slab.c 101.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
 * The c_cpuarray may not be read with enabled local interrupts - 
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
104
#include	<linux/string.h>
105
#include	<linux/nodemask.h>
106
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
107
#include	<linux/mutex.h>
L
Linus Torvalds 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
			 SLAB_NO_REAP | SLAB_CACHE_DMA | \
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#else
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

203
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2)

/* Max number of objs-per-slab for caches which use off-slab slabs.
 * Needed to avoid a possible looping condition in cache_grow().
 */
static unsigned long offslab_limit;

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268 269 270 271 272 273 274
	spinlock_t lock;
	void *entry[0];		/*
				 * Must have this definition in here for the proper
				 * alignment of array_cache. Also simplifies accessing
				 * the entries.
				 * [0] is for gcc 2.95. It should really be [].
				 */
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282
};

/* bootstrap: The caches do not work without cpuarrays anymore,
 * but the cpuarrays are allocated from the generic caches...
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294 295 296
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned long next_reap;
	int free_touched;
	unsigned int free_limit;
297
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
298 299 300
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
L
Linus Torvalds 已提交
301 302
};

303 304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
313
 * This function must be completely optimized away if
314 315 316 317
 * a constant is passed to it. Mostly the same as
 * what is in linux/slab.h except it returns an
 * index.
 */
318
static __always_inline int index_of(const size_t size)
319
{
320 321
	extern void __bad_size(void);

322 323 324 325 326 327 328 329 330 331
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
332
		__bad_size();
333
	} else
334
		__bad_size();
335 336 337 338 339
	return 0;
}

#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
340

P
Pekka Enberg 已提交
341
static void kmem_list3_init(struct kmem_list3 *parent)
342 343 344 345 346 347
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
348
	parent->colour_next = 0;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

#define MAKE_LIST(cachep, listp, slab, nodeid)	\
	do {	\
		INIT_LIST_HEAD(listp);		\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
	} while (0)

#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)			\
	do {					\
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
366 367

/*
368
 * struct kmem_cache
L
Linus Torvalds 已提交
369 370 371
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
372

373
struct kmem_cache {
L
Linus Torvalds 已提交
374
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
375 376 377 378
	struct array_cache *array[NR_CPUS];
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
379
	unsigned int buffer_size;
380
/* 2) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
381 382 383 384
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	unsigned int flags;	/* constant flags */
	unsigned int num;	/* # of objs per slab */
	spinlock_t spinlock;
L
Linus Torvalds 已提交
385 386 387

/* 3) cache_grow/shrink */
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
388
	unsigned int gfporder;
L
Linus Torvalds 已提交
389 390

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
391
	gfp_t gfpflags;
L
Linus Torvalds 已提交
392

P
Pekka Enberg 已提交
393 394
	size_t colour;		/* cache colouring range */
	unsigned int colour_off;	/* colour offset */
395
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
396 397
	unsigned int slab_size;
	unsigned int dflags;	/* dynamic flags */
L
Linus Torvalds 已提交
398 399

	/* constructor func */
400
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
401 402

	/* de-constructor func */
403
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
404 405

/* 4) cache creation/removal */
P
Pekka Enberg 已提交
406 407
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
408 409 410

/* 5) statistics */
#if STATS
P
Pekka Enberg 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
424 425
#endif
#if DEBUG
426 427 428 429 430 431 432 433
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
434 435 436 437 438 439 440 441 442 443
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
/* Optimization question: fewer reaps means less 
 * probability for unnessary cpucache drain/refill cycles.
 *
A
Adrian Bunk 已提交
444
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
#define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \
					(x)->high_mark = (x)->num_active; \
				} while (0)
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
461
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
L
Linus Torvalds 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
#define	STATS_SET_FREEABLE(x, i) \
				do { if ((x)->max_freeable < i) \
					(x)->max_freeable = i; \
				} while (0)

#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
480
#define	STATS_INC_NODEFREES(x)	do { } while (0)
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#define	STATS_SET_FREEABLE(x, i) \
				do { } while (0)

#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
/* Magic nums for obj red zoning.
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

/* memory layout of objects:
 * 0		: objp
504
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
505 506
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
507
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
508
 * 		redzone word.
509 510 511
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
L
Linus Torvalds 已提交
512
 */
513
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
514
{
515
	return cachep->obj_offset;
L
Linus Torvalds 已提交
516 517
}

518
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
519
{
520
	return cachep->obj_size;
L
Linus Torvalds 已提交
521 522
}

523
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
524 525
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
526
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
527 528
}

529
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
530 531 532
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
533
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
534
					 2 * BYTES_PER_WORD);
535
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
536 537
}

538
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
539 540
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
541
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
542 543 544 545
}

#else

546 547
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Maximum size of an obj (in 2^order pages)
 * and absolute limit for the gfp order.
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

576
/* Functions for storing/retrieving the cachep and or slab from the
L
Linus Torvalds 已提交
577 578 579
 * global 'mem_map'. These are used to find the slab an obj belongs to.
 * With kfree(), these are used to find the cache which an obj belongs to.
 */
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
599

600 601 602 603 604 605 606 607 608 609 610 611
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

L
Linus Torvalds 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/* These are the default caches for kmalloc. Custom caches can have other sizes. */
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
630
	{NULL,}
L
Linus Torvalds 已提交
631 632 633 634
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
635
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
636
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
637
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
638 639

/* internal cache of cache description objs */
640
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
641 642 643
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
644
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
645 646 647
	.flags = SLAB_NO_REAP,
	.spinlock = SPIN_LOCK_UNLOCKED,
	.name = "kmem_cache",
L
Linus Torvalds 已提交
648
#if DEBUG
649
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
650 651 652 653
#endif
};

/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
654
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
static struct list_head cache_chain;

/*
 * vm_enough_memory() looks at this to determine how many
 * slab-allocated pages are possibly freeable under pressure
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
671 672
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
673 674 675 676 677
	FULL
} g_cpucache_up;

static DEFINE_PER_CPU(struct work_struct, reap_work);

678 679
static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
static void enable_cpucache(struct kmem_cache *cachep);
P
Pekka Enberg 已提交
680
static void cache_reap(void *unused);
681
static int __node_shrink(struct kmem_cache *cachep, int node);
L
Linus Torvalds 已提交
682

683
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
684 685 686 687
{
	return cachep->array[smp_processor_id()];
}

688
static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
L
Linus Torvalds 已提交
689 690 691 692 693
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
694 695 696
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
697
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
698 699 700 701 702
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
703
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
704 705 706 707 708 709 710 711
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

712
struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
713 714 715 716 717
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

718
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
719
{
720 721
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
722

723 724 725 726 727 728 729 730 731
/* Calculate the number of objects and left-over bytes for a given
   buffer size. */
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
781 782 783 784
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

785
static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
L
Linus Torvalds 已提交
786 787
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
788
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
789 790 791
	dump_stack();
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
		node = 0;

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
850
		init_reap_node(cpu);
L
Linus Torvalds 已提交
851 852 853 854 855
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

856
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
857
					    int batchcount)
L
Linus Torvalds 已提交
858
{
P
Pekka Enberg 已提交
859
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
860 861
	struct array_cache *nc = NULL;

862
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
863 864 865 866 867
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
868
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
869 870 871 872
	}
	return nc;
}

873
#ifdef CONFIG_NUMA
874
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
875

P
Pekka Enberg 已提交
876
static struct array_cache **alloc_alien_cache(int node, int limit)
877 878
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
879
	int memsize = sizeof(void *) * MAX_NUMNODES;
880 881 882 883 884 885 886 887 888 889 890 891 892
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
893
				for (i--; i <= 0; i--)
894 895 896 897 898 899 900 901 902
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
903
static void free_alien_cache(struct array_cache **ac_ptr)
904 905 906 907 908 909 910
{
	int i;

	if (!ac_ptr)
		return;

	for_each_node(i)
P
Pekka Enberg 已提交
911
	    kfree(ac_ptr[i]);
912 913 914 915

	kfree(ac_ptr);
}

916
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
917
				struct array_cache *ac, int node)
918 919 920 921 922
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
923
		free_block(cachep, ac->entry, ac->avail, node);
924 925 926 927 928
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
		if (ac && ac->avail) {
			spin_lock_irq(&ac->lock);
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

