slab.c 110.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
188
	void *entry[];	/*
A
Andrew Morton 已提交
189 190 191 192
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
193 194
};

J
Joonsoo Kim 已提交
195 196 197 198 199
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

200 201 202
/*
 * Need this for bootstrapping a per node allocator.
 */
203
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205
#define	CACHE_CACHE 0
206
#define	SIZE_NODE (MAX_NUMNODES)
207

208
static int drain_freelist(struct kmem_cache *cache,
209
			struct kmem_cache_node *n, int tofree);
210
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 212
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214
static void cache_reap(struct work_struct *unused);
215

216 217 218 219 220
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
221 222
static int slab_early_init = 1;

223
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
224

225
static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 227 228 229
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
230 231
	parent->active_slabs = 0;
	parent->free_slabs = 0;
232 233
	parent->shared = NULL;
	parent->alien = NULL;
234
	parent->colour_next = 0;
235 236 237 238 239
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
240 241 242
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
243
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
244 245
	} while (0)

A
Andrew Morton 已提交
246 247
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
248 249 250 251
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
252

253
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
L
Linus Torvalds 已提交
254
#define CFLGS_OFF_SLAB		(0x80000000UL)
255
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
256 257 258
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
259 260 261
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
262
 *
A
Adrian Bunk 已提交
263
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
264 265
 * which could lock up otherwise freeable slabs.
 */
266 267
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
268 269 270 271 272 273

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
274
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
275 276 277 278 279
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
280 281
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
282
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
283
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
284 285 286 287 288
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
289 290 291 292 293 294 295 296 297
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
298
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
299 300 301
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
302
#define	STATS_INC_NODEFREES(x)	do { } while (0)
303
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
304
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
305 306 307 308 309 310 311 312
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
313 314
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
315
 * 0		: objp
316
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
317 318
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
319
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
320
 * 		redzone word.
321
 * cachep->obj_offset: The real object.
322 323
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
324
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
325
 */
326
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
327
{
328
	return cachep->obj_offset;
L
Linus Torvalds 已提交
329 330
}

331
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
332 333
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 335
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
336 337
}

338
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
339 340 341
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
342
		return (unsigned long long *)(objp + cachep->size -
343
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
344
					      REDZONE_ALIGN);
345
	return (unsigned long long *) (objp + cachep->size -
346
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
347 348
}

349
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
350 351
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
352
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
353 354 355 356
}

#else

357
#define obj_offset(x)			0
358 359
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
360 361 362 363
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

364 365
#ifdef CONFIG_DEBUG_SLAB_LEAK

366
static inline bool is_store_user_clean(struct kmem_cache *cachep)
367
{
368 369
	return atomic_read(&cachep->store_user_clean) == 1;
}
370

371 372 373 374
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
375

376 377 378 379
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
380 381 382
}

#else
383
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
384 385 386

#endif

L
Linus Torvalds 已提交
387
/*
388 389
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
390
 */
391 392 393
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
394
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
395

396 397
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
398
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
399
	return page->slab_cache;
400 401
}

402
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
403 404
				 unsigned int idx)
{
405
	return page->s_mem + cache->size * idx;
406 407
}

408
/*
409 410 411
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
412 413 414
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
415
					const struct page *page, void *obj)
416
{
417
	u32 offset = (obj - page->s_mem);
418
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
419 420
}

421
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
422
/* internal cache of cache description objs */
423
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
424 425 426
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
427
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
428
	.name = "kmem_cache",
L
Linus Torvalds 已提交
429 430
};

431
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
432

433
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
434
{
435
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
436 437
}

A
Andrew Morton 已提交
438 439 440
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
441 442
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
443
{
444
	unsigned int num;
445
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
446

447 448 449 450 451 452
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
453 454 455 456 457
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
458 459 460 461 462 463
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
464
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
465
		num = slab_size / buffer_size;
466
		*left_over = slab_size % buffer_size;
467
	} else {
468
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
469 470
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
471
	}
472 473

	return num;
L
Linus Torvalds 已提交
474 475
}

476
#if DEBUG
477
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
478

A
Andrew Morton 已提交
479 480
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
481
{
482
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
483
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
484
	dump_stack();
485
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
486
}
487
#endif
L
Linus Torvalds 已提交
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

505 506 507 508 509 510 511 512 513 514 515
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

516 517 518 519 520 521 522
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
523
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
524 525 526

static void init_reap_node(int cpu)
{
527 528
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
529 530 531 532
}

static void next_reap_node(void)
{
533
	int node = __this_cpu_read(slab_reap_node);
534

535
	node = next_node_in(node, node_online_map);
536
	__this_cpu_write(slab_reap_node, node);
537 538 539 540 541 542 543
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
544 545 546 547 548 549 550
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
551
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
552
{
553
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
554 555 556 557 558 559

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
560
	if (keventd_up() && reap_work->work.func == NULL) {
561
		init_reap_node(cpu);
562
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
563 564
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
565 566 567
	}
}

568
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
569
{
570 571
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
572
	 * However, when such objects are allocated or transferred to another
573 574 575 576
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
577 578 579 580 581 582
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
583
	}
584 585 586 587 588
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
589
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
590 591 592 593 594
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
595 596
}

597 598
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
599
{
600 601 602
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
603

604 605
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
606

607 608 609
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
610

611
	slabs_destroy(cachep, &list);
612 613
}

614 615 616 617 618 619 620 621 622 623
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
624
	int nr = min3(from->avail, max, to->limit - to->avail);
625 626 627 628 629 630 631 632 633 634 635 636

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

637 638 639
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
640
#define reap_alien(cachep, n) do { } while (0)
641

J
Joonsoo Kim 已提交
642 643
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
644
{
645
	return NULL;
646 647
}

J
Joonsoo Kim 已提交
648
static inline void free_alien_cache(struct alien_cache **ac_ptr)
649 650 651 652 653 654 655 656 657 658 659 660 661 662
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

663
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
664 665 666 667 668
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
669 670
static inline gfp_t gfp_exact_node(gfp_t flags)
{
671
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
672 673
}

674 675
#else	/* CONFIG_NUMA */

676
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
677
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
678

J
Joonsoo Kim 已提交
679 680 681
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
682
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
683 684 685 686
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
687
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
688 689 690 691
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
692
{
J
Joonsoo Kim 已提交
693
	struct alien_cache **alc_ptr;
694
	size_t memsize = sizeof(void *) * nr_node_ids;
695 696 697 698
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
712 713
		}
	}
J
Joonsoo Kim 已提交
714
	return alc_ptr;
715 716
}

J
Joonsoo Kim 已提交
717
static void free_alien_cache(struct alien_cache **alc_ptr)
718 719 720
{
	int i;

J
Joonsoo Kim 已提交
721
	if (!alc_ptr)
722 723
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
724 725
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
726 727
}

728
static void __drain_alien_cache(struct kmem_cache *cachep,
729 730
				struct array_cache *ac, int node,
				struct list_head *list)
731
{
732
	struct kmem_cache_node *n = get_node(cachep, node);
733 734

	if (ac->avail) {
735
		spin_lock(&n->list_lock);
736 737 738 739 740
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
741 742
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
743

744
		free_block(cachep, ac->entry, ac->avail, node, list);
745
		ac->avail = 0;
746
		spin_unlock(&n->list_lock);
747 748 749
	}
}

750 751 752
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
753
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
754
{
755
	int node = __this_cpu_read(slab_reap_node);
756

757
	if (n->alien) {
J
Joonsoo Kim 已提交
758 759 760 761 762
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
763
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
764 765 766
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
767
				spin_unlock_irq(&alc->lock);
768
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
769
			}
770 771 772 773
		}
	}
}

