slab.c 105.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
30
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
54
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
55 56 57 58
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
59
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68 69 70 71
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
72
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
73 74 75 76 77 78
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
79 80 81 82 83 84 85 86 87
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
88 89 90 91
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
119
#include	<linux/sched/task_stack.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

131 132
#include	"slab.h"

L
Linus Torvalds 已提交
133
/*
134
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
155
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
156 157 158 159 160

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

161 162 163 164 165 166 167 168 169
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

170
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171

L
Linus Torvalds 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
189
	void *entry[];	/*
A
Andrew Morton 已提交
190 191 192 193
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
194 195
};

J
Joonsoo Kim 已提交
196 197 198 199 200
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

201 202 203
/*
 * Need this for bootstrapping a per node allocator.
 */
204
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206
#define	CACHE_CACHE 0
207
#define	SIZE_NODE (MAX_NUMNODES)
208

209
static int drain_freelist(struct kmem_cache *cache,
210
			struct kmem_cache_node *n, int tofree);
211
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 213
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215
static void cache_reap(struct work_struct *unused);
216

217 218 219 220 221
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
222 223
static int slab_early_init = 1;

224
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
225

226
static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 228 229 230
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
231
	parent->total_slabs = 0;
232
	parent->free_slabs = 0;
233 234
	parent->shared = NULL;
	parent->alien = NULL;
235
	parent->colour_next = 0;
236 237 238 239 240
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
241 242 243
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
244
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 246
	} while (0)

A
Andrew Morton 已提交
247 248
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
249 250 251 252
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
253

254 255
#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
257 258 259
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
260 261 262
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
263
 *
A
Adrian Bunk 已提交
264
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
265 266
 * which could lock up otherwise freeable slabs.
 */
267 268
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
269 270 271 272 273 274

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
275
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
276 277 278 279 280
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
281 282
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
285 286 287 288 289
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
290 291 292 293 294 295 296 297 298
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
299
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
300 301 302
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303
#define	STATS_INC_NODEFREES(x)	do { } while (0)
304
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
305
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
306 307 308 309 310 311 312 313
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
314 315
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
316
 * 0		: objp
317
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
318 319
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
320
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
321
 * 		redzone word.
322
 * cachep->obj_offset: The real object.
323 324
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
325
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
326
 */
327
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
328
{
329
	return cachep->obj_offset;
L
Linus Torvalds 已提交
330 331
}

332
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 336
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
337 338
}

339
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
340 341 342
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
343
		return (unsigned long long *)(objp + cachep->size -
344
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
345
					      REDZONE_ALIGN);
346
	return (unsigned long long *) (objp + cachep->size -
347
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
348 349
}

350
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
351 352
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
354 355 356 357
}

#else

358
#define obj_offset(x)			0
359 360
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
361 362 363 364 365
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
366 367
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
368
 */
369 370 371
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
372
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
373

374
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
375 376
				 unsigned int idx)
{
377
	return page->s_mem + cache->size * idx;
378 379
}

380
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
381
/* internal cache of cache description objs */
382
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
383 384 385
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
386
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
387
	.name = "kmem_cache",
L
Linus Torvalds 已提交
388 389
};

390
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
391

392
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
393
{
394
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
395 396
}

A
Andrew Morton 已提交
397 398 399
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
400
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
401
		slab_flags_t flags, size_t *left_over)
402
{
403
	unsigned int num;
404
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
405

406 407 408 409 410 411
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
412 413 414 415 416
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
417 418 419 420 421 422
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
423
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
424
		num = slab_size / buffer_size;
425
		*left_over = slab_size % buffer_size;
426
	} else {
427
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
428 429
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
430
	}
431 432

	return num;
L
Linus Torvalds 已提交
433 434
}

435
#if DEBUG
436
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
437

A
Andrew Morton 已提交
438 439
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
440
{
441
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
442
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
443
	dump_stack();
444
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
445
}
446
#endif
L
Linus Torvalds 已提交
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

464 465 466 467 468 469 470 471 472 473 474
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

475 476 477 478 479 480 481
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
482
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
483 484 485

static void init_reap_node(int cpu)
{
486 487
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
488 489 490 491
}

static void next_reap_node(void)
{
492
	int node = __this_cpu_read(slab_reap_node);
493

494
	node = next_node_in(node, node_online_map);
495
	__this_cpu_write(slab_reap_node, node);
496 497 498 499 500 501 502
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
503 504 505 506 507 508 509
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
510
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
511
{
512
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
513

514
	if (reap_work->work.func == NULL) {
515
		init_reap_node(cpu);
516
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
517 518
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
519 520 521
	}
}

522
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
523
{
524 525 526 527 528
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
529
	}
530 531 532 533 534
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
535
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
536 537 538
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
539 540 541 542 543 544 545 546
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transferred to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(ac);
547 548
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
549 550
}

551 552
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
553
{
554 555 556
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
557

558 559
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
560

561 562 563
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
564

565
	slabs_destroy(cachep, &list);
566 567
}

568 569 570 571 572 573 574 575 576 577
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
578
	int nr = min3(from->avail, max, to->limit - to->avail);
579 580 581 582 583 584 585 586 587 588 589 590

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

591 592 593
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
594
#define reap_alien(cachep, n) do { } while (0)
595

J
Joonsoo Kim 已提交
596 597
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
598
{
599
	return NULL;
600 601
}

J
Joonsoo Kim 已提交
602
static inline void free_alien_cache(struct alien_cache **ac_ptr)
603 604 605 606 607 608 609 610 611 612 613 614 615 616
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

617
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
618 619 620 621 622
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
623 624
static inline gfp_t gfp_exact_node(gfp_t flags)
{
625
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
626 627
}

628 629
#else	/* CONFIG_NUMA */

630
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
631
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
632

J
Joonsoo Kim 已提交
633 634 635
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
636
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
637 638 639
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
640
	if (alc) {
641
		kmemleak_no_scan(alc);
642 643 644
		init_arraycache(&alc->ac, entries, batch);
		spin_lock_init(&alc->lock);
	}
J
Joonsoo Kim 已提交
645 646 647 648
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
649
{
J
Joonsoo Kim 已提交
650
	struct alien_cache **alc_ptr;
651 652 653 654
	int i;

	if (limit > 1)
		limit = 12;
655
	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
J
Joonsoo Kim 已提交
656 657 658 659 660 661 662 663 664 665 666 667
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
668 669
		}
	}
J
Joonsoo Kim 已提交
670
	return alc_ptr;
671 672
}

J
Joonsoo Kim 已提交
673
static void free_alien_cache(struct alien_cache **alc_ptr)
674 675 676
{
	int i;

J
Joonsoo Kim 已提交
677
	if (!alc_ptr)
678 679
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
680 681
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
682 683
}

684
static void __drain_alien_cache(struct kmem_cache *cachep,
685 686
				struct array_cache *ac, int node,
				struct list_head *list)
687
{
688
	struct kmem_cache_node *n = get_node(cachep, node);
689 690

	if (ac->avail) {
691
		spin_lock(&n->list_lock);
692 693 694 695 696
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
697 698
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
699

700
		free_block(cachep, ac->entry, ac->avail, node, list);
701
		ac->avail = 0;
702
		spin_unlock(&n->list_lock);
703 704 705
	}
}

706 707 708
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
709
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
710
{
711
	int node = __this_cpu_read(slab_reap_node);
712

713
	if (n->alien) {
J
Joonsoo Kim 已提交
714 715 716 717 718
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
719
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
720 721 722
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
723
				spin_unlock_irq(&alc->lock);
724
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
725
			}
726 727 728 729
		}
	}
}

A
Andrew Morton 已提交
730
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
731
				struct alien_cache **alien)
732
{
P
Pekka Enberg 已提交
733
	int i = 0;
J
Joonsoo Kim 已提交
734
	struct alien_cache *alc;
735 736 737 738
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
739 740
		alc = alien[i];
		if (alc) {
741 742
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
743
			ac = &alc->ac;
744
			spin_lock_irqsave(&alc->lock, flags);
745
			__drain_alien_cache(cachep, ac, i, &list);
746
			spin_unlock_irqrestore(&alc->lock, flags);
747
			slabs_destroy(cachep, &list);
748 749 750
		}
	}
}
751

752 753
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
754
{
755
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
756 757
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
758
	LIST_HEAD(list);
P
Pekka Enberg 已提交
759