946
static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
947
{
P
Pekka Enberg 已提交
948
	int i = 0;
949 950 951 952
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
953
		ac = alien[i];
954 955 956 957 958 959 960 961
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
#else
962

963
#define drain_alien_cache(cachep, alien) do { } while (0)
964
#define reap_alien(cachep, l3) do { } while (0)
965

966 967 968 969 970
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **) 0x01020304ul;
}

971 972 973
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
974

975 976
#endif

L
Linus Torvalds 已提交
977
static int __devinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
978
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
979 980
{
	long cpu = (long)hcpu;
981
	struct kmem_cache *cachep;
982 983 984
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
985 986 987

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
988
		mutex_lock(&cache_chain_mutex);
989 990 991 992 993 994
		/* we need to do this right in the beginning since
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
995
		list_for_each_entry(cachep, &cache_chain, next) {
996 997 998 999 1000 1001
			/* setup the size64 kmemlist for cpu before we can
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
				if (!(l3 = kmalloc_node(memsize,
P
Pekka Enberg 已提交
1002
							GFP_KERNEL, node)))
1003 1004 1005
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1006
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1007

1008 1009 1010 1011 1012
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1013 1014
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1015

1016 1017
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
P
Pekka Enberg 已提交
1018 1019
			    (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
1020 1021 1022 1023
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

		/* Now we can go ahead with allocating the shared array's
P
Pekka Enberg 已提交
1024
		   & array cache's */
1025
		list_for_each_entry(cachep, &cache_chain, next) {
1026
			struct array_cache *nc;
1027 1028
			struct array_cache *shared;
			struct array_cache **alien;
1029

1030
			nc = alloc_arraycache(node, cachep->limit,
1031
						cachep->batchcount);
L
Linus Torvalds 已提交
1032 1033
			if (!nc)
				goto bad;
1034 1035 1036 1037 1038
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1039

1040 1041 1042
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
1043 1044
			cachep->array[cpu] = nc;

1045 1046 1047
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1048 1049 1050 1051 1052 1053 1054 1055
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1056
			}
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1067
		}
I
Ingo Molnar 已提交
1068
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1069 1070 1071 1072 1073 1074
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1075 1076 1077 1078 1079 1080 1081 1082
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1083 1084
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1085
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1086 1087 1088

		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1089 1090
			struct array_cache *shared;
			struct array_cache **alien;
1091
			cpumask_t mask;
L
Linus Torvalds 已提交
1092

1093
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1094 1095 1096
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1097 1098 1099
			l3 = cachep->nodelists[node];

			if (!l3)
1100
				goto free_array_cache;
1101

1102
			spin_lock_irq(&l3->list_lock);
1103 1104 1105 1106

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1107
				free_block(cachep, nc->entry, nc->avail, node);
1108 1109

			if (!cpus_empty(mask)) {
1110
				spin_unlock_irq(&l3->list_lock);
1111
				goto free_array_cache;
P
Pekka Enberg 已提交
1112
			}
1113

1114 1115
			shared = l3->shared;
			if (shared) {
1116
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1117
					   l3->shared->avail, node);
1118 1119 1120
				l3->shared = NULL;
			}

1121 1122 1123 1124 1125 1126 1127 1128 1129
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1130
			}
1131
free_array_cache:
L
Linus Torvalds 已提交
1132 1133
			kfree(nc);
		}
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
			spin_lock_irq(&l3->list_lock);
			/* free slabs belonging to this node */
			__node_shrink(cachep, node);
			spin_unlock_irq(&l3->list_lock);
		}
I
Ingo Molnar 已提交
1148
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1149 1150 1151 1152
		break;
#endif
	}
	return NOTIFY_OK;
P
Pekka Enberg 已提交
1153
      bad:
I
Ingo Molnar 已提交
1154
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1155 1156 1157 1158 1159
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

1160 1161 1162
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1163
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

L
Linus Torvalds 已提交
1178 1179 1180 1181 1182 1183 1184 1185
/* Initialisation.
 * Called after the gfp() functions have been enabled, and before smp_init().
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1186
	int i;
1187
	int order;
1188 1189 1190 1191 1192 1193

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1204
	 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
L
Linus Torvalds 已提交
1205 1206
	 *    structures of all caches, except cache_cache itself: cache_cache
	 *    is statically allocated.
1207 1208 1209
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1210
	 * 2) Create the first kmalloc cache.
1211
	 *    The struct kmem_cache for the new cache is allocated normally.
1212 1213 1214
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1215 1216
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1217 1218 1219
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1220 1221 1222 1223 1224 1225 1226
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1227
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1228

1229
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
L
Linus Torvalds 已提交
1230

1231 1232 1233 1234 1235 1236
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
L
Linus Torvalds 已提交
1237 1238
	if (!cache_cache.num)
		BUG();
1239
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1240 1241 1242
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1243 1244 1245 1246 1247

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

1248 1249 1250 1251 1252 1253
	/* Initialize the caches that provide memory for the array cache
	 * and the kmem_list3 structures first.
	 * Without this, further allocations will bug
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
P
Pekka Enberg 已提交
1254 1255 1256 1257
						      sizes[INDEX_AC].cs_size,
						      ARCH_KMALLOC_MINALIGN,
						      (ARCH_KMALLOC_FLAGS |
						       SLAB_PANIC), NULL, NULL);
1258 1259 1260

	if (INDEX_AC != INDEX_L3)
		sizes[INDEX_L3].cs_cachep =
P
Pekka Enberg 已提交
1261 1262 1263 1264 1265
		    kmem_cache_create(names[INDEX_L3].name,
				      sizes[INDEX_L3].cs_size,
				      ARCH_KMALLOC_MINALIGN,
				      (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
				      NULL);
1266

L
Linus Torvalds 已提交
1267
	while (sizes->cs_size != ULONG_MAX) {
1268 1269
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1270 1271 1272
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1273 1274
		 * allow tighter packing of the smaller caches.
		 */
P
Pekka Enberg 已提交
1275
		if (!sizes->cs_cachep)
1276
			sizes->cs_cachep = kmem_cache_create(names->name,
P
Pekka Enberg 已提交
1277 1278 1279 1280 1281
							     sizes->cs_size,
							     ARCH_KMALLOC_MINALIGN,
							     (ARCH_KMALLOC_FLAGS
							      | SLAB_PANIC),
							     NULL, NULL);
L
Linus Torvalds 已提交
1282 1283 1284

		/* Inc off-slab bufctl limit until the ceiling is hit. */
		if (!(OFF_SLAB(sizes->cs_cachep))) {
P
Pekka Enberg 已提交
1285
			offslab_limit = sizes->cs_size - sizeof(struct slab);
L
Linus Torvalds 已提交
1286 1287 1288 1289
			offslab_limit /= sizeof(kmem_bufctl_t);
		}

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
P
Pekka Enberg 已提交
1290 1291 1292 1293 1294 1295
							sizes->cs_size,
							ARCH_KMALLOC_MINALIGN,
							(ARCH_KMALLOC_FLAGS |
							 SLAB_CACHE_DMA |
							 SLAB_PANIC), NULL,
							NULL);
L
Linus Torvalds 已提交
1296 1297 1298 1299 1300 1301

		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
P
Pekka Enberg 已提交
1302
		void *ptr;
1303

L
Linus Torvalds 已提交
1304
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1305

L
Linus Torvalds 已提交
1306
		local_irq_disable();
1307 1308
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1309
		       sizeof(struct arraycache_init));
L
Linus Torvalds 已提交
1310 1311
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1312

L
Linus Torvalds 已提交
1313
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1314

L
Linus Torvalds 已提交
1315
		local_irq_disable();
1316
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1317
		       != &initarray_generic.cache);
1318
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1319
		       sizeof(struct arraycache_init));
1320
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1321
		    ptr;
L
Linus Torvalds 已提交
1322 1323
		local_irq_enable();
	}
1324 1325 1326 1327 1328
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1329
			  numa_node_id());
1330 1331 1332