A
Andrew Morton 已提交
774
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
775
				struct alien_cache **alien)
776
{
P
Pekka Enberg 已提交
777
	int i = 0;
J
Joonsoo Kim 已提交
778
	struct alien_cache *alc;
779 780 781 782
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
783 784
		alc = alien[i];
		if (alc) {
785 786
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
787
			ac = &alc->ac;
788
			spin_lock_irqsave(&alc->lock, flags);
789
			__drain_alien_cache(cachep, ac, i, &list);
790
			spin_unlock_irqrestore(&alc->lock, flags);
791
			slabs_destroy(cachep, &list);
792 793 794
		}
	}
}
795

796 797
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
798
{
799
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
800 801
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
802
	LIST_HEAD(list);
P
Pekka Enberg 已提交
803

804
	n = get_node(cachep, node);
805
	STATS_INC_NODEFREES(cachep);
806 807
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
808
		ac = &alien->ac;
809
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
810
		if (unlikely(ac->avail == ac->limit)) {
811
			STATS_INC_ACOVERFLOW(cachep);
812
			__drain_alien_cache(cachep, ac, page_node, &list);
813
		}
814
		ac->entry[ac->avail++] = objp;
815
		spin_unlock(&alien->lock);
816
		slabs_destroy(cachep, &list);
817
	} else {
818
		n = get_node(cachep, page_node);
819
		spin_lock(&n->list_lock);
820
		free_block(cachep, &objp, 1, page_node, &list);
821
		spin_unlock(&n->list_lock);
822
		slabs_destroy(cachep, &list);
823 824 825
	}
	return 1;
}
826 827 828 829 830 831 832 833 834 835 836 837 838 839

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
840 841

/*
842 843
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
844 845 846
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
847
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
848
}
849 850
#endif

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

891
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
892
/*
893
 * Allocates and initializes node for a node on each slab cache, used for
894
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
895
 * will be allocated off-node since memory is not yet online for the new node.
896
 * When hotplugging memory or a cpu, existing node are not replaced if
897 898
 * already in use.
 *
899
 * Must hold slab_mutex.
900
 */
901
static int init_cache_node_node(int node)
902
{
903
	int ret;
904 905
	struct kmem_cache *cachep;

906
	list_for_each_entry(cachep, &slab_caches, list) {
907 908 909
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
910
	}
911

912 913
	return 0;
}
914
#endif
915

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

965 966 967 968 969 970
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
971
	if (old_shared && force_change)
972 973
		synchronize_sched();

974 975 976 977 978 979 980 981
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

982 983
#ifdef CONFIG_SMP

984
static void cpuup_canceled(long cpu)
985 986
{
	struct kmem_cache *cachep;
987
	struct kmem_cache_node *n = NULL;
988
	int node = cpu_to_mem(cpu);
989
	const struct cpumask *mask = cpumask_of_node(node);
990

991
	list_for_each_entry(cachep, &slab_caches, list) {
992 993
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
994
		struct alien_cache **alien;
995
		LIST_HEAD(list);
996

997
		n = get_node(cachep, node);
998
		if (!n)
999
			continue;
1000

1001
		spin_lock_irq(&n->list_lock);
1002

1003 1004
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1005 1006 1007 1008

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1009
			free_block(cachep, nc->entry, nc->avail, node, &list);
1010 1011
			nc->avail = 0;
		}
1012

1013
		if (!cpumask_empty(mask)) {
1014
			spin_unlock_irq(&n->list_lock);
1015
			goto free_slab;
1016 1017
		}

1018
		shared = n->shared;
1019 1020
		if (shared) {
			free_block(cachep, shared->entry,
1021
				   shared->avail, node, &list);
1022
			n->shared = NULL;
1023 1024
		}

1025 1026
		alien = n->alien;
		n->alien = NULL;
1027

1028
		spin_unlock_irq(&n->list_lock);
1029 1030 1031 1032 1033 1034

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1035 1036

free_slab:
1037
		slabs_destroy(cachep, &list);
1038 1039 1040 1041 1042 1043
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1044
	list_for_each_entry(cachep, &slab_caches, list) {
1045
		n = get_node(cachep, node);
1046
		if (!n)
1047
			continue;
1048
		drain_freelist(cachep, n, INT_MAX);
1049 1050 1051
	}
}

1052
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1053
{
1054
	struct kmem_cache *cachep;
1055
	int node = cpu_to_mem(cpu);
1056
	int err;
L
Linus Torvalds 已提交
1057

1058 1059 1060 1061
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1062
	 * kmem_cache_node and not this cpu's kmem_cache_node
1063
	 */
1064
	err = init_cache_node_node(node);
1065 1066
	if (err < 0)
		goto bad;
1067 1068 1069 1070 1071

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1072
	list_for_each_entry(cachep, &slab_caches, list) {
1073 1074 1075
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1076
	}
1077

1078 1079
	return 0;
bad:
1080
	cpuup_canceled(cpu);
1081 1082 1083
	return -ENOMEM;
}

1084
int slab_prepare_cpu(unsigned int cpu)
1085
{
1086
	int err;
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1111
#endif
1112 1113 1114 1115 1116

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
L
Linus Torvalds 已提交
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
L
Linus Torvalds 已提交
1132

1133 1134 1135 1136 1137 1138
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1139
 * Must hold slab_mutex.
1140
 */
1141
static int __meminit drain_cache_node_node(int node)
1142 1143 1144 1145
{
	struct kmem_cache *cachep;
	int ret = 0;

1146
	list_for_each_entry(cachep, &slab_caches, list) {
1147
		struct kmem_cache_node *n;
1148

1149
		n = get_node(cachep, node);
1150
		if (!n)
1151 1152
			continue;

1153
		drain_freelist(cachep, n, INT_MAX);
1154

1155 1156
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1177
		mutex_lock(&slab_mutex);
1178
		ret = init_cache_node_node(nid);
1179
		mutex_unlock(&slab_mutex);
1180 1181
		break;
	case MEM_GOING_OFFLINE:
1182
		mutex_lock(&slab_mutex);
1183
		ret = drain_cache_node_node(nid);
1184
		mutex_unlock(&slab_mutex);
1185 1186 1187 1188 1189 1190 1191 1192
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1193
	return notifier_from_errno(ret);
1194 1195 1196
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1197
/*
1198
 * swap the static kmem_cache_node with kmalloced memory
1199
 */
1200
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1201
				int nodeid)
1202
{
1203
	struct kmem_cache_node *ptr;
1204

1205
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1206 1207
	BUG_ON(!ptr);

1208
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1209 1210 1211 1212 1213
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1214
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1215
	cachep->node[nodeid] = ptr;
1216 1217
}

1218
/*
1219 1220
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1221
 */
1222
static void __init set_up_node(struct kmem_cache *cachep, int index)
1223 1224 1225 1226
{
	int node;

	for_each_online_node(node) {
1227
		cachep->node[node] = &init_kmem_cache_node[index + node];
1228
		cachep->node[node]->next_reap = jiffies +
1229 1230
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1231 1232 1233
	}
}

A
Andrew Morton 已提交
1234 1235 1236
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1237 1238 1239
 */
void __init kmem_cache_init(void)
{
1240 1241
	int i;

1242 1243
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1244 1245
	kmem_cache = &kmem_cache_boot;

1246
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1247 1248
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1249
	for (i = 0; i < NUM_INIT_LISTS; i++)
1250
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1251

L
Linus Torvalds 已提交
1252 1253
	/*
	 * Fragmentation resistance on low memory - only use bigger
1254 1255
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1256
	 */
1257
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1258
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1259 1260 1261

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1262 1263 1264
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1265
	 *    Initially an __init data area is used for the head array and the
1266
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1267
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1268
	 * 2) Create the first kmalloc cache.
1269
	 *    The struct kmem_cache for the new cache is allocated normally.
1270 1271 1272
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1273
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1274
	 *    kmalloc cache with kmalloc allocated arrays.
1275
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1276 1277
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1278 1279
	 */

1280
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1281

E
Eric Dumazet 已提交
1282
	/*
1283
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1284
	 */
1285
	create_boot_cache(kmem_cache, "kmem_cache",
1286
		offsetof(struct kmem_cache, node) +
1287
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1288 1289
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1290
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1291