760
	n = get_node(cachep, node);
761
	STATS_INC_NODEFREES(cachep);
762 763
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
764
		ac = &alien->ac;
765
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
766
		if (unlikely(ac->avail == ac->limit)) {
767
			STATS_INC_ACOVERFLOW(cachep);
768
			__drain_alien_cache(cachep, ac, page_node, &list);
769
		}
770
		ac->entry[ac->avail++] = objp;
771
		spin_unlock(&alien->lock);
772
		slabs_destroy(cachep, &list);
773
	} else {
774
		n = get_node(cachep, page_node);
775
		spin_lock(&n->list_lock);
776
		free_block(cachep, &objp, 1, page_node, &list);
777
		spin_unlock(&n->list_lock);
778
		slabs_destroy(cachep, &list);
779 780 781
	}
	return 1;
}
782 783 784 785 786 787 788 789 790 791 792 793 794 795

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
796 797

/*
798 799
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
800 801 802
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
803
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
804
}
805 806
#endif

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

847
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
848
/*
849
 * Allocates and initializes node for a node on each slab cache, used for
850
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
851
 * will be allocated off-node since memory is not yet online for the new node.
852
 * When hotplugging memory or a cpu, existing node are not replaced if
853 854
 * already in use.
 *
855
 * Must hold slab_mutex.
856
 */
857
static int init_cache_node_node(int node)
858
{
859
	int ret;
860 861
	struct kmem_cache *cachep;

862
	list_for_each_entry(cachep, &slab_caches, list) {
863 864 865
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
866
	}
867

868 869
	return 0;
}
870
#endif
871

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

921 922 923 924
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
925
	 * freed after synchronize_rcu().
926
	 */
927
	if (old_shared && force_change)
928
		synchronize_rcu();
929

930 931 932 933 934 935 936 937
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

938 939
#ifdef CONFIG_SMP

940
static void cpuup_canceled(long cpu)
941 942
{
	struct kmem_cache *cachep;
943
	struct kmem_cache_node *n = NULL;
944
	int node = cpu_to_mem(cpu);
945
	const struct cpumask *mask = cpumask_of_node(node);
946

947
	list_for_each_entry(cachep, &slab_caches, list) {
948 949
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
950
		struct alien_cache **alien;
951
		LIST_HEAD(list);
952

953
		n = get_node(cachep, node);
954
		if (!n)
955
			continue;
956

957
		spin_lock_irq(&n->list_lock);
958

959 960
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
961 962 963

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
964 965
		free_block(cachep, nc->entry, nc->avail, node, &list);
		nc->avail = 0;
966

967
		if (!cpumask_empty(mask)) {
968
			spin_unlock_irq(&n->list_lock);
969
			goto free_slab;
970 971
		}

972
		shared = n->shared;
973 974
		if (shared) {
			free_block(cachep, shared->entry,
975
				   shared->avail, node, &list);
976
			n->shared = NULL;
977 978
		}

979 980
		alien = n->alien;
		n->alien = NULL;
981

982
		spin_unlock_irq(&n->list_lock);
983 984 985 986 987 988

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
989 990

free_slab:
991
		slabs_destroy(cachep, &list);
992 993 994 995 996 997
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
998
	list_for_each_entry(cachep, &slab_caches, list) {
999
		n = get_node(cachep, node);
1000
		if (!n)
1001
			continue;
1002
		drain_freelist(cachep, n, INT_MAX);
1003 1004 1005
	}
}

1006
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1007
{
1008
	struct kmem_cache *cachep;
1009
	int node = cpu_to_mem(cpu);
1010
	int err;
L
Linus Torvalds 已提交
1011

1012 1013 1014 1015
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1016
	 * kmem_cache_node and not this cpu's kmem_cache_node
1017
	 */
1018
	err = init_cache_node_node(node);
1019 1020
	if (err < 0)
		goto bad;
1021 1022 1023 1024 1025

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1026
	list_for_each_entry(cachep, &slab_caches, list) {
1027 1028 1029
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1030
	}
1031

1032 1033
	return 0;
bad:
1034
	cpuup_canceled(cpu);
1035 1036 1037
	return -ENOMEM;
}

1038
int slab_prepare_cpu(unsigned int cpu)
1039
{
1040
	int err;
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1065
#endif
1066 1067 1068 1069 1070

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
L
Linus Torvalds 已提交
1071 1072
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
L
Linus Torvalds 已提交
1086

1087 1088 1089 1090 1091 1092
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1093
 * Must hold slab_mutex.
1094
 */
1095
static int __meminit drain_cache_node_node(int node)
1096 1097 1098 1099
{
	struct kmem_cache *cachep;
	int ret = 0;

1100
	list_for_each_entry(cachep, &slab_caches, list) {
1101
		struct kmem_cache_node *n;
1102

1103
		n = get_node(cachep, node);
1104
		if (!n)
1105 1106
			continue;

1107
		drain_freelist(cachep, n, INT_MAX);
1108

1109 1110
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1131
		mutex_lock(&slab_mutex);
1132
		ret = init_cache_node_node(nid);
1133
		mutex_unlock(&slab_mutex);
1134 1135
		break;
	case MEM_GOING_OFFLINE:
1136
		mutex_lock(&slab_mutex);
1137
		ret = drain_cache_node_node(nid);
1138
		mutex_unlock(&slab_mutex);
1139 1140 1141 1142 1143 1144 1145 1146
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1147
	return notifier_from_errno(ret);
1148 1149 1150
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1151
/*
1152
 * swap the static kmem_cache_node with kmalloced memory
1153
 */
1154
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1155
				int nodeid)
1156
{
1157
	struct kmem_cache_node *ptr;
1158

1159
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1160 1161
	BUG_ON(!ptr);

1162
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1163 1164 1165 1166 1167
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1168
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1169
	cachep->node[nodeid] = ptr;
1170 1171
}

1172
/*
1173 1174
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1175
 */
1176
static void __init set_up_node(struct kmem_cache *cachep, int index)
1177 1178 1179 1180
{
	int node;

	for_each_online_node(node) {
1181
		cachep->node[node] = &init_kmem_cache_node[index + node];
1182
		cachep->node[node]->next_reap = jiffies +
1183 1184
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1185 1186 1187
	}
}

A
Andrew Morton 已提交
1188 1189 1190
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1191 1192 1193
 */
void __init kmem_cache_init(void)
{
1194 1195
	int i;

1196 1197
	kmem_cache = &kmem_cache_boot;

1198
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1199 1200
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1201
	for (i = 0; i < NUM_INIT_LISTS; i++)
1202
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1203

L
Linus Torvalds 已提交
1204 1205
	/*
	 * Fragmentation resistance on low memory - only use bigger
1206 1207
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1208
	 */
1209
	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1210
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1211 1212 1213

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1214 1215 1216
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1217
	 *    Initially an __init data area is used for the head array and the
1218
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1219
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1220
	 * 2) Create the first kmalloc cache.
1221
	 *    The struct kmem_cache for the new cache is allocated normally.
1222 1223 1224
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1225
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1226
	 *    kmalloc cache with kmalloc allocated arrays.
1227
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1228 1229
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1230 1231
	 */

1232
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1233

E
Eric Dumazet 已提交
1234
	/*
1235
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1236
	 */
1237
	create_boot_cache(kmem_cache, "kmem_cache",
1238
		offsetof(struct kmem_cache, node) +
1239
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1240
				  SLAB_HWCACHE_ALIGN, 0, 0);
1241
	list_add(&kmem_cache->list, &slab_caches);
1242
	memcg_link_cache(kmem_cache, NULL);
1243
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1244

A
Andrew Morton 已提交
1245
	/*
1246 1247
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1248
	 */
1249
	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1250
				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1251 1252
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
				0, kmalloc_size(INDEX_NODE));
1253
	slab_state = PARTIAL_NODE;
1254
	setup_kmalloc_cache_index_table();
1255

1256 1257
	slab_early_init = 0;

1258
	/* 5) Replace the bootstrap kmem_cache_node */
1259
	{
P
Pekka Enberg 已提交
1260 1261
		int nid;

1262
		for_each_online_node(nid) {
1263
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1264

1265
			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1266
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1267 1268
		}
	}
L
Linus Torvalds 已提交
1269

1270
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1271 1272 1273 1274 1275 1276 1277
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
1278 1279
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1280 1281
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1282
	mutex_unlock(&slab_mutex);
1283

