slab.c 106.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
188
	void *entry[];	/*
A
Andrew Morton 已提交
189 190 191 192
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
193 194
};

J
Joonsoo Kim 已提交
195 196 197 198 199
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

200 201 202
/*
 * Need this for bootstrapping a per node allocator.
 */
203
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205
#define	CACHE_CACHE 0
206
#define	SIZE_NODE (MAX_NUMNODES)
207

208
static int drain_freelist(struct kmem_cache *cache,
209
			struct kmem_cache_node *n, int tofree);
210
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 212
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214
static void cache_reap(struct work_struct *unused);
215

216 217
static int slab_early_init = 1;

218
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
219

220
static void kmem_cache_node_init(struct kmem_cache_node *parent)
221 222 223 224 225 226
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
227
	parent->colour_next = 0;
228 229 230 231 232
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
233 234 235
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
236
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
237 238
	} while (0)

A
Andrew Morton 已提交
239 240
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
241 242 243 244
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
245

246
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
L
Linus Torvalds 已提交
247
#define CFLGS_OFF_SLAB		(0x80000000UL)
248
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
249 250 251
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
252 253 254
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
255
 *
A
Adrian Bunk 已提交
256
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
257 258
 * which could lock up otherwise freeable slabs.
 */
259 260
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
261 262 263 264 265 266

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
267
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
268 269 270 271 272
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
273 274
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
275
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
276
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
277 278 279 280 281
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
282 283 284 285 286 287 288 289 290
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
291
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
292 293 294
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
295
#define	STATS_INC_NODEFREES(x)	do { } while (0)
296
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
297
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
298 299 300 301 302 303 304 305
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
306 307
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
308
 * 0		: objp
309
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
310 311
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
312
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
313
 * 		redzone word.
314
 * cachep->obj_offset: The real object.
315 316
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
317
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
318
 */
319
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
320
{
321
	return cachep->obj_offset;
L
Linus Torvalds 已提交
322 323
}

324
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
325 326
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
327 328
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
329 330
}

331
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
332 333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
335
		return (unsigned long long *)(objp + cachep->size -
336
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
337
					      REDZONE_ALIGN);
338
	return (unsigned long long *) (objp + cachep->size -
339
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
340 341
}

342
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
343 344
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
345
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
346 347 348 349
}

#else

350
#define obj_offset(x)			0
351 352
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
353 354 355 356
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

357 358
#ifdef CONFIG_DEBUG_SLAB_LEAK

359
static inline bool is_store_user_clean(struct kmem_cache *cachep)
360
{
361 362
	return atomic_read(&cachep->store_user_clean) == 1;
}
363

364 365 366 367
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
368

369 370 371 372
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
373 374 375
}

#else
376
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
377 378 379

#endif

L
Linus Torvalds 已提交
380
/*
381 382
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
383
 */
384 385 386
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
387
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
388

389 390
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
391
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
392
	return page->slab_cache;
393 394
}

395
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
396 397
				 unsigned int idx)
{
398
	return page->s_mem + cache->size * idx;
399 400
}

401
/*
402 403 404
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
405 406 407
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
408
					const struct page *page, void *obj)
409
{
410
	u32 offset = (obj - page->s_mem);
411
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
412 413
}

414
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
415
/* internal cache of cache description objs */
416
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
417 418 419
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
420
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
421
	.name = "kmem_cache",
L
Linus Torvalds 已提交
422 423
};

424 425
#define BAD_ALIEN_MAGIC 0x01020304ul

426
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
427

428
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
429
{
430
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
431 432
}

A
Andrew Morton 已提交
433 434 435
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
436 437
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
438
{
439
	unsigned int num;
440
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
441

442 443 444 445 446 447
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
448 449 450 451 452
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
453 454 455 456 457 458
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
459
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
460
		num = slab_size / buffer_size;
461
		*left_over = slab_size % buffer_size;
462
	} else {
463
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
464 465
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
466
	}
467 468

	return num;
L
Linus Torvalds 已提交
469 470
}

471
#if DEBUG
472
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
473

A
Andrew Morton 已提交
474 475
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
476 477
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
478
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
479
	dump_stack();
480
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
481
}
482
#endif
L
Linus Torvalds 已提交
483

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

500 501 502 503 504 505 506 507 508 509 510
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

511 512 513 514 515 516 517
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
518
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
519 520 521 522 523

static void init_reap_node(int cpu)
{
	int node;

524
	node = next_node(cpu_to_mem(cpu), node_online_map);
525
	if (node == MAX_NUMNODES)
526
		node = first_node(node_online_map);
527

528
	per_cpu(slab_reap_node, cpu) = node;
529 530 531 532
}

static void next_reap_node(void)
{
533
	int node = __this_cpu_read(slab_reap_node);
534 535 536 537

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
538
	__this_cpu_write(slab_reap_node, node);
539 540 541 542 543 544 545
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
546 547 548 549 550 551 552
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
553
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
554
{
555
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
556 557 558 559 560 561

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
562
	if (keventd_up() && reap_work->work.func == NULL) {
563
		init_reap_node(cpu);
564
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
565 566
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
567 568 569
	}
}

570
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
571
{
572 573
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
574
	 * However, when such objects are allocated or transferred to another
575 576 577 578
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
579 580 581 582 583 584
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
585
	}
586 587 588 589 590
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
591
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
592 593 594 595 596
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
597 598
}

599 600
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
601
{
602 603 604
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
605

606 607
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
608

609 610 611
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
612

613
	slabs_destroy(cachep, &list);
614 615
}

616 617 618 619 620 621 622 623 624 625
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
626
	int nr = min3(from->avail, max, to->limit - to->avail);
627 628 629 630 631 632 633 634 635 636 637 638

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

639 640 641
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
642
#define reap_alien(cachep, n) do { } while (0)
643

J
Joonsoo Kim 已提交
644 645
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
646
{
647
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
648 649
}

J
Joonsoo Kim 已提交
650
static inline void free_alien_cache(struct alien_cache **ac_ptr)
651 652 653 654 655 656 657 658 659 660 661 662 663 664
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

665
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
666 667 668 669 670
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
671 672
static inline gfp_t gfp_exact_node(gfp_t flags)
{
673
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
674 675
}

676 677
#else	/* CONFIG_NUMA */

678
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
679
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
680

J
Joonsoo Kim 已提交
681 682 683
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
684
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
685 686 687 688
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
689
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
690 691 692 693
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
694
{
J
Joonsoo Kim 已提交
695
	struct alien_cache **alc_ptr;
696
	size_t memsize = sizeof(void *) * nr_node_ids;
697 698 699 700
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
714 715
		}
	}
J
Joonsoo Kim 已提交
716
	return alc_ptr;
717 718
}