A
Andrew Morton 已提交
1292
	/*
1293 1294
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1295
	 */
1296
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1297
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1298
	slab_state = PARTIAL_NODE;
1299
	setup_kmalloc_cache_index_table();
1300

1301 1302
	slab_early_init = 0;

1303
	/* 5) Replace the bootstrap kmem_cache_node */
1304
	{
P
Pekka Enberg 已提交
1305 1306
		int nid;

1307
		for_each_online_node(nid) {
1308
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1309

1310
			init_list(kmalloc_caches[INDEX_NODE],
1311
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1312 1313
		}
	}
L
Linus Torvalds 已提交
1314

1315
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1316 1317 1318 1319 1320 1321
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1322
	slab_state = UP;
P
Peter Zijlstra 已提交
1323

1324
	/* 6) resize the head arrays to their final sizes */
1325 1326
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1327 1328
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1329
	mutex_unlock(&slab_mutex);
1330

1331 1332 1333
	/* Done! */
	slab_state = FULL;

1334 1335 1336
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1337
	 * node.
1338 1339 1340 1341
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1342 1343 1344
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1345 1346 1347 1348 1349
	 */
}

static int __init cpucache_init(void)
{
1350
	int ret;
L
Linus Torvalds 已提交
1351

A
Andrew Morton 已提交
1352 1353
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1354
	 */
1355 1356 1357
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1358 1359

	/* Done! */
1360
	slab_state = FULL;
L
Linus Torvalds 已提交
1361 1362 1363 1364
	return 0;
}
__initcall(cpucache_init);

1365 1366 1367
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1368
#if DEBUG
1369
	struct kmem_cache_node *n;
1370 1371
	unsigned long flags;
	int node;
1372 1373 1374 1375 1376
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1377

1378 1379 1380
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1381
		cachep->name, cachep->size, cachep->gfporder);
1382

1383
	for_each_kmem_cache_node(cachep, node, n) {
1384 1385
		unsigned long active_objs = 0, free_objs = 0;
		unsigned long active_slabs, num_slabs;
1386

1387
		spin_lock_irqsave(&n->list_lock, flags);
1388 1389
		active_slabs = n->active_slabs;
		num_slabs = active_slabs + n->free_slabs;
1390

1391 1392
		active_objs += (num_slabs * cachep->num) - n->free_objects;
		free_objs += n->free_objects;
1393
		spin_unlock_irqrestore(&n->list_lock, flags);
1394

1395
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1396 1397
			node, active_slabs, num_slabs, active_objs,
			num_slabs * cachep->num, free_objs);
1398
	}
1399
#endif
1400 1401
}

L
Linus Torvalds 已提交
1402
/*
W
Wang Sheng-Hui 已提交
1403 1404
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1405 1406 1407 1408 1409
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1410 1411
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1412 1413
{
	struct page *page;
1414
	int nr_pages;
1415

1416
	flags |= cachep->allocflags;
1417 1418
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1419

1420
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1421
	if (!page) {
1422
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1423
		return NULL;
1424
	}
L
Linus Torvalds 已提交
1425

1426 1427 1428 1429 1430
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1431
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1432
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1433 1434 1435 1436 1437
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1438

1439
	__SetPageSlab(page);
1440 1441
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1442
		SetPageSlabPfmemalloc(page);
1443

1444 1445 1446 1447 1448 1449 1450 1451
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1452

1453
	return page;
L
Linus Torvalds 已提交
1454 1455 1456 1457 1458
}

/*
 * Interface to system's page release.
 */
1459
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1460
{
1461 1462
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1463

1464
	kmemcheck_free_shadow(page, order);
P
Pekka Enberg 已提交
1465

1466 1467 1468 1469 1470 1471
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1472

1473
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1474
	__ClearPageSlabPfmemalloc(page);
1475
	__ClearPageSlab(page);
1476 1477
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1478

L
Linus Torvalds 已提交
1479 1480
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1481 1482
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1483 1484 1485 1486
}

static void kmem_rcu_free(struct rcu_head *head)
{
1487 1488
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1489

1490 1491 1492 1493
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1494 1495 1496
}

#if DEBUG
1497 1498 1499 1500 1501 1502 1503 1504
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1505 1506

#ifdef CONFIG_DEBUG_PAGEALLOC
1507
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1508
			    unsigned long caller)
L
Linus Torvalds 已提交
1509
{
1510
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1511

1512
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1513

P
Pekka Enberg 已提交
1514
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1515 1516
		return;

P
Pekka Enberg 已提交
1517 1518 1519 1520
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525 1526 1527
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1528
				*addr++ = svalue;
L
Linus Torvalds 已提交
1529 1530 1531 1532 1533 1534 1535
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1536
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1537
}
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1555 1556
#endif

1557
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1558
{
1559
	int size = cachep->object_size;
1560
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1561 1562

	memset(addr, val, size);
P
Pekka Enberg 已提交
1563
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1564 1565 1566 1567 1568
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1569 1570 1571
	unsigned char error = 0;
	int bad_count = 0;

1572
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1573 1574 1575 1576 1577 1578
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1579 1580
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1581 1582 1583 1584

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1585
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1586
#ifdef CONFIG_X86
1587
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1588
#else
1589
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1590 1591 1592
#endif
		}
	}
L
Linus Torvalds 已提交
1593 1594 1595 1596 1597
}
#endif

#if DEBUG

1598
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1599 1600 1601 1602 1603
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1604 1605 1606
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1607 1608 1609
	}

	if (cachep->flags & SLAB_STORE_USER) {
1610
		pr_err("Last user: [<%p>](%pSR)\n",
J
Joe Perches 已提交
1611 1612
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1613
	}
1614
	realobj = (char *)objp + obj_offset(cachep);
1615
	size = cachep->object_size;
P
Pekka Enberg 已提交
1616
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1617 1618
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1619 1620
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1621 1622 1623 1624
		dump_line(realobj, i, limit);
	}
}

1625
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1626 1627 1628 1629 1630
{
	char *realobj;
	int size, i;
	int lines = 0;

1631 1632 1633
	if (is_debug_pagealloc_cache(cachep))
		return;

1634
	realobj = (char *)objp + obj_offset(cachep);
1635
	size = cachep->object_size;
L
Linus Torvalds 已提交
1636

P
Pekka Enberg 已提交
1637
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1638
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1639
		if (i == size - 1)
L
Linus Torvalds 已提交
1640 1641 1642 1643 1644 1645
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1646 1647 1648
				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1649 1650 1651
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1652
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1653
			limit = 16;
P
Pekka Enberg 已提交
1654 1655
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1668
		struct page *page = virt_to_head_page(objp);
1669
		unsigned int objnr;
L
Linus Torvalds 已提交
1670

1671
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1672
		if (objnr) {
1673
			objp = index_to_obj(cachep, page, objnr - 1);
1674
			realobj = (char *)objp + obj_offset(cachep);
1675
			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1676 1677
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1678
		if (objnr + 1 < cachep->num) {
1679
			objp = index_to_obj(cachep, page, objnr + 1);
1680
			realobj = (char *)objp + obj_offset(cachep);
1681
			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1682 1683 1684 1685 1686 1687
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1688
#if DEBUG
1689 1690
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1691 1692
{
	int i;
1693 1694 1695 1696 1697 1698

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1699
	for (i = 0; i < cachep->num; i++) {
1700
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1701 1702 1703

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1704
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1705 1706 1707
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1708
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1709
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1710
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1711 1712
		}
	}
1713
}
L
Linus Torvalds 已提交
1714
#else
1715 1716
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1717 1718
{
}
L
Linus Torvalds 已提交
1719 1720
#endif

1721 1722 1723
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1724
 * @page: page pointer being destroyed
1725
 *
W
Wang Sheng-Hui 已提交
1726 1727 1728
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1729
 */
1730
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1731
{
1732
	void *freelist;
1733

