberg 已提交
3074
	/* move slabp to correct slabp list: */
3075
	list_del(&page->lru);
P
Pekka Enberg 已提交
3076

3077 3078
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3079
	else
3080
		list_add(&page->lru, &n->slabs_partial);
3081

3082
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3083
	goto done;
3084

A
Andrew Morton 已提交
3085
must_grow:
3086
	spin_unlock(&n->list_lock);
D
David Rientjes 已提交
3087
	x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3088 3089
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3090

3091
	return fallback_alloc(cachep, flags);
3092

A
Andrew Morton 已提交
3093
done:
P
Pekka Enberg 已提交
3094
	return obj;
3095
}
3096 3097

static __always_inline void *
3098
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3099
		   unsigned long caller)
3100 3101 3102
{
	unsigned long save_flags;
	void *ptr;
3103
	int slab_node = numa_mem_id();
3104

3105
	flags &= gfp_allowed_mask;
3106 3107
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3108 3109
		return NULL;

3110 3111 3112
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3113
	if (nodeid == NUMA_NO_NODE)
3114
		nodeid = slab_node;
3115

3116
	if (unlikely(!get_node(cachep, nodeid))) {
3117 3118 3119 3120 3121
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3122
	if (nodeid == slab_node) {
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3139 3140
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3141

3142
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3143 3144 3145 3146 3147 3148 3149 3150
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3151
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3162 3163
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3179
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3180 3181 3182 3183
{
	unsigned long save_flags;
	void *objp;

3184
	flags &= gfp_allowed_mask;
3185 3186
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3187 3188
		return NULL;

3189 3190 3191 3192 3193 3194 3195
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3196 3197
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3198

3199
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3200 3201
	return objp;
}
3202 3203

/*
3204
 * Caller needs to acquire correct kmem_cache_node's list_lock
3205
 * @list: List of detached free slabs should be freed by caller
3206
 */
3207 3208
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3209 3210
{
	int i;
3211
	struct kmem_cache_node *n = get_node(cachep, node);
L
Linus Torvalds 已提交
3212 3213

	for (i = 0; i < nr_objects; i++) {
3214
		void *objp;
3215
		struct page *page;
L
Linus Torvalds 已提交
3216

3217 3218 3219
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3220 3221
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3222
		check_spinlock_acquired_node(cachep, node);
3223
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3224
		STATS_DEC_ACTIVE(cachep);
3225
		n->free_objects++;
L
Linus Torvalds 已提交
3226 3227

		/* fixup slab chains */
3228
		if (page->active == 0) {
3229 3230
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3231
				list_add_tail(&page->lru, list);
L
Linus Torvalds 已提交
3232
			} else {
3233
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3234 3235 3236 3237 3238 3239
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3240
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3241 3242 3243 3244
		}
	}
}

3245
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3246 3247
{
	int batchcount;
3248
	struct kmem_cache_node *n;
3249
	int node = numa_mem_id();
3250
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3251 3252

	batchcount = ac->batchcount;
3253

L
Linus Torvalds 已提交
3254
	check_irq_off();
3255
	n = get_node(cachep, node);
3256 3257 3258
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3259
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3260 3261 3262
		if (max) {
			if (batchcount > max)
				batchcount = max;
3263
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3264
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3265 3266 3267 3268 3269
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3270
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3271
free_done:
L
Linus Torvalds 已提交
3272 3273 3274
#if STATS
	{
		int i = 0;
3275
		struct page *page;
L
Linus Torvalds 已提交
3276

3277
		list_for_each_entry(page, &n->slabs_free, lru) {
3278
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3279 3280 3281 3282 3283 3284

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3285
	spin_unlock(&n->list_lock);
3286
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3287
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3288
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3289 3290 3291
}

/*
A
Andrew Morton 已提交
3292 3293
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3294
 */
3295
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3296
				unsigned long caller)
L
Linus Torvalds 已提交
3297
{
3298
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3299 3300

	check_irq_off();
3301
	kmemleak_free_recursive(objp, cachep->flags);
3302
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3303

3304
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3305

3306 3307 3308 3309 3310 3311 3312
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3313
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3314 3315
		return;

3316
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3317 3318 3319 3320 3321
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3322

3323
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3334
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3335
{
3336
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3337

3338
	trace_kmem_cache_alloc(_RET_IP_, ret,
3339
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3340 3341

	return ret;
L
Linus Torvalds 已提交
3342 3343 3344
}
EXPORT_SYMBOL(kmem_cache_alloc);