1284 1285 1286
	/* Done! */
	slab_state = FULL;

1287 1288 1289
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1290
	 * node.
1291 1292 1293 1294
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1295 1296 1297
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1298 1299 1300 1301 1302
	 */
}

static int __init cpucache_init(void)
{
1303
	int ret;
L
Linus Torvalds 已提交
1304

A
Andrew Morton 已提交
1305 1306
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1307
	 */
1308 1309 1310
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1311

L
Linus Torvalds 已提交
1312 1313 1314 1315
	return 0;
}
__initcall(cpucache_init);

1316 1317 1318
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1319
#if DEBUG
1320
	struct kmem_cache_node *n;
1321 1322
	unsigned long flags;
	int node;
1323 1324 1325 1326 1327
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1328

1329 1330 1331
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1332
		cachep->name, cachep->size, cachep->gfporder);
1333

1334
	for_each_kmem_cache_node(cachep, node, n) {
1335
		unsigned long total_slabs, free_slabs, free_objs;
1336

1337
		spin_lock_irqsave(&n->list_lock, flags);
1338 1339 1340
		total_slabs = n->total_slabs;
		free_slabs = n->free_slabs;
		free_objs = n->free_objects;
1341
		spin_unlock_irqrestore(&n->list_lock, flags);
1342

1343 1344 1345 1346
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
			node, total_slabs - free_slabs, total_slabs,
			(total_slabs * cachep->num) - free_objs,
			total_slabs * cachep->num);
1347
	}
1348
#endif
1349 1350
}

L
Linus Torvalds 已提交
1351
/*
W
Wang Sheng-Hui 已提交
1352 1353
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1354 1355 1356 1357 1358
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1359 1360
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1361 1362
{
	struct page *page;
1363

1364
	flags |= cachep->allocflags;
1365

1366
	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1367
	if (!page) {
1368
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1369
		return NULL;
1370
	}
L
Linus Torvalds 已提交
1371

1372
	if (charge_slab_page(page, flags, cachep->gfporder, cachep)) {
1373 1374 1375 1376
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1377
	__SetPageSlab(page);
1378 1379
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1380
		SetPageSlabPfmemalloc(page);
1381

1382
	return page;
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387
}

/*
 * Interface to system's page release.
 */
1388
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1389
{
1390
	int order = cachep->gfporder;
J
Joonsoo Kim 已提交
1391

1392
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1393
	__ClearPageSlabPfmemalloc(page);
1394
	__ClearPageSlab(page);
1395 1396
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1397

L
Linus Torvalds 已提交
1398
	if (current->reclaim_state)
1399 1400
		current->reclaim_state->reclaimed_slab += 1 << order;
	uncharge_slab_page(page, order, cachep);
1401
	__free_pages(page, order);
L
Linus Torvalds 已提交
1402 1403 1404 1405
}

static void kmem_rcu_free(struct rcu_head *head)
{
1406 1407
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1408

1409 1410 1411 1412
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1413 1414 1415
}

#if DEBUG
1416 1417 1418 1419 1420 1421 1422 1423
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1424 1425

#ifdef CONFIG_DEBUG_PAGEALLOC
Q
Qian Cai 已提交
1426
static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1427 1428 1429 1430 1431 1432 1433 1434 1435
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
Q
Qian Cai 已提交
1436
				int map) {}
1437

L
Linus Torvalds 已提交
1438 1439
#endif

1440
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1441
{
1442
	int size = cachep->object_size;
1443
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1444 1445

	memset(addr, val, size);
P
Pekka Enberg 已提交
1446
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1447 1448 1449 1450 1451
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1452 1453 1454
	unsigned char error = 0;
	int bad_count = 0;

1455
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1456 1457 1458 1459 1460 1461
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1462 1463
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1464 1465 1466 1467

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1468
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1469
#ifdef CONFIG_X86
1470
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1471
#else
1472
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1473 1474 1475
#endif
		}
	}
L
Linus Torvalds 已提交
1476 1477 1478 1479 1480
}
#endif

#if DEBUG

1481
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1482 1483 1484 1485 1486
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1487 1488 1489
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1490 1491
	}

1492 1493
	if (cachep->flags & SLAB_STORE_USER)
		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1494
	realobj = (char *)objp + obj_offset(cachep);
1495
	size = cachep->object_size;
P
Pekka Enberg 已提交
1496
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1497 1498
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1499 1500
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1501 1502 1503 1504
		dump_line(realobj, i, limit);
	}
}

1505
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1506 1507 1508 1509 1510
{
	char *realobj;
	int size, i;
	int lines = 0;

1511 1512 1513
	if (is_debug_pagealloc_cache(cachep))
		return;

1514
	realobj = (char *)objp + obj_offset(cachep);
1515
	size = cachep->object_size;
L
Linus Torvalds 已提交
1516

P
Pekka Enberg 已提交
1517
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1518
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1519
		if (i == size - 1)
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524 1525
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1526
				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1527 1528
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1529 1530 1531
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1532
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1533
			limit = 16;
P
Pekka Enberg 已提交
1534 1535
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1548
		struct page *page = virt_to_head_page(objp);
1549
		unsigned int objnr;
L
Linus Torvalds 已提交
1550

1551
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1552
		if (objnr) {
1553
			objp = index_to_obj(cachep, page, objnr - 1);
1554
			realobj = (char *)objp + obj_offset(cachep);
1555
			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1556 1557
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1558
		if (objnr + 1 < cachep->num) {
1559
			objp = index_to_obj(cachep, page, objnr + 1);
1560
			realobj = (char *)objp + obj_offset(cachep);
1561
			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1562 1563 1564 1565 1566 1567
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1568
#if DEBUG
1569 1570
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1571 1572
{
	int i;
1573 1574 1575 1576 1577 1578

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1579
	for (i = 0; i < cachep->num; i++) {
1580
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1581 1582 1583

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
Q
Qian Cai 已提交
1584
			slab_kernel_map(cachep, objp, 1);
L
Linus Torvalds 已提交
1585 1586 1587
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1588
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1589
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1590
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1591 1592
		}
	}
1593
}
L
Linus Torvalds 已提交
1594
#else
1595 1596
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1597 1598
{
}
L
Linus Torvalds 已提交
1599 1600
#endif

1601 1602 1603
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1604
 * @page: page pointer being destroyed
1605
 *
W
Wang Sheng-Hui 已提交
1606 1607 1608
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1609
 */
1610
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1611
{
1612
	void *freelist;
1613

1614 1615
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1616
	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1617 1618
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1619
		kmem_freepages(cachep, page);
1620 1621

	/*
1622
	 * From now on, we don't use freelist
1623 1624 1625
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1626
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1627 1628
}

1629 1630 1631 1632
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

1633 1634
	list_for_each_entry_safe(page, n, list, slab_list) {
		list_del(&page->slab_list);
1635 1636 1637 1638
		slab_destroy(cachep, page);
	}
}

1639
/**
1640 1641 1642 1643 1644 1645
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1646 1647 1648 1649
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
1650 1651
 *
 * Return: number of left-over bytes in a slab
1652
 */
A
Andrew Morton 已提交
1653
static size_t calculate_slab_order(struct kmem_cache *cachep,
1654
				size_t size, slab_flags_t flags)
1655 1656
{
	size_t left_over = 0;
1657
	int gfporder;
1658

1659
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1660 1661 1662
		unsigned int num;
		size_t remainder;

1663
		num = cache_estimate(gfporder, size, flags, &remainder);
1664 1665
		if (!num)
			continue;
1666

1667 1668 1669 1670
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1671
		if (flags & CFLGS_OFF_SLAB) {
1672 1673 1674 1675 1676 1677 1678 1679
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1680
			/*
1681
			 * Needed to avoid possible looping condition
1682
			 * in cache_grow_begin()
1683
			 */
1684 1685
			if (OFF_SLAB(freelist_cache))
				continue;
1686

1687 1688 1689
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1690
		}
1691

1692
		/* Found something acceptable - save it away */
1693
		cachep->num = num;
1694
		cachep->gfporder = gfporder;
1695 1696
		left_over = remainder;

1697 1698 1699 1700 1701 1702 1703 1704
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1705 1706 1707 1708
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1709
		if (gfporder >= slab_max_order)
1710 1711
			break;