1734 1735
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1736 1737 1738
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1739
		kmem_freepages(cachep, page);
1740 1741

	/*
1742
	 * From now on, we don't use freelist
1743 1744 1745
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1746
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1747 1748
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1759
/**
1760 1761 1762 1763 1764 1765
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1766 1767 1768 1769 1770
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1771
static size_t calculate_slab_order(struct kmem_cache *cachep,
1772
				size_t size, unsigned long flags)
1773 1774
{
	size_t left_over = 0;
1775
	int gfporder;
1776

1777
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1778 1779 1780
		unsigned int num;
		size_t remainder;

1781
		num = cache_estimate(gfporder, size, flags, &remainder);
1782 1783
		if (!num)
			continue;
1784

1785 1786 1787 1788
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1789
		if (flags & CFLGS_OFF_SLAB) {
1790 1791 1792 1793 1794 1795 1796 1797
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1798
			/*
1799
			 * Needed to avoid possible looping condition
1800
			 * in cache_grow_begin()
1801
			 */
1802 1803
			if (OFF_SLAB(freelist_cache))
				continue;
1804

1805 1806 1807
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1808
		}
1809

1810
		/* Found something acceptable - save it away */
1811
		cachep->num = num;
1812
		cachep->gfporder = gfporder;
1813 1814
		left_over = remainder;

1815 1816 1817 1818 1819 1820 1821 1822
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1823 1824 1825 1826
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1827
		if (gfporder >= slab_max_order)
1828 1829
			break;

1830 1831 1832
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1833
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1834 1835 1836 1837 1838
			break;
	}
	return left_over;
}

1839 1840 1841 1842 1843 1844 1845 1846
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1847
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1860
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1861
{
1862
	if (slab_state >= FULL)
1863
		return enable_cpucache(cachep, gfp);
1864

1865 1866 1867 1868
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1869
	if (slab_state == DOWN) {
1870 1871
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1872
	} else if (slab_state == PARTIAL) {
1873 1874
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1875
	} else {
1876
		int node;
1877

1878 1879 1880 1881 1882
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1883 1884
		}
	}
1885

1886
	cachep->node[numa_mem_id()]->next_reap =
1887 1888
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1889 1890 1891 1892 1893 1894 1895

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1896
	return 0;
1897 1898
}

J
Joonsoo Kim 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1948 1949 1950 1951 1952 1953 1954 1955
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
1956 1957
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1998
/**
1999
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2000
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2001 2002 2003 2004
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2005
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2019
int
2020
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2021
{
2022
	size_t ralign = BYTES_PER_WORD;
2023
	gfp_t gfp;
2024
	int err;
2025
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2035 2036
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2037
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2038 2039 2040 2041 2042
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2043 2044
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2045 2046 2047
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2048 2049 2050
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2051 2052
	}

D
David Woodhouse 已提交
2053 2054 2055 2056 2057 2058 2059
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2060

2061
	/* 3) caller mandated alignment */
2062 2063
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2064
	}
2065 2066
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2067
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2068
	/*
2069
	 * 4) Store it.
L
Linus Torvalds 已提交
2070
	 */
2071
	cachep->align = ralign;
2072 2073 2074 2075
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2076

2077 2078 2079 2080 2081
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2082 2083
#if DEBUG

2084 2085 2086 2087
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2088 2089
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2090 2091
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2092 2093
	}
	if (flags & SLAB_STORE_USER) {
2094
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2095 2096
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2097
		 */
D
David Woodhouse 已提交
2098 2099 2100 2101
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2102
	}
2103 2104
#endif

A
Alexander Potapenko 已提交
2105 2106
	kasan_cache_create(cachep, &size, &flags);

2107 2108 2109 2110 2111 2112 2113 2114 2115
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2116 2117 2118 2119 2120 2121 2122
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2123
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2135 2136 2137
	}
#endif

2138 2139 2140 2141 2142
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2143
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2144
		flags |= CFLGS_OFF_SLAB;
2145
		goto done;
2146
	}
L
Linus Torvalds 已提交
2147

2148 2149
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2150

2151
	return -E2BIG;
L
Linus Torvalds 已提交
2152

2153 2154
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2155
	cachep->flags = flags;
2156
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2157
	if (flags & SLAB_CACHE_DMA)
2158
		cachep->allocflags |= GFP_DMA;
2159
	cachep->size = size;
2160
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2161

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2175 2176
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2177
	}
L
Linus Torvalds 已提交
2178

2179 2180
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2181
		__kmem_cache_release(cachep);
2182
		return err;
2183
	}
L
Linus Torvalds 已提交
2184

2185
	return 0;
L
Linus Torvalds 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2199 2200 2201 2202 2203
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2204
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2205 2206 2207
{
#ifdef CONFIG_SMP
	check_irq_off();
2208
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2209 2210
#endif
}
2211

2212
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2213 2214 2215
{
#ifdef CONFIG_SMP
	check_irq_off();
2216
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2217 2218 2219
#endif
}

L
Linus Torvalds 已提交
2220 2221 2222
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2223
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2224
#define check_spinlock_acquired(x) do { } while(0)
2225
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2226 2227
#endif

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2244

L
Linus Torvalds 已提交
2245 2246
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2247
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2248
	struct array_cache *ac;
2249
	int node = numa_mem_id();
2250
	struct kmem_cache_node *n;
2251
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2252 2253

	check_irq_off();
2254
	ac = cpu_cache_get(cachep);
2255 2256
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2257
	free_block(cachep, ac->entry, ac->avail, node, &list);
2258
	spin_unlock(&n->list_lock);
2259
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2260 2261 2262
	ac->avail = 0;
}

2263
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2264
{
2265
	struct kmem_cache_node *n;
2266
	int node;
2267
	LIST_HEAD(list);
2268

2269
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2270
	check_irq_on();
2271 2272
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2273
			drain_alien_cache(cachep, n->alien);
2274

2275 2276 2277 2278 2279 2280 2281
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2282 2283
}

2284 2285 2286 2287 2288 2289 2290
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2291
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2292
{
2293 2294
	struct list_head *p;
	int nr_freed;
2295
	struct page *page;
L
Linus Torvalds 已提交
2296

2297
	nr_freed = 0;
2298
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2299

2300 2301 2302 2303
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2304 2305
			goto out;
		}
L
Linus Torvalds 已提交
2306

2307 2308
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2309
		n->free_slabs--;
2310 2311 2312 2313
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2314 2315
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2316
		slab_destroy(cache, page);
2317
		nr_freed++;
L
Linus Torvalds 已提交
2318
	}
2319 2320
out:
	return nr_freed;
L
Linus Torvalds 已提交
2321 2322
}

2323
int __kmem_cache_shrink(struct kmem_cache *cachep)
2324
{
2325 2326
	int ret = 0;
	int node;
2327
	struct kmem_cache_node *n;
2328 2329 2330 2331

	drain_cpu_caches(cachep);

	check_irq_on();
2332
	for_each_kmem_cache_node(cachep, node, n) {
2333
		drain_freelist(cachep, n, INT_MAX);
2334

2335 2336
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2337 2338 2339 2340
	}
	return (ret ? 1 : 0);
}

2341
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2342
{
2343
	return __kmem_cache_shrink(cachep);
2344 2345 2346
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2347
{
2348
	int i;
2349
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2350

T
Thomas Garnier 已提交
2351 2352
	cache_random_seq_destroy(cachep);

2353
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2354

2355
	/* NUMA: free the node structures */
2356 2357 2358 2359 2360
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2361
	}
L
Linus Torvalds 已提交
2362 2363
}

2364 2365
/*
 * Get the memory for a slab management obj.
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2377
 */
2378
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2379 2380
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2381
{
2382
	void *freelist;
2383
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2384

2385 2386 2387
	page->s_mem = addr + colour_off;
	page->active = 0;

