slab.c 121.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89
 */

#include	<linux/slab.h>
90
#include	"slab.h"
L
Linus Torvalds 已提交
91
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

L
Linus Torvalds 已提交
131
/*
132
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
153
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
154 155 156 157 158

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

159 160 161 162 163 164
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
165 166
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
167
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
168
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169
			 SLAB_CACHE_DMA | \
170
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
171
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
173
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
174
#else
175
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
179
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

201
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
202 203
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
204 205
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
222
	struct rcu_head head;
223
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
224
	void *addr;
L
Linus Torvalds 已提交
225 226
};

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
266
	void *entry[];	/*
A
Andrew Morton 已提交
267 268 269
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
270 271 272 273
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
274
			 */
L
Linus Torvalds 已提交
275 276
};

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
294 295 296
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
297 298 299 300
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
301
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
302 303 304
};

/*
305
 * The slab lists for all objects.
L
Linus Torvalds 已提交
306 307
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
308 309 310 311 312
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
313
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
314 315 316
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
317 318
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
319 320
};

321 322 323
/*
 * Need this for bootstrapping a per node allocator.
 */
324
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326
#define	CACHE_CACHE 0
327 328
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
329

330 331 332 333
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
334
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335
static void cache_reap(struct work_struct *unused);
336

337
/*
A
Andrew Morton 已提交
338 339
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
340
 */
341
static __always_inline int index_of(const size_t size)
342
{
343 344
	extern void __bad_size(void);

345 346 347 348 349 350 351 352
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
353
#include <linux/kmalloc_sizes.h>
354
#undef CACHE
355
		__bad_size();
356
	} else
357
		__bad_size();
358 359 360
	return 0;
}

361 362
static int slab_early_init = 1;

363 364
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
365

P
Pekka Enberg 已提交
366
static void kmem_list3_init(struct kmem_list3 *parent)
367 368 369 370 371 372
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
373
	parent->colour_next = 0;
374 375 376 377 378
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
379 380 381 382
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
383 384
	} while (0)

A
Andrew Morton 已提交
385 386
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
387 388 389 390
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
391 392 393 394 395

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
396 397 398
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
399
 *
A
Adrian Bunk 已提交
400
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
411
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
412 413 414 415 416
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
417 418
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
419
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
420
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
421 422 423 424 425
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433 434
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
435
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
436 437 438
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
439
#define	STATS_INC_NODEFREES(x)	do { } while (0)
440
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
441
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
442 443 444 445 446 447 448 449
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
450 451
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
452
 * 0		: objp
453
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
454 455
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
456
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
457
 * 		redzone word.
458
 * cachep->obj_offset: The real object.
459 460
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
461
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
462
 */
463
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
464
{
465
	return cachep->obj_offset;
L
Linus Torvalds 已提交
466 467
}

468
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
469 470
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471 472
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
473 474
}

475
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
476 477 478
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
479
		return (unsigned long long *)(objp + cachep->size -
480
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
481
					      REDZONE_ALIGN);
482
	return (unsigned long long *) (objp + cachep->size -
483
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
484 485
}

486
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
487 488
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
490 491 492 493
}

#else

494
#define obj_offset(x)			0
495 496
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
497 498 499 500
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

501
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
502 503
size_t slab_buffer_size(struct kmem_cache *cachep)
{
504
	return cachep->size;
E
Eduard - Gabriel Munteanu 已提交
505 506 507 508
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
509
/*
510 511
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
512
 */
513 514 515
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
516
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
517

518 519
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
520
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
521
	return page->slab_cache;
522 523 524 525
}

static inline struct slab *virt_to_slab(const void *obj)
{
526
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
527 528 529

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
530 531
}

532 533 534
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
535
	return slab->s_mem + cache->size * idx;
536 537
}

538
/*
539 540 541
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
542 543 544 545
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
546
{
547 548
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
549 550
}

A
Andrew Morton 已提交
551 552 553
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
571
	{NULL,}
L
Linus Torvalds 已提交
572 573 574 575
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
576
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
577
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
578
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
579 580

/* internal cache of cache description objs */
581 582 583
static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
static struct kmem_cache kmem_cache_boot = {
	.nodelists = kmem_cache_nodelists,
P
Pekka Enberg 已提交
584 585 586
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
587
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
588
	.name = "kmem_cache",
L
Linus Torvalds 已提交
589 590
};

591 592
#define BAD_ALIEN_MAGIC 0x01020304ul

593 594 595 596 597 598 599 600
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
601 602 603 604
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
605
 */
606 607 608
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

654
static void init_node_lock_keys(int q)
655
{
656 657
	struct cache_sizes *s = malloc_sizes;

658
	if (slab_state < UP)
659 660 661 662 663 664 665
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
666
			continue;
667 668 669

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
670 671
	}
}
672 673 674 675 676 677 678 679

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
680
#else
681 682 683 684
static void init_node_lock_keys(int q)
{
}

685
static inline void init_lock_keys(void)
686 687
{
}
688 689 690 691 692 693 694 695

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
696 697
#endif

698
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
699

700
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
701 702 703 704
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
705 706
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
707 708 709 710 711
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
712 713 714
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
715
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
716
#endif
717 718 719
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
720 721 722 723
	while (size > csizep->cs_size)
		csizep++;

	/*
724
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
725 726 727
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
728
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
729 730
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
731
#endif
L
Linus Torvalds 已提交
732 733 734
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
735
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 737 738 739
{
	return __find_general_cachep(size, gfpflags);
}

740
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
741
{
742 743
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
744

A
Andrew Morton 已提交
745 746 747
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
748 749 750 751 752 753 754
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
804 805
}

806
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
807

A
Andrew Morton 已提交
808 809
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
810 811
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
812
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
813 814 815
	dump_stack();
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

832 833 834 835 836 837 838 839 840 841 842
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

843 844 845 846 847 848 849
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
850
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
851 852 853 854 855

static void init_reap_node(int cpu)
{
	int node;

856
	node = next_node(cpu_to_mem(cpu), node_online_map);
857
	if (node == MAX_NUMNODES)
858
		node = first_node(node_online_map);
859

860
	per_cpu(slab_reap_node, cpu) = node;
861 862 863 864
}

static void next_reap_node(void)
{
865
	int node = __this_cpu_read(slab_reap_node);
866 867 868 869

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
870
	__this_cpu_write(slab_reap_node, node);
871 872 873 874 875 876 877
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
878 879 880 881 882 883 884
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
885
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
886
{
887
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
888 889 890 891 892 893

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
894
	if (keventd_up() && reap_work->work.func == NULL) {
895
		init_reap_node(cpu);
896
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
897 898
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
899 900 901
	}
}

902
static struct array_cache *alloc_arraycache(int node, int entries,
903
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
904
{
P
Pekka Enberg 已提交
905
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
906 907
	struct array_cache *nc = NULL;

908
	nc = kmalloc_node(memsize, gfp, node);
909 910
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
911
	 * However, when such objects are allocated or transferred to another
912 913 914 915 916
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
917 918 919 920 921
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
922
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
923 924 925 926
	}
	return nc;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

963
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
		struct kmem_list3 *l3;

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
		for (i = 1; i < ac->avail; i++) {
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
			ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1024 1025 1026 1027 1028 1029 1030 1031 1032
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
		struct page *page = virt_to_page(objp);
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

1033 1034 1035 1036 1037 1038 1039 1040 1041
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

1042 1043 1044
	ac->entry[ac->avail++] = objp;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1055
	int nr = min3(from->avail, max, to->limit - to->avail);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1068 1069 1070 1071 1072
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1073
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1093
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1094 1095 1096 1097 1098 1099 1100
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1101
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1102
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1103