J
Joonsoo Kim 已提交
719
static void free_alien_cache(struct alien_cache **alc_ptr)
720 721 722
{
	int i;

J
Joonsoo Kim 已提交
723
	if (!alc_ptr)
724 725
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
726 727
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
728 729
}

730
static void __drain_alien_cache(struct kmem_cache *cachep,
731 732
				struct array_cache *ac, int node,
				struct list_head *list)
733
{
734
	struct kmem_cache_node *n = get_node(cachep, node);
735 736

	if (ac->avail) {
737
		spin_lock(&n->list_lock);
738 739 740 741 742
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
743 744
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
745

746
		free_block(cachep, ac->entry, ac->avail, node, list);
747
		ac->avail = 0;
748
		spin_unlock(&n->list_lock);
749 750 751
	}
}

752 753 754
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
755
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
756
{
757
	int node = __this_cpu_read(slab_reap_node);
758

759
	if (n->alien) {
J
Joonsoo Kim 已提交
760 761 762 763 764
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
765
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
766 767 768
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
769
				spin_unlock_irq(&alc->lock);
770
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
771
			}
772 773 774 775
		}
	}
}

A
Andrew Morton 已提交
776
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
777
				struct alien_cache **alien)
778
{
P
Pekka Enberg 已提交
779
	int i = 0;
J
Joonsoo Kim 已提交
780
	struct alien_cache *alc;
781 782 783 784
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
785 786
		alc = alien[i];
		if (alc) {
787 788
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
789
			ac = &alc->ac;
790
			spin_lock_irqsave(&alc->lock, flags);
791
			__drain_alien_cache(cachep, ac, i, &list);
792
			spin_unlock_irqrestore(&alc->lock, flags);
793
			slabs_destroy(cachep, &list);
794 795 796
		}
	}
}
797

798 799
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
800
{
801
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
802 803
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
804
	LIST_HEAD(list);
P
Pekka Enberg 已提交
805

806
	n = get_node(cachep, node);
807
	STATS_INC_NODEFREES(cachep);
808 809
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
810
		ac = &alien->ac;
811
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
812
		if (unlikely(ac->avail == ac->limit)) {
813
			STATS_INC_ACOVERFLOW(cachep);
814
			__drain_alien_cache(cachep, ac, page_node, &list);
815
		}
816
		ac->entry[ac->avail++] = objp;
817
		spin_unlock(&alien->lock);
818
		slabs_destroy(cachep, &list);
819
	} else {
820
		n = get_node(cachep, page_node);
821
		spin_lock(&n->list_lock);
822
		free_block(cachep, &objp, 1, page_node, &list);
823
		spin_unlock(&n->list_lock);
824
		slabs_destroy(cachep, &list);
825 826 827
	}
	return 1;
}
828 829 830 831 832 833 834 835 836 837 838 839 840 841

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
842 843

/*
844 845
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
846 847 848
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
849
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
850
}
851 852
#endif

853
/*
854
 * Allocates and initializes node for a node on each slab cache, used for
855
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
856
 * will be allocated off-node since memory is not yet online for the new node.
857
 * When hotplugging memory or a cpu, existing node are not replaced if
858 859
 * already in use.
 *
860
 * Must hold slab_mutex.
861
 */
862
static int init_cache_node_node(int node)
863 864
{
	struct kmem_cache *cachep;
865
	struct kmem_cache_node *n;
866
	const size_t memsize = sizeof(struct kmem_cache_node);
867

868
	list_for_each_entry(cachep, &slab_caches, list) {
869
		/*
870
		 * Set up the kmem_cache_node for cpu before we can
871 872 873
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
874 875
		n = get_node(cachep, node);
		if (!n) {
876 877
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
878
				return -ENOMEM;
879
			kmem_cache_node_init(n);
880 881
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
882 883

			/*
884 885
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
886 887
			 * protection here.
			 */
888
			cachep->node[node] = n;
889 890
		}

891 892
		spin_lock_irq(&n->list_lock);
		n->free_limit =
893 894
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
895
		spin_unlock_irq(&n->list_lock);
896 897 898 899
	}
	return 0;
}

900 901 902 903 904 905
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

906
static void cpuup_canceled(long cpu)
907 908
{
	struct kmem_cache *cachep;
909
	struct kmem_cache_node *n = NULL;
910
	int node = cpu_to_mem(cpu);
911
	const struct cpumask *mask = cpumask_of_node(node);
912

913
	list_for_each_entry(cachep, &slab_caches, list) {
914 915
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
916
		struct alien_cache **alien;
917
		LIST_HEAD(list);
918

919
		n = get_node(cachep, node);
920
		if (!n)
921
			continue;
922

923
		spin_lock_irq(&n->list_lock);
924

925 926
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
927 928 929 930

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
931
			free_block(cachep, nc->entry, nc->avail, node, &list);
932 933
			nc->avail = 0;
		}
934

935
		if (!cpumask_empty(mask)) {
936
			spin_unlock_irq(&n->list_lock);
937
			goto free_slab;
938 939
		}

940
		shared = n->shared;
941 942
		if (shared) {
			free_block(cachep, shared->entry,
943
				   shared->avail, node, &list);
944
			n->shared = NULL;
945 946
		}

947 948
		alien = n->alien;
		n->alien = NULL;
949

950
		spin_unlock_irq(&n->list_lock);
951 952 953 954 955 956

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
957 958

free_slab:
959
		slabs_destroy(cachep, &list);
960 961 962 963 964 965
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
966
	list_for_each_entry(cachep, &slab_caches, list) {
967
		n = get_node(cachep, node);
968
		if (!n)
969
			continue;
970
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
971 972 973
	}
}

974
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
975
{
976
	struct kmem_cache *cachep;
977
	struct kmem_cache_node *n = NULL;
978
	int node = cpu_to_mem(cpu);
979
	int err;
L
Linus Torvalds 已提交
980

981 982 983 984
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
985
	 * kmem_cache_node and not this cpu's kmem_cache_node
986
	 */
987
	err = init_cache_node_node(node);
988 989
	if (err < 0)
		goto bad;
990 991 992 993 994

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
995
	list_for_each_entry(cachep, &slab_caches, list) {
996
		struct array_cache *shared = NULL;
J
Joonsoo Kim 已提交
997
		struct alien_cache **alien = NULL;
998 999 1000 1001