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1333
				  &initkmem_list3[SIZE_AC + node], node);
1334 1335 1336

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1337 1338
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1339 1340 1341
			}
		}
	}
L
Linus Torvalds 已提交
1342

1343
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1344
	{
1345
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1346
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1347
		list_for_each_entry(cachep, &cache_chain, next)
P
Pekka Enberg 已提交
1348
		    enable_cpucache(cachep);
I
Ingo Molnar 已提交
1349
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1350 1351 1352 1353 1354 1355
	}

	/* Done! */
	g_cpucache_up = FULL;

	/* Register a cpu startup notifier callback
1356
	 * that initializes cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	 */
	register_cpu_notifier(&cpucache_notifier);

	/* The reap timers are started later, with a module init call:
	 * That part of the kernel is not yet operational.
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

	/* 
	 * Register the timers that return unneeded
	 * pages to gfp.
	 */
1373
	for_each_online_cpu(cpu)
P
Pekka Enberg 已提交
1374
	    start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	return 0;
}

__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1388
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1389 1390 1391 1392 1393 1394
{
	struct page *page;
	void *addr;
	int i;

	flags |= cachep->gfpflags;
1395
	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404
	if (!page)
		return NULL;
	addr = page_address(page);

	i = (1 << cachep->gfporder);
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_add(i, &slab_reclaim_pages);
	add_page_state(nr_slab, i);
	while (i--) {
N
Nick Piggin 已提交
1405
		__SetPageSlab(page);
L
Linus Torvalds 已提交
1406 1407 1408 1409 1410 1411 1412 1413
		page++;
	}
	return addr;
}

/*
 * Interface to system's page release.
 */
1414
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1415
{
P
Pekka Enberg 已提交
1416
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1417 1418 1419 1420
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

	while (i--) {
N
Nick Piggin 已提交
1421 1422
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1423 1424 1425 1426 1427 1428
		page++;
	}
	sub_page_state(nr_slab, nr_freed);
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1429 1430
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1431 1432 1433 1434
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1435
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1436
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1446
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1447
			    unsigned long caller)
L
Linus Torvalds 已提交
1448
{
1449
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1450

1451
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1452

P
Pekka Enberg 已提交
1453
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1454 1455
		return;

P
Pekka Enberg 已提交
1456 1457 1458 1459
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1460 1461 1462 1463 1464 1465 1466
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1467
				*addr++ = svalue;
L
Linus Torvalds 已提交
1468 1469 1470 1471 1472 1473 1474
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1475
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1476 1477 1478
}
#endif

1479
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1480
{
1481 1482
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1483 1484

	memset(addr, val, size);
P
Pekka Enberg 已提交
1485
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1486 1487 1488 1489 1490 1491
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
P
Pekka Enberg 已提交
1492 1493
	for (i = 0; i < limit; i++) {
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1494 1495 1496 1497 1498 1499 1500
	}
	printk("\n");
}
#endif

#if DEBUG

1501
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1502 1503 1504 1505 1506 1507
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
P
Pekka Enberg 已提交
1508 1509
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1510 1511 1512 1513
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
P
Pekka Enberg 已提交
1514
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1515
		print_symbol("(%s)",
P
Pekka Enberg 已提交
1516
			     (unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1517 1518
		printk("\n");
	}
1519 1520
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1521
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1522 1523
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1524 1525
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1526 1527 1528 1529
		dump_line(realobj, i, limit);
	}
}

1530
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1531 1532 1533 1534 1535
{
	char *realobj;
	int size, i;
	int lines = 0;

1536 1537
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1538

P
Pekka Enberg 已提交
1539
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1540
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1541
		if (i == size - 1)
L
Linus Torvalds 已提交
1542 1543 1544 1545 1546 1547
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1548 1549 1550
				printk(KERN_ERR
				       "Slab corruption: start=%p, len=%d\n",
				       realobj, size);
L
Linus Torvalds 已提交
1551 1552 1553
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1554
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1555
			limit = 16;
P
Pekka Enberg 已提交
1556 1557
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1570
		struct slab *slabp = virt_to_slab(objp);
L
Linus Torvalds 已提交
1571 1572
		int objnr;

1573
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
L
Linus Torvalds 已提交
1574
		if (objnr) {
1575 1576
			objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1577
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1578
			       realobj, size);
L
Linus Torvalds 已提交
1579 1580
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1581
		if (objnr + 1 < cachep->num) {
1582 1583
			objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1584
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1585
			       realobj, size);
L
Linus Torvalds 已提交
1586 1587 1588 1589 1590 1591
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1592 1593 1594 1595
#if DEBUG
/**
 * slab_destroy_objs - call the registered destructor for each object in
 *      a slab that is to be destroyed.
L
Linus Torvalds 已提交
1596
 */
1597
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1598 1599 1600
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1601
		void *objp = slabp->s_mem + cachep->buffer_size * i;
L
Linus Torvalds 已提交
1602 1603 1604

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1605
			if ((cachep->buffer_size % PAGE_SIZE) == 0
P
Pekka Enberg 已提交
1606 1607
			    && OFF_SLAB(cachep))
				kernel_map_pages(virt_to_page(objp),
1608
						 cachep->buffer_size / PAGE_SIZE,
P
Pekka Enberg 已提交
1609
						 1);
L
Linus Torvalds 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1619
					   "was overwritten");
L
Linus Torvalds 已提交
1620 1621
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1622
					   "was overwritten");
L
Linus Torvalds 已提交
1623 1624
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1625
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1626
	}
1627
}
L
Linus Torvalds 已提交
1628
#else
1629
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1630
{
L
Linus Torvalds 已提交
1631 1632 1633
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1634
			void *objp = slabp->s_mem + cachep->buffer_size * i;
P
Pekka Enberg 已提交
1635
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1636 1637
		}
	}
1638
}
L
Linus Torvalds 已提交
1639 1640
#endif

1641 1642 1643 1644 1645
/**
 * Destroy all the objs in a slab, and release the mem back to the system.
 * Before calling the slab must have been unlinked from the cache.
 * The cache-lock is not held/needed.
 */
1646
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1647 1648 1649 1650
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1651 1652 1653
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1654
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
	}
}

1665
/* For setting up all the kmem_list3s for cache whose buffer_size is same
1666
   as size of kmem_list3. */
1667
static void set_up_list3s(struct kmem_cache *cachep, int index)
1668 1669 1670 1671
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1672
		cachep->nodelists[node] = &initkmem_list3[index + node];
1673
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1674 1675
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1676 1677 1678
	}
}

1679
/**
1680 1681 1682 1683 1684 1685 1686
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1687 1688 1689 1690 1691
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
R
Randy Dunlap 已提交
1692 1693
static inline size_t calculate_slab_order(struct kmem_cache *cachep,
			size_t size, size_t align, unsigned long flags)
1694 1695
{
	size_t left_over = 0;
1696
	int gfporder;
1697

1698
	for (gfporder = 0 ; gfporder <= MAX_GFP_ORDER; gfporder++) {
1699 1700 1701
		unsigned int num;
		size_t remainder;

1702
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1703 1704
		if (!num)
			continue;
1705

1706
		/* More than offslab_limit objects will cause problems */
1707
		if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1708 1709
			break;

1710
		/* Found something acceptable - save it away */
1711
		cachep->num = num;
1712
		cachep->gfporder = gfporder;
1713 1714
		left_over = remainder;

1715 1716 1717 1718 1719 1720 1721 1722
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1723 1724 1725 1726
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1727
		if (gfporder >= slab_break_gfp_order)
1728 1729
			break;

1730 1731 1732 1733
		/*
		 * Acceptable internal fragmentation?
		 */
		if ((left_over * 8) <= (PAGE_SIZE << gfporder))
1734 1735 1736 1737 1738
			break;
	}
	return left_over;
}