1104
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1105 1106
{
	struct array_cache **ac_ptr;
1107
	int memsize = sizeof(void *) * nr_node_ids;
1108 1109 1110 1111
	int i;

	if (limit > 1)
		limit = 12;
1112
	ac_ptr = kzalloc_node(memsize, gfp, node);
1113 1114
	if (ac_ptr) {
		for_each_node(i) {
1115
			if (i == node || !node_online(i))
1116
				continue;
1117
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1118
			if (!ac_ptr[i]) {
1119
				for (i--; i >= 0; i--)
1120 1121 1122 1123 1124 1125 1126 1127 1128
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1129
static void free_alien_cache(struct array_cache **ac_ptr)
1130 1131 1132 1133 1134 1135
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1136
	    kfree(ac_ptr[i]);
1137 1138 1139
	kfree(ac_ptr);
}

1140
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1141
				struct array_cache *ac, int node)
1142 1143 1144 1145 1146
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1147 1148 1149 1150 1151
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1152 1153
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1154

1155
		free_block(cachep, ac->entry, ac->avail, node);
1156 1157 1158 1159 1160
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1161 1162 1163 1164 1165
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1166
	int node = __this_cpu_read(slab_reap_node);
1167 1168 1169

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1170 1171

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1172 1173 1174 1175 1176 1177
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1178 1179
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1180
{
P
Pekka Enberg 已提交
1181
	int i = 0;
1182 1183 1184 1185
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1186
		ac = alien[i];
1187 1188 1189 1190 1191 1192 1193
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1194

1195
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1196 1197 1198 1199 1200
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1201 1202
	int node;

1203
	node = numa_mem_id();
1204 1205 1206 1207 1208

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1209
	if (likely(slabp->nodeid == node))
1210 1211
		return 0;

P
Pekka Enberg 已提交
1212
	l3 = cachep->nodelists[node];
1213 1214 1215
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1216
		spin_lock(&alien->lock);
1217 1218 1219 1220
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1221
		ac_put_obj(cachep, alien, objp);
1222 1223 1224 1225 1226 1227 1228 1229
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1230 1231
#endif

1232 1233 1234 1235 1236 1237 1238
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1239
 * Must hold slab_mutex.
1240 1241 1242 1243 1244 1245 1246
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1247
	list_for_each_entry(cachep, &slab_caches, list) {
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1263
			 * go.  slab_mutex is sufficient
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1278 1279 1280 1281
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1282
	int node = cpu_to_mem(cpu);
1283
	const struct cpumask *mask = cpumask_of_node(node);
1284

1285
	list_for_each_entry(cachep, &slab_caches, list) {
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1305
		if (!cpumask_empty(mask)) {
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1335
	list_for_each_entry(cachep, &slab_caches, list) {
1336 1337 1338 1339 1340 1341 1342 1343
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1344
{
1345
	struct kmem_cache *cachep;
1346
	struct kmem_list3 *l3 = NULL;
1347
	int node = cpu_to_mem(cpu);
1348
	int err;
L
Linus Torvalds 已提交
1349

1350 1351 1352 1353 1354 1355
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1356 1357 1358
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1359 1360 1361 1362 1363

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1364
	list_for_each_entry(cachep, &slab_caches, list) {
1365 1366 1367 1368 1369
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1370
					cachep->batchcount, GFP_KERNEL);
1371 1372 1373 1374 1375
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1376
				0xbaadf00d, GFP_KERNEL);
1377 1378
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1379
				goto bad;
1380
			}
1381 1382
		}
		if (use_alien_caches) {
1383
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1384 1385 1386
			if (!alien) {
				kfree(shared);
				kfree(nc);
1387
				goto bad;
1388
			}
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1403
#ifdef CONFIG_NUMA
1404 1405 1406
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1407
		}
1408 1409 1410 1411
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1412 1413
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1414
	}
1415 1416
	init_node_lock_keys(node);

1417 1418
	return 0;
bad:
1419
	cpuup_canceled(cpu);
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1432
		mutex_lock(&slab_mutex);
1433
		err = cpuup_prepare(cpu);
1434
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1435 1436
		break;
	case CPU_ONLINE:
1437
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1438 1439 1440
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1441
  	case CPU_DOWN_PREPARE:
1442
  	case CPU_DOWN_PREPARE_FROZEN:
1443
		/*
1444
		 * Shutdown cache reaper. Note that the slab_mutex is
1445 1446 1447 1448
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1449
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1450
		/* Now the cache_reaper is guaranteed to be not running. */
1451
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1452 1453
  		break;
  	case CPU_DOWN_FAILED:
1454
  	case CPU_DOWN_FAILED_FROZEN:
1455 1456
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1457
	case CPU_DEAD:
1458
	case CPU_DEAD_FROZEN:
1459 1460 1461 1462 1463 1464 1465 1466
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1467
		/* fall through */
1468
#endif
L
Linus Torvalds 已提交
1469
	case CPU_UP_CANCELED:
1470
	case CPU_UP_CANCELED_FROZEN:
1471
		mutex_lock(&slab_mutex);
1472
		cpuup_canceled(cpu);
1473
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1474 1475
		break;
	}
1476
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1477 1478
}

1479 1480 1481
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1482

1483 1484 1485 1486 1487 1488
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1489
 * Must hold slab_mutex.
1490 1491 1492 1493 1494 1495
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

1496
	list_for_each_entry(cachep, &slab_caches, list) {
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1527
		mutex_lock(&slab_mutex);
1528
		ret = init_cache_nodelists_node(nid);
1529
		mutex_unlock(&slab_mutex);
1530 1531
		break;
	case MEM_GOING_OFFLINE:
1532
		mutex_lock(&slab_mutex);
1533
		ret = drain_cache_nodelists_node(nid);
1534
		mutex_unlock(&slab_mutex);
1535 1536 1537 1538 1539 1540 1541 1542
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1543
	return notifier_from_errno(ret);
1544 1545 1546
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1547 1548 1549
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1550 1551
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1552 1553 1554
{
	struct kmem_list3 *ptr;

1555
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1556 1557 1558
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1559 1560 1561 1562 1563
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1564 1565 1566 1567
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1584 1585 1586
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1593
	int i;
1594
	int order;
P
Pekka Enberg 已提交
1595
	int node;
1596

1597 1598
	kmem_cache = &kmem_cache_boot;

1599
	if (num_possible_nodes() == 1)
1600 1601
		use_alien_caches = 0;

1602 1603 1604
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
1605
			kmem_cache->nodelists[i] = NULL;
1606
	}
1607
	set_up_list3s(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1608 1609 1610

	/*
	 * Fragmentation resistance on low memory - only use bigger
1611 1612
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1613
	 */
1614
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1615
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1616 1617 1618

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1619 1620 1621
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1622 1623 1624
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1625
	 * 2) Create the first kmalloc cache.
1626
	 *    The struct kmem_cache for the new cache is allocated normally.
1627 1628 1629
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1630
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1631
	 *    kmalloc cache with kmalloc allocated arrays.
1632
	 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1633 1634
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1635 1636
	 */

1637
	node = numa_mem_id();
P
Pekka Enberg 已提交
1638

1639
	/* 1) create the kmem_cache */
1640
	INIT_LIST_HEAD(&slab_caches);
1641 1642 1643 1644
	list_add(&kmem_cache->list, &slab_caches);
	kmem_cache->colour_off = cache_line_size();
	kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
	kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1645