		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1002
				0xbaadf00d, GFP_KERNEL);
1003
			if (!shared)
L
Linus Torvalds 已提交
1004
				goto bad;
1005 1006
		}
		if (use_alien_caches) {
1007
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1008 1009
			if (!alien) {
				kfree(shared);
1010
				goto bad;
1011
			}
1012
		}
1013
		n = get_node(cachep, node);
1014
		BUG_ON(!n);
1015

1016 1017
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1018 1019 1020 1021
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1022
			n->shared = shared;
1023 1024
			shared = NULL;
		}
1025
#ifdef CONFIG_NUMA
1026 1027
		if (!n->alien) {
			n->alien = alien;
1028
			alien = NULL;
L
Linus Torvalds 已提交
1029
		}
1030
#endif
1031
		spin_unlock_irq(&n->list_lock);
1032 1033 1034
		kfree(shared);
		free_alien_cache(alien);
	}
1035

1036 1037
	return 0;
bad:
1038
	cpuup_canceled(cpu);
1039 1040 1041
	return -ENOMEM;
}

1042
static int cpuup_callback(struct notifier_block *nfb,
1043 1044 1045 1046 1047 1048 1049 1050
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1051
		mutex_lock(&slab_mutex);
1052
		err = cpuup_prepare(cpu);
1053
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1054 1055
		break;
	case CPU_ONLINE:
1056
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1057 1058 1059
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1060
  	case CPU_DOWN_PREPARE:
1061
  	case CPU_DOWN_PREPARE_FROZEN:
1062
		/*
1063
		 * Shutdown cache reaper. Note that the slab_mutex is
1064 1065 1066 1067
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1068
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1069
		/* Now the cache_reaper is guaranteed to be not running. */
1070
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1071 1072
  		break;
  	case CPU_DOWN_FAILED:
1073
  	case CPU_DOWN_FAILED_FROZEN:
1074 1075
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1076
	case CPU_DEAD:
1077
	case CPU_DEAD_FROZEN:
1078 1079
		/*
		 * Even if all the cpus of a node are down, we don't free the
1080
		 * kmem_cache_node of any cache. This to avoid a race between
1081
		 * cpu_down, and a kmalloc allocation from another cpu for
1082
		 * memory from the node of the cpu going down.  The node
1083 1084 1085
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1086
		/* fall through */
1087
#endif
L
Linus Torvalds 已提交
1088
	case CPU_UP_CANCELED:
1089
	case CPU_UP_CANCELED_FROZEN:
1090
		mutex_lock(&slab_mutex);
1091
		cpuup_canceled(cpu);
1092
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1093 1094
		break;
	}
1095
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1096 1097
}

1098
static struct notifier_block cpucache_notifier = {
1099 1100
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1101

1102 1103 1104 1105 1106 1107
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1108
 * Must hold slab_mutex.
1109
 */
1110
static int __meminit drain_cache_node_node(int node)
1111 1112 1113 1114
{
	struct kmem_cache *cachep;
	int ret = 0;

1115
	list_for_each_entry(cachep, &slab_caches, list) {
1116
		struct kmem_cache_node *n;
1117

1118
		n = get_node(cachep, node);
1119
		if (!n)
1120 1121
			continue;

1122
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1123

1124 1125
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1146
		mutex_lock(&slab_mutex);
1147
		ret = init_cache_node_node(nid);
1148
		mutex_unlock(&slab_mutex);
1149 1150
		break;
	case MEM_GOING_OFFLINE:
1151
		mutex_lock(&slab_mutex);
1152
		ret = drain_cache_node_node(nid);
1153
		mutex_unlock(&slab_mutex);
1154 1155 1156 1157 1158 1159 1160 1161
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1162
	return notifier_from_errno(ret);
1163 1164 1165
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1166
/*
1167
 * swap the static kmem_cache_node with kmalloced memory
1168
 */
1169
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1170
				int nodeid)
1171
{
1172
	struct kmem_cache_node *ptr;
1173

1174
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1175 1176
	BUG_ON(!ptr);

1177
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1178 1179 1180 1181 1182
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1183
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1184
	cachep->node[nodeid] = ptr;
1185 1186
}

1187
/*
1188 1189
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1190
 */
1191
static void __init set_up_node(struct kmem_cache *cachep, int index)
1192 1193 1194 1195
{
	int node;

	for_each_online_node(node) {
1196
		cachep->node[node] = &init_kmem_cache_node[index + node];
1197
		cachep->node[node]->next_reap = jiffies +
1198 1199
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1200 1201 1202
	}
}

A
Andrew Morton 已提交
1203 1204 1205
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1206 1207 1208
 */
void __init kmem_cache_init(void)
{
1209 1210
	int i;

1211 1212
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1213 1214
	kmem_cache = &kmem_cache_boot;

1215
	if (num_possible_nodes() == 1)
1216 1217
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1218
	for (i = 0; i < NUM_INIT_LISTS; i++)
1219
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1220

L
Linus Torvalds 已提交
1221 1222
	/*
	 * Fragmentation resistance on low memory - only use bigger
1223 1224
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1225
	 */
1226
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1227
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1228 1229 1230

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1231 1232 1233
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1234
	 *    Initially an __init data area is used for the head array and the
1235
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1236
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1237
	 * 2) Create the first kmalloc cache.
1238
	 *    The struct kmem_cache for the new cache is allocated normally.
1239 1240 1241
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1242
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1243
	 *    kmalloc cache with kmalloc allocated arrays.
1244
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1245 1246
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1247 1248
	 */

1249
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1250

E
Eric Dumazet 已提交
1251
	/*
1252
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1253
	 */
1254
	create_boot_cache(kmem_cache, "kmem_cache",
1255
		offsetof(struct kmem_cache, node) +
1256
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1257 1258
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1259
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1260

A
Andrew Morton 已提交
1261
	/*
1262 1263
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1264
	 */
1265
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1266
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1267
	slab_state = PARTIAL_NODE;
1268
	setup_kmalloc_cache_index_table();
1269

1270 1271
	slab_early_init = 0;

1272
	/* 5) Replace the bootstrap kmem_cache_node */
1273
	{
P
Pekka Enberg 已提交
1274 1275
		int nid;

1276
		for_each_online_node(nid) {
1277
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1278

1279
			init_list(kmalloc_caches[INDEX_NODE],
1280
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1281 1282
		}
	}
L
Linus Torvalds 已提交
1283

1284
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1285 1286 1287 1288 1289 1290
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1291
	slab_state = UP;
P
Peter Zijlstra 已提交
1292