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3355
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3356
			  void **p)
3357
{
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3376 3377
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3388
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3389 3390 3391
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3392 3393 3394
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3395
#ifdef CONFIG_TRACING
3396
void *
3397
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3398
{
3399 3400
	void *ret;

3401
	ret = slab_alloc(cachep, flags, _RET_IP_);
3402 3403

	trace_kmalloc(_RET_IP_, ret,
3404
		      size, cachep->size, flags);
3405
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3406
}
3407
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3408 3409
#endif

L
Linus Torvalds 已提交
3410
#ifdef CONFIG_NUMA
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3422 3423
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3424
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3425

3426
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3427
				    cachep->object_size, cachep->size,
3428
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3429 3430

	return ret;
3431
}
L
Linus Torvalds 已提交
3432 3433
EXPORT_SYMBOL(kmem_cache_alloc_node);

3434
#ifdef CONFIG_TRACING
3435
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3436
				  gfp_t flags,
3437 3438
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3439
{
3440 3441
	void *ret;

3442
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3443

3444
	trace_kmalloc_node(_RET_IP_, ret,
3445
			   size, cachep->size,
3446 3447
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3448
}
3449
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3450 3451
#endif

3452
static __always_inline void *
3453
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3454
{
3455
	struct kmem_cache *cachep;
3456

3457
	cachep = kmalloc_slab(size, flags);
3458 3459
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3460
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3461
}
3462 3463 3464

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3465
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3466
}
3467
EXPORT_SYMBOL(__kmalloc_node);
3468 3469

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3470
		int node, unsigned long caller)
3471
{
3472
	return __do_kmalloc_node(size, flags, node, caller);
3473 3474 3475
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3476 3477

/**
3478
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3479
 * @size: how many bytes of memory are required.
3480
 * @flags: the type of memory to allocate (see kmalloc).
3481
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3482
 */
3483
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3484
					  unsigned long caller)
L
Linus Torvalds 已提交
3485
{
3486
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3487
	void *ret;
L
Linus Torvalds 已提交
3488

3489
	cachep = kmalloc_slab(size, flags);
3490 3491
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3492
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3493

3494
	trace_kmalloc(caller, ret,
3495
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3496 3497

	return ret;
3498 3499 3500 3501
}

void *__kmalloc(size_t size, gfp_t flags)
{
3502
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3503 3504 3505
}
EXPORT_SYMBOL(__kmalloc);

3506
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3507
{
3508
	return __do_kmalloc(size, flags, caller);
3509 3510
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3511

L
Linus Torvalds 已提交
3512 3513 3514 3515 3516 3517 3518 3519
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3520
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3521 3522
{
	unsigned long flags;
3523 3524 3525
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3526 3527

	local_irq_save(flags);
3528
	debug_check_no_locks_freed(objp, cachep->object_size);
3529
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3530
		debug_check_no_obj_freed(objp, cachep->object_size);
3531
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3532
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3533

3534
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3535 3536 3537
}
EXPORT_SYMBOL(kmem_cache_free);

3538 3539 3540 3541 3542 3543 3544 3545 3546
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3547 3548 3549 3550
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3564 3565 3566 3567
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3568 3569
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3570 3571 3572 3573 3574
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3575
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3576 3577
	unsigned long flags;

3578 3579
	trace_kfree(_RET_IP_, objp);

3580
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3581 3582 3583
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3584
	c = virt_to_cache(objp);
3585 3586 3587
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3588
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3589 3590 3591 3592
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3593
/*
3594
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3595
 */
3596
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3597 3598
{
	int node;
3599
	struct kmem_cache_node *n;
3600
	struct array_cache *new_shared;
J
Joonsoo Kim 已提交
3601
	struct alien_cache **new_alien = NULL;
3602

3603
	for_each_online_node(node) {
3604

3605 3606 3607 3608 3609
		if (use_alien_caches) {
			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
			if (!new_alien)
				goto fail;
		}
3610

3611 3612 3613
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3614
				cachep->shared*cachep->batchcount,
3615
					0xbaadf00d, gfp);
3616 3617 3618 3619
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3620
		}
3621

3622
		n = get_node(cachep, node);
3623 3624
		if (n) {
			struct array_cache *shared = n->shared;
3625
			LIST_HEAD(list);
3626

3627
			spin_lock_irq(&n->list_lock);
3628

3629
			if (shared)
3630
				free_block(cachep, shared->entry,
3631
						shared->avail, node, &list);
3632