E
Eric Dumazet 已提交
1646
	/*
1647
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1648
	 */
1649
	kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1650
				  nr_node_ids * sizeof(struct kmem_list3 *);
1651 1652
	kmem_cache->object_size = kmem_cache->size;
	kmem_cache->size = ALIGN(kmem_cache->object_size,
A
Andrew Morton 已提交
1653
					cache_line_size());
1654 1655
	kmem_cache->reciprocal_buffer_size =
		reciprocal_value(kmem_cache->size);
L
Linus Torvalds 已提交
1656

1657
	for (order = 0; order < MAX_ORDER; order++) {
1658 1659 1660
		cache_estimate(order, kmem_cache->size,
			cache_line_size(), 0, &left_over, &kmem_cache->num);
		if (kmem_cache->num)
1661 1662
			break;
	}
1663 1664 1665 1666
	BUG_ON(!kmem_cache->num);
	kmem_cache->gfporder = order;
	kmem_cache->colour = left_over / kmem_cache->colour_off;
	kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
P
Pekka Enberg 已提交
1667
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1668 1669 1670 1671 1672

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1673 1674 1675 1676
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1677 1678
	 */

1679
	sizes[INDEX_AC].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1680 1681 1682 1683 1684
	sizes[INDEX_AC].cs_cachep->name = names[INDEX_AC].name;
	sizes[INDEX_AC].cs_cachep->size = sizes[INDEX_AC].cs_size;
	sizes[INDEX_AC].cs_cachep->object_size = sizes[INDEX_AC].cs_size;
	sizes[INDEX_AC].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
	__kmem_cache_create(sizes[INDEX_AC].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1685
	list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
1686

A
Andrew Morton 已提交
1687
	if (INDEX_AC != INDEX_L3) {
1688
		sizes[INDEX_L3].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1689 1690 1691 1692 1693
		sizes[INDEX_L3].cs_cachep->name = names[INDEX_L3].name;
		sizes[INDEX_L3].cs_cachep->size = sizes[INDEX_L3].cs_size;
		sizes[INDEX_L3].cs_cachep->object_size = sizes[INDEX_L3].cs_size;
		sizes[INDEX_L3].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
		__kmem_cache_create(sizes[INDEX_L3].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1694
		list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
A
Andrew Morton 已提交
1695
	}
1696

1697 1698
	slab_early_init = 0;

L
Linus Torvalds 已提交
1699
	while (sizes->cs_size != ULONG_MAX) {
1700 1701
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1702 1703 1704
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1705 1706
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1707
		if (!sizes->cs_cachep) {
1708
			sizes->cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1709 1710 1711 1712 1713
			sizes->cs_cachep->name = names->name;
			sizes->cs_cachep->size = sizes->cs_size;
			sizes->cs_cachep->object_size = sizes->cs_size;
			sizes->cs_cachep->align = ARCH_KMALLOC_MINALIGN;
			__kmem_cache_create(sizes->cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1714
			list_add(&sizes->cs_cachep->list, &slab_caches);
A
Andrew Morton 已提交
1715
		}
1716
#ifdef CONFIG_ZONE_DMA
1717
		sizes->cs_dmacachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1718 1719 1720 1721
		sizes->cs_dmacachep->name = names->name_dma;
		sizes->cs_dmacachep->size = sizes->cs_size;
		sizes->cs_dmacachep->object_size = sizes->cs_size;
		sizes->cs_dmacachep->align = ARCH_KMALLOC_MINALIGN;
1722
		__kmem_cache_create(sizes->cs_dmacachep,
1723
			       ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| SLAB_PANIC);
1724
		list_add(&sizes->cs_dmacachep->list, &slab_caches);
1725
#endif
L
Linus Torvalds 已提交
1726 1727 1728 1729 1730
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1731
		struct array_cache *ptr;
1732

1733
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1734

1735 1736
		BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1737
		       sizeof(struct arraycache_init));
1738 1739 1740 1741 1742
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1743
		kmem_cache->array[smp_processor_id()] = ptr;
1744

1745
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1746

1747
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1748
		       != &initarray_generic.cache);
1749
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1750
		       sizeof(struct arraycache_init));
1751 1752 1753 1754 1755
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1756
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1757
		    ptr;
L
Linus Torvalds 已提交
1758
	}
1759 1760
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1761 1762
		int nid;

1763
		for_each_online_node(nid) {
1764
			init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1765

1766
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1767
				  &initkmem_list3[SIZE_AC + nid], nid);
1768 1769 1770

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1771
					  &initkmem_list3[SIZE_L3 + nid], nid);
1772 1773 1774
			}
		}
	}
L
Linus Torvalds 已提交
1775

1776
	slab_state = UP;
1777 1778 1779 1780 1781 1782
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1783
	slab_state = UP;
P
Peter Zijlstra 已提交
1784

1785 1786 1787
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1788
	/* 6) resize the head arrays to their final sizes */
1789 1790
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1791 1792
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1793
	mutex_unlock(&slab_mutex);
1794

1795 1796 1797
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1798 1799 1800
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1801 1802 1803
	 */
	register_cpu_notifier(&cpucache_notifier);

1804 1805 1806 1807 1808 1809 1810 1811
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1812 1813 1814
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820 1821
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1822 1823
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1824
	 */
1825
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1826
		start_cpu_timer(cpu);
1827 1828

	/* Done! */
1829
	slab_state = FULL;
L
Linus Torvalds 已提交
1830 1831 1832 1833
	return 0;
}
__initcall(cpucache_init);

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
	struct kmem_list3 *l3;
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1846
		cachep->name, cachep->size, cachep->gfporder);
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1880 1881 1882 1883 1884 1885 1886
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1887
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1888 1889
{
	struct page *page;
1890
	int nr_pages;
L
Linus Torvalds 已提交
1891 1892
	int i;

1893
#ifndef CONFIG_MMU
1894 1895 1896
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1897
	 */
1898
	flags |= __GFP_COMP;
1899
#endif
1900

1901
	flags |= cachep->allocflags;
1902 1903
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1904

L
Linus Torvalds 已提交
1905
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1906 1907 1908
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1909
		return NULL;
1910
	}
L
Linus Torvalds 已提交
1911

1912
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1913 1914 1915
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1916
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1917
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1918 1919 1920 1921 1922
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1923
	for (i = 0; i < nr_pages; i++) {
1924
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1925

1926 1927 1928 1929
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}

1930 1931 1932 1933 1934 1935 1936 1937
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1938

1939
	return page_address(page);
L
Linus Torvalds 已提交
1940 1941 1942 1943 1944
}

/*
 * Interface to system's page release.
 */
1945
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1946
{
P
Pekka Enberg 已提交
1947
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1948 1949 1950
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1951
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1952

1953 1954 1955 1956 1957 1958
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1959
	while (i--) {
N
Nick Piggin 已提交
1960
		BUG_ON(!PageSlab(page));
1961
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1962
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1972
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1973
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1983
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1984
			    unsigned long caller)
L
Linus Torvalds 已提交
1985
{
1986
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1987

1988
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1989

P
Pekka Enberg 已提交
1990
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1991 1992
		return;

P
Pekka Enberg 已提交
1993 1994 1995 1996
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1997 1998 1999 2000 2001 2002 2003
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
2004
				*addr++ = svalue;
L
Linus Torvalds 已提交
2005 2006 2007 2008 2009 2010 2011
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
2012
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
2013 2014 2015
}
#endif

2016
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
2017
{
2018
	int size = cachep->object_size;
2019
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
2020 2021

	memset(addr, val, size);
P
Pekka Enberg 已提交
2022
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
2023 2024 2025 2026 2027
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
2028 2029 2030
	unsigned char error = 0;
	int bad_count = 0;

2031
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
2032 2033 2034 2035 2036 2037
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
2038 2039
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058
}
#endif