1293
	/* 6) resize the head arrays to their final sizes */
1294 1295
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1296 1297
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1298
	mutex_unlock(&slab_mutex);
1299

1300 1301 1302
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1303 1304 1305
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1306 1307 1308
	 */
	register_cpu_notifier(&cpucache_notifier);

1309 1310 1311
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1312
	 * node.
1313 1314 1315 1316
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1317 1318 1319
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1320 1321 1322 1323 1324 1325 1326
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1327 1328
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1329
	 */
1330
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1331
		start_cpu_timer(cpu);
1332 1333

	/* Done! */
1334
	slab_state = FULL;
L
Linus Torvalds 已提交
1335 1336 1337 1338
	return 0;
}
__initcall(cpucache_init);

1339 1340 1341
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1342
#if DEBUG
1343
	struct kmem_cache_node *n;
1344
	struct page *page;
1345 1346
	unsigned long flags;
	int node;
1347 1348 1349 1350 1351
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1352

1353 1354 1355
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1356
		cachep->name, cachep->size, cachep->gfporder);
1357

1358
	for_each_kmem_cache_node(cachep, node, n) {
1359 1360 1361
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1362
		spin_lock_irqsave(&n->list_lock, flags);
1363
		list_for_each_entry(page, &n->slabs_full, lru) {
1364 1365 1366
			active_objs += cachep->num;
			active_slabs++;
		}
1367 1368
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1369 1370
			active_slabs++;
		}
1371
		list_for_each_entry(page, &n->slabs_free, lru)
1372 1373
			num_slabs++;

1374 1375
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1376 1377 1378

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
1379
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1380 1381 1382
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1383
#endif
1384 1385
}

L
Linus Torvalds 已提交
1386
/*
W
Wang Sheng-Hui 已提交
1387 1388
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1389 1390 1391 1392 1393
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1394 1395
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1396 1397
{
	struct page *page;
1398
	int nr_pages;
1399

1400
	flags |= cachep->allocflags;
1401 1402
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1403

1404
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1405
	if (!page) {
1406
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1407
		return NULL;
1408
	}
L
Linus Torvalds 已提交
1409

1410 1411 1412 1413 1414
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1415
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1416
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1417 1418 1419 1420 1421
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1422

1423
	__SetPageSlab(page);
1424 1425
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1426
		SetPageSlabPfmemalloc(page);
1427

1428 1429 1430 1431 1432 1433 1434 1435
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1436

1437
	return page;
L
Linus Torvalds 已提交
1438 1439 1440 1441 1442
}

/*
 * Interface to system's page release.
 */
1443
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1444
{
1445 1446
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1447

1448
	kmemcheck_free_shadow(page, order);
P
Pekka Enberg 已提交
1449

1450 1451 1452 1453 1454 1455
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1456

1457
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1458
	__ClearPageSlabPfmemalloc(page);
1459
	__ClearPageSlab(page);
1460 1461
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1462

L
Linus Torvalds 已提交
1463 1464
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1465 1466
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1467 1468 1469 1470
}

static void kmem_rcu_free(struct rcu_head *head)
{
1471 1472
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1473

1474 1475 1476 1477
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1478 1479 1480
}

#if DEBUG
1481 1482 1483 1484 1485 1486 1487 1488
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1489 1490

#ifdef CONFIG_DEBUG_PAGEALLOC
1491
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1492
			    unsigned long caller)
L
Linus Torvalds 已提交
1493
{
1494
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1495

1496
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1497

P
Pekka Enberg 已提交
1498
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1499 1500
		return;

P
Pekka Enberg 已提交
1501 1502 1503 1504
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1512
				*addr++ = svalue;
L
Linus Torvalds 已提交
1513 1514 1515 1516 1517 1518 1519
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1520
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1521
}
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1539 1540
#endif

1541
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1542
{
1543
	int size = cachep->object_size;
1544
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1545 1546

	memset(addr, val, size);
P
Pekka Enberg 已提交
1547
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1548 1549 1550 1551 1552
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1553 1554 1555
	unsigned char error = 0;
	int bad_count = 0;

1556
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1557 1558 1559 1560 1561 1562
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1563 1564
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1565 1566 1567 1568

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
J
Joe Perches 已提交
1569
			printk(KERN_ERR "Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1570
#ifdef CONFIG_X86
J
Joe Perches 已提交
1571
			printk(KERN_ERR "Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1572 1573 1574 1575 1576
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581
}
#endif

#if DEBUG

1582
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1583 1584 1585 1586 1587
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1588
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1589 1590
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1591 1592 1593
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1594 1595 1596
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1597
	}
1598
	realobj = (char *)objp + obj_offset(cachep);
1599
	size = cachep->object_size;
P
Pekka Enberg 已提交
1600
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1601 1602
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1603 1604
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1605 1606 1607 1608
		dump_line(realobj, i, limit);
	}
}

1609
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1610 1611 1612 1613 1614
{
	char *realobj;
	int size, i;
	int lines = 0;

1615 1616 1617
	if (is_debug_pagealloc_cache(cachep))
		return;

1618
	realobj = (char *)objp + obj_offset(cachep);
1619
	size = cachep->object_size;
L
Linus Torvalds 已提交
1620

P
Pekka Enberg 已提交
1621
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1622
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1623
		if (i == size - 1)
L
Linus Torvalds 已提交
1624 1625 1626 1627 1628 1629
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1630
				printk(KERN_ERR
1631 1632
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1633 1634 1635
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1636
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1637
			limit = 16;
P
Pekka Enberg 已提交
1638 1639
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1652
		struct page *page = virt_to_head_page(objp);
1653
		unsigned int objnr;
L
Linus Torvalds 已提交
1654

1655
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1656
		if (objnr) {
1657
			objp = index_to_obj(cachep, page, objnr - 1);
1658
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1659
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1660
			       realobj, size);
L
Linus Torvalds 已提交
1661 1662
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1663
		if (objnr + 1 < cachep->num) {
1664
			objp = index_to_obj(cachep, page, objnr + 1);
1665
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1666
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1667
			       realobj, size);
L
Linus Torvalds 已提交
1668 1669 1670 1671 1672 1673
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1674
#if DEBUG
1675 1676
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1677 1678
{
	int i;
1679 1680 1681 1682 1683 1684

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1685
	for (i = 0; i < cachep->num; i++) {
1686
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1687 1688 1689

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1690
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1691 1692 1693
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1694
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1695
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1696
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1697 1698
		}
	}
1699
}
L
Linus Torvalds 已提交
1700
#else
1701 1702
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1703 1704
{
}
L
Linus Torvalds 已提交
1705 1706
#endif