2388 2389 2390
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2391
		/* Slab management obj is off-slab. */
2392
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2393
					      local_flags, nodeid);
2394
		if (!freelist)
L
Linus Torvalds 已提交
2395 2396
			return NULL;
	} else {
2397 2398 2399
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2400
	}
2401

2402
	return freelist;
L
Linus Torvalds 已提交
2403 2404
}

2405
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2406
{
2407
	return ((freelist_idx_t *)page->freelist)[idx];
2408 2409 2410
}

static inline void set_free_obj(struct page *page,
2411
					unsigned int idx, freelist_idx_t val)
2412
{
2413
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2414 2415
}

2416
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2417
{
2418
#if DEBUG
L
Linus Torvalds 已提交
2419 2420 2421
	int i;

	for (i = 0; i < cachep->num; i++) {
2422
		void *objp = index_to_obj(cachep, page, i);
2423

L
Linus Torvalds 已提交
2424 2425 2426 2427 2428 2429 2430 2431
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2432 2433 2434
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2435
		 */
A
Alexander Potapenko 已提交
2436 2437 2438
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2439
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2440 2441 2442
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2443 2444 2445

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2446
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2447
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2448
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2449
		}
2450 2451 2452 2453 2454
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2455
	}
L
Linus Torvalds 已提交
2456
#endif
2457 2458
}

T
Thomas Garnier 已提交
2459 2460 2461 2462 2463
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2464
		unsigned int *list;
T
Thomas Garnier 已提交
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
		unsigned int count;
		unsigned int rand;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2483
	rand = get_random_int();
T
Thomas Garnier 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
		state->pos = 0;
		state->rand = rand;
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
	return (state->list[state->pos++] + state->rand) % state->count;
}

2505 2506 2507 2508 2509 2510 2511
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2512 2513 2514 2515 2516 2517
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2518
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2543 2544 2545 2546 2547 2548 2549 2550 2551
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2570 2571 2572 2573
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2574
	void *objp;
T
Thomas Garnier 已提交
2575
	bool shuffled;
2576 2577 2578

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2579 2580 2581 2582
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2583 2584 2585 2586
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2587
	for (i = 0; i < cachep->num; i++) {
2588 2589 2590
		objp = index_to_obj(cachep, page, i);
		kasan_init_slab_obj(cachep, objp);

2591
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2592 2593 2594 2595 2596
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2597

T
Thomas Garnier 已提交
2598 2599
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2600 2601 2602
	}
}

2603
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2604
{
2605
	void *objp;
2606

2607
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2608
	page->active++;
2609

2610 2611 2612 2613 2614
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2615 2616 2617
	return objp;
}

2618 2619
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2620
{
2621
	unsigned int objnr = obj_to_index(cachep, page, objp);
2622
#if DEBUG
J
Joonsoo Kim 已提交
2623
	unsigned int i;
2624 2625

	/* Verify double free bug */
2626
	for (i = page->active; i < cachep->num; i++) {
2627
		if (get_free_obj(page, i) == objnr) {
2628
			pr_err("slab: double free detected in cache '%s', objp %p\n",
J
Joe Perches 已提交
2629
			       cachep->name, objp);
2630 2631
			BUG();
		}
2632 2633
	}
#endif
2634
	page->active--;
2635 2636 2637
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2638
	set_free_obj(page, page->active, objnr);
2639 2640
}

2641 2642 2643
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2644
 * virtual address for kfree, ksize, and slab debugging.
2645
 */
2646
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2647
			   void *freelist)
L
Linus Torvalds 已提交
2648
{
2649
	page->slab_cache = cache;
2650
	page->freelist = freelist;
L
Linus Torvalds 已提交
2651 2652 2653 2654 2655 2656
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2657 2658
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2659
{
2660
	void *freelist;
P
Pekka Enberg 已提交
2661 2662
	size_t offset;
	gfp_t local_flags;
2663
	int page_node;
2664
	struct kmem_cache_node *n;
2665
	struct page *page;
L
Linus Torvalds 已提交
2666

A
Andrew Morton 已提交
2667 2668 2669
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2670
	 */
2671
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2672
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2673 2674 2675 2676
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2677
	}
C
Christoph Lameter 已提交
2678
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2679 2680

	check_irq_off();
2681
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2682 2683
		local_irq_enable();

A
Andrew Morton 已提交
2684 2685 2686
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2687
	 */
2688
	page = kmem_getpages(cachep, local_flags, nodeid);
2689
	if (!page)
L
Linus Torvalds 已提交
2690 2691
		goto failed;

2692 2693
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

L
Linus Torvalds 已提交
2706
	/* Get slab management. */
2707
	freelist = alloc_slabmgmt(cachep, page, offset,
2708
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2709
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2710 2711
		goto opps1;

2712
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2713

A
Alexander Potapenko 已提交
2714
	kasan_poison_slab(page);
2715
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2716

2717
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2718 2719
		local_irq_disable();

2720 2721
	return page;

A
Andrew Morton 已提交
2722
opps1:
2723
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2724
failed:
2725
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2726
		local_irq_disable();
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
2744
	if (!page->active) {
2745
		list_add_tail(&page->lru, &(n->slabs_free));
2746 2747
		n->free_slabs++;
	} else {
2748
		fixup_slab_list(cachep, n, page, &list);
2749 2750
		n->active_slabs++;
	}
2751

2752 2753 2754 2755 2756
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2769
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2770 2771
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2772 2773 2774
	}
}

2775 2776
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2777
	unsigned long long redzone1, redzone2;
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2793 2794
	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
2795 2796
}

2797
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2798
				   unsigned long caller)
L
Linus Torvalds 已提交
2799 2800
{
	unsigned int objnr;
2801
	struct page *page;
L
Linus Torvalds 已提交
2802

2803 2804
	BUG_ON(virt_to_cache(objp) != cachep);

2805
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2806
	kfree_debugcheck(objp);
2807
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2808 2809

	if (cachep->flags & SLAB_RED_ZONE) {
2810
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2811 2812 2813
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2814 2815
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2816
		*dbg_userword(cachep, objp) = (void *)caller;
2817
	}
L
Linus Torvalds 已提交
2818

2819
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2820 2821

	BUG_ON(objnr >= cachep->num);
2822
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2823 2824 2825

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2826
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2851
static inline void fixup_slab_list(struct kmem_cache *cachep,
2852 2853
				struct kmem_cache_node *n, struct page *page,
				void **list)
2854 2855 2856
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2857
	if (page->active == cachep->num) {
2858
		list_add(&page->lru, &n->slabs_full);
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2872 2873 2874
		list_add(&page->lru, &n->slabs_partial);
}

2875 2876
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2877
			struct page *page, bool *page_is_free, bool pfmemalloc)
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
2896 2897
	if (*page_is_free) {
		WARN_ON(page->active);
2898
		list_add_tail(&page->lru, &n->slabs_free);
2899 2900
		*page_is_free = false;
	} else
2901 2902 2903 2904 2905 2906 2907
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

2908
	n->free_touched = 1;
2909
	list_for_each_entry(page, &n->slabs_free, lru) {
2910 2911
		if (!PageSlabPfmemalloc(page)) {
			*page_is_free = true;
2912
			return page;
2913
		}
2914 2915 2916 2917 2918 2919
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2920 2921
{
	struct page *page;
2922
	bool page_is_free = false;
2923

2924
	assert_spin_locked(&n->list_lock);
2925 2926 2927 2928 2929 2930
	page = list_first_entry_or_null(&n->slabs_partial,
			struct page, lru);
	if (!page) {
		n->free_touched = 1;
		page = list_first_entry_or_null(&n->slabs_free,
				struct page, lru);
2931 2932
		if (page)
			page_is_free = true;
2933 2934
	}