L
Linus Torvalds 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
 * the module calling this has to destroy the cache before getting 
 * unloaded.
 * 
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
 * memory pressure.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1772
struct kmem_cache *
L
Linus Torvalds 已提交
1773
kmem_cache_create (const char *name, size_t size, size_t align,
1774 1775
	unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
1776 1777
{
	size_t left_over, slab_size, ralign;
1778
	struct kmem_cache *cachep = NULL;
1779
	struct list_head *p;
L
Linus Torvalds 已提交
1780 1781 1782 1783 1784

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
	if ((!name) ||
P
Pekka Enberg 已提交
1785 1786 1787 1788 1789 1790 1791
	    in_interrupt() ||
	    (size < BYTES_PER_WORD) ||
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
		printk(KERN_ERR "%s: Early error in slab %s\n",
		       __FUNCTION__, name);
		BUG();
	}
L
Linus Torvalds 已提交
1792

1793 1794 1795 1796 1797 1798
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
1799
	mutex_lock(&cache_chain_mutex);
1800 1801

	list_for_each(p, &cache_chain) {
1802
		struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
1817
			       pc->buffer_size);
1818 1819 1820
			continue;
		}

P
Pekka Enberg 已提交
1821
		if (!strcmp(pc->name, name)) {
1822 1823 1824 1825 1826 1827
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
1828 1829 1830 1831 1832
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
1833
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
P
Pekka Enberg 已提交
1843 1844 1845
	if ((size < 4096
	     || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
	 * Always checks flags, a caller might be expecting debug
	 * support which isn't available.
	 */
	if (flags & ~CREATE_MASK)
		BUG();

	/* Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
1866 1867 1868
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	}

	/* calculate out the final buffer alignment: */
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
		/* Default alignment: as specified by the arch code.
		 * Except if an object is really small, then squeeze multiple
		 * objects into one cacheline.
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
1879
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
1880 1881 1882 1883 1884 1885 1886 1887
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1888
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1889 1890 1891 1892 1893
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1894
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1895 1896 1897 1898 1899 1900 1901
	}
	/* 4) Store it. Note that the debug code below can reduce
	 *    the alignment to BYTES_PER_WORD.
	 */
	align = ralign;

	/* Get cache's description obj. */
1902
	cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
1903
	if (!cachep)
1904
		goto oops;
1905
	memset(cachep, 0, sizeof(struct kmem_cache));
L
Linus Torvalds 已提交
1906 1907

#if DEBUG
1908
	cachep->obj_size = size;
L
Linus Torvalds 已提交
1909 1910 1911 1912 1913 1914

	if (flags & SLAB_RED_ZONE) {
		/* redzoning only works with word aligned caches */
		align = BYTES_PER_WORD;

		/* add space for red zone words */
1915
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
1916
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires word alignment and
		 * one word storage behind the end of the real
		 * object.
		 */
		align = BYTES_PER_WORD;
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
1927
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1928 1929
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
1930 1931 1932 1933 1934 1935
		size = PAGE_SIZE;
	}
#endif
#endif

	/* Determine if the slab management is 'on' or 'off' slab. */
P
Pekka Enberg 已提交
1936
	if (size >= (PAGE_SIZE >> 3))
L
Linus Torvalds 已提交
1937 1938 1939 1940 1941 1942 1943 1944
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

1945
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
1946 1947 1948 1949 1950

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
1951
		goto oops;
L
Linus Torvalds 已提交
1952
	}
P
Pekka Enberg 已提交
1953 1954
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
1967 1968
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
1969 1970 1971 1972 1973 1974
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
1975
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
1976 1977 1978 1979 1980 1981
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
	spin_lock_init(&cachep->spinlock);
1982
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
1983 1984

	if (flags & CFLGS_OFF_SLAB)
1985
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
L
Linus Torvalds 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;


	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
	} else {
		if (g_cpucache_up == NONE) {
			/* Note: the first kmem_cache_create must create
			 * the cache that's used by kmalloc(24), otherwise
			 * the creation of further caches will BUG().
			 */
1999
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
2000
			    &initarray_generic.cache;
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

			/* If the cache that's used by
			 * kmalloc(sizeof(kmem_list3)) is the first cache,
			 * then we need to set up all its list3s, otherwise
			 * the creation of further caches will BUG().
			 */
			set_up_list3s(cachep, SIZE_AC);
			if (INDEX_AC == INDEX_L3)
				g_cpucache_up = PARTIAL_L3;
			else
				g_cpucache_up = PARTIAL_AC;
L
Linus Torvalds 已提交
2012
		} else {
2013
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
2014
			    kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2015 2016 2017 2018 2019 2020 2021 2022 2023

			if (g_cpucache_up == PARTIAL_AC) {
				set_up_list3s(cachep, SIZE_L3);
				g_cpucache_up = PARTIAL_L3;
			} else {
				int node;
				for_each_online_node(node) {

					cachep->nodelists[node] =
P
Pekka Enberg 已提交
2024 2025 2026
					    kmalloc_node(sizeof
							 (struct kmem_list3),
							 GFP_KERNEL, node);
2027
					BUG_ON(!cachep->nodelists[node]);
P
Pekka Enberg 已提交
2028 2029
					kmem_list3_init(cachep->
							nodelists[node]);
2030 2031
				}
			}
L
Linus Torvalds 已提交
2032
		}
2033
		cachep->nodelists[numa_node_id()]->next_reap =
P
Pekka Enberg 已提交
2034 2035
		    jiffies + REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2036

2037 2038 2039 2040 2041
		BUG_ON(!cpu_cache_get(cachep));
		cpu_cache_get(cachep)->avail = 0;
		cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
		cpu_cache_get(cachep)->batchcount = 1;
		cpu_cache_get(cachep)->touched = 0;
L
Linus Torvalds 已提交
2042 2043
		cachep->batchcount = 1;
		cachep->limit = BOOT_CPUCACHE_ENTRIES;
P
Pekka Enberg 已提交
2044
	}
L
Linus Torvalds 已提交
2045 2046 2047

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
P
Pekka Enberg 已提交
2048
      oops:
L
Linus Torvalds 已提交
2049 2050
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2051
		      name);
I
Ingo Molnar 已提交
2052
	mutex_unlock(&cache_chain_mutex);
2053
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2069
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2070 2071 2072
{
#ifdef CONFIG_SMP
	check_irq_off();
2073
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2074 2075
#endif
}
2076

2077
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2078 2079 2080 2081 2082 2083 2084
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2085 2086 2087 2088
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2089
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094
#endif

/*
 * Waits for all CPUs to execute func().
 */
P
Pekka Enberg 已提交
2095
static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
L
Linus Torvalds 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
{
	check_irq_on();
	preempt_disable();

	local_irq_disable();
	func(arg);
	local_irq_enable();

	if (smp_call_function(func, arg, 1, 1))
		BUG();

	preempt_enable();
}

2110
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
P
Pekka Enberg 已提交
2111
				int force, int node);
L
Linus Torvalds 已提交
2112 2113 2114

static void do_drain(void *arg)
{
2115
	struct kmem_cache *cachep = (struct kmem_cache *) arg;
L
Linus Torvalds 已提交
2116
	struct array_cache *ac;
2117
	int node = numa_node_id();
L
Linus Torvalds 已提交
2118 2119

	check_irq_off();
2120
	ac = cpu_cache_get(cachep);
2121 2122 2123
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2124 2125 2126
	ac->avail = 0;
}

2127
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2128
{
2129 2130 2131
	struct kmem_list3 *l3;
	int node;

L
Linus Torvalds 已提交
2132 2133
	smp_call_function_all_cpus(do_drain, cachep);
	check_irq_on();
P
Pekka Enberg 已提交
2134
	for_each_online_node(node) {
2135 2136
		l3 = cachep->nodelists[node];
		if (l3) {
2137
			spin_lock_irq(&l3->list_lock);
2138
			drain_array_locked(cachep, l3->shared, 1, node);
2139
			spin_unlock_irq(&l3->list_lock);
2140
			if (l3->alien)
2141
				drain_alien_cache(cachep, l3->alien);
2142 2143
		}
	}
L
Linus Torvalds 已提交
2144 2145
}