1712 1713 1714
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1715
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1716 1717 1718 1719 1720
			break;
	}
	return left_over;
}

1721 1722 1723 1724 1725 1726 1727 1728
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1729
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1742
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1743
{
1744
	if (slab_state >= FULL)
1745
		return enable_cpucache(cachep, gfp);
1746

1747 1748 1749 1750
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1751
	if (slab_state == DOWN) {
1752 1753
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1754
	} else if (slab_state == PARTIAL) {
1755 1756
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1757
	} else {
1758
		int node;
1759

1760 1761 1762 1763 1764
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1765 1766
		}
	}
1767

1768
	cachep->node[numa_mem_id()]->next_reap =
1769 1770
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1771 1772 1773 1774 1775 1776 1777

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1778
	return 0;
1779 1780
}

1781
slab_flags_t kmem_cache_flags(unsigned int object_size,
1782
	slab_flags_t flags, const char *name,
J
Joonsoo Kim 已提交
1783 1784 1785 1786 1787 1788
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
1789
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1790
		   slab_flags_t flags, void (*ctor)(void *))
J
Joonsoo Kim 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1807
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1808
			size_t size, slab_flags_t flags)
1809 1810 1811 1812 1813
{
	size_t left;

	cachep->num = 0;

1814 1815 1816 1817 1818 1819 1820 1821
	/*
	 * If slab auto-initialization on free is enabled, store the freelist
	 * off-slab, so that its contents don't end up in one of the allocated
	 * objects.
	 */
	if (unlikely(slab_want_init_on_free(cachep)))
		return false;

1822
	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1838
static bool set_off_slab_cache(struct kmem_cache *cachep,
1839
			size_t size, slab_flags_t flags)
1840 1841 1842 1843 1844 1845
{
	size_t left;

	cachep->num = 0;

	/*
1846 1847
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
1873
			size_t size, slab_flags_t flags)
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1888
/**
1889
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1890
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1891 1892 1893 1894
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1895
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
1908 1909
 *
 * Return: a pointer to the created cache or %NULL in case of error
L
Linus Torvalds 已提交
1910
 */
1911
int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
L
Linus Torvalds 已提交
1912
{
1913
	size_t ralign = BYTES_PER_WORD;
1914
	gfp_t gfp;
1915
	int err;
1916
	unsigned int size = cachep->size;
L
Linus Torvalds 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
1926 1927
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
1928
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1929
	if (!(flags & SLAB_TYPESAFE_BY_RCU))
L
Linus Torvalds 已提交
1930 1931 1932 1933
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
1934 1935
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
1936 1937 1938
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
1939
	size = ALIGN(size, BYTES_PER_WORD);
L
Linus Torvalds 已提交
1940

D
David Woodhouse 已提交
1941 1942 1943 1944
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
1945
		size = ALIGN(size, REDZONE_ALIGN);
D
David Woodhouse 已提交
1946
	}
1947

1948
	/* 3) caller mandated alignment */
1949 1950
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
1951
	}
1952 1953
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
1954
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
1955
	/*
1956
	 * 4) Store it.
L
Linus Torvalds 已提交
1957
	 */
1958
	cachep->align = ralign;
1959 1960 1961 1962
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
1963

1964 1965 1966 1967 1968
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
1969 1970
#if DEBUG

1971 1972 1973 1974
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
1975 1976
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
1977 1978
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
1979 1980
	}
	if (flags & SLAB_STORE_USER) {
1981
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
1982 1983
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
1984
		 */
D
David Woodhouse 已提交
1985 1986 1987 1988
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
1989
	}
1990 1991
#endif

A
Alexander Potapenko 已提交
1992 1993
	kasan_cache_create(cachep, &size, &flags);

1994 1995 1996 1997 1998 1999 2000 2001 2002
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2003 2004 2005 2006 2007 2008 2009
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2010
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2022 2023 2024
	}
#endif

2025 2026 2027 2028 2029
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2030
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2031
		flags |= CFLGS_OFF_SLAB;
2032
		goto done;
2033
	}
L
Linus Torvalds 已提交
2034

2035 2036
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2037

2038
	return -E2BIG;
L
Linus Torvalds 已提交
2039

2040 2041
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2042
	cachep->flags = flags;
2043
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2044
	if (flags & SLAB_CACHE_DMA)
2045
		cachep->allocflags |= GFP_DMA;
2046 2047
	if (flags & SLAB_CACHE_DMA32)
		cachep->allocflags |= GFP_DMA32;
2048 2049
	if (flags & SLAB_RECLAIM_ACCOUNT)
		cachep->allocflags |= __GFP_RECLAIMABLE;
2050
	cachep->size = size;
2051
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2052

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2066 2067
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2068
	}
L
Linus Torvalds 已提交
2069

2070 2071
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2072
		__kmem_cache_release(cachep);
2073
		return err;
2074
	}
L
Linus Torvalds 已提交
2075

2076
	return 0;
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2090 2091 2092 2093 2094
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2095
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2096 2097 2098
{
#ifdef CONFIG_SMP
	check_irq_off();
2099
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2100 2101
#endif
}
2102

2103
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2104 2105 2106
{
#ifdef CONFIG_SMP
	check_irq_off();
2107
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2108 2109 2110
#endif
}

L
Linus Torvalds 已提交
2111 2112 2113
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2114
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2115
#define check_spinlock_acquired(x) do { } while(0)
2116
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2117 2118
#endif

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2135

L
Linus Torvalds 已提交
2136 2137
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2138
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2139
	struct array_cache *ac;
2140
	int node = numa_mem_id();
2141
	struct kmem_cache_node *n;
2142
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2143 2144

	check_irq_off();
2145
	ac = cpu_cache_get(cachep);
2146 2147
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2148
	free_block(cachep, ac->entry, ac->avail, node, &list);
2149
	spin_unlock(&n->list_lock);
2150
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2151 2152 2153
	ac->avail = 0;
}

2154
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2155
{
2156
	struct kmem_cache_node *n;
2157
	int node;
2158
	LIST_HEAD(list);
2159

2160
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2161
	check_irq_on();
2162 2163
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2164
			drain_alien_cache(cachep, n->alien);
2165

2166 2167 2168 2169 2170 2171 2172
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2173 2174
}

2175 2176 2177 2178 2179 2180 2181
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2182
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2183
{
2184 2185
	struct list_head *p;
	int nr_freed;
2186
	struct page *page;
L
Linus Torvalds 已提交
2187

2188
	nr_freed = 0;
2189
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2190

2191 2192 2193 2194
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2195 2196
			goto out;
		}
L
Linus Torvalds 已提交
2197

2198 2199
		page = list_entry(p, struct page, slab_list);
		list_del(&page->slab_list);
2200
		n->free_slabs--;
2201
		n->total_slabs--;
2202 2203 2204 2205
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2206 2207
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2208
		slab_destroy(cache, page);
2209
		nr_freed++;
L
Linus Torvalds 已提交
2210
	}
2211 2212
out:
	return nr_freed;
L
Linus Torvalds 已提交
2213 2214
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial))
			return false;
	return true;
}

2227
int __kmem_cache_shrink(struct kmem_cache *cachep)
2228
{
2229 2230
	int ret = 0;
	int node;
2231
	struct kmem_cache_node *n;
2232 2233 2234 2235

	drain_cpu_caches(cachep);

	check_irq_on();
2236
	for_each_kmem_cache_node(cachep, node, n) {
2237
		drain_freelist(cachep, n, INT_MAX);
2238

2239 2240
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2241 2242 2243 2244
	}
	return (ret ? 1 : 0);
}

2245 2246 2247 2248 2249
#ifdef CONFIG_MEMCG
void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
{
	__kmem_cache_shrink(cachep);
}
2250 2251 2252 2253

void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
{
}
2254 2255
#endif

2256
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2257
{
2258
	return __kmem_cache_shrink(cachep);
2259 2260 2261
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2262
{
2263
	int i;
2264
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2265

T
Thomas Garnier 已提交
2266 2267
	cache_random_seq_destroy(cachep);

2268
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2269

2270
	/* NUMA: free the node structures */
2271 2272 2273 2274 2275
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2276
	}
L
Linus Torvalds 已提交
2277 2278
}

2279 2280
/*
 * Get the memory for a slab management obj.
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2292
 */
2293
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2294 2295
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2296
{
2297
	void *freelist;
2298
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2299