3633 3634 3635
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3636 3637
				new_alien = NULL;
			}
3638
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3639
					cachep->batchcount + cachep->num;
3640
			spin_unlock_irq(&n->list_lock);
3641
			slabs_destroy(cachep, &list);
3642
			kfree(shared);
3643 3644 3645
			free_alien_cache(new_alien);
			continue;
		}
3646 3647
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3648 3649
			free_alien_cache(new_alien);
			kfree(new_shared);
3650
			goto fail;
3651
		}
3652

3653
		kmem_cache_node_init(n);
3654 3655
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3656 3657 3658
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3659
					cachep->batchcount + cachep->num;
3660
		cachep->node[node] = n;
3661
	}
3662
	return 0;
3663

A
Andrew Morton 已提交
3664
fail:
3665
	if (!cachep->list.next) {
3666 3667 3668
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3669 3670
			n = get_node(cachep, node);
			if (n) {
3671 3672 3673
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3674
				cachep->node[node] = NULL;
3675 3676 3677 3678
			}
			node--;
		}
	}
3679
	return -ENOMEM;
3680 3681
}

3682
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3683
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3684
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3685
{
3686 3687
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3688

3689 3690
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3691 3692
		return -ENOMEM;

3693 3694 3695
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3696

L
Linus Torvalds 已提交
3697 3698 3699
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3700
	cachep->shared = shared;
L
Linus Torvalds 已提交
3701

3702 3703 3704 3705
	if (!prev)
		goto alloc_node;

	for_each_online_cpu(cpu) {
3706
		LIST_HEAD(list);
3707 3708
		int node;
		struct kmem_cache_node *n;
3709
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3710

3711
		node = cpu_to_mem(cpu);
3712 3713
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3714
		free_block(cachep, ac->entry, ac->avail, node, &list);
3715
		spin_unlock_irq(&n->list_lock);
3716
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3717
	}
3718 3719 3720
	free_percpu(prev);

alloc_node:
3721
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3722 3723
}

G
Glauber Costa 已提交
3724 3725 3726 3727
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3728
	struct kmem_cache *c;
G
Glauber Costa 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3738 3739 3740 3741
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3742 3743 3744 3745 3746
	}

	return ret;
}

3747
/* Called with slab_mutex held always */
3748
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3749 3750
{
	int err;
G
Glauber Costa 已提交
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3761

G
Glauber Costa 已提交
3762 3763
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3764 3765
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3766 3767
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3768
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3769 3770 3771 3772
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3773
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3774
		limit = 1;
3775
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3776
		limit = 8;
3777
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3778
		limit = 24;
3779
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3780 3781 3782 3783
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3784 3785
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3786 3787 3788 3789 3790 3791 3792 3793
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3794
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3795 3796 3797
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3798 3799 3800
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3801 3802 3803 3804
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3805 3806 3807
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3808 3809
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3810
		       cachep->name, -err);
3811
	return err;
L
Linus Torvalds 已提交
3812 3813
}

3814
/*
3815 3816
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3817
 * if drain_array() is used on the shared array.
3818
 */
3819
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3820
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3821
{
3822
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3823 3824
	int tofree;

3825 3826
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3827 3828
	if (ac->touched && !force) {
		ac->touched = 0;
3829
	} else {
3830
		spin_lock_irq(&n->list_lock);
3831 3832 3833 3834
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
3835
			free_block(cachep, ac->entry, tofree, node, &list);
3836 3837 3838 3839
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3840
		spin_unlock_irq(&n->list_lock);
3841
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3842 3843 3844 3845 3846
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3847
 * @w: work descriptor
L
Linus Torvalds 已提交
3848 3849 3850 3851 3852 3853
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3854 3855
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3856
 */
3857
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3858
{
3859
	struct kmem_cache *searchp;
3860
	struct kmem_cache_node *n;
3861
	int node = numa_mem_id();
3862
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3863

3864
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3865
		/* Give up. Setup the next iteration. */
3866
		goto out;
L
Linus Torvalds 已提交
3867

3868
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3869 3870
		check_irq_on();

3871
		/*
3872
		 * We only take the node lock if absolutely necessary and we
3873 3874 3875
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3876
		n = get_node(searchp, node);
3877

3878
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3879

3880
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3881

3882 3883 3884 3885
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3886
		if (time_after(n->next_reap, jiffies))
3887
			goto next;
L
Linus Torvalds 已提交
3888

3889
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
3890

3891
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
3892

3893 3894
		if (n->free_touched)
			n->free_touched = 0;
3895 3896
		else {
			int freed;
L
Linus Torvalds 已提交
3897