#if DEBUG

2059
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
2060 2061 2062 2063 2064
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
2065
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
2066 2067
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2068 2069 2070 2071
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
2072
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2073
		print_symbol("(%s)",
A
Andrew Morton 已提交
2074
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2075 2076
		printk("\n");
	}
2077
	realobj = (char *)objp + obj_offset(cachep);
2078
	size = cachep->object_size;
P
Pekka Enberg 已提交
2079
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
2080 2081
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
2082 2083
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
2084 2085 2086 2087
		dump_line(realobj, i, limit);
	}
}

2088
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2089 2090 2091 2092 2093
{
	char *realobj;
	int size, i;
	int lines = 0;

2094
	realobj = (char *)objp + obj_offset(cachep);
2095
	size = cachep->object_size;
L
Linus Torvalds 已提交
2096

P
Pekka Enberg 已提交
2097
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
2098
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
2099
		if (i == size - 1)
L
Linus Torvalds 已提交
2100 2101 2102 2103 2104 2105
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
2106
				printk(KERN_ERR
2107 2108
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
2109 2110 2111
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
2112
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
2113
			limit = 16;
P
Pekka Enberg 已提交
2114 2115
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2128
		struct slab *slabp = virt_to_slab(objp);
2129
		unsigned int objnr;
L
Linus Torvalds 已提交
2130

2131
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2132
		if (objnr) {
2133
			objp = index_to_obj(cachep, slabp, objnr - 1);
2134
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2135
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2136
			       realobj, size);
L
Linus Torvalds 已提交
2137 2138
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2139
		if (objnr + 1 < cachep->num) {
2140
			objp = index_to_obj(cachep, slabp, objnr + 1);
2141
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2142
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2143
			       realobj, size);
L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2150
#if DEBUG
R
Rabin Vincent 已提交
2151
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2152 2153 2154
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2155
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2156 2157 2158

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2159
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2160
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2161
				kernel_map_pages(virt_to_page(objp),
2162
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2172
					   "was overwritten");
L
Linus Torvalds 已提交
2173 2174
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2175
					   "was overwritten");
L
Linus Torvalds 已提交
2176 2177
		}
	}
2178
}
L
Linus Torvalds 已提交
2179
#else
R
Rabin Vincent 已提交
2180
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2181 2182
{
}
L
Linus Torvalds 已提交
2183 2184
#endif

2185 2186 2187 2188 2189
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2190
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2191 2192
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2193
 */
2194
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2195 2196 2197
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2198
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2199 2200 2201
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2202
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2203 2204 2205 2206 2207
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2208 2209
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2210 2211 2212
	}
}

2213
/**
2214 2215 2216 2217 2218 2219 2220
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2221 2222 2223 2224 2225
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2226
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2227
			size_t size, size_t align, unsigned long flags)
2228
{
2229
	unsigned long offslab_limit;
2230
	size_t left_over = 0;
2231
	int gfporder;
2232

2233
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2234 2235 2236
		unsigned int num;
		size_t remainder;

2237
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2238 2239
		if (!num)
			continue;
2240

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2253

2254
		/* Found something acceptable - save it away */
2255
		cachep->num = num;
2256
		cachep->gfporder = gfporder;
2257 2258
		left_over = remainder;

2259 2260 2261 2262 2263 2264 2265 2266
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2267 2268 2269 2270
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2271
		if (gfporder >= slab_max_order)
2272 2273
			break;

2274 2275 2276
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2277
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2278 2279 2280 2281 2282
			break;
	}
	return left_over;
}

2283
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2284
{
2285
	if (slab_state >= FULL)
2286
		return enable_cpucache(cachep, gfp);
2287

2288
	if (slab_state == DOWN) {
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2303
			slab_state = PARTIAL_L3;
2304
		else
2305
			slab_state = PARTIAL_ARRAYCACHE;
2306 2307
	} else {
		cachep->array[smp_processor_id()] =
2308
			kmalloc(sizeof(struct arraycache_init), gfp);
2309

2310
		if (slab_state == PARTIAL_ARRAYCACHE) {
2311
			set_up_list3s(cachep, SIZE_L3);
2312
			slab_state = PARTIAL_L3;
2313 2314
		} else {
			int node;
2315
			for_each_online_node(node) {
2316 2317
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2318
						gfp, node);
2319 2320 2321 2322 2323
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2324
	cachep->nodelists[numa_mem_id()]->next_reap =
2325 2326 2327 2328 2329 2330 2331 2332 2333
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2334
	return 0;
2335 2336
}

L
Linus Torvalds 已提交
2337
/**
2338
 * __kmem_cache_create - Create a cache.
L
Linus Torvalds 已提交
2339 2340 2341 2342 2343 2344 2345 2346
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2347
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2361
int
2362
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2363 2364
{
	size_t left_over, slab_size, ralign;
2365
	gfp_t gfp;
2366
	int err;
2367
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373 2374 2375 2376

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2377 2378
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2379
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2380 2381 2382 2383 2384 2385 2386
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2387 2388
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2389
	 */
2390
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2391

A
Andrew Morton 已提交
2392 2393
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2394 2395 2396
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2397 2398 2399
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2400 2401
	}

A
Andrew Morton 已提交
2402 2403
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2404 2405
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2406 2407 2408 2409
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2410 2411
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2412
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2413 2414 2415 2416
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2417 2418

	/*
D
David Woodhouse 已提交
2419 2420 2421
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2422
	 */
D
David Woodhouse 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2433

2434
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2435 2436 2437
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2438
	/* 3) caller mandated alignment */
2439 2440
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2441
	}
2442 2443
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2444
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2445
	/*
2446
	 * 4) Store it.
L
Linus Torvalds 已提交
2447
	 */
2448
	cachep->align = ralign;
L
Linus Torvalds 已提交
2449

2450 2451 2452 2453 2454
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2455
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
L
Linus Torvalds 已提交
2456 2457
#if DEBUG

2458 2459 2460 2461
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2462 2463
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2464 2465
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2466 2467
	}
	if (flags & SLAB_STORE_USER) {
2468
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2469 2470
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2471
		 */
D
David Woodhouse 已提交
2472 2473 2474 2475
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2476 2477
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2478
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2479
	    && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
C
Carsten Otte 已提交
2480
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2481 2482 2483 2484 2485
		size = PAGE_SIZE;
	}
#endif
#endif

2486 2487 2488
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2489 2490
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2491
	 */
2492 2493
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2494 2495 2496 2497 2498 2499
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2500
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2501

2502
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2503

2504
	if (!cachep->num)
2505
		return -E2BIG;
2506

P
Pekka Enberg 已提交
2507
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2508
			  + sizeof(struct slab), cachep->align);
L
Linus Torvalds 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2521 2522
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2523 2524 2525 2526 2527 2528 2529 2530 2531

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2532 2533 2534 2535
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2536 2537
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2538
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2539 2540
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2541
	cachep->allocflags = 0;
2542
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2543
		cachep->allocflags |= GFP_DMA;
2544
	cachep->size = size;
2545
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2546

2547
	if (flags & CFLGS_OFF_SLAB) {
2548
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2549 2550 2551 2552 2553 2554 2555
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2556
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2557
	}
L
Linus Torvalds 已提交
2558

2559 2560
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2561
		__kmem_cache_shutdown(cachep);
2562
		return err;
2563
	}
L
Linus Torvalds 已提交
2564

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
	}

2575
	return 0;
L
Linus Torvalds 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2589
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2590 2591 2592
{
#ifdef CONFIG_SMP
	check_irq_off();
2593
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2594 2595
#endif
}
2596