1707 1708 1709
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1710
 * @page: page pointer being destroyed
1711
 *
W
Wang Sheng-Hui 已提交
1712 1713 1714
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1715
 */
1716
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1717
{
1718
	void *freelist;
1719

1720 1721
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1722 1723 1724
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1725
		kmem_freepages(cachep, page);
1726 1727

	/*
1728
	 * From now on, we don't use freelist
1729 1730 1731
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1732
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1733 1734
}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1745
/**
1746 1747 1748 1749 1750 1751
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1752 1753 1754 1755 1756
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1757
static size_t calculate_slab_order(struct kmem_cache *cachep,
1758
				size_t size, unsigned long flags)
1759 1760
{
	size_t left_over = 0;
1761
	int gfporder;
1762

1763
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1764 1765 1766
		unsigned int num;
		size_t remainder;

1767
		num = cache_estimate(gfporder, size, flags, &remainder);
1768 1769
		if (!num)
			continue;
1770

1771 1772 1773 1774
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1775
		if (flags & CFLGS_OFF_SLAB) {
1776 1777 1778 1779 1780 1781 1782 1783
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1784
			/*
1785 1786
			 * Needed to avoid possible looping condition
			 * in cache_grow()
1787
			 */
1788 1789
			if (OFF_SLAB(freelist_cache))
				continue;
1790

1791 1792 1793
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1794
		}
1795

1796
		/* Found something acceptable - save it away */
1797
		cachep->num = num;
1798
		cachep->gfporder = gfporder;
1799 1800
		left_over = remainder;

1801 1802 1803 1804 1805 1806 1807 1808
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1809 1810 1811 1812
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1813
		if (gfporder >= slab_max_order)
1814 1815
			break;

1816 1817 1818
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1819
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1820 1821 1822 1823 1824
			break;
	}
	return left_over;
}

1825 1826 1827 1828 1829 1830 1831 1832
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1833
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1846
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1847
{
1848
	if (slab_state >= FULL)
1849
		return enable_cpucache(cachep, gfp);
1850

1851 1852 1853 1854
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1855
	if (slab_state == DOWN) {
1856 1857
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1858
	} else if (slab_state == PARTIAL) {
1859 1860
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1861
	} else {
1862
		int node;
1863

1864 1865 1866 1867 1868
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1869 1870
		}
	}
1871

1872
	cachep->node[numa_mem_id()]->next_reap =
1873 1874
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1875 1876 1877 1878 1879 1880 1881

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1882
	return 0;
1883 1884
}

J
Joonsoo Kim 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1934 1935 1936 1937 1938 1939 1940 1941
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
1942 1943
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1984
/**
1985
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1986
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1987 1988 1989 1990
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1991
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2005
int
2006
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2007
{
2008
	size_t ralign = BYTES_PER_WORD;
2009
	gfp_t gfp;
2010
	int err;
2011
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2021 2022
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2023
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2024 2025 2026 2027 2028
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2029 2030
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2031 2032 2033
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2034 2035 2036
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2037 2038
	}

D
David Woodhouse 已提交
2039 2040 2041 2042 2043 2044 2045
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2046

2047
	/* 3) caller mandated alignment */
2048 2049
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2050
	}
2051 2052
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2053
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2054
	/*
2055
	 * 4) Store it.
L
Linus Torvalds 已提交
2056
	 */
2057
	cachep->align = ralign;
2058 2059 2060 2061
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2062

2063 2064 2065 2066 2067
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2068 2069
#if DEBUG

2070 2071 2072 2073
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2074 2075
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2076 2077
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2078 2079
	}
	if (flags & SLAB_STORE_USER) {
2080
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2081 2082
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2083
		 */
D
David Woodhouse 已提交
2084 2085 2086 2087
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2088
	}
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
#endif

	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2100 2101 2102 2103 2104 2105 2106
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2107
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2119 2120 2121
	}
#endif

2122 2123 2124 2125 2126
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2127
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2128
		flags |= CFLGS_OFF_SLAB;
2129
		goto done;
2130
	}
L
Linus Torvalds 已提交
2131

2132 2133
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2134

2135
	return -E2BIG;
L
Linus Torvalds 已提交
2136

2137 2138
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2139
	cachep->flags = flags;
2140
	cachep->allocflags = __GFP_COMP;
2141
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2142
		cachep->allocflags |= GFP_DMA;
2143
	cachep->size = size;
2144
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2145

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2159 2160
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2161
	}
L
Linus Torvalds 已提交
2162

2163 2164
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2165
		__kmem_cache_release(cachep);
2166
		return err;
2167
	}
L
Linus Torvalds 已提交
2168

2169
	return 0;
L
Linus Torvalds 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2183
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2184 2185 2186
{
#ifdef CONFIG_SMP
	check_irq_off();
2187
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2188 2189
#endif
}
2190

2191
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2192 2193 2194
{
#ifdef CONFIG_SMP
	check_irq_off();
2195
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2196 2197 2198
#endif
}

L
Linus Torvalds 已提交
2199 2200 2201 2202
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2203
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2204 2205
#endif

2206
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2207 2208 2209
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2210 2211
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2212
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2213
	struct array_cache *ac;
2214
	int node = numa_mem_id();
2215
	struct kmem_cache_node *n;
2216
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2217 2218

	check_irq_off();
2219
	ac = cpu_cache_get(cachep);
2220 2221
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2222
	free_block(cachep, ac->entry, ac->avail, node, &list);
2223
	spin_unlock(&n->list_lock);
2224
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2225 2226 2227
	ac->avail = 0;
}

2228
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2229
{
2230
	struct kmem_cache_node *n;
2231 2232
	int node;

2233
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2234
	check_irq_on();
2235 2236
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2237
			drain_alien_cache(cachep, n->alien);
2238

2239 2240
	for_each_kmem_cache_node(cachep, node, n)
		drain_array(cachep, n, n->shared, 1, node);
L
Linus Torvalds 已提交
2241 2242
}

2243 2244 2245 2246 2247 2248 2249
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2250
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2251
{
2252 2253
	struct list_head *p;
	int nr_freed;
2254
	struct page *page;
L
Linus Torvalds 已提交
2255

2256
	nr_freed = 0;
2257
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2258

2259 2260 2261 2262
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2263 2264
			goto out;
		}
L
Linus Torvalds 已提交
2265

2266 2267
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2268 2269 2270 2271
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2272 2273
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2274
		slab_destroy(cache, page);
2275
		nr_freed++;
L
Linus Torvalds 已提交
2276
	}
2277 2278
out:
	return nr_freed;
L
Linus Torvalds 已提交
2279 2280
}