2935
	if (sk_memalloc_socks())
2936 2937 2938 2939 2940 2941
		page = get_valid_first_slab(n, page, &page_is_free, pfmemalloc);

	if (page && page_is_free) {
		n->active_slabs++;
		n->free_slabs--;
	}
2942

2943 2944 2945
	return page;
}

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2998
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2999 3000
{
	int batchcount;
3001
	struct kmem_cache_node *n;
3002
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
3003
	int node;
3004
	void *list = NULL;
3005
	struct page *page;
P
Pekka Enberg 已提交
3006

L
Linus Torvalds 已提交
3007
	check_irq_off();
3008
	node = numa_mem_id();
3009

3010
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3011 3012
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3013 3014 3015 3016
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3017 3018 3019
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3020
	n = get_node(cachep, node);
3021

3022
	BUG_ON(ac->avail > 0 || !n);
3023 3024 3025 3026
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

3027
	spin_lock(&n->list_lock);
3028
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
3029

3030
	/* See if we can refill from the shared array */
3031 3032
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
3033
		goto alloc_done;
3034
	}
3035

L
Linus Torvalds 已提交
3036 3037
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
3038
		page = get_first_slab(n, false);
3039 3040
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
3041 3042

		check_spinlock_acquired(cachep);
3043

3044
		batchcount = alloc_block(cachep, ac, page, batchcount);
3045
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
3046 3047
	}

A
Andrew Morton 已提交
3048
must_grow:
3049
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3050
alloc_done:
3051
	spin_unlock(&n->list_lock);
3052
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
3053

3054
direct_grow:
L
Linus Torvalds 已提交
3055
	if (unlikely(!ac->avail)) {
3056 3057 3058 3059 3060 3061 3062 3063
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3064
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3065

3066 3067 3068 3069
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3070
		ac = cpu_cache_get(cachep);
3071 3072 3073
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3074

3075
		if (!ac->avail)
L
Linus Torvalds 已提交
3076 3077 3078
			return NULL;
	}
	ac->touched = 1;
3079

3080
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3081 3082
}

A
Andrew Morton 已提交
3083 3084
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3085
{
3086
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3087 3088 3089
}

#if DEBUG
A
Andrew Morton 已提交
3090
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3091
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3092
{
P
Pekka Enberg 已提交
3093
	if (!objp)
L
Linus Torvalds 已提交
3094
		return objp;
P
Pekka Enberg 已提交
3095
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3096
		check_poison_obj(cachep, objp);
3097
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
3098 3099 3100
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3101
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3102 3103

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3104 3105
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3106
			slab_error(cachep, "double free, or memory outside object was overwritten");
3107 3108 3109
			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3110 3111 3112 3113
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3114

3115
	objp += obj_offset(cachep);
3116
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3117
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3118 3119
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3120
		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3121
		       objp, (int)ARCH_SLAB_MINALIGN);
3122
	}
L
Linus Torvalds 已提交
3123 3124 3125 3126 3127 3128
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3129
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3130
{
P
Pekka Enberg 已提交
3131
	void *objp;
L
Linus Torvalds 已提交
3132 3133
	struct array_cache *ac;

3134
	check_irq_off();
3135

3136
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3137 3138
	if (likely(ac->avail)) {
		ac->touched = 1;
3139
		objp = ac->entry[--ac->avail];
3140

3141 3142
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3143
	}
3144 3145

	STATS_INC_ALLOCMISS(cachep);
3146
	objp = cache_alloc_refill(cachep, flags);
3147 3148 3149 3150 3151 3152 3153
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3154 3155 3156 3157 3158
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3159 3160
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3161 3162 3163
	return objp;
}

3164
#ifdef CONFIG_NUMA
3165
/*
3166
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3167 3168 3169 3170 3171 3172 3173 3174
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3175
	if (in_interrupt() || (flags & __GFP_THISNODE))
3176
		return NULL;
3177
	nid_alloc = nid_here = numa_mem_id();
3178
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3179
		nid_alloc = cpuset_slab_spread_node();
3180
	else if (current->mempolicy)
3181
		nid_alloc = mempolicy_slab_node();
3182
	if (nid_alloc != nid_here)
3183
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3184 3185 3186
	return NULL;
}

3187 3188
/*
 * Fallback function if there was no memory available and no objects on a
3189
 * certain node and fall back is permitted. First we scan all the
3190
 * available node for available objects. If that fails then we
3191 3192 3193
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3194
 */
3195
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3196
{
3197
	struct zonelist *zonelist;
3198
	struct zoneref *z;
3199 3200
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3201
	void *obj = NULL;
3202
	struct page *page;
3203
	int nid;
3204
	unsigned int cpuset_mems_cookie;
3205 3206 3207 3208

	if (flags & __GFP_THISNODE)
		return NULL;

3209
retry_cpuset:
3210
	cpuset_mems_cookie = read_mems_allowed_begin();
3211
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3212

3213 3214 3215 3216 3217
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3218 3219
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3220

3221
		if (cpuset_zone_allowed(zone, flags) &&
3222 3223
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3224
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3225
					gfp_exact_node(flags), nid);
3226 3227 3228
				if (obj)
					break;
		}
3229 3230
	}

3231
	if (!obj) {
3232 3233 3234 3235 3236 3237
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3238 3239 3240 3241
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3242 3243
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3244

3245
			/*
3246 3247
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3248
			 */
3249 3250
			if (!obj)
				goto retry;
3251
		}
3252
	}
3253

3254
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3255
		goto retry_cpuset;
3256 3257 3258
	return obj;
}

3259 3260
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3261
 */
3262
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3263
				int nodeid)
3264
{
3265
	struct page *page;
3266
	struct kmem_cache_node *n;
3267
	void *obj = NULL;
3268
	void *list = NULL;
P
Pekka Enberg 已提交
3269

3270
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3271
	n = get_node(cachep, nodeid);
3272
	BUG_ON(!n);
P
Pekka Enberg 已提交
3273

3274
	check_irq_off();
3275
	spin_lock(&n->list_lock);
3276
	page = get_first_slab(n, false);
3277 3278
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3279 3280 3281 3282 3283 3284 3285

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3286
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3287

3288
	obj = slab_get_obj(cachep, page);
3289
	n->free_objects--;
P
Pekka Enberg 已提交
3290

3291
	fixup_slab_list(cachep, n, page, &list);
3292

3293
	spin_unlock(&n->list_lock);
3294
	fixup_objfreelist_debug(cachep, &list);
3295
	return obj;
3296

A
Andrew Morton 已提交
3297
must_grow:
3298
	spin_unlock(&n->list_lock);
3299
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3300 3301 3302 3303
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3304
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3305

3306
	return obj ? obj : fallback_alloc(cachep, flags);
3307
}
3308 3309

static __always_inline void *
3310
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3311
		   unsigned long caller)
3312 3313 3314
{
	unsigned long save_flags;
	void *ptr;
3315
	int slab_node = numa_mem_id();
3316

3317
	flags &= gfp_allowed_mask;
3318 3319
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3320 3321
		return NULL;

3322 3323 3324
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3325
	if (nodeid == NUMA_NO_NODE)
3326
		nodeid = slab_node;
3327

3328
	if (unlikely(!get_node(cachep, nodeid))) {
3329 3330 3331 3332 3333
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3334
	if (nodeid == slab_node) {
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3351 3352
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3353

3354
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3355 3356 3357 3358 3359 3360 3361 3362
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3363
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3374 3375
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3391
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3392 3393 3394 3395
{
	unsigned long save_flags;
	void *objp;

3396
	flags &= gfp_allowed_mask;
3397 3398
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3399 3400
		return NULL;

3401 3402 3403 3404 3405 3406 3407
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3408 3409
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3410

3411
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3412 3413
	return objp;
}
3414 3415

/*
3416
 * Caller needs to acquire correct kmem_cache_node's list_lock
3417
 * @list: List of detached free slabs should be freed by caller
3418
 */
3419 3420
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3421 3422
{
	int i;
3423
	struct kmem_cache_node *n = get_node(cachep, node);
3424 3425 3426
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3427 3428

	for (i = 0; i < nr_objects; i++) {
3429
		void *objp;
3430
		struct page *page;
L
Linus Torvalds 已提交
3431