2597
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2598 2599 2600 2601 2602 2603 2604
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2605 2606 2607 2608
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2609
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2610 2611
#endif

2612 2613 2614 2615
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2616 2617
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2618
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2619
	struct array_cache *ac;
2620
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2621 2622

	check_irq_off();
2623
	ac = cpu_cache_get(cachep);
2624 2625 2626
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2627 2628 2629
	ac->avail = 0;
}

2630
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2631
{
2632 2633 2634
	struct kmem_list3 *l3;
	int node;

2635
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2636
	check_irq_on();
P
Pekka Enberg 已提交
2637
	for_each_online_node(node) {
2638
		l3 = cachep->nodelists[node];
2639 2640 2641 2642 2643 2644 2645
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2646
			drain_array(cachep, l3, l3->shared, 1, node);
2647
	}
L
Linus Torvalds 已提交
2648 2649
}

2650 2651 2652 2653 2654 2655 2656 2657
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2658
{
2659 2660
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2661 2662
	struct slab *slabp;

2663 2664
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2665

2666
		spin_lock_irq(&l3->list_lock);
2667
		p = l3->slabs_free.prev;
2668 2669 2670 2671
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2672

2673
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2674
#if DEBUG
2675
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2676 2677
#endif
		list_del(&slabp->list);
2678 2679 2680 2681 2682
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2683
		spin_unlock_irq(&l3->list_lock);
2684 2685
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2686
	}
2687 2688
out:
	return nr_freed;
L
Linus Torvalds 已提交
2689 2690
}

2691
/* Called with slab_mutex held to protect against cpu hotplug */
2692
static int __cache_shrink(struct kmem_cache *cachep)
2693 2694 2695 2696 2697 2698 2699 2700 2701
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2702 2703 2704 2705 2706 2707 2708
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2709 2710 2711 2712
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2713 2714 2715 2716 2717 2718 2719
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2720
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2721
{
2722
	int ret;
2723
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2724

2725
	get_online_cpus();
2726
	mutex_lock(&slab_mutex);
2727
	ret = __cache_shrink(cachep);
2728
	mutex_unlock(&slab_mutex);
2729
	put_online_cpus();
2730
	return ret;
L
Linus Torvalds 已提交
2731 2732 2733
}
EXPORT_SYMBOL(kmem_cache_shrink);

2734
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2735
{
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	int i;
	struct kmem_list3 *l3;
	int rc = __cache_shrink(cachep);

	if (rc)
		return rc;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	return 0;
L
Linus Torvalds 已提交
2756 2757
}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2769
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2770 2771
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2772 2773
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2774

L
Linus Torvalds 已提交
2775 2776
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2777
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2778
					      local_flags, nodeid);
2779 2780 2781 2782 2783 2784
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2785 2786
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2787 2788 2789
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2790
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2791 2792 2793 2794
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2795
	slabp->s_mem = objp + colour_off;
2796
	slabp->nodeid = nodeid;
2797
	slabp->free = 0;
L
Linus Torvalds 已提交
2798 2799 2800 2801 2802
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2803
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2804 2805
}

2806
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2807
			    struct slab *slabp)
L
Linus Torvalds 已提交
2808 2809 2810 2811
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2812
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2825 2826 2827
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2828 2829
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2830
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2831 2832 2833 2834

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2835
					   " end of an object");
L
Linus Torvalds 已提交
2836 2837
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2838
					   " start of an object");
L
Linus Torvalds 已提交
2839
		}
2840
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2841
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2842
			kernel_map_pages(virt_to_page(objp),
2843
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2844 2845
#else
		if (cachep->ctor)
2846
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2847
#endif
P
Pekka Enberg 已提交
2848
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2849
	}
P
Pekka Enberg 已提交
2850
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2851 2852
}

2853
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2854
{
2855 2856
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2857
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2858
		else
2859
			BUG_ON(cachep->allocflags & GFP_DMA);
2860
	}
L
Linus Torvalds 已提交
2861 2862
}

A
Andrew Morton 已提交
2863 2864
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2865
{
2866
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2880 2881
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2882
{
2883
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2884 2885 2886 2887 2888

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2889
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2890
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2891
				"'%s', objp %p\n", cachep->name, objp);
2892 2893 2894 2895 2896 2897 2898 2899
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2900 2901 2902
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2903
 * virtual address for kfree, ksize, and slab debugging.
2904 2905 2906
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2907
{
2908
	int nr_pages;
L
Linus Torvalds 已提交
2909 2910
	struct page *page;

2911
	page = virt_to_page(addr);
2912

2913
	nr_pages = 1;
2914
	if (likely(!PageCompound(page)))
2915 2916
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2917
	do {
C
Christoph Lameter 已提交
2918 2919
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2920
		page++;
2921
	} while (--nr_pages);
L
Linus Torvalds 已提交
2922 2923 2924 2925 2926 2927
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2928 2929
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2930
{
P
Pekka Enberg 已提交
2931 2932 2933
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2934
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2935

A
Andrew Morton 已提交
2936 2937 2938
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2939
	 */
C
Christoph Lameter 已提交
2940 2941
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2942

2943
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2944
	check_irq_off();
2945 2946
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2947 2948

	/* Get colour for the slab, and cal the next value. */
2949 2950 2951 2952 2953
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2954

2955
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2968 2969 2970
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2971
	 */
2972
	if (!objp)
2973
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2974
	if (!objp)
L
Linus Torvalds 已提交
2975 2976 2977
		goto failed;

	/* Get slab management. */
2978
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2979
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2980
	if (!slabp)
L
Linus Torvalds 已提交
2981 2982
		goto opps1;

2983
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2984

C
Christoph Lameter 已提交
2985
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2986 2987 2988 2989

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2990
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2991 2992

	/* Make slab active. */
2993
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2994
	STATS_INC_GROWN(cachep);
2995 2996
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2997
	return 1;
A
Andrew Morton 已提交
2998
opps1:
L
Linus Torvalds 已提交
2999
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
3000
failed:
L
Linus Torvalds 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
3017 3018
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
3019 3020 3021
	}
}

3022 3023
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
3024
	unsigned long long redzone1, redzone2;
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

3040
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3041 3042 3043
			obj, redzone1, redzone2);
}

3044
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
3045
				   void *caller)
L
Linus Torvalds 已提交
3046 3047 3048 3049 3050
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

3051 3052
	BUG_ON(virt_to_cache(objp) != cachep);

3053
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
3054
	kfree_debugcheck(objp);
3055
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
3056

C
Christoph Lameter 已提交
3057
	slabp = page->slab_page;
L
Linus Torvalds 已提交
3058 3059

	if (cachep->flags & SLAB_RED_ZONE) {
3060
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
3061 3062 3063 3064 3065 3066
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

3067
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
3068 3069

	BUG_ON(objnr >= cachep->num);
3070
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
3071

3072 3073 3074
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
3075 3076
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
3077
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
3078
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
3079
			kernel_map_pages(virt_to_page(objp),
3080
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3091
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3092 3093 3094
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3095

L
Linus Torvalds 已提交
3096 3097 3098 3099 3100 3101 3102
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3103 3104
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3105 3106 3107
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3108 3109 3110
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3120 3121
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
3122 3123 3124 3125
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3126 3127
	int node;

L
Linus Torvalds 已提交
3128
	check_irq_off();
3129
	node = numa_mem_id();
3130 3131 3132
	if (unlikely(force_refill))
		goto force_grow;
retry:
3133
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3134 3135
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3136 3137 3138 3139
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3140 3141 3142
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3143
	l3 = cachep->nodelists[node];
3144 3145 3146