2281
int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2282
{
2283 2284
	int ret = 0;
	int node;
2285
	struct kmem_cache_node *n;
2286 2287 2288 2289

	drain_cpu_caches(cachep);

	check_irq_on();
2290
	for_each_kmem_cache_node(cachep, node, n) {
2291
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2292

2293 2294
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2295 2296 2297 2298
	}
	return (ret ? 1 : 0);
}

2299
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2300 2301 2302 2303 2304
{
	return __kmem_cache_shrink(cachep, false);
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2305
{
2306
	int i;
2307
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2308

2309
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2310

2311
	/* NUMA: free the node structures */
2312 2313 2314 2315 2316
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2317
	}
L
Linus Torvalds 已提交
2318 2319
}

2320 2321
/*
 * Get the memory for a slab management obj.
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2333
 */
2334
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2335 2336
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2337
{
2338
	void *freelist;
2339
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2340

2341 2342 2343
	page->s_mem = addr + colour_off;
	page->active = 0;

2344 2345 2346
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2347
		/* Slab management obj is off-slab. */
2348
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2349
					      local_flags, nodeid);
2350
		if (!freelist)
L
Linus Torvalds 已提交
2351 2352
			return NULL;
	} else {
2353 2354 2355
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2356
	}
2357

2358
	return freelist;
L
Linus Torvalds 已提交
2359 2360
}

2361
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2362
{
2363
	return ((freelist_idx_t *)page->freelist)[idx];
2364 2365 2366
}

static inline void set_free_obj(struct page *page,
2367
					unsigned int idx, freelist_idx_t val)
2368
{
2369
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2370 2371
}

2372
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2373
{
2374
#if DEBUG
L
Linus Torvalds 已提交
2375 2376 2377
	int i;

	for (i = 0; i < cachep->num; i++) {
2378
		void *objp = index_to_obj(cachep, page, i);
2379

L
Linus Torvalds 已提交
2380 2381 2382 2383 2384 2385 2386 2387
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2388 2389 2390
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2391 2392
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2393
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2394 2395 2396

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2397
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2398
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2399
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2400
		}
2401 2402 2403 2404 2405
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2406
	}
L
Linus Torvalds 已提交
2407
#endif
2408 2409 2410 2411 2412 2413 2414 2415 2416
}

static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;

	cache_init_objs_debug(cachep, page);

2417 2418 2419 2420 2421
	if (OBJFREELIST_SLAB(cachep)) {
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2422 2423 2424 2425 2426
	for (i = 0; i < cachep->num; i++) {
		/* constructor could break poison info */
		if (DEBUG == 0 && cachep->ctor)
			cachep->ctor(index_to_obj(cachep, page, i));

2427
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2428 2429 2430
	}
}

2431
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2432
{
2433 2434
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2435
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2436
		else
2437
			BUG_ON(cachep->allocflags & GFP_DMA);
2438
	}
L
Linus Torvalds 已提交
2439 2440
}

2441
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2442
{
2443
	void *objp;
2444

2445
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2446
	page->active++;
2447

2448 2449 2450 2451 2452
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2453 2454 2455
	return objp;
}

2456 2457
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2458
{
2459
	unsigned int objnr = obj_to_index(cachep, page, objp);
2460
#if DEBUG
J
Joonsoo Kim 已提交
2461
	unsigned int i;
2462 2463

	/* Verify double free bug */
2464
	for (i = page->active; i < cachep->num; i++) {
2465
		if (get_free_obj(page, i) == objnr) {
J
Joe Perches 已提交
2466 2467
			printk(KERN_ERR "slab: double free detected in cache '%s', objp %p\n",
			       cachep->name, objp);
2468 2469
			BUG();
		}
2470 2471
	}
#endif
2472
	page->active--;
2473 2474 2475
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2476
	set_free_obj(page, page->active, objnr);
2477 2478
}

2479 2480 2481
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2482
 * virtual address for kfree, ksize, and slab debugging.
2483
 */
2484
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2485
			   void *freelist)
L
Linus Torvalds 已提交
2486
{
2487
	page->slab_cache = cache;
2488
	page->freelist = freelist;
L
Linus Torvalds 已提交
2489 2490 2491 2492 2493 2494
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2495
static int cache_grow(struct kmem_cache *cachep,
2496
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2497
{
2498
	void *freelist;
P
Pekka Enberg 已提交
2499 2500
	size_t offset;
	gfp_t local_flags;
2501
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2502

A
Andrew Morton 已提交
2503 2504 2505
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2506
	 */
2507 2508 2509 2510
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
2511
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2512

2513
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2514
	check_irq_off();
2515
	n = get_node(cachep, nodeid);
2516
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2517 2518

	/* Get colour for the slab, and cal the next value. */
2519 2520 2521 2522 2523
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2524

2525
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2526

2527
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2538 2539 2540
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2541
	 */
2542 2543 2544
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2545 2546 2547
		goto failed;

	/* Get slab management. */
2548
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2549
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2550
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2551 2552
		goto opps1;

2553
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2554

2555
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2556

2557
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2558 2559
		local_irq_disable();
	check_irq_off();
2560
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2561 2562

	/* Make slab active. */
2563
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2564
	STATS_INC_GROWN(cachep);
2565 2566
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2567
	return 1;
A
Andrew Morton 已提交
2568
opps1:
2569
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2570
failed:
2571
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2587 2588
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2589 2590 2591
	}
}

2592 2593
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2594
	unsigned long long redzone1, redzone2;
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2610
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2611 2612 2613
			obj, redzone1, redzone2);
}

2614
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2615
				   unsigned long caller)
L
Linus Torvalds 已提交
2616 2617
{
	unsigned int objnr;
2618
	struct page *page;
L
Linus Torvalds 已提交
2619

2620 2621
	BUG_ON(virt_to_cache(objp) != cachep);

2622
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2623
	kfree_debugcheck(objp);
2624
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2625 2626

	if (cachep->flags & SLAB_RED_ZONE) {
2627
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2628 2629 2630
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2631 2632
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2633
		*dbg_userword(cachep, objp) = (void *)caller;
2634
	}
L
Linus Torvalds 已提交
2635

2636
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2637 2638

	BUG_ON(objnr >= cachep->num);
2639
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2640 2641 2642

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2643
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2668
static inline void fixup_slab_list(struct kmem_cache *cachep,
2669 2670
				struct kmem_cache_node *n, struct page *page,
				void **list)
2671 2672 2673
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2674
	if (page->active == cachep->num) {
2675
		list_add(&page->lru, &n->slabs_full);
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2689 2690 2691
		list_add(&page->lru, &n->slabs_partial);
}