2300
	page->s_mem = addr + colour_off;
2301 2302
	page->active = 0;

2303 2304 2305
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2306
		/* Slab management obj is off-slab. */
2307
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2308
					      local_flags, nodeid);
2309
		if (!freelist)
L
Linus Torvalds 已提交
2310 2311
			return NULL;
	} else {
2312 2313 2314
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2315
	}
2316

2317
	return freelist;
L
Linus Torvalds 已提交
2318 2319
}

2320
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2321
{
2322
	return ((freelist_idx_t *)page->freelist)[idx];
2323 2324 2325
}

static inline void set_free_obj(struct page *page,
2326
					unsigned int idx, freelist_idx_t val)
2327
{
2328
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2329 2330
}

2331
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2332
{
2333
#if DEBUG
L
Linus Torvalds 已提交
2334 2335 2336
	int i;

	for (i = 0; i < cachep->num; i++) {
2337
		void *objp = index_to_obj(cachep, page, i);
2338

L
Linus Torvalds 已提交
2339 2340 2341 2342 2343 2344 2345 2346
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2347 2348 2349
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2350
		 */
A
Alexander Potapenko 已提交
2351 2352 2353
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2354
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2355 2356 2357
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2358 2359 2360

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2361
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2362
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2363
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2364
		}
2365 2366 2367
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
Q
Qian Cai 已提交
2368
			slab_kernel_map(cachep, objp, 0);
2369
		}
2370
	}
L
Linus Torvalds 已提交
2371
#endif
2372 2373
}

T
Thomas Garnier 已提交
2374 2375 2376 2377 2378
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2379
		unsigned int *list;
T
Thomas Garnier 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
		unsigned int count;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2397
	rand = get_random_int();
T
Thomas Garnier 已提交
2398 2399 2400 2401 2402 2403 2404 2405

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
2406
		state->pos = rand % count;
T
Thomas Garnier 已提交
2407 2408 2409 2410 2411 2412 2413 2414
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
2415 2416 2417
	if (state->pos >= state->count)
		state->pos = 0;
	return state->list[state->pos++];
T
Thomas Garnier 已提交
2418 2419
}

2420 2421 2422 2423 2424 2425 2426
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2427 2428 2429 2430 2431 2432
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2433
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2458 2459 2460 2461 2462 2463 2464 2465 2466
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2485 2486 2487 2488
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2489
	void *objp;
T
Thomas Garnier 已提交
2490
	bool shuffled;
2491 2492 2493

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2494 2495 2496 2497
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2498 2499 2500 2501
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2502
	for (i = 0; i < cachep->num; i++) {
2503
		objp = index_to_obj(cachep, page, i);
2504
		objp = kasan_init_slab_obj(cachep, objp);
2505

2506
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2507 2508 2509 2510 2511
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2512

T
Thomas Garnier 已提交
2513 2514
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2515 2516 2517
	}
}

2518
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2519
{
2520
	void *objp;
2521

2522
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2523
	page->active++;
2524 2525 2526 2527

	return objp;
}

2528 2529
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2530
{
2531
	unsigned int objnr = obj_to_index(cachep, page, objp);
2532
#if DEBUG
J
Joonsoo Kim 已提交
2533
	unsigned int i;
2534 2535

	/* Verify double free bug */
2536
	for (i = page->active; i < cachep->num; i++) {
2537
		if (get_free_obj(page, i) == objnr) {
2538
			pr_err("slab: double free detected in cache '%s', objp %px\n",
J
Joe Perches 已提交
2539
			       cachep->name, objp);
2540 2541
			BUG();
		}
2542 2543
	}
#endif
2544
	page->active--;
2545 2546 2547
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2548
	set_free_obj(page, page->active, objnr);
2549 2550
}

2551 2552 2553
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2554
 * virtual address for kfree, ksize, and slab debugging.
2555
 */
2556
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2557
			   void *freelist)
L
Linus Torvalds 已提交
2558
{
2559
	page->slab_cache = cache;
2560
	page->freelist = freelist;
L
Linus Torvalds 已提交
2561 2562 2563 2564 2565 2566
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2567 2568
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2569
{
2570
	void *freelist;
P
Pekka Enberg 已提交
2571 2572
	size_t offset;
	gfp_t local_flags;
2573
	int page_node;
2574
	struct kmem_cache_node *n;
2575
	struct page *page;
L
Linus Torvalds 已提交
2576

A
Andrew Morton 已提交
2577 2578 2579
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2580
	 */
2581
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2582
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2583 2584 2585 2586
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2587
	}
2588
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
C
Christoph Lameter 已提交
2589
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2590 2591

	check_irq_off();
2592
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2593 2594
		local_irq_enable();

A
Andrew Morton 已提交
2595 2596 2597
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2598
	 */
2599
	page = kmem_getpages(cachep, local_flags, nodeid);
2600
	if (!page)
L
Linus Torvalds 已提交
2601 2602
		goto failed;

2603 2604
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

2617 2618 2619 2620 2621 2622 2623
	/*
	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
	 * page_address() in the latter returns a non-tagged pointer,
	 * as it should be for slab pages.
	 */
	kasan_poison_slab(page);

L
Linus Torvalds 已提交
2624
	/* Get slab management. */
2625
	freelist = alloc_slabmgmt(cachep, page, offset,
2626
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2627
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2628 2629
		goto opps1;

2630
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2631

2632
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2633

2634
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2635 2636
		local_irq_disable();

2637 2638
	return page;

A
Andrew Morton 已提交
2639
opps1:
2640
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2641
failed:
2642
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2643
		local_irq_disable();
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

2657
	INIT_LIST_HEAD(&page->slab_list);
2658 2659 2660
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
2661
	n->total_slabs++;
2662
	if (!page->active) {
2663
		list_add_tail(&page->slab_list, &n->slabs_free);
2664
		n->free_slabs++;
2665
	} else
2666
		fixup_slab_list(cachep, n, page, &list);
2667

2668 2669 2670 2671 2672
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2685
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2686 2687
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2688 2689 2690
	}
}

2691 2692
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2693
	unsigned long long redzone1, redzone2;
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2709
	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2710
	       obj, redzone1, redzone2);
2711 2712
}

2713
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2714
				   unsigned long caller)
L
Linus Torvalds 已提交
2715 2716
{
	unsigned int objnr;
2717
	struct page *page;
L
Linus Torvalds 已提交
2718

2719 2720
	BUG_ON(virt_to_cache(objp) != cachep);

2721
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2722
	kfree_debugcheck(objp);
2723
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2724 2725

	if (cachep->flags & SLAB_RED_ZONE) {
2726
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2727 2728 2729
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
Q
Qian Cai 已提交
2730
	if (cachep->flags & SLAB_STORE_USER)
2731
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2732

2733
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2734 2735

	BUG_ON(objnr >= cachep->num);
2736
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2737 2738 2739

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
Q
Qian Cai 已提交
2740
		slab_kernel_map(cachep, objp, 0);
L
Linus Torvalds 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2765
static inline void fixup_slab_list(struct kmem_cache *cachep,
2766 2767
				struct kmem_cache_node *n, struct page *page,
				void **list)
2768 2769
{
	/* move slabp to correct slabp list: */
2770
	list_del(&page->slab_list);
2771
	if (page->active == cachep->num) {
2772
		list_add(&page->slab_list, &n->slabs_full);
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2786
		list_add(&page->slab_list, &n->slabs_partial);
2787 2788
}

2789 2790
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2791
					struct page *page, bool pfmemalloc)
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
2809
	list_del(&page->slab_list);
2810
	if (!page->active) {
2811
		list_add_tail(&page->slab_list, &n->slabs_free);
2812
		n->free_slabs++;
2813
	} else
2814
		list_add_tail(&page->slab_list, &n->slabs_partial);
2815

2816
	list_for_each_entry(page, &n->slabs_partial, slab_list) {
2817 2818 2819 2820
		if (!PageSlabPfmemalloc(page))
			return page;
	}

2821
	n->free_touched = 1;
2822
	list_for_each_entry(page, &n->slabs_free, slab_list) {
2823
		if (!PageSlabPfmemalloc(page)) {
2824
			n->free_slabs--;
2825
			return page;
2826
		}
2827 2828 2829 2830 2831 2832
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2833 2834 2835
{
	struct page *page;