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3147

3148
	/* See if we can refill from the shared array */
3149 3150
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3151
		goto alloc_done;
3152
	}
3153

L
Linus Torvalds 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3169 3170 3171 3172 3173 3174

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3175
		BUG_ON(slabp->inuse >= cachep->num);
3176

L
Linus Torvalds 已提交
3177 3178 3179 3180 3181
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3182 3183
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3195
must_grow:
L
Linus Torvalds 已提交
3196
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3197
alloc_done:
3198
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3199 3200 3201

	if (unlikely(!ac->avail)) {
		int x;
3202
force_grow:
3203
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3204

A
Andrew Morton 已提交
3205
		/* cache_grow can reenable interrupts, then ac could change. */
3206
		ac = cpu_cache_get(cachep);
3207 3208 3209

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3210 3211
			return NULL;

A
Andrew Morton 已提交
3212
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3213 3214 3215
			goto retry;
	}
	ac->touched = 1;
3216 3217

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3218 3219
}

A
Andrew Morton 已提交
3220 3221
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3222 3223 3224 3225 3226 3227 3228 3229
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3230 3231
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3232
{
P
Pekka Enberg 已提交
3233
	if (!objp)
L
Linus Torvalds 已提交
3234
		return objp;
P
Pekka Enberg 已提交
3235
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3236
#ifdef CONFIG_DEBUG_PAGEALLOC
3237
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3238
			kernel_map_pages(virt_to_page(objp),
3239
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3251 3252 3253 3254
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3255
			printk(KERN_ERR
3256
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3257 3258
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3259 3260 3261 3262
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3263 3264 3265 3266 3267
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3268
		slabp = virt_to_head_page(objp)->slab_page;
3269
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3270 3271 3272
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3273
	objp += obj_offset(cachep);
3274
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3275
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3276 3277
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3278
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3279
		       objp, (int)ARCH_SLAB_MINALIGN);
3280
	}
L
Linus Torvalds 已提交
3281 3282 3283 3284 3285 3286
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3287
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3288
{
3289
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3290
		return false;
3291

3292
	return should_failslab(cachep->object_size, flags, cachep->flags);
3293 3294
}

3295
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3296
{
P
Pekka Enberg 已提交
3297
	void *objp;
L
Linus Torvalds 已提交
3298
	struct array_cache *ac;
3299
	bool force_refill = false;
L
Linus Torvalds 已提交
3300

3301
	check_irq_off();
3302

3303
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3304 3305
	if (likely(ac->avail)) {
		ac->touched = 1;
3306 3307
		objp = ac_get_obj(cachep, ac, flags, false);

3308
		/*
3309 3310
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3311
		 */
3312 3313 3314 3315 3316
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3317
	}
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3328 3329 3330 3331 3332
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3333 3334
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3335 3336 3337
	return objp;
}

3338
#ifdef CONFIG_NUMA
3339
/*
3340
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3341 3342 3343 3344 3345 3346 3347 3348
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3349
	if (in_interrupt() || (flags & __GFP_THISNODE))
3350
		return NULL;
3351
	nid_alloc = nid_here = numa_mem_id();
3352
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3353
		nid_alloc = cpuset_slab_spread_node();
3354
	else if (current->mempolicy)
3355
		nid_alloc = slab_node();
3356
	if (nid_alloc != nid_here)
3357
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3358 3359 3360
	return NULL;
}

3361 3362
/*
 * Fallback function if there was no memory available and no objects on a
3363 3364 3365 3366 3367
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3368
 */
3369
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3370
{
3371 3372
	struct zonelist *zonelist;
	gfp_t local_flags;
3373
	struct zoneref *z;
3374 3375
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3376
	void *obj = NULL;
3377
	int nid;
3378
	unsigned int cpuset_mems_cookie;
3379 3380 3381 3382

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3383
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3384

3385 3386
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3387
	zonelist = node_zonelist(slab_node(), flags);
3388

3389 3390 3391 3392 3393
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3394 3395
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3396

3397
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3398
			cache->nodelists[nid] &&
3399
			cache->nodelists[nid]->free_objects) {
3400 3401
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3402 3403 3404
				if (obj)
					break;
		}
3405 3406
	}

3407
	if (!obj) {
3408 3409 3410 3411 3412 3413
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3414 3415 3416
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3417
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3418 3419
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3436
				/* cache_grow already freed obj */
3437 3438 3439
				obj = NULL;
			}
		}
3440
	}
3441 3442 3443

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3444 3445 3446
	return obj;
}

3447 3448
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3449
 */
3450
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3451
				int nodeid)
3452 3453
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3454 3455 3456 3457 3458 3459 3460 3461
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3462
retry:
3463
	check_irq_off();
P
Pekka Enberg 已提交
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3483
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3484 3485 3486 3487 3488
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3489
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3490
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3491
	else
P
Pekka Enberg 已提交
3492
		list_add(&slabp->list, &l3->slabs_partial);
3493

P
Pekka Enberg 已提交
3494 3495
	spin_unlock(&l3->list_lock);
	goto done;
3496

A
Andrew Morton 已提交
3497
must_grow:
P
Pekka Enberg 已提交
3498
	spin_unlock(&l3->list_lock);
3499
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3500 3501
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3502

3503
	return fallback_alloc(cachep, flags);
3504

A
Andrew Morton 已提交
3505
done:
P
Pekka Enberg 已提交
3506
	return obj;
3507
}
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;
3527
	int slab_node = numa_mem_id();
3528

3529
	flags &= gfp_allowed_mask;
3530

3531 3532
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3533
	if (slab_should_failslab(cachep, flags))
3534 3535
		return NULL;

3536 3537 3538
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3539
	if (nodeid == NUMA_NO_NODE)
3540
		nodeid = slab_node;
3541 3542 3543 3544 3545 3546 3547

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3548
	if (nodeid == slab_node) {
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3564
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3565
				 flags);
3566

P
Pekka Enberg 已提交
3567
	if (likely(ptr))
3568
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3569

3570
	if (unlikely((flags & __GFP_ZERO) && ptr))
3571
		memset(ptr, 0, cachep->object_size);
3572

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3592 3593
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3614
	flags &= gfp_allowed_mask;
3615

3616 3617
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3618
	if (slab_should_failslab(cachep, flags))
3619 3620
		return NULL;

3621 3622 3623 3624 3625
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3626
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3627
				 flags);
3628 3629
	prefetchw(objp);

P
Pekka Enberg 已提交
3630
	if (likely(objp))
3631
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3632

3633
	if (unlikely((flags & __GFP_ZERO) && objp))
3634
		memset(objp, 0, cachep->object_size);
3635

3636 3637
	return objp;
}
3638 3639 3640 3641

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3642
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3643
		       int node)
L
Linus Torvalds 已提交
3644 3645
{
	int i;
3646
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3647 3648

	for (i = 0; i < nr_objects; i++) {
3649
		void *objp;
L
Linus Torvalds 已提交
3650 3651
		struct slab *slabp;

3652 3653 3654
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3655
		slabp = virt_to_slab(objp);
3656
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3657
		list_del(&slabp->list);
3658
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3659
		check_slabp(cachep, slabp);
3660
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3661
		STATS_DEC_ACTIVE(cachep);
3662
		l3->free_objects++;
L
Linus Torvalds 已提交
3663 3664 3665 3666
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3667 3668
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3669 3670 3671 3672 3673 3674
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3675 3676
				slab_destroy(cachep, slabp);
			} else {
3677
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3678 3679 3680 3681 3682 3683
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3684
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3685 3686 3687 3688
		}
	}
}

3689
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3690 3691
{
	int batchcount;
3692
	struct kmem_list3 *l3;
3693
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3694 3695 3696 3697 3698 3699