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
					struct page *page, bool pfmemalloc)
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
	if (!page->active)
		list_add_tail(&page->lru, &n->slabs_free);
	else
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	list_for_each_entry(page, &n->slabs_free, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
{
	struct page *page;

	page = list_first_entry_or_null(&n->slabs_partial,
			struct page, lru);
	if (!page) {
		n->free_touched = 1;
		page = list_first_entry_or_null(&n->slabs_free,
				struct page, lru);
	}

2743 2744 2745
	if (sk_memalloc_socks())
		return get_valid_first_slab(n, page, pfmemalloc);

2746 2747 2748
	return page;
}

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2778 2779
{
	int batchcount;
2780
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2781
	struct array_cache *ac;
P
Pekka Enberg 已提交
2782
	int node;
2783
	void *list = NULL;
P
Pekka Enberg 已提交
2784

L
Linus Torvalds 已提交
2785
	check_irq_off();
2786
	node = numa_mem_id();
2787

2788
retry:
2789
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2790 2791
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2792 2793 2794 2795
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2796 2797 2798
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2799
	n = get_node(cachep, node);
2800

2801 2802
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2803

2804
	/* See if we can refill from the shared array */
2805 2806
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2807
		goto alloc_done;
2808
	}
2809

L
Linus Torvalds 已提交
2810
	while (batchcount > 0) {
2811
		struct page *page;
L
Linus Torvalds 已提交
2812
		/* Get slab alloc is to come from. */
2813
		page = get_first_slab(n, false);
2814 2815
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
2816 2817

		check_spinlock_acquired(cachep);
2818 2819 2820 2821 2822 2823

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2824
		BUG_ON(page->active >= cachep->num);
2825

2826
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2827 2828 2829 2830
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2831
			ac->entry[ac->avail++] = slab_get_obj(cachep, page);
L
Linus Torvalds 已提交
2832 2833
		}

2834
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
2835 2836
	}

A
Andrew Morton 已提交
2837
must_grow:
2838
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2839
alloc_done:
2840
	spin_unlock(&n->list_lock);
2841
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2842 2843 2844

	if (unlikely(!ac->avail)) {
		int x;
2845 2846 2847 2848 2849 2850 2851 2852 2853

		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

D
David Rientjes 已提交
2854
		x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2855

A
Andrew Morton 已提交
2856
		/* cache_grow can reenable interrupts, then ac could change. */
2857
		ac = cpu_cache_get(cachep);
2858
		node = numa_mem_id();
2859 2860

		/* no objects in sight? abort */
2861
		if (!x && ac->avail == 0)
L
Linus Torvalds 已提交
2862 2863
			return NULL;

A
Andrew Morton 已提交
2864
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2865 2866 2867
			goto retry;
	}
	ac->touched = 1;
2868

2869
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2870 2871
}

A
Andrew Morton 已提交
2872 2873
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2874
{
2875
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
2876 2877 2878 2879 2880 2881
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2882
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2883
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2884
{
P
Pekka Enberg 已提交
2885
	if (!objp)
L
Linus Torvalds 已提交
2886
		return objp;
P
Pekka Enberg 已提交
2887
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2888
		check_poison_obj(cachep, objp);
2889
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
2890 2891 2892
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2893
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2894 2895

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2896 2897
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
2898
			slab_error(cachep, "double free, or memory outside object was overwritten");
P
Pekka Enberg 已提交
2899
			printk(KERN_ERR
2900
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
2901 2902
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2903 2904 2905 2906
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2907

2908
	objp += obj_offset(cachep);
2909
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2910
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2911 2912
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2913
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
2914
		       objp, (int)ARCH_SLAB_MINALIGN);
2915
	}
L
Linus Torvalds 已提交
2916 2917 2918 2919 2920 2921
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2922
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2923
{
P
Pekka Enberg 已提交
2924
	void *objp;
L
Linus Torvalds 已提交
2925 2926
	struct array_cache *ac;

2927
	check_irq_off();
2928

2929
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2930 2931
	if (likely(ac->avail)) {
		ac->touched = 1;
2932
		objp = ac->entry[--ac->avail];
2933

2934 2935
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
2936
	}
2937 2938

	STATS_INC_ALLOCMISS(cachep);
2939
	objp = cache_alloc_refill(cachep, flags);
2940 2941 2942 2943 2944 2945 2946
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
2947 2948 2949 2950 2951
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
2952 2953
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
2954 2955 2956
	return objp;
}

2957
#ifdef CONFIG_NUMA
2958
/*
2959
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2960 2961 2962 2963 2964 2965 2966 2967
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

2968
	if (in_interrupt() || (flags & __GFP_THISNODE))
2969
		return NULL;
2970
	nid_alloc = nid_here = numa_mem_id();
2971
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2972
		nid_alloc = cpuset_slab_spread_node();
2973
	else if (current->mempolicy)
2974
		nid_alloc = mempolicy_slab_node();
2975
	if (nid_alloc != nid_here)
2976
		return ____cache_alloc_node(cachep, flags, nid_alloc);
2977 2978 2979
	return NULL;
}

2980 2981
/*
 * Fallback function if there was no memory available and no objects on a
2982
 * certain node and fall back is permitted. First we scan all the
2983
 * available node for available objects. If that fails then we
2984 2985 2986
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
2987
 */
2988
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2989
{
2990 2991
	struct zonelist *zonelist;
	gfp_t local_flags;
2992
	struct zoneref *z;
2993 2994
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
2995
	void *obj = NULL;
2996
	int nid;
2997
	unsigned int cpuset_mems_cookie;
2998 2999 3000 3001

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3002
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3003

3004
retry_cpuset:
3005
	cpuset_mems_cookie = read_mems_allowed_begin();
3006
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3007

3008 3009 3010 3011 3012
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3013 3014
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3015

3016
		if (cpuset_zone_allowed(zone, flags) &&
3017 3018
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3019
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3020
					gfp_exact_node(flags), nid);
3021 3022 3023
				if (obj)
					break;
		}
3024 3025
	}

3026
	if (!obj) {
3027 3028 3029 3030 3031 3032
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3033 3034
		struct page *page;

3035
		if (gfpflags_allow_blocking(local_flags))
3036 3037
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3038
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3039
		if (gfpflags_allow_blocking(local_flags))
3040
			local_irq_disable();
3041
		if (page) {
3042 3043 3044
			/*
			 * Insert into the appropriate per node queues
			 */
3045 3046
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3047
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3048
					gfp_exact_node(flags), nid);
3049 3050 3051 3052 3053 3054 3055 3056
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3057
				/* cache_grow already freed obj */
3058 3059 3060
				obj = NULL;
			}
		}
3061
	}
3062