2836
	assert_spin_locked(&n->list_lock);
2837 2838
	page = list_first_entry_or_null(&n->slabs_partial, struct page,
					slab_list);
2839 2840
	if (!page) {
		n->free_touched = 1;
2841
		page = list_first_entry_or_null(&n->slabs_free, struct page,
2842
						slab_list);
2843
		if (page)
2844
			n->free_slabs--;
2845 2846
	}

2847
	if (sk_memalloc_socks())
2848
		page = get_valid_first_slab(n, page, pfmemalloc);
2849

2850 2851 2852
	return page;
}

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2905
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2906 2907
{
	int batchcount;
2908
	struct kmem_cache_node *n;
2909
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
2910
	int node;
2911
	void *list = NULL;
2912
	struct page *page;
P
Pekka Enberg 已提交
2913

L
Linus Torvalds 已提交
2914
	check_irq_off();
2915
	node = numa_mem_id();
2916

2917
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2918 2919
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2920 2921 2922 2923
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2924 2925 2926
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2927
	n = get_node(cachep, node);
2928

2929
	BUG_ON(ac->avail > 0 || !n);
2930 2931 2932 2933
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

2934
	spin_lock(&n->list_lock);
2935
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
2936

2937
	/* See if we can refill from the shared array */
2938 2939
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
2940
		goto alloc_done;
2941
	}
2942

L
Linus Torvalds 已提交
2943 2944
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
2945
		page = get_first_slab(n, false);
2946 2947
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
2948 2949

		check_spinlock_acquired(cachep);
2950

2951
		batchcount = alloc_block(cachep, ac, page, batchcount);
2952
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
2953 2954
	}

A
Andrew Morton 已提交
2955
must_grow:
2956
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2957
alloc_done:
2958
	spin_unlock(&n->list_lock);
2959
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2960

2961
direct_grow:
L
Linus Torvalds 已提交
2962
	if (unlikely(!ac->avail)) {
2963 2964 2965 2966 2967 2968 2969 2970
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

2971
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2972

2973 2974 2975 2976
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
2977
		ac = cpu_cache_get(cachep);
2978 2979 2980
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
2981

2982
		if (!ac->avail)
L
Linus Torvalds 已提交
2983 2984 2985
			return NULL;
	}
	ac->touched = 1;
2986

2987
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2988 2989
}

A
Andrew Morton 已提交
2990 2991
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2992
{
2993
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
2994 2995 2996
}

#if DEBUG
A
Andrew Morton 已提交
2997
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2998
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2999
{
3000
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
P
Pekka Enberg 已提交
3001
	if (!objp)
L
Linus Torvalds 已提交
3002
		return objp;
P
Pekka Enberg 已提交
3003
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3004
		check_poison_obj(cachep, objp);
Q
Qian Cai 已提交
3005
		slab_kernel_map(cachep, objp, 1);
L
Linus Torvalds 已提交
3006 3007 3008
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3009
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3010 3011

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3012 3013
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3014
			slab_error(cachep, "double free, or memory outside object was overwritten");
3015
			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3016 3017
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3018 3019 3020 3021
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3022

3023
	objp += obj_offset(cachep);
3024
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3025
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3026 3027
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3028
		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3029
		       objp, (int)ARCH_SLAB_MINALIGN);
3030
	}
L
Linus Torvalds 已提交
3031 3032 3033 3034 3035 3036
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3037
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3038
{
P
Pekka Enberg 已提交
3039
	void *objp;
L
Linus Torvalds 已提交
3040 3041
	struct array_cache *ac;

3042
	check_irq_off();
3043

3044
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3045 3046
	if (likely(ac->avail)) {
		ac->touched = 1;
3047
		objp = ac->entry[--ac->avail];
3048

3049 3050
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3051
	}
3052 3053

	STATS_INC_ALLOCMISS(cachep);
3054
	objp = cache_alloc_refill(cachep, flags);
3055 3056 3057 3058 3059 3060 3061
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3062 3063 3064 3065 3066
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3067 3068
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3069 3070 3071
	return objp;
}

3072
#ifdef CONFIG_NUMA
3073
/*
3074
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3075 3076 3077 3078 3079 3080 3081 3082
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3083
	if (in_interrupt() || (flags & __GFP_THISNODE))
3084
		return NULL;
3085
	nid_alloc = nid_here = numa_mem_id();
3086
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3087
		nid_alloc = cpuset_slab_spread_node();
3088
	else if (current->mempolicy)
3089
		nid_alloc = mempolicy_slab_node();
3090
	if (nid_alloc != nid_here)
3091
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3092 3093 3094
	return NULL;
}

3095 3096
/*
 * Fallback function if there was no memory available and no objects on a
3097
 * certain node and fall back is permitted. First we scan all the
3098
 * available node for available objects. If that fails then we
3099 3100 3101
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3102
 */
3103
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3104
{
3105
	struct zonelist *zonelist;
3106
	struct zoneref *z;
3107 3108
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3109
	void *obj = NULL;
3110
	struct page *page;
3111
	int nid;
3112
	unsigned int cpuset_mems_cookie;
3113 3114 3115 3116

	if (flags & __GFP_THISNODE)
		return NULL;

3117
retry_cpuset:
3118
	cpuset_mems_cookie = read_mems_allowed_begin();
3119
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3120

3121 3122 3123 3124 3125
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3126 3127
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3128

3129
		if (cpuset_zone_allowed(zone, flags) &&
3130 3131
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3132
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3133
					gfp_exact_node(flags), nid);
3134 3135 3136
				if (obj)
					break;
		}
3137 3138
	}

3139
	if (!obj) {
3140 3141 3142 3143 3144 3145
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3146 3147 3148 3149
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3150 3151
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3152

3153
			/*
3154 3155
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3156
			 */
3157 3158
			if (!obj)
				goto retry;
3159
		}
3160
	}
3161

3162
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3163
		goto retry_cpuset;
3164 3165 3166
	return obj;
}

3167 3168
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3169
 */
3170
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3171
				int nodeid)
3172
{
3173
	struct page *page;
3174
	struct kmem_cache_node *n;
3175
	void *obj = NULL;
3176
	void *list = NULL;
P
Pekka Enberg 已提交
3177

3178
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3179
	n = get_node(cachep, nodeid);
3180
	BUG_ON(!n);
P
Pekka Enberg 已提交
3181

3182
	check_irq_off();
3183
	spin_lock(&n->list_lock);
3184
	page = get_first_slab(n, false);
3185 3186
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3187 3188 3189 3190 3191 3192 3193

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3194
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3195

3196
	obj = slab_get_obj(cachep, page);
3197
	n->free_objects--;
P
Pekka Enberg 已提交
3198

3199
	fixup_slab_list(cachep, n, page, &list);
3200

3201
	spin_unlock(&n->list_lock);
3202
	fixup_objfreelist_debug(cachep, &list);
3203
	return obj;
3204

A
Andrew Morton 已提交
3205
must_grow:
3206
	spin_unlock(&n->list_lock);
3207
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3208 3209 3210 3211
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3212
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3213

3214
	return obj ? obj : fallback_alloc(cachep, flags);
3215
}
3216 3217

static __always_inline void *
3218
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3219
		   unsigned long caller)
3220 3221 3222
{
	unsigned long save_flags;
	void *ptr;
3223
	int slab_node = numa_mem_id();
3224

3225
	flags &= gfp_allowed_mask;
3226 3227
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3228 3229
		return NULL;

3230 3231 3232
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3233
	if (nodeid == NUMA_NO_NODE)
3234
		nodeid = slab_node;
3235

3236
	if (unlikely(!get_node(cachep, nodeid))) {
3237 3238 3239 3240 3241
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3242
	if (nodeid == slab_node) {
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3259
	if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr)
3260
		memset(ptr, 0, cachep->object_size);
3261

3262
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3263 3264 3265 3266 3267 3268 3269 3270
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3271
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3282 3283
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3299
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3300 3301 3302 3303
{
	unsigned long save_flags;
	void *objp;

3304
	flags &= gfp_allowed_mask;
3305 3306
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3307 3308
		return NULL;

3309 3310 3311 3312 3313 3314 3315
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3316
	if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp)
3317
		memset(objp, 0, cachep->object_size);
3318

3319
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3320 3321
	return objp;
}
3322 3323