2146
static int __node_shrink(struct kmem_cache *cachep, int node)
L
Linus Torvalds 已提交
2147 2148
{
	struct slab *slabp;
2149
	struct kmem_list3 *l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2150 2151
	int ret;

2152
	for (;;) {
L
Linus Torvalds 已提交
2153 2154
		struct list_head *p;

2155 2156
		p = l3->slabs_free.prev;
		if (p == &l3->slabs_free)
L
Linus Torvalds 已提交
2157 2158
			break;

2159
		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
L
Linus Torvalds 已提交
2160 2161 2162 2163 2164 2165
#if DEBUG
		if (slabp->inuse)
			BUG();
#endif
		list_del(&slabp->list);

2166 2167
		l3->free_objects -= cachep->num;
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2168
		slab_destroy(cachep, slabp);
2169
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2170
	}
P
Pekka Enberg 已提交
2171
	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
L
Linus Torvalds 已提交
2172 2173 2174
	return ret;
}

2175
static int __cache_shrink(struct kmem_cache *cachep)
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			spin_lock_irq(&l3->list_lock);
			ret += __node_shrink(cachep, i);
			spin_unlock_irq(&l3->list_lock);
		}
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2194 2195 2196 2197 2198 2199 2200
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2201
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
{
	if (!cachep || in_interrupt())
		BUG();

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2214
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2227
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2228 2229
{
	int i;
2230
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2231 2232 2233 2234 2235 2236 2237 2238

	if (!cachep || in_interrupt())
		BUG();

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2239
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2240 2241 2242 2243
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2244
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2245 2246 2247

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2248
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2249
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2250
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2251 2252 2253 2254 2255
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2256
		synchronize_rcu();
L
Linus Torvalds 已提交
2257

2258
	for_each_online_cpu(i)
P
Pekka Enberg 已提交
2259
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2260 2261

	/* NUMA: free the list3 structures */
2262 2263 2264 2265 2266 2267 2268
	for_each_online_node(i) {
		if ((l3 = cachep->nodelists[i])) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
L
Linus Torvalds 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277
	kmem_cache_free(&cache_cache, cachep);

	unlock_cpu_hotplug();

	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
2278
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2279
				   int colour_off, gfp_t local_flags)
L
Linus Torvalds 已提交
2280 2281
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2282

L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2289
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2290 2291 2292 2293
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2294
	slabp->s_mem = objp + colour_off;
L
Linus Torvalds 已提交
2295 2296 2297 2298 2299 2300

	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2301
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2302 2303
}

2304
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2305
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2306 2307 2308 2309
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2310
		void *objp = slabp->s_mem + cachep->buffer_size * i;
L
Linus Torvalds 已提交
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
		 * Constructors are not allowed to allocate memory from
		 * the same cache which they are a constructor for.
		 * Otherwise, deadlock. They must also be threaded.
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2328
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2329
				     ctor_flags);
L
Linus Torvalds 已提交
2330 2331 2332 2333

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2334
					   " end of an object");
L
Linus Torvalds 已提交
2335 2336
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2337
					   " start of an object");
L
Linus Torvalds 已提交
2338
		}
2339
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
P
Pekka Enberg 已提交
2340 2341
		    && cachep->flags & SLAB_POISON)
			kernel_map_pages(virt_to_page(objp),
2342
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2343 2344 2345 2346
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2347
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2348
	}
P
Pekka Enberg 已提交
2349
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2350 2351 2352
	slabp->free = 0;
}

2353
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
{
	if (flags & SLAB_DMA) {
		if (!(cachep->gfpflags & GFP_DMA))
			BUG();
	} else {
		if (cachep->gfpflags & GFP_DMA)
			BUG();
	}
}

2364
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
{
	void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

2380
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
			  int nodeid)
{
	unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

	if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
		printk(KERN_ERR "slab: double free detected in cache "
		       "'%s', objp %p\n", cachep->name, objp);
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2400
static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
L
Linus Torvalds 已提交
2401 2402 2403 2404 2405 2406 2407 2408
{
	int i;
	struct page *page;

	/* Nasty!!!!!! I hope this is OK. */
	i = 1 << cachep->gfporder;
	page = virt_to_page(objp);
	do {
2409 2410
		page_set_cache(page, cachep);
		page_set_slab(page, slabp);
L
Linus Torvalds 已提交
2411 2412 2413 2414 2415 2416 2417 2418
		page++;
	} while (--i);
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2419
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2420
{
P
Pekka Enberg 已提交
2421 2422 2423 2424 2425
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2426
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2427 2428

	/* Be lazy and only check for valid flags here,
P
Pekka Enberg 已提交
2429
	 * keeping it out of the critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2430
	 */
P
Pekka Enberg 已提交
2431
	if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
L
Linus Torvalds 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
		BUG();
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2445
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2446
	check_irq_off();
2447 2448
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2449 2450

	/* Get colour for the slab, and cal the next value. */
2451 2452 2453 2454 2455
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2456

2457
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

2470 2471 2472
	/* Get mem for the objs.
	 * Attempt to allocate a physical page from 'nodeid',
	 */
L
Linus Torvalds 已提交
2473 2474 2475 2476 2477 2478 2479
	if (!(objp = kmem_getpages(cachep, flags, nodeid)))
		goto failed;

	/* Get slab management. */
	if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
		goto opps1;

2480
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2481 2482 2483 2484 2485 2486 2487
	set_slab_attr(cachep, slabp, objp);

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2488
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2489 2490

	/* Make slab active. */
2491
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2492
	STATS_INC_GROWN(cachep);
2493 2494
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2495
	return 1;
P
Pekka Enberg 已提交
2496
      opps1:
L
Linus Torvalds 已提交
2497
	kmem_freepages(cachep, objp);
P
Pekka Enberg 已提交
2498
      failed:
L
Linus Torvalds 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2518 2519
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2520 2521 2522
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2523 2524
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2525 2526 2527 2528
		BUG();
	}
}

2529
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2530
				   void *caller)
L
Linus Torvalds 已提交
2531 2532 2533 2534 2535
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2536
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2537 2538 2539
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2540
	if (page_get_cache(page) != cachep) {
P
Pekka Enberg 已提交
2541 2542 2543
		printk(KERN_ERR
		       "mismatch in kmem_cache_free: expected cache %p, got %p\n",
		       page_get_cache(page), cachep);
L
Linus Torvalds 已提交
2544
		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
P
Pekka Enberg 已提交
2545 2546
		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
		       page_get_cache(page)->name);
L
Linus Torvalds 已提交
2547 2548
		WARN_ON(1);
	}
2549
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2550 2551

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560
		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2561 2562 2563 2564 2565 2566 2567
		}
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2568
	objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
L
Linus Torvalds 已提交
2569 2570

	BUG_ON(objnr >= cachep->num);
2571
	BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
L
Linus Torvalds 已提交
2572 2573 2574 2575 2576 2577

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
		/* Need to call the slab's constructor so the
		 * caller can perform a verify of its state (debugging).
		 * Called without the cache-lock held.
		 */
2578
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2579
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2580 2581 2582 2583 2584
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2585
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2586 2587 2588
	}
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2589
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2590
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2591
			kernel_map_pages(virt_to_page(objp),
2592
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2603
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2604 2605 2606
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2607

L
Linus Torvalds 已提交
2608 2609 2610 2611 2612 2613 2614
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
P
Pekka Enberg 已提交
2615 2616 2617 2618 2619
	      bad:
		printk(KERN_ERR
		       "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
		       cachep->name, cachep->num, slabp, slabp->inuse);
		for (i = 0;
2620
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2621 2622
		     i++) {
			if ((i % 16) == 0)
L
Linus Torvalds 已提交
2623
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2624
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2636
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2637 2638 2639 2640 2641 2642
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2643
	ac = cpu_cache_get(cachep);
P
Pekka Enberg 已提交
2644
      retry:
L
Linus Torvalds 已提交
2645 2646 2647 2648 2649 2650 2651 2652
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
		/* if there was little recent activity on this
		 * cache, then perform only a partial refill.
		 * Otherwise we could generate refill bouncing.
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2653 2654 2655 2656
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2657 2658 2659 2660 2661 2662 2663 2664