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3700
	l3 = cachep->nodelists[node];
3701
	spin_lock(&l3->list_lock);
3702 3703
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3704
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3705 3706 3707
		if (max) {
			if (batchcount > max)
				batchcount = max;
3708
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3709
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3710 3711 3712 3713 3714
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3715
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3716
free_done:
L
Linus Torvalds 已提交
3717 3718 3719 3720 3721
#if STATS
	{
		int i = 0;
		struct list_head *p;

3722 3723
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3735
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3736
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3737
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3738 3739 3740
}

/*
A
Andrew Morton 已提交
3741 3742
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3743
 */
3744 3745
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
    void *caller)
L
Linus Torvalds 已提交
3746
{
3747
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3748 3749

	check_irq_off();
3750
	kmemleak_free_recursive(objp, cachep->flags);
3751
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3752

3753
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3754

3755 3756 3757 3758 3759 3760 3761
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3762
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3763 3764
		return;

L
Linus Torvalds 已提交
3765 3766 3767 3768 3769 3770
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3771

3772
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3783
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3784
{
E
Eduard - Gabriel Munteanu 已提交
3785 3786
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3787
	trace_kmem_cache_alloc(_RET_IP_, ret,
3788
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3789 3790

	return ret;
L
Linus Torvalds 已提交
3791 3792 3793
}
EXPORT_SYMBOL(kmem_cache_alloc);

3794
#ifdef CONFIG_TRACING
3795 3796
void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
E
Eduard - Gabriel Munteanu 已提交
3797
{
3798 3799 3800 3801 3802 3803 3804
	void *ret;

	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

	trace_kmalloc(_RET_IP_, ret,
		      size, slab_buffer_size(cachep), flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3805
}
3806
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3807 3808
#endif

L
Linus Torvalds 已提交
3809
#ifdef CONFIG_NUMA
3810 3811
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3812 3813 3814
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3815
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3816
				    cachep->object_size, cachep->size,
3817
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3818 3819

	return ret;
3820
}
L
Linus Torvalds 已提交
3821 3822
EXPORT_SYMBOL(kmem_cache_alloc_node);

3823
#ifdef CONFIG_TRACING
3824 3825 3826 3827
void *kmem_cache_alloc_node_trace(size_t size,
				  struct kmem_cache *cachep,
				  gfp_t flags,
				  int nodeid)
E
Eduard - Gabriel Munteanu 已提交
3828
{
3829 3830 3831
	void *ret;

	ret = __cache_alloc_node(cachep, flags, nodeid,
E
Eduard - Gabriel Munteanu 已提交
3832
				  __builtin_return_address(0));
3833 3834 3835 3836
	trace_kmalloc_node(_RET_IP_, ret,
			   size, slab_buffer_size(cachep),
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3837
}
3838
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3839 3840
#endif

3841 3842
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3843
{
3844
	struct kmem_cache *cachep;
3845 3846

	cachep = kmem_find_general_cachep(size, flags);
3847 3848
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3849
	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3850
}
3851

3852
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3853 3854 3855 3856 3857
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3858
EXPORT_SYMBOL(__kmalloc_node);
3859 3860

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3861
		int node, unsigned long caller)
3862
{
3863
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3864 3865 3866 3867 3868 3869 3870 3871
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3872
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3873
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3874 3875

/**
3876
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3877
 * @size: how many bytes of memory are required.
3878
 * @flags: the type of memory to allocate (see kmalloc).
3879
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3880
 */
3881 3882
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3883
{
3884
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3885
	void *ret;
L
Linus Torvalds 已提交
3886

3887 3888 3889 3890 3891 3892
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3893 3894
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3895 3896
	ret = __cache_alloc(cachep, flags, caller);

3897
	trace_kmalloc((unsigned long) caller, ret,
3898
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3899 3900

	return ret;
3901 3902 3903
}


3904
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3905 3906
void *__kmalloc(size_t size, gfp_t flags)
{
3907
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3908 3909 3910
}
EXPORT_SYMBOL(__kmalloc);

3911
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3912
{
3913
	return __do_kmalloc(size, flags, (void *)caller);
3914 3915
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3916 3917 3918 3919 3920 3921 3922

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3923 3924
#endif

L
Linus Torvalds 已提交
3925 3926 3927 3928 3929 3930 3931 3932
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3933
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3934 3935 3936 3937
{
	unsigned long flags;

	local_irq_save(flags);
3938
	debug_check_no_locks_freed(objp, cachep->object_size);
3939
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3940
		debug_check_no_obj_freed(objp, cachep->object_size);
3941
	__cache_free(cachep, objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3942
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3943

3944
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3945 3946 3947 3948 3949 3950 3951
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3952 3953
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3954 3955 3956 3957 3958
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3959
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3960 3961
	unsigned long flags;

3962 3963
	trace_kfree(_RET_IP_, objp);

3964
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3965 3966 3967
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3968
	c = virt_to_cache(objp);
3969 3970 3971
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3972
	__cache_free(c, (void *)objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3973 3974 3975 3976
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3977
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3978
{
3979
	return cachep->object_size;
L
Linus Torvalds 已提交
3980 3981 3982
}
EXPORT_SYMBOL(kmem_cache_size);

3983
/*
S
Simon Arlott 已提交
3984
 * This initializes kmem_list3 or resizes various caches for all nodes.
3985
 */
3986
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3987 3988 3989
{
	int node;
	struct kmem_list3 *l3;
3990
	struct array_cache *new_shared;
3991
	struct array_cache **new_alien = NULL;
3992

3993
	for_each_online_node(node) {
3994

3995
                if (use_alien_caches) {
3996
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3997 3998 3999
                        if (!new_alien)
                                goto fail;
                }
4000

4001 4002 4003
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
4004
				cachep->shared*cachep->batchcount,
4005
					0xbaadf00d, gfp);
4006 4007 4008 4009
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
4010
		}
4011

A
Andrew Morton 已提交
4012 4013
		l3 = cachep->nodelists[node];
		if (l3) {
4014 4015
			struct array_cache *shared = l3->shared;

4016 4017
			spin_lock_irq(&l3->list_lock);

4018
			if (shared)
4019 4020
				free_block(cachep, shared->entry,
						shared->avail, node);
4021

4022 4023
			l3->shared = new_shared;
			if (!l3->alien) {
4024 4025 4026
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
4027
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4028
					cachep->batchcount + cachep->num;
4029
			spin_unlock_irq(&l3->list_lock);
4030
			kfree(shared);
4031 4032 4033
			free_alien_cache(new_alien);
			continue;
		}
4034
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4035 4036 4037
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
4038
			goto fail;
4039
		}
4040 4041 4042

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
4043
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4044
		l3->shared = new_shared;
4045
		l3->alien = new_alien;
P
Pekka Enberg 已提交
4046
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4047
					cachep->batchcount + cachep->num;
4048 4049
		cachep->nodelists[node] = l3;
	}
4050
	return 0;
4051

A
Andrew Morton 已提交
4052
fail:
4053
	if (!cachep->list.next) {
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
4068
	return -ENOMEM;
4069 4070
}

L
Linus Torvalds 已提交
4071
struct ccupdate_struct {
4072
	struct kmem_cache *cachep;
4073
	struct array_cache *new[0];
L
Linus Torvalds 已提交
4074 4075 4076 4077
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
4078
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
4079 4080 4081
	struct array_cache *old;

	check_irq_off();
4082
	old = cpu_cache_get(new->cachep);
4083

L
Linus Torvalds 已提交
4084 4085 4086 4087
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4088
/* Always called with the slab_mutex held */
A
Andrew Morton 已提交
4089
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4090
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4091
{
4092
	struct ccupdate_struct *new;
4093
	int i;
L
Linus Torvalds 已提交
4094