3432 3433
		objp = objpp[i];

3434 3435
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3436
		check_spinlock_acquired_node(cachep, node);
3437
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3438 3439 3440
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3441
		if (page->active == 0) {
3442
			list_add(&page->lru, &n->slabs_free);
3443 3444 3445
			n->free_slabs++;
			n->active_slabs--;
		} else {
L
Linus Torvalds 已提交
3446 3447 3448 3449
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3450
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3451 3452
		}
	}
3453 3454 3455 3456 3457

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
3458
		list_move(&page->lru, list);
3459
		n->free_slabs--;
3460
	}
L
Linus Torvalds 已提交
3461 3462
}

3463
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3464 3465
{
	int batchcount;
3466
	struct kmem_cache_node *n;
3467
	int node = numa_mem_id();
3468
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3469 3470

	batchcount = ac->batchcount;
3471

L
Linus Torvalds 已提交
3472
	check_irq_off();
3473
	n = get_node(cachep, node);
3474 3475 3476
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3477
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3478 3479 3480
		if (max) {
			if (batchcount > max)
				batchcount = max;
3481
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3482
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3488
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3489
free_done:
L
Linus Torvalds 已提交
3490 3491 3492
#if STATS
	{
		int i = 0;
3493
		struct page *page;
L
Linus Torvalds 已提交
3494

3495
		list_for_each_entry(page, &n->slabs_free, lru) {
3496
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3497 3498 3499 3500 3501 3502

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3503
	spin_unlock(&n->list_lock);
3504
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3505
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3506
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3507 3508 3509
}

/*
A
Andrew Morton 已提交
3510 3511
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3512
 */
3513
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3514
				unsigned long caller)
L
Linus Torvalds 已提交
3515
{
3516 3517 3518 3519 3520 3521
	/* Put the object into the quarantine, don't touch it for now. */
	if (kasan_slab_free(cachep, objp))
		return;

	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3522

3523 3524 3525 3526
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3527

L
Linus Torvalds 已提交
3528
	check_irq_off();
3529
	kmemleak_free_recursive(objp, cachep->flags);
3530
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3531

3532
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3533

3534 3535 3536 3537 3538 3539 3540
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3541
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3542 3543
		return;

3544
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3545 3546 3547 3548 3549
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3550

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3571
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3572
{
3573
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3574

3575
	kasan_slab_alloc(cachep, ret, flags);
3576
	trace_kmem_cache_alloc(_RET_IP_, ret,
3577
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3578 3579

	return ret;
L
Linus Torvalds 已提交
3580 3581 3582
}
EXPORT_SYMBOL(kmem_cache_alloc);

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3593
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3594
			  void **p)
3595
{
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3614 3615
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3626
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3627 3628 3629
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3630 3631 3632
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3633
#ifdef CONFIG_TRACING
3634
void *
3635
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3636
{
3637 3638
	void *ret;

3639
	ret = slab_alloc(cachep, flags, _RET_IP_);
3640

3641
	kasan_kmalloc(cachep, ret, size, flags);
3642
	trace_kmalloc(_RET_IP_, ret,
3643
		      size, cachep->size, flags);
3644
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3645
}
3646
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3647 3648
#endif

L
Linus Torvalds 已提交
3649
#ifdef CONFIG_NUMA
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3661 3662
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3663
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3664

3665
	kasan_slab_alloc(cachep, ret, flags);
3666
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3667
				    cachep->object_size, cachep->size,
3668
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3669 3670

	return ret;
3671
}
L
Linus Torvalds 已提交
3672 3673
EXPORT_SYMBOL(kmem_cache_alloc_node);

3674
#ifdef CONFIG_TRACING
3675
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3676
				  gfp_t flags,
3677 3678
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3679
{
3680 3681
	void *ret;

3682
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3683 3684

	kasan_kmalloc(cachep, ret, size, flags);
3685
	trace_kmalloc_node(_RET_IP_, ret,
3686
			   size, cachep->size,
3687 3688
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3689
}
3690
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3691 3692
#endif

3693
static __always_inline void *
3694
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3695
{
3696
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3697
	void *ret;
3698

3699
	cachep = kmalloc_slab(size, flags);
3700 3701
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3702
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3703
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3704 3705

	return ret;
3706
}
3707 3708 3709

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3710
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3711
}
3712
EXPORT_SYMBOL(__kmalloc_node);
3713 3714

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3715
		int node, unsigned long caller)
3716
{
3717
	return __do_kmalloc_node(size, flags, node, caller);
3718 3719 3720
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3721 3722

/**
3723
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3724
 * @size: how many bytes of memory are required.
3725
 * @flags: the type of memory to allocate (see kmalloc).
3726
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3727
 */
3728
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3729
					  unsigned long caller)
L
Linus Torvalds 已提交
3730
{
3731
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3732
	void *ret;
L
Linus Torvalds 已提交
3733

3734
	cachep = kmalloc_slab(size, flags);
3735 3736
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3737
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3738

3739
	kasan_kmalloc(cachep, ret, size, flags);
3740
	trace_kmalloc(caller, ret,
3741
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3742 3743

	return ret;
3744 3745 3746 3747
}

void *__kmalloc(size_t size, gfp_t flags)
{
3748
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3749 3750 3751
}
EXPORT_SYMBOL(__kmalloc);

3752
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3753
{
3754
	return __do_kmalloc(size, flags, caller);
3755 3756
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3757

L
Linus Torvalds 已提交
3758 3759 3760 3761 3762 3763 3764 3765
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3766
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3767 3768
{
	unsigned long flags;
3769 3770 3771
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3772 3773

	local_irq_save(flags);
3774
	debug_check_no_locks_freed(objp, cachep->object_size);
3775
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3776
		debug_check_no_obj_freed(objp, cachep->object_size);
3777
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3778
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3779

3780
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3781 3782 3783
}
EXPORT_SYMBOL(kmem_cache_free);

3784 3785 3786 3787 3788 3789 3790 3791 3792
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3793 3794 3795 3796
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3810 3811 3812 3813
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3814 3815
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3816 3817 3818 3819 3820
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3821
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3822 3823
	unsigned long flags;

3824 3825
	trace_kfree(_RET_IP_, objp);

3826
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3827 3828 3829
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3830
	c = virt_to_cache(objp);
3831 3832 3833
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3834
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3835 3836 3837 3838
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3839
/*
3840
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3841
 */
3842
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3843
{
3844
	int ret;
3845
	int node;
3846
	struct kmem_cache_node *n;
3847

3848
	for_each_online_node(node) {
3849 3850
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3851 3852 3853
			goto fail;

	}
3854

3855
	return 0;
3856

A
Andrew Morton 已提交
3857
fail:
3858
	if (!cachep->list.next) {
3859 3860 3861
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3862 3863
			n = get_node(cachep, node);
			if (n) {
3864 3865 3866
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3867
				cachep->node[node] = NULL;
3868 3869 3870 3871
			}
			node--;
		}
	}
3872
	return -ENOMEM;
3873 3874
}

3875
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3876
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3877
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3878
{
3879 3880
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3881

3882 3883
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3884 3885
		return -ENOMEM;

3886 3887 3888
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3889

L
Linus Torvalds 已提交
3890 3891 3892
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3893
	cachep->shared = shared;
L
Linus Torvalds 已提交
3894

3895
	if (!prev)
3896
		goto setup_node;
3897 3898

	for_each_online_cpu(cpu) {
3899
		LIST_HEAD(list);
3900 3901
		int node;
		struct kmem_cache_node *n;
3902
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3903

3904
		node = cpu_to_mem(cpu);
3905 3906
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3907
		free_block(cachep, ac->entry, ac->avail, node, &list);
3908
		spin_unlock_irq(&n->list_lock);
3909
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3910
	}
3911 3912
	free_percpu(prev);