	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
		if (shared_array->avail) {
			if (batchcount > shared_array->avail)
				batchcount = shared_array->avail;
			shared_array->avail -= batchcount;
			ac->avail = batchcount;
2665
			memcpy(ac->entry,
P
Pekka Enberg 已提交
2666 2667
			       &(shared_array->entry[shared_array->avail]),
			       sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
			shared_array->touched = 1;
			goto alloc_done;
		}
	}
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2692 2693
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

P
Pekka Enberg 已提交
2705
      must_grow:
L
Linus Torvalds 已提交
2706
	l3->free_objects -= ac->avail;
P
Pekka Enberg 已提交
2707
      alloc_done:
2708
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2709 2710 2711

	if (unlikely(!ac->avail)) {
		int x;
2712 2713
		x = cache_grow(cachep, flags, numa_node_id());

L
Linus Torvalds 已提交
2714
		// cache_grow can reenable interrupts, then ac could change.
2715
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2716 2717 2718
		if (!x && ac->avail == 0)	// no objects in sight? abort
			return NULL;

P
Pekka Enberg 已提交
2719
		if (!ac->avail)	// objects refilled by interrupt?
L
Linus Torvalds 已提交
2720 2721 2722
			goto retry;
	}
	ac->touched = 1;
2723
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2724 2725 2726
}

static inline void
2727
cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2728 2729 2730 2731 2732 2733 2734 2735
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
2736
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
P
Pekka Enberg 已提交
2737
					void *objp, void *caller)
L
Linus Torvalds 已提交
2738
{
P
Pekka Enberg 已提交
2739
	if (!objp)
L
Linus Torvalds 已提交
2740
		return objp;
P
Pekka Enberg 已提交
2741
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2742
#ifdef CONFIG_DEBUG_PAGEALLOC
2743
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2744
			kernel_map_pages(virt_to_page(objp),
2745
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2766 2767 2768 2769
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2770
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2771
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2772
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2773 2774 2775 2776 2777

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2778
	}
L
Linus Torvalds 已提交
2779 2780 2781 2782 2783 2784
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2785
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2786
{
P
Pekka Enberg 已提交
2787
	void *objp;
L
Linus Torvalds 已提交
2788 2789
	struct array_cache *ac;

2790
#ifdef CONFIG_NUMA
2791
	if (unlikely(current->mempolicy && !in_interrupt())) {
2792 2793 2794 2795 2796 2797 2798
		int nid = slab_node(current->mempolicy);

		if (nid != numa_node_id())
			return __cache_alloc_node(cachep, flags, nid);
	}
#endif

2799
	check_irq_off();
2800
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2801 2802 2803
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
2804
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2805 2806 2807 2808
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
2809 2810 2811
	return objp;
}

2812 2813
static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
2814 2815
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
2816
	void *objp;
2817 2818 2819 2820 2821

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2822
	local_irq_restore(save_flags);
2823
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2824
					    caller);
2825
	prefetchw(objp);
L
Linus Torvalds 已提交
2826 2827 2828
	return objp;
}

2829 2830 2831
#ifdef CONFIG_NUMA
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
2832
 */
2833
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2834 2835
{
	struct list_head *entry;
P
Pekka Enberg 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

      retry:
2845
	check_irq_off();
P
Pekka Enberg 已提交
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

2865
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

	if (slabp->free == BUFCTL_END) {
		list_add(&slabp->list, &l3->slabs_full);
	} else {
		list_add(&slabp->list, &l3->slabs_partial);
	}
2876

P
Pekka Enberg 已提交
2877 2878
	spin_unlock(&l3->list_lock);
	goto done;
2879

P
Pekka Enberg 已提交
2880 2881 2882
      must_grow:
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
2883

P
Pekka Enberg 已提交
2884 2885
	if (!x)
		return NULL;
2886

P
Pekka Enberg 已提交
2887 2888 2889
	goto retry;
      done:
	return obj;
2890 2891 2892 2893 2894 2895
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
2896
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
2897
		       int node)
L
Linus Torvalds 已提交
2898 2899
{
	int i;
2900
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2901 2902 2903 2904 2905

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

2906
		slabp = virt_to_slab(objp);
2907
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2908
		list_del(&slabp->list);
2909
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
2910
		check_slabp(cachep, slabp);
2911
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
2912
		STATS_DEC_ACTIVE(cachep);
2913
		l3->free_objects++;
L
Linus Torvalds 已提交
2914 2915 2916 2917
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
2918 2919
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
L
Linus Torvalds 已提交
2920 2921
				slab_destroy(cachep, slabp);
			} else {
2922
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
2923 2924 2925 2926 2927 2928
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
2929
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
2930 2931 2932 2933
		}
	}
}

2934
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
2935 2936
{
	int batchcount;
2937
	struct kmem_list3 *l3;
2938
	int node = numa_node_id();
L
Linus Torvalds 已提交
2939 2940 2941 2942 2943 2944

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
2945
	l3 = cachep->nodelists[node];
2946 2947 2948
	spin_lock(&l3->list_lock);
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
2949
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
2950 2951 2952
		if (max) {
			if (batchcount > max)
				batchcount = max;
2953
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
2954
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2955 2956 2957 2958 2959
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

2960
	free_block(cachep, ac->entry, batchcount, node);
P
Pekka Enberg 已提交
2961
      free_done:
L
Linus Torvalds 已提交
2962 2963 2964 2965 2966
#if STATS
	{
		int i = 0;
		struct list_head *p;

2967 2968
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
2980
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2981
	ac->avail -= batchcount;
2982
	memmove(ac->entry, &(ac->entry[batchcount]),
P
Pekka Enberg 已提交
2983
		sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992
}

/*
 * __cache_free
 * Release an obj back to its cache. If the obj has a constructed
 * state, it must be in this state _before_ it is released.
 *
 * Called with disabled ints.
 */
2993
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2994
{
2995
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2996 2997 2998 2999

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3000 3001 3002 3003 3004 3005
	/* Make sure we are not freeing a object from another
	 * node to the array cache on this cpu.
	 */
#ifdef CONFIG_NUMA
	{
		struct slab *slabp;
3006
		slabp = virt_to_slab(objp);
3007 3008 3009
		if (unlikely(slabp->nodeid != numa_node_id())) {
			struct array_cache *alien = NULL;
			int nodeid = slabp->nodeid;
P
Pekka Enberg 已提交
3010 3011
			struct kmem_list3 *l3 =
			    cachep->nodelists[numa_node_id()];
3012 3013 3014 3015 3016 3017 3018

			STATS_INC_NODEFREES(cachep);
			if (l3->alien && l3->alien[nodeid]) {
				alien = l3->alien[nodeid];
				spin_lock(&alien->lock);
				if (unlikely(alien->avail == alien->limit))
					__drain_alien_cache(cachep,
P
Pekka Enberg 已提交
3019
							    alien, nodeid);
3020 3021 3022 3023
				alien->entry[alien->avail++] = objp;
				spin_unlock(&alien->lock);
			} else {
				spin_lock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
3024
					  list_lock);
3025
				free_block(cachep, &objp, 1, nodeid);
3026
				spin_unlock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
3027
					    list_lock);
3028 3029 3030 3031 3032
			}
			return;
		}
	}
#endif
L
Linus Torvalds 已提交
3033 3034
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3035
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3036 3037 3038 3039
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3040
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3052
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3053
{
3054
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
}
EXPORT_SYMBOL(kmem_cache_alloc);

/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3072
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3073
{
P
Pekka Enberg 已提交
3074
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3075
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3076
	unsigned long align_mask = BYTES_PER_WORD - 1;
3077
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3093
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3094 3095
		goto out;
	return 1;
P
Pekka Enberg 已提交
3096
      out:
L
Linus Torvalds 已提交
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3110 3111
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3112
 */
3113
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3114
{
3115 3116
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3117