/*
3324
 * Caller needs to acquire correct kmem_cache_node's list_lock
3325
 * @list: List of detached free slabs should be freed by caller
3326
 */
3327 3328
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3329 3330
{
	int i;
3331
	struct kmem_cache_node *n = get_node(cachep, node);
3332 3333 3334
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3335 3336

	for (i = 0; i < nr_objects; i++) {
3337
		void *objp;
3338
		struct page *page;
L
Linus Torvalds 已提交
3339

3340 3341
		objp = objpp[i];

3342
		page = virt_to_head_page(objp);
3343
		list_del(&page->slab_list);
3344
		check_spinlock_acquired_node(cachep, node);
3345
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3346 3347 3348
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3349
		if (page->active == 0) {
3350
			list_add(&page->slab_list, &n->slabs_free);
3351 3352
			n->free_slabs++;
		} else {
L
Linus Torvalds 已提交
3353 3354 3355 3356
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3357
			list_add_tail(&page->slab_list, &n->slabs_partial);
L
Linus Torvalds 已提交
3358 3359
		}
	}
3360 3361 3362 3363

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

3364 3365
		page = list_last_entry(&n->slabs_free, struct page, slab_list);
		list_move(&page->slab_list, list);
3366
		n->free_slabs--;
3367
		n->total_slabs--;
3368
	}
L
Linus Torvalds 已提交
3369 3370
}

3371
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3372 3373
{
	int batchcount;
3374
	struct kmem_cache_node *n;
3375
	int node = numa_mem_id();
3376
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3377 3378

	batchcount = ac->batchcount;
3379

L
Linus Torvalds 已提交
3380
	check_irq_off();
3381
	n = get_node(cachep, node);
3382 3383 3384
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3385
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3386 3387 3388
		if (max) {
			if (batchcount > max)
				batchcount = max;
3389
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3390
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3391 3392 3393 3394 3395
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3396
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3397
free_done:
L
Linus Torvalds 已提交
3398 3399 3400
#if STATS
	{
		int i = 0;
3401
		struct page *page;
L
Linus Torvalds 已提交
3402

3403
		list_for_each_entry(page, &n->slabs_free, slab_list) {
3404
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3405 3406 3407 3408 3409 3410

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3411
	spin_unlock(&n->list_lock);
3412
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3413
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3414
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3415 3416 3417
}

/*
A
Andrew Morton 已提交
3418 3419
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3420
 */
3421 3422
static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
					 unsigned long caller)
L
Linus Torvalds 已提交
3423
{
3424
	/* Put the object into the quarantine, don't touch it for now. */
3425
	if (kasan_slab_free(cachep, objp, _RET_IP_))
3426 3427 3428 3429
		return;

	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3430

3431 3432 3433 3434
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3435

L
Linus Torvalds 已提交
3436
	check_irq_off();
3437 3438
	if (unlikely(slab_want_init_on_free(cachep)))
		memset(objp, 0, cachep->object_size);
3439
	kmemleak_free_recursive(objp, cachep->flags);
3440
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3441

3442 3443 3444 3445 3446 3447 3448
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3449
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3450 3451
		return;

3452
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3453 3454 3455 3456 3457
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3458

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
3478 3479
 *
 * Return: pointer to the new object or %NULL in case of error
L
Linus Torvalds 已提交
3480
 */
3481
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3482
{
3483
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3484

3485
	trace_kmem_cache_alloc(_RET_IP_, ret,
3486
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3487 3488

	return ret;
L
Linus Torvalds 已提交
3489 3490 3491
}
EXPORT_SYMBOL(kmem_cache_alloc);

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3502
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3503
			  void **p)
3504
{
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3523 3524
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3525
	/* Clear memory outside IRQ disabled section */
3526
	if (unlikely(slab_want_init_on_alloc(flags, s)))
3527 3528 3529 3530 3531 3532 3533 3534
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3535
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3536 3537 3538
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3539 3540 3541
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3542
#ifdef CONFIG_TRACING
3543
void *
3544
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3545
{
3546 3547
	void *ret;

3548
	ret = slab_alloc(cachep, flags, _RET_IP_);
3549

3550
	ret = kasan_kmalloc(cachep, ret, size, flags);
3551
	trace_kmalloc(_RET_IP_, ret,
3552
		      size, cachep->size, flags);
3553
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3554
}
3555
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3556 3557
#endif

L
Linus Torvalds 已提交
3558
#ifdef CONFIG_NUMA
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
3569 3570
 *
 * Return: pointer to the new object or %NULL in case of error
3571
 */
3572 3573
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3574
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3575

3576
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3577
				    cachep->object_size, cachep->size,
3578
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3579 3580

	return ret;
3581
}
L
Linus Torvalds 已提交
3582 3583
EXPORT_SYMBOL(kmem_cache_alloc_node);

3584
#ifdef CONFIG_TRACING
3585
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3586
				  gfp_t flags,
3587 3588
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3589
{
3590 3591
	void *ret;

3592
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3593

3594
	ret = kasan_kmalloc(cachep, ret, size, flags);
3595
	trace_kmalloc_node(_RET_IP_, ret,
3596
			   size, cachep->size,
3597 3598
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3599
}
3600
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3601 3602
#endif

3603
static __always_inline void *
3604
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3605
{
3606
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3607
	void *ret;
3608

3609 3610
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
		return NULL;
3611
	cachep = kmalloc_slab(size, flags);
3612 3613
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3614
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3615
	ret = kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3616 3617

	return ret;
3618
}
3619 3620 3621

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3622
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3623
}
3624
EXPORT_SYMBOL(__kmalloc_node);
3625 3626

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3627
		int node, unsigned long caller)
3628
{
3629
	return __do_kmalloc_node(size, flags, node, caller);
3630 3631 3632
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3633 3634

/**
3635
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3636
 * @size: how many bytes of memory are required.
3637
 * @flags: the type of memory to allocate (see kmalloc).
3638
 * @caller: function caller for debug tracking of the caller
3639 3640
 *
 * Return: pointer to the allocated memory or %NULL in case of error
L
Linus Torvalds 已提交
3641
 */
3642
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3643
					  unsigned long caller)
L
Linus Torvalds 已提交
3644
{
3645
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3646
	void *ret;
L
Linus Torvalds 已提交
3647

3648 3649
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
		return NULL;
3650
	cachep = kmalloc_slab(size, flags);
3651 3652
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3653
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3654

3655
	ret = kasan_kmalloc(cachep, ret, size, flags);
3656
	trace_kmalloc(caller, ret,
3657
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3658 3659

	return ret;
3660 3661 3662 3663
}

void *__kmalloc(size_t size, gfp_t flags)
{
3664
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3665 3666 3667
}
EXPORT_SYMBOL(__kmalloc);

3668
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3669
{
3670
	return __do_kmalloc(size, flags, caller);
3671 3672
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3673

L
Linus Torvalds 已提交
3674 3675 3676 3677 3678 3679 3680 3681
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3682
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3683 3684
{
	unsigned long flags;
3685 3686 3687
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3688 3689

	local_irq_save(flags);
3690
	debug_check_no_locks_freed(objp, cachep->object_size);
3691
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3692
		debug_check_no_obj_freed(objp, cachep->object_size);
3693
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3694
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3695

3696
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3697 3698 3699
}
EXPORT_SYMBOL(kmem_cache_free);

3700 3701 3702 3703 3704 3705 3706 3707 3708
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3709 3710 3711 3712
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3713 3714
		if (!s)
			continue;
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3728 3729 3730 3731
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3732 3733
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3734 3735 3736 3737 3738
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3739
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3740 3741
	unsigned long flags;

3742 3743
	trace_kfree(_RET_IP_, objp);

3744
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3745 3746 3747
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3748
	c = virt_to_cache(objp);
3749 3750 3751 3752
	if (!c) {
		local_irq_restore(flags);
		return;
	}
3753 3754 3755
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3756
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3757 3758 3759 3760
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3761
/*
3762
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3763
 */
3764
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3765
{
3766
	int ret;
3767
	int node;
3768
	struct kmem_cache_node *n;
3769

3770
	for_each_online_node(node) {
3771 3772
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3773 3774 3775
			goto fail;

	}
3776

3777
	return 0;
3778

A
Andrew Morton 已提交
3779
fail:
3780
	if (!cachep->list.next) {
3781 3782 3783
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3784 3785
			n = get_node(cachep, node);
			if (n) {
3786 3787 3788
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3789
				cachep->node[node] = NULL;
3790 3791 3792 3793
			}
			node--;
		}
	}
3794
	return -ENOMEM;
3795 3796
}