3913 3914
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3915 3916
}

G
Glauber Costa 已提交
3917 3918 3919 3920
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3921
	struct kmem_cache *c;
G
Glauber Costa 已提交
3922 3923 3924 3925 3926 3927 3928 3929 3930

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3931 3932 3933 3934
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3935 3936 3937 3938 3939
	}

	return ret;
}

3940
/* Called with slab_mutex held always */
3941
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3942 3943
{
	int err;
G
Glauber Costa 已提交
3944 3945 3946 3947
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3948
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3949 3950 3951
	if (err)
		goto end;

G
Glauber Costa 已提交
3952 3953 3954 3955 3956 3957
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3958

G
Glauber Costa 已提交
3959 3960
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3961 3962
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3963 3964
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3965
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3966 3967 3968 3969
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3970
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3971
		limit = 1;
3972
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3973
		limit = 8;
3974
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3975
		limit = 24;
3976
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3977 3978 3979 3980
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3981 3982
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3983 3984 3985 3986 3987 3988 3989 3990
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3991
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3992 3993 3994
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3995 3996 3997
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3998 3999 4000 4001
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
4002 4003 4004
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
4005
end:
L
Linus Torvalds 已提交
4006
	if (err)
4007
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
4008
		       cachep->name, -err);
4009
	return err;
L
Linus Torvalds 已提交
4010 4011
}

4012
/*
4013 4014
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4015
 * if drain_array() is used on the shared array.
4016
 */
4017
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4018
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
4019
{
4020
	LIST_HEAD(list);
4021 4022 4023

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
4024

4025 4026
	if (!ac || !ac->avail)
		return;
4027 4028

	if (ac->touched) {
L
Linus Torvalds 已提交
4029
		ac->touched = 0;
4030
		return;
L
Linus Torvalds 已提交
4031
	}
4032 4033 4034 4035 4036 4037

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4038 4039 4040 4041
}

/**
 * cache_reap - Reclaim memory from caches.
4042
 * @w: work descriptor
L
Linus Torvalds 已提交
4043 4044 4045 4046 4047 4048
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4049 4050
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4051
 */
4052
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4053
{
4054
	struct kmem_cache *searchp;
4055
	struct kmem_cache_node *n;
4056
	int node = numa_mem_id();
4057
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4058

4059
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4060
		/* Give up. Setup the next iteration. */
4061
		goto out;
L
Linus Torvalds 已提交
4062

4063
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4064 4065
		check_irq_on();

4066
		/*
4067
		 * We only take the node lock if absolutely necessary and we
4068 4069 4070
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4071
		n = get_node(searchp, node);
4072

4073
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4074

4075
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4076

4077 4078 4079 4080
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4081
		if (time_after(n->next_reap, jiffies))
4082
			goto next;
L
Linus Torvalds 已提交
4083

4084
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4085

4086
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4087

4088 4089
		if (n->free_touched)
			n->free_touched = 0;
4090 4091
		else {
			int freed;
L
Linus Torvalds 已提交
4092

4093
			freed = drain_freelist(searchp, n, (n->free_limit +
4094 4095 4096
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4097
next:
L
Linus Torvalds 已提交
4098 4099 4100
		cond_resched();
	}
	check_irq_on();
4101
	mutex_unlock(&slab_mutex);
4102
	next_reap_node();
4103
out:
A
Andrew Morton 已提交
4104
	/* Set up the next iteration */
4105
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4106 4107
}

4108
#ifdef CONFIG_SLABINFO
4109
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4110
{
4111 4112 4113
	unsigned long active_objs, num_objs, active_slabs;
	unsigned long num_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long num_slabs_free = 0;
4114
	int node;
4115
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4116

4117
	for_each_kmem_cache_node(cachep, node, n) {
4118
		check_irq_on();
4119
		spin_lock_irq(&n->list_lock);
4120

4121 4122
		num_slabs += n->active_slabs + n->free_slabs;
		num_slabs_free += n->free_slabs;
4123

4124
		free_objs += n->free_objects;
4125

4126 4127
		if (n->shared)
			shared_avail += n->shared->avail;
4128

4129
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4130
	}
P
Pekka Enberg 已提交
4131
	num_objs = num_slabs * cachep->num;
4132
	active_slabs = num_slabs - num_slabs_free;
L
Linus Torvalds 已提交
4133

4134
	active_objs = num_objs - free_objs;
L
Linus Torvalds 已提交
4135

4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4150
#if STATS
4151
	{			/* node stats */
L
Linus Torvalds 已提交
4152 4153 4154 4155 4156 4157 4158
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4159
		unsigned long node_frees = cachep->node_frees;
4160
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4161

J
Joe Perches 已提交
4162
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4163 4164 4165
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4166 4167 4168 4169 4170 4171 4172 4173 4174
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4175
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4188
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4189
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4190
{
P
Pekka Enberg 已提交
4191
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4192
	int limit, batchcount, shared, res;
4193
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4194

L
Linus Torvalds 已提交
4195 4196 4197 4198
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4199
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4210
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4211
	res = -EINVAL;
4212
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4213
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4214 4215
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4216
				res = 0;
L
Linus Torvalds 已提交
4217
			} else {
4218
				res = do_tune_cpucache(cachep, limit,
4219 4220
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4221 4222 4223 4224
			}
			break;
		}
	}
4225
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4226 4227 4228 4229
	if (res >= 0)
		res = count;
	return res;
}
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4263 4264
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4265 4266
{
	void *p;
4267 4268
	int i, j;
	unsigned long v;
4269

4270 4271
	if (n[0] == n[1])
		return;
4272
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4283
			continue;
4284

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4295 4296 4297 4298 4299 4300 4301 4302
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4303
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4304

4305
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4306
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4307
		if (modname[0])
4308 4309 4310 4311 4312 4313 4314 4315 4316
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4317
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4318
	struct page *page;
4319
	struct kmem_cache_node *n;
4320
	const char *name;
4321
	unsigned long *x = m->private;
4322 4323 4324 4325 4326 4327 4328 4329
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4341

4342
		for_each_kmem_cache_node(cachep, node, n) {
4343

4344 4345
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4346

4347 4348 4349 4350 4351 4352 4353
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4354 4355

	name = cachep->name;
4356
	if (x[0] == x[1]) {
4357
		/* Increase the buffer size */
4358
		mutex_unlock(&slab_mutex);
4359
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4360 4361
		if (!m->private) {
			/* Too bad, we are really out */
4362
			m->private = x;
4363
			mutex_lock(&slab_mutex);
4364 4365
			return -ENOMEM;
		}
4366 4367
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4368
		mutex_lock(&slab_mutex);
4369 4370 4371 4372
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4373 4374 4375
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4376 4377
		seq_putc(m, '\n');
	}
4378

4379 4380 4381
	return 0;
}

4382
static const struct seq_operations slabstats_op = {
4383
	.start = slab_start,
4384 4385
	.next = slab_next,
	.stop = slab_stop,
4386 4387
	.show = leaks_show,
};
4388 4389 4390

static int slabstats_open(struct inode *inode, struct file *file)
{
4391 4392 4393 4394 4395 4396 4397 4398 4399
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4414
#endif
4415 4416 4417
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4418 4419
#endif

K
Kees Cook 已提交
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects objects that are incorrectly sized.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page)
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

	/* Allow address range falling entirely within object size. */
	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
		return NULL;

	return cachep->name;
}
#endif /* CONFIG_HARDENED_USERCOPY */

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4462
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4463
{
A
Alexander Potapenko 已提交
4464 4465
	size_t size;

4466 4467
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4468
		return 0;
L
Linus Torvalds 已提交
4469

A
Alexander Potapenko 已提交
4470 4471 4472 4473
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4474
	kasan_unpoison_shadow(objp, size);
A
Alexander Potapenko 已提交
4475 4476

	return size;
L
Linus Torvalds 已提交
4477
}
K
Kirill A. Shutemov 已提交
4478
EXPORT_SYMBOL(ksize);