3118 3119
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3120 3121 3122

	if (nodeid == -1 || nodeid == numa_node_id() ||
	    !cachep->nodelists[nodeid])
3123 3124 3125
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3126
	local_irq_restore(save_flags);
3127 3128 3129

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3130

3131
	return ptr;
L
Linus Torvalds 已提交
3132 3133 3134
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

A
Al Viro 已提交
3135
void *kmalloc_node(size_t size, gfp_t flags, int node)
3136
{
3137
	struct kmem_cache *cachep;
3138 3139 3140 3141 3142 3143 3144

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
EXPORT_SYMBOL(kmalloc_node);
L
Linus Torvalds 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
#endif

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * kmalloc is the normal method of allocating memory
 * in the kernel.
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
 *
 * Additionally, the %GFP_DMA flag may be set to indicate the memory
 * must be suitable for DMA.  This can mean different things on different
 * platforms.  For example, on i386, it means that the memory must come
 * from the first 16MB.
 */
3168 3169
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3170
{
3171
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3172

3173 3174 3175 3176 3177 3178
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3179 3180
	if (unlikely(cachep == NULL))
		return NULL;
3181 3182 3183 3184 3185 3186 3187 3188
	return __cache_alloc(cachep, flags, caller);
}

#ifndef CONFIG_DEBUG_SLAB

void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
L
Linus Torvalds 已提交
3189 3190 3191
}
EXPORT_SYMBOL(__kmalloc);

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
#else

void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);

#endif

L
Linus Torvalds 已提交
3202 3203 3204 3205 3206 3207 3208 3209
#ifdef CONFIG_SMP
/**
 * __alloc_percpu - allocate one copy of the object for every present
 * cpu in the system, zeroing them.
 * Objects should be dereferenced using the per_cpu_ptr macro only.
 *
 * @size: how many bytes of memory are required.
 */
3210
void *__alloc_percpu(size_t size)
L
Linus Torvalds 已提交
3211 3212
{
	int i;
P
Pekka Enberg 已提交
3213
	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
L
Linus Torvalds 已提交
3214 3215 3216 3217

	if (!pdata)
		return NULL;

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	/*
	 * Cannot use for_each_online_cpu since a cpu may come online
	 * and we have no way of figuring out how to fix the array
	 * that we have allocated then....
	 */
	for_each_cpu(i) {
		int node = cpu_to_node(i);

		if (node_online(node))
			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
		else
			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
L
Linus Torvalds 已提交
3230 3231 3232 3233 3234 3235 3236

		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
P
Pekka Enberg 已提交
3237
	return (void *)(~(unsigned long)pdata);
L
Linus Torvalds 已提交
3238

P
Pekka Enberg 已提交
3239
      unwind_oom:
L
Linus Torvalds 已提交
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);
#endif

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3259
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
{
	unsigned long flags;

	local_irq_save(flags);
	__cache_free(cachep, objp);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3273 3274
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3275 3276 3277 3278 3279
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3280
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3281 3282 3283 3284 3285 3286
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3287
	c = virt_to_cache(objp);
3288
	mutex_debug_check_no_locks_freed(objp, obj_size(c));
P
Pekka Enberg 已提交
3289
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
/**
 * free_percpu - free previously allocated percpu memory
 * @objp: pointer returned by alloc_percpu.
 *
 * Don't free memory not originally allocated by alloc_percpu()
 * The complemented objp is to check for that.
 */
P
Pekka Enberg 已提交
3302
void free_percpu(const void *objp)
L
Linus Torvalds 已提交
3303 3304
{
	int i;
P
Pekka Enberg 已提交
3305
	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
L
Linus Torvalds 已提交
3306

3307 3308 3309 3310
	/*
	 * We allocate for all cpus so we cannot use for online cpu here.
	 */
	for_each_cpu(i)
P
Pekka Enberg 已提交
3311
	    kfree(p->ptrs[i]);
L
Linus Torvalds 已提交
3312 3313 3314 3315 3316
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);
#endif

3317
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3318
{
3319
	return obj_size(cachep);
L
Linus Torvalds 已提交
3320 3321 3322
}
EXPORT_SYMBOL(kmem_cache_size);

3323
const char *kmem_cache_name(struct kmem_cache *cachep)
3324 3325 3326 3327 3328
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3329 3330 3331
/*
 * This initializes kmem_list3 for all nodes.
 */
3332
static int alloc_kmemlist(struct kmem_cache *cachep)
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
{
	int node;
	struct kmem_list3 *l3;
	int err = 0;

	for_each_online_node(node) {
		struct array_cache *nc = NULL, *new;
		struct array_cache **new_alien = NULL;
#ifdef CONFIG_NUMA
		if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
			goto fail;
#endif
P
Pekka Enberg 已提交
3345 3346 3347
		if (!(new = alloc_arraycache(node, (cachep->shared *
						    cachep->batchcount),
					     0xbaadf00d)))
3348 3349 3350 3351 3352 3353
			goto fail;
		if ((l3 = cachep->nodelists[node])) {

			spin_lock_irq(&l3->list_lock);

			if ((nc = cachep->nodelists[node]->shared))
P
Pekka Enberg 已提交
3354
				free_block(cachep, nc->entry, nc->avail, node);
3355 3356 3357 3358 3359 3360

			l3->shared = new;
			if (!cachep->nodelists[node]->alien) {
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3361 3362
			l3->free_limit = (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
3363 3364 3365 3366 3367 3368
			spin_unlock_irq(&l3->list_lock);
			kfree(nc);
			free_alien_cache(new_alien);
			continue;
		}
		if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
P
Pekka Enberg 已提交
3369
					GFP_KERNEL, node)))
3370 3371 3372 3373
			goto fail;

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
3374
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3375 3376
		l3->shared = new;
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3377 3378
		l3->free_limit = (1 + nr_cpus_node(node)) *
		    cachep->batchcount + cachep->num;
3379 3380 3381
		cachep->nodelists[node] = l3;
	}
	return err;
P
Pekka Enberg 已提交
3382
      fail:
3383 3384 3385 3386
	err = -ENOMEM;
	return err;
}

L
Linus Torvalds 已提交
3387
struct ccupdate_struct {
3388
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3389 3390 3391 3392 3393 3394 3395 3396 3397
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
	struct ccupdate_struct *new = (struct ccupdate_struct *)info;
	struct array_cache *old;

	check_irq_off();
3398
	old = cpu_cache_get(new->cachep);
3399

L
Linus Torvalds 已提交
3400 3401 3402 3403
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3404
static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
P
Pekka Enberg 已提交
3405
			    int shared)
L
Linus Torvalds 已提交
3406 3407
{
	struct ccupdate_struct new;
3408
	int i, err;
L
Linus Torvalds 已提交
3409

P
Pekka Enberg 已提交
3410
	memset(&new.new, 0, sizeof(new.new));
3411
	for_each_online_cpu(i) {
P
Pekka Enberg 已提交
3412 3413
		new.new[i] =
		    alloc_arraycache(cpu_to_node(i), limit, batchcount);
3414
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3415 3416
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3417
			return -ENOMEM;
L
Linus Torvalds 已提交
3418 3419 3420 3421 3422
		}
	}
	new.cachep = cachep;

	smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3423

L
Linus Torvalds 已提交
3424
	check_irq_on();
3425
	spin_lock(&cachep->spinlock);
L
Linus Torvalds 已提交
3426 3427
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3428
	cachep->shared = shared;
3429
	spin_unlock(&cachep->spinlock);
L
Linus Torvalds 已提交
3430

3431
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3432 3433 3434
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3435
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3436
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3437
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3438 3439 3440
		kfree(ccold);
	}

3441 3442 3443
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3444
		       cachep->name, -err);
3445
		BUG();
L
Linus Torvalds 已提交
3446 3447 3448 3449
	}
	return 0;
}

3450
static void enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
{
	int err;
	int limit, shared;

	/* The head array serves three purposes:
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
	 * - reduce the number of linked list operations on the slab and 
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3463
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3464
		limit = 1;
3465
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3466
		limit = 8;
3467
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3468
		limit = 24;
3469
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
		limit = 54;
	else
		limit = 120;

	/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3484
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
		shared = 8;
#endif