3797
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3798
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3799
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3800
{
3801 3802
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3803

3804 3805
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3806 3807
		return -ENOMEM;

3808 3809
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
3810 3811 3812 3813 3814 3815
	/*
	 * Without a previous cpu_cache there's no need to synchronize remote
	 * cpus, so skip the IPIs.
	 */
	if (prev)
		kick_all_cpus_sync();
3816

L
Linus Torvalds 已提交
3817 3818 3819
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3820
	cachep->shared = shared;
L
Linus Torvalds 已提交
3821

3822
	if (!prev)
3823
		goto setup_node;
3824 3825

	for_each_online_cpu(cpu) {
3826
		LIST_HEAD(list);
3827 3828
		int node;
		struct kmem_cache_node *n;
3829
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3830

3831
		node = cpu_to_mem(cpu);
3832 3833
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3834
		free_block(cachep, ac->entry, ac->avail, node, &list);
3835
		spin_unlock_irq(&n->list_lock);
3836
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3837
	}
3838 3839
	free_percpu(prev);

3840 3841
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3842 3843
}

G
Glauber Costa 已提交
3844 3845 3846 3847
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3848
	struct kmem_cache *c;
G
Glauber Costa 已提交
3849 3850 3851 3852 3853 3854 3855 3856 3857

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3858 3859 3860 3861
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3862 3863 3864 3865 3866
	}

	return ret;
}

3867
/* Called with slab_mutex held always */
3868
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3869 3870
{
	int err;
G
Glauber Costa 已提交
3871 3872 3873 3874
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3875
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3876 3877 3878
	if (err)
		goto end;

G
Glauber Costa 已提交
3879 3880 3881 3882 3883 3884
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3885

G
Glauber Costa 已提交
3886 3887
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3888 3889
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3890 3891
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3892
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3893 3894 3895 3896
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3897
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3898
		limit = 1;
3899
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3900
		limit = 8;
3901
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3902
		limit = 24;
3903
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3904 3905 3906 3907
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3908 3909
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3910 3911 3912 3913 3914 3915 3916 3917
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3918
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3919 3920 3921
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3922 3923 3924
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3925 3926 3927 3928
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3929 3930 3931
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
3932
end:
L
Linus Torvalds 已提交
3933
	if (err)
3934
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
3935
		       cachep->name, -err);
3936
	return err;
L
Linus Torvalds 已提交
3937 3938
}

3939
/*
3940 3941
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3942
 * if drain_array() is used on the shared array.
3943
 */
3944
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3945
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
3946
{
3947
	LIST_HEAD(list);
3948 3949 3950

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
3951

3952 3953
	if (!ac || !ac->avail)
		return;
3954 3955

	if (ac->touched) {
L
Linus Torvalds 已提交
3956
		ac->touched = 0;
3957
		return;
L
Linus Torvalds 已提交
3958
	}
3959 3960 3961 3962 3963 3964

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3965 3966 3967 3968
}

/**
 * cache_reap - Reclaim memory from caches.
3969
 * @w: work descriptor
L
Linus Torvalds 已提交
3970 3971 3972 3973 3974 3975
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3976 3977
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3978
 */
3979
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3980
{
3981
	struct kmem_cache *searchp;
3982
	struct kmem_cache_node *n;
3983
	int node = numa_mem_id();
3984
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3985

3986
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3987
		/* Give up. Setup the next iteration. */
3988
		goto out;
L
Linus Torvalds 已提交
3989

3990
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3991 3992
		check_irq_on();

3993
		/*
3994
		 * We only take the node lock if absolutely necessary and we
3995 3996 3997
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3998
		n = get_node(searchp, node);
3999

4000
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4001

4002
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4003

4004 4005 4006 4007
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4008
		if (time_after(n->next_reap, jiffies))
4009
			goto next;
L
Linus Torvalds 已提交
4010

4011
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4012

4013
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4014

4015 4016
		if (n->free_touched)
			n->free_touched = 0;
4017 4018
		else {
			int freed;
L
Linus Torvalds 已提交
4019

4020
			freed = drain_freelist(searchp, n, (n->free_limit +
4021 4022 4023
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4024
next:
L
Linus Torvalds 已提交
4025 4026 4027
		cond_resched();
	}
	check_irq_on();
4028
	mutex_unlock(&slab_mutex);
4029
	next_reap_node();
4030
out:
A
Andrew Morton 已提交
4031
	/* Set up the next iteration */
4032 4033
	schedule_delayed_work_on(smp_processor_id(), work,
				round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4034 4035
}

4036
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4037
{
4038
	unsigned long active_objs, num_objs, active_slabs;
4039 4040
	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long free_slabs = 0;
4041
	int node;
4042
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4043

4044
	for_each_kmem_cache_node(cachep, node, n) {
4045
		check_irq_on();
4046
		spin_lock_irq(&n->list_lock);
4047

4048 4049
		total_slabs += n->total_slabs;
		free_slabs += n->free_slabs;
4050
		free_objs += n->free_objects;
4051

4052 4053
		if (n->shared)
			shared_avail += n->shared->avail;
4054

4055
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4056
	}
4057 4058
	num_objs = total_slabs * cachep->num;
	active_slabs = total_slabs - free_slabs;
4059
	active_objs = num_objs - free_objs;
L
Linus Torvalds 已提交
4060

4061 4062 4063
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
4064
	sinfo->num_slabs = total_slabs;
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4075
#if STATS
4076
	{			/* node stats */
L
Linus Torvalds 已提交
4077 4078 4079 4080 4081 4082 4083
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4084
		unsigned long node_frees = cachep->node_frees;
4085
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4086

J
Joe Perches 已提交
4087
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4088 4089 4090
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4100
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
4112 4113
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
4114
 */
4115
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4116
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4117
{
P
Pekka Enberg 已提交
4118
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4119
	int limit, batchcount, shared, res;
4120
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4121

L
Linus Torvalds 已提交
4122 4123 4124 4125
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4126
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4137
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4138
	res = -EINVAL;
4139
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4140
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4141 4142
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4143
				res = 0;
L
Linus Torvalds 已提交
4144
			} else {
4145
				res = do_tune_cpucache(cachep, limit,
4146 4147
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4148 4149 4150 4151
			}
			break;
		}
	}
4152
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4153 4154 4155 4156
	if (res >= 0)
		res = count;
	return res;
}
4157

K
Kees Cook 已提交
4158 4159
#ifdef CONFIG_HARDENED_USERCOPY
/*
4160 4161 4162
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
4163 4164 4165 4166
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
4167 4168
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
4169 4170 4171 4172 4173
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

4174 4175
	ptr = kasan_reset_tag(ptr);

K
Kees Cook 已提交
4176 4177 4178 4179 4180 4181 4182 4183
	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

4184 4185 4186 4187
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= cachep->useroffset &&
	    offset - cachep->useroffset <= cachep->usersize &&
	    n <= cachep->useroffset - offset + cachep->usersize)
4188
		return;
K
Kees Cook 已提交
4189

4190 4191 4192 4193 4194 4195
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
4196 4197
	if (usercopy_fallback &&
	    offset <= cachep->object_size &&
4198 4199 4200 4201
	    n <= cachep->object_size - offset) {
		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
4202

4203
	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
K
Kees Cook 已提交
4204 4205 4206
}
#endif /* CONFIG_HARDENED_USERCOPY */

4207
/**
4208
 * __ksize -- Uninstrumented ksize.
4209
 * @objp: pointer to the object
4210
 *
4211 4212
 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
 * safety checks as ksize() with KASAN instrumentation enabled.
4213 4214
 *
 * Return: size of the actual memory used by @objp in bytes
4215
 */
4216
size_t __ksize(const void *objp)
L
Linus Torvalds 已提交
4217
{
4218
	struct kmem_cache *c;
A
Alexander Potapenko 已提交
4219 4220
	size_t size;

4221 4222
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4223
		return 0;
L
Linus Torvalds 已提交
4224

4225 4226
	c = virt_to_cache(objp);
	size = c ? c->object_size : 0;
A
Alexander Potapenko 已提交
4227 4228

	return size;
L
Linus Torvalds 已提交
4229
}
4230
EXPORT_SYMBOL(__ksize);