3898
			freed = drain_freelist(searchp, n, (n->free_limit +
3899 3900 3901
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3902
next:
L
Linus Torvalds 已提交
3903 3904 3905
		cond_resched();
	}
	check_irq_on();
3906
	mutex_unlock(&slab_mutex);
3907
	next_reap_node();
3908
out:
A
Andrew Morton 已提交
3909
	/* Set up the next iteration */
3910
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
3911 3912
}

3913
#ifdef CONFIG_SLABINFO
3914
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
3915
{
3916
	struct page *page;
P
Pekka Enberg 已提交
3917 3918 3919 3920
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3921
	const char *name;
L
Linus Torvalds 已提交
3922
	char *error = NULL;
3923
	int node;
3924
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3925 3926 3927

	active_objs = 0;
	num_slabs = 0;
3928
	for_each_kmem_cache_node(cachep, node, n) {
3929

3930
		check_irq_on();
3931
		spin_lock_irq(&n->list_lock);
3932

3933 3934
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
3935 3936 3937 3938
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3939 3940
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
3941
				error = "slabs_partial accounting error";
3942
			if (!page->active && !error)
3943
				error = "slabs_partial accounting error";
3944
			active_objs += page->active;
3945 3946
			active_slabs++;
		}
3947 3948
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
3949
				error = "slabs_free accounting error";
3950 3951
			num_slabs++;
		}
3952 3953 3954
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
3955

3956
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3957
	}
P
Pekka Enberg 已提交
3958 3959
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3960
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3961 3962
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3963
	name = cachep->name;
L
Linus Torvalds 已提交
3964 3965 3966
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
3981
#if STATS
3982
	{			/* node stats */
L
Linus Torvalds 已提交
3983 3984 3985 3986 3987 3988 3989
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3990
		unsigned long node_frees = cachep->node_frees;
3991
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
3992

J
Joe Perches 已提交
3993 3994 3995 3996 3997
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
3998 3999 4000 4001 4002 4003 4004 4005 4006
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4007
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4020
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4021
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4022
{
P
Pekka Enberg 已提交
4023
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4024
	int limit, batchcount, shared, res;
4025
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4026

L
Linus Torvalds 已提交
4027 4028 4029 4030
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4031
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4042
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4043
	res = -EINVAL;
4044
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4045
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4046 4047
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4048
				res = 0;
L
Linus Torvalds 已提交
4049
			} else {
4050
				res = do_tune_cpucache(cachep, limit,
4051 4052
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4053 4054 4055 4056
			}
			break;
		}
	}
4057
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4058 4059 4060 4061
	if (res >= 0)
		res = count;
	return res;
}
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4095 4096
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4097 4098
{
	void *p;
4099 4100
	int i, j;
	unsigned long v;
4101

4102 4103
	if (n[0] == n[1])
		return;
4104
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4115
			continue;
4116

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4127 4128 4129 4130 4131 4132 4133 4134
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4135
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4136

4137
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4138
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4139
		if (modname[0])
4140 4141 4142 4143 4144 4145 4146 4147 4148
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4149
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4150
	struct page *page;
4151
	struct kmem_cache_node *n;
4152
	const char *name;
4153
	unsigned long *x = m->private;
4154 4155 4156 4157 4158 4159 4160 4161
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4173

4174
		for_each_kmem_cache_node(cachep, node, n) {
4175

4176 4177
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4178

4179 4180 4181 4182 4183 4184 4185
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4186 4187

	name = cachep->name;
4188
	if (x[0] == x[1]) {
4189
		/* Increase the buffer size */
4190
		mutex_unlock(&slab_mutex);
4191
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4192 4193
		if (!m->private) {
			/* Too bad, we are really out */
4194
			m->private = x;
4195
			mutex_lock(&slab_mutex);
4196 4197
			return -ENOMEM;
		}
4198 4199
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4200
		mutex_lock(&slab_mutex);
4201 4202 4203 4204
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4205 4206 4207
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4208 4209
		seq_putc(m, '\n');
	}
4210

4211 4212 4213
	return 0;
}

4214
static const struct seq_operations slabstats_op = {
4215
	.start = slab_start,
4216 4217
	.next = slab_next,
	.stop = slab_stop,
4218 4219
	.show = leaks_show,
};
4220 4221 4222

static int slabstats_open(struct inode *inode, struct file *file)
{
4223 4224 4225 4226 4227 4228 4229 4230 4231
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4246
#endif
4247 4248 4249
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4250 4251
#endif

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4264
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4265
{
4266 4267
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4268
		return 0;
L
Linus Torvalds 已提交
4269

4270
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4271
}
K
Kirill A. Shutemov 已提交
4272
EXPORT_SYMBOL(ksize);