#if DEBUG
	/* With debugging enabled, large batchcount lead to excessively
	 * long periods with disabled local interrupts. Limit the 
	 * batchcount
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3496
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3497 3498
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3499
		       cachep->name, -err);
L
Linus Torvalds 已提交
3500 3501
}

3502
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
P
Pekka Enberg 已提交
3503
				int force, int node)
L
Linus Torvalds 已提交
3504 3505 3506
{
	int tofree;

3507
	check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3508 3509 3510
	if (ac->touched && !force) {
		ac->touched = 0;
	} else if (ac->avail) {
P
Pekka Enberg 已提交
3511
		tofree = force ? ac->avail : (ac->limit + 4) / 5;
L
Linus Torvalds 已提交
3512
		if (tofree > ac->avail) {
P
Pekka Enberg 已提交
3513
			tofree = (ac->avail + 1) / 2;
L
Linus Torvalds 已提交
3514
		}
3515
		free_block(cachep, ac->entry, tofree, node);
L
Linus Torvalds 已提交
3516
		ac->avail -= tofree;
3517
		memmove(ac->entry, &(ac->entry[tofree]),
P
Pekka Enberg 已提交
3518
			sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
3519 3520 3521 3522 3523
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3524
 * @unused: unused parameter
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529 3530
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
I
Ingo Molnar 已提交
3531
 * If we cannot acquire the cache chain mutex then just give up - we'll
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536
 * try again on the next iteration.
 */
static void cache_reap(void *unused)
{
	struct list_head *walk;
3537
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3538

I
Ingo Molnar 已提交
3539
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3540
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3541 3542
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3543 3544 3545 3546
		return;
	}

	list_for_each(walk, &cache_chain) {
3547
		struct kmem_cache *searchp;
P
Pekka Enberg 已提交
3548
		struct list_head *p;
L
Linus Torvalds 已提交
3549 3550 3551
		int tofree;
		struct slab *slabp;

3552
		searchp = list_entry(walk, struct kmem_cache, next);
L
Linus Torvalds 已提交
3553 3554 3555 3556 3557 3558

		if (searchp->flags & SLAB_NO_REAP)
			goto next;

		check_irq_on();

3559
		l3 = searchp->nodelists[numa_node_id()];
3560
		reap_alien(searchp, l3);
3561
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3562

3563
		drain_array_locked(searchp, cpu_cache_get(searchp), 0,
P
Pekka Enberg 已提交
3564
				   numa_node_id());
L
Linus Torvalds 已提交
3565

3566
		if (time_after(l3->next_reap, jiffies))
L
Linus Torvalds 已提交
3567 3568
			goto next_unlock;

3569
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3570

3571 3572
		if (l3->shared)
			drain_array_locked(searchp, l3->shared, 0,
P
Pekka Enberg 已提交
3573
					   numa_node_id());
L
Linus Torvalds 已提交
3574

3575 3576
		if (l3->free_touched) {
			l3->free_touched = 0;
L
Linus Torvalds 已提交
3577 3578 3579
			goto next_unlock;
		}

P
Pekka Enberg 已提交
3580 3581 3582
		tofree =
		    (l3->free_limit + 5 * searchp->num -
		     1) / (5 * searchp->num);
L
Linus Torvalds 已提交
3583
		do {
3584 3585
			p = l3->slabs_free.next;
			if (p == &(l3->slabs_free))
L
Linus Torvalds 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
				break;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);
			list_del(&slabp->list);
			STATS_INC_REAPED(searchp);

			/* Safe to drop the lock. The slab is no longer
			 * linked to the cache.
			 * searchp cannot disappear, we hold
			 * cache_chain_lock
			 */
3598 3599
			l3->free_objects -= searchp->num;
			spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3600
			slab_destroy(searchp, slabp);
3601
			spin_lock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3602 3603
		} while (--tofree > 0);
	      next_unlock:
3604
		spin_unlock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3605
	      next:
L
Linus Torvalds 已提交
3606 3607 3608
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3609
	mutex_unlock(&cache_chain_mutex);
3610
	next_reap_node();
L
Linus Torvalds 已提交
3611
	/* Setup the next iteration */
3612
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3613 3614 3615 3616
}

#ifdef CONFIG_PROC_FS

3617
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3618
{
3619 3620 3621 3622
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3623
#if STATS
3624
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3625
#else
3626
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3627
#endif
3628 3629 3630 3631
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3632
#if STATS
3633 3634 3635
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3636
#endif
3637 3638 3639 3640 3641 3642 3643 3644
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3645
	mutex_lock(&cache_chain_mutex);
3646 3647
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3648 3649 3650 3651 3652 3653
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3654
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3655 3656 3657 3658
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3659
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3660 3661
	++*pos;
	return cachep->next.next == &cache_chain ? NULL
3662
	    : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3663 3664 3665 3666
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3667
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3668 3669 3670 3671
}

static int s_show(struct seq_file *m, void *p)
{
3672
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3673
	struct list_head *q;
P
Pekka Enberg 已提交
3674 3675 3676 3677 3678
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3679
	const char *name;
L
Linus Torvalds 已提交
3680
	char *error = NULL;
3681 3682
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3683

3684
	spin_lock(&cachep->spinlock);
L
Linus Torvalds 已提交
3685 3686
	active_objs = 0;
	num_slabs = 0;
3687 3688 3689 3690 3691
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3692 3693
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3694

P
Pekka Enberg 已提交
3695
		list_for_each(q, &l3->slabs_full) {
3696 3697 3698 3699 3700 3701
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3702
		list_for_each(q, &l3->slabs_partial) {
3703 3704 3705 3706 3707 3708 3709 3710
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3711
		list_for_each(q, &l3->slabs_free) {
3712 3713 3714 3715 3716 3717
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3718 3719
		if (l3->shared)
			shared_avail += l3->shared->avail;
3720

3721
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3722
	}
P
Pekka Enberg 已提交
3723 3724
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3725
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3726 3727
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3728
	name = cachep->name;
L
Linus Torvalds 已提交
3729 3730 3731 3732
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3733
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3734
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3735
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3736
		   cachep->limit, cachep->batchcount, cachep->shared);
3737
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3738
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3739
#if STATS
P
Pekka Enberg 已提交
3740
	{			/* list3 stats */
L
Linus Torvalds 已提交
3741 3742 3743 3744 3745 3746 3747
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3748
		unsigned long node_frees = cachep->node_frees;
L
Linus Torvalds 已提交
3749

3750
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
P
Pekka Enberg 已提交
3751
				%4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
L
Linus Torvalds 已提交
3752 3753 3754 3755 3756 3757 3758 3759 3760
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3761
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3762 3763 3764
	}
#endif
	seq_putc(m, '\n');
3765
	spin_unlock(&cachep->spinlock);
L
Linus Torvalds 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3784 3785 3786 3787
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3798 3799
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3800
{
P
Pekka Enberg 已提交
3801
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3802 3803
	int limit, batchcount, shared, res;
	struct list_head *p;
P
Pekka Enberg 已提交
3804

L
Linus Torvalds 已提交
3805 3806 3807 3808
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3809
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
3820
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3821
	res = -EINVAL;
P
Pekka Enberg 已提交
3822
	list_for_each(p, &cache_chain) {
3823 3824
		struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
						       next);
L
Linus Torvalds 已提交
3825 3826 3827 3828

		if (!strcmp(cachep->name, kbuf)) {
			if (limit < 1 ||
			    batchcount < 1 ||
P
Pekka Enberg 已提交
3829
			    batchcount > limit || shared < 0) {
3830
				res = 0;
L
Linus Torvalds 已提交
3831
			} else {
3832
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
3833
						       batchcount, shared);
L
Linus Torvalds 已提交
3834 3835 3836 3837
			}
			break;
		}
	}
I
Ingo Molnar 已提交
3838
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3839 3840 3841 3842 3843 3844
	if (res >= 0)
		res = count;
	return res;
}
#endif

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
3857 3858
unsigned int ksize(const void *objp)
{
3859 3860
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
3861

3862
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
3863
}