4095 4096
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4097 4098 4099
	if (!new)
		return -ENOMEM;

4100
	for_each_online_cpu(i) {
4101
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4102
						batchcount, gfp);
4103
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4104
			for (i--; i >= 0; i--)
4105 4106
				kfree(new->new[i]);
			kfree(new);
4107
			return -ENOMEM;
L
Linus Torvalds 已提交
4108 4109
		}
	}
4110
	new->cachep = cachep;
L
Linus Torvalds 已提交
4111

4112
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4113

L
Linus Torvalds 已提交
4114 4115 4116
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4117
	cachep->shared = shared;
L
Linus Torvalds 已提交
4118

4119
	for_each_online_cpu(i) {
4120
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4121 4122
		if (!ccold)
			continue;
4123 4124 4125
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4126 4127
		kfree(ccold);
	}
4128
	kfree(new);
4129
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4130 4131
}

4132
/* Called with slab_mutex held always */
4133
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4134 4135 4136 4137
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4138 4139
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4140 4141
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4142
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4143 4144 4145 4146
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4147
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4148
		limit = 1;
4149
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4150
		limit = 8;
4151
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4152
		limit = 24;
4153
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4154 4155 4156 4157
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4158 4159
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4160 4161 4162 4163 4164 4165 4166 4167
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4168
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4169 4170 4171
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4172 4173 4174
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4175 4176 4177 4178
	 */
	if (limit > 32)
		limit = 32;
#endif
4179
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4180 4181
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4182
		       cachep->name, -err);
4183
	return err;
L
Linus Torvalds 已提交
4184 4185
}

4186 4187
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4188 4189
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4190
 */
4191
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4192
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4193 4194 4195
{
	int tofree;

4196 4197
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4198 4199
	if (ac->touched && !force) {
		ac->touched = 0;
4200
	} else {
4201
		spin_lock_irq(&l3->list_lock);
4202 4203 4204 4205 4206 4207 4208 4209 4210
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4211
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4212 4213 4214 4215 4216
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4217
 * @w: work descriptor
L
Linus Torvalds 已提交
4218 4219 4220 4221 4222 4223
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4224 4225
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4226
 */
4227
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4228
{
4229
	struct kmem_cache *searchp;
4230
	struct kmem_list3 *l3;
4231
	int node = numa_mem_id();
4232
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4233

4234
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4235
		/* Give up. Setup the next iteration. */
4236
		goto out;
L
Linus Torvalds 已提交
4237

4238
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4239 4240
		check_irq_on();

4241 4242 4243 4244 4245
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4246
		l3 = searchp->nodelists[node];
4247

4248
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4249

4250
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4251

4252 4253 4254 4255
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4256
		if (time_after(l3->next_reap, jiffies))
4257
			goto next;
L
Linus Torvalds 已提交
4258

4259
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4260

4261
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4262

4263
		if (l3->free_touched)
4264
			l3->free_touched = 0;
4265 4266
		else {
			int freed;
L
Linus Torvalds 已提交
4267

4268 4269 4270 4271
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4272
next:
L
Linus Torvalds 已提交
4273 4274 4275
		cond_resched();
	}
	check_irq_on();
4276
	mutex_unlock(&slab_mutex);
4277
	next_reap_node();
4278
out:
A
Andrew Morton 已提交
4279
	/* Set up the next iteration */
4280
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4281 4282
}

4283
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4284

4285
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4286
{
4287 4288 4289 4290
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4291
#if STATS
4292
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4293
#else
4294
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4295
#endif
4296 4297 4298 4299
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4300
#if STATS
4301
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4302
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4303
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4304
#endif
4305 4306 4307 4308 4309 4310 4311
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

4312
	mutex_lock(&slab_mutex);
4313 4314
	if (!n)
		print_slabinfo_header(m);
4315

4316
	return seq_list_start(&slab_caches, *pos);
L
Linus Torvalds 已提交
4317 4318 4319 4320
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4321
	return seq_list_next(p, &slab_caches, pos);
L
Linus Torvalds 已提交
4322 4323 4324 4325
}

static void s_stop(struct seq_file *m, void *p)
{
4326
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4327 4328 4329 4330
}

static int s_show(struct seq_file *m, void *p)
{
4331
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
P
Pekka Enberg 已提交
4332 4333 4334 4335 4336
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4337
	const char *name;
L
Linus Torvalds 已提交
4338
	char *error = NULL;
4339 4340
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4341 4342 4343

	active_objs = 0;
	num_slabs = 0;
4344 4345 4346 4347 4348
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4349 4350
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4351

4352
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4353 4354 4355 4356 4357
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4358
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4359 4360 4361 4362 4363 4364 4365
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4366
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4367 4368 4369 4370 4371
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4372 4373
		if (l3->shared)
			shared_avail += l3->shared->avail;
4374

4375
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4376
	}
P
Pekka Enberg 已提交
4377 4378
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4379
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4380 4381
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4382
	name = cachep->name;
L
Linus Torvalds 已提交
4383 4384 4385 4386
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4387
		   name, active_objs, num_objs, cachep->size,
P
Pekka Enberg 已提交
4388
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4389
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4390
		   cachep->limit, cachep->batchcount, cachep->shared);
4391
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4392
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4393
#if STATS
P
Pekka Enberg 已提交
4394
	{			/* list3 stats */
L
Linus Torvalds 已提交
4395 4396 4397 4398 4399 4400 4401
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4402
		unsigned long node_frees = cachep->node_frees;
4403
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4404

J
Joe Perches 已提交
4405 4406 4407 4408 4409
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4410 4411 4412 4413 4414 4415 4416 4417 4418
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4419
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4440
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4441 4442 4443 4444
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4455
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4456
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4457
{
P
Pekka Enberg 已提交
4458
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4459
	int limit, batchcount, shared, res;
4460
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4461

L
Linus Torvalds 已提交
4462 4463 4464 4465
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4466
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4477
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4478
	res = -EINVAL;
4479
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4480
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4481 4482
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4483
				res = 0;
L
Linus Torvalds 已提交
4484
			} else {
4485
				res = do_tune_cpucache(cachep, limit,
4486 4487
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4488 4489 4490 4491
			}
			break;
		}
	}
4492
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4493 4494 4495 4496
	if (res >= 0)
		res = count;
	return res;
}
4497

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4511 4512 4513 4514
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4515 4516
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4555
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4567
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4568

4569
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4570
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4571
		if (modname[0])
4572 4573 4574 4575 4576 4577 4578 4579 4580
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4581
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4606
		list_for_each_entry(slabp, &l3->slabs_full, list)
4607
			handle_slab(n, cachep, slabp);
4608
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4609 4610 4611 4612 4613 4614
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4615
		mutex_unlock(&slab_mutex);
4616 4617 4618 4619
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4620
			mutex_lock(&slab_mutex);
4621 4622 4623 4624
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4625
		mutex_lock(&slab_mutex);
4626 4627 4628 4629 4630 4631 4632 4633 4634
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4635

4636 4637 4638
	return 0;
}

4639
static const struct seq_operations slabstats_op = {
4640 4641 4642 4643 4644
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4673
	proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4674 4675
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4676
#endif
4677 4678 4679
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4680 4681
#endif

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4694
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4695
{
4696 4697
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4698
		return 0;
L
Linus Torvalds 已提交
4699

4700
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4701
}
K
Kirill A. Shutemov 已提交
4702
EXPORT_SYMBOL(ksize);