3063
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3064
		goto retry_cpuset;
3065 3066 3067
	return obj;
}

3068 3069
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3070
 */
3071
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3072
				int nodeid)
3073
{
3074
	struct page *page;
3075
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3076
	void *obj;
3077
	void *list = NULL;
P
Pekka Enberg 已提交
3078 3079
	int x;

3080
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3081
	n = get_node(cachep, nodeid);
3082
	BUG_ON(!n);
P
Pekka Enberg 已提交
3083

A
Andrew Morton 已提交
3084
retry:
3085
	check_irq_off();
3086
	spin_lock(&n->list_lock);
3087
	page = get_first_slab(n, false);
3088 3089
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3090 3091 3092 3093 3094 3095 3096

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3097
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3098

3099
	obj = slab_get_obj(cachep, page);
3100
	n->free_objects--;
P
Pekka Enberg 已提交
3101

3102
	fixup_slab_list(cachep, n, page, &list);
3103

3104
	spin_unlock(&n->list_lock);
3105
	fixup_objfreelist_debug(cachep, &list);
P
Pekka Enberg 已提交
3106
	goto done;
3107

A
Andrew Morton 已提交
3108
must_grow:
3109
	spin_unlock(&n->list_lock);
D
David Rientjes 已提交
3110
	x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3111 3112
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3113

3114
	return fallback_alloc(cachep, flags);
3115

A
Andrew Morton 已提交
3116
done:
P
Pekka Enberg 已提交
3117
	return obj;
3118
}
3119 3120

static __always_inline void *
3121
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3122
		   unsigned long caller)
3123 3124 3125
{
	unsigned long save_flags;
	void *ptr;
3126
	int slab_node = numa_mem_id();
3127

3128
	flags &= gfp_allowed_mask;
3129 3130
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3131 3132
		return NULL;

3133 3134 3135
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3136
	if (nodeid == NUMA_NO_NODE)
3137
		nodeid = slab_node;
3138

3139
	if (unlikely(!get_node(cachep, nodeid))) {
3140 3141 3142 3143 3144
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3145
	if (nodeid == slab_node) {
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3162 3163
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3164

3165
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3166 3167 3168 3169 3170 3171 3172 3173
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3174
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3185 3186
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3202
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3203 3204 3205 3206
{
	unsigned long save_flags;
	void *objp;

3207
	flags &= gfp_allowed_mask;
3208 3209
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3210 3211
		return NULL;

3212 3213 3214 3215 3216 3217 3218
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3219 3220
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3221

3222
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3223 3224
	return objp;
}
3225 3226

/*
3227
 * Caller needs to acquire correct kmem_cache_node's list_lock
3228
 * @list: List of detached free slabs should be freed by caller
3229
 */
3230 3231
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3232 3233
{
	int i;
3234
	struct kmem_cache_node *n = get_node(cachep, node);
L
Linus Torvalds 已提交
3235 3236

	for (i = 0; i < nr_objects; i++) {
3237
		void *objp;
3238
		struct page *page;
L
Linus Torvalds 已提交
3239

3240 3241
		objp = objpp[i];

3242 3243
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3244
		check_spinlock_acquired_node(cachep, node);
3245
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3246
		STATS_DEC_ACTIVE(cachep);
3247
		n->free_objects++;
L
Linus Torvalds 已提交
3248 3249

		/* fixup slab chains */
3250
		if (page->active == 0) {
3251 3252
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3253
				list_add_tail(&page->lru, list);
L
Linus Torvalds 已提交
3254
			} else {
3255
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3256 3257 3258 3259 3260 3261
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3262
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3263 3264 3265 3266
		}
	}
}

3267
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3268 3269
{
	int batchcount;
3270
	struct kmem_cache_node *n;
3271
	int node = numa_mem_id();
3272
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3273 3274

	batchcount = ac->batchcount;
3275

L
Linus Torvalds 已提交
3276
	check_irq_off();
3277
	n = get_node(cachep, node);
3278 3279 3280
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3281
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3282 3283 3284
		if (max) {
			if (batchcount > max)
				batchcount = max;
3285
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3286
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3287 3288 3289 3290 3291
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3292
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3293
free_done:
L
Linus Torvalds 已提交
3294 3295 3296
#if STATS
	{
		int i = 0;
3297
		struct page *page;
L
Linus Torvalds 已提交
3298

3299
		list_for_each_entry(page, &n->slabs_free, lru) {
3300
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3301 3302 3303 3304 3305 3306

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3307
	spin_unlock(&n->list_lock);
3308
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3309
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3310
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3311 3312 3313
}

/*
A
Andrew Morton 已提交
3314 3315
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3316
 */
3317
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3318
				unsigned long caller)
L
Linus Torvalds 已提交
3319
{
3320
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3321 3322

	check_irq_off();
3323
	kmemleak_free_recursive(objp, cachep->flags);
3324
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3325

3326
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3327

3328 3329 3330 3331 3332 3333 3334
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3335
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3336 3337
		return;

3338
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3339 3340 3341 3342 3343
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3344

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3365
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3366
{
3367
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3368

3369
	trace_kmem_cache_alloc(_RET_IP_, ret,
3370
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3371 3372

	return ret;
L
Linus Torvalds 已提交
3373 3374 3375
}
EXPORT_SYMBOL(kmem_cache_alloc);

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3386
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3387
			  void **p)
3388
{
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3407 3408
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3419
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3420 3421 3422
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3423 3424 3425
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3426
#ifdef CONFIG_TRACING
3427
void *
3428
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3429
{
3430 3431
	void *ret;

3432
	ret = slab_alloc(cachep, flags, _RET_IP_);
3433 3434

	trace_kmalloc(_RET_IP_, ret,
3435
		      size, cachep->size, flags);
3436
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3437
}
3438
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3439 3440
#endif

L
Linus Torvalds 已提交
3441
#ifdef CONFIG_NUMA
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3453 3454
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3455
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3456

3457
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3458
				    cachep->object_size, cachep->size,
3459
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3460 3461

	return ret;
3462
}
L
Linus Torvalds 已提交
3463 3464
EXPORT_SYMBOL(kmem_cache_alloc_node);

3465
#ifdef CONFIG_TRACING
3466
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3467
				  gfp_t flags,
3468 3469
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3470
{
3471 3472
	void *ret;

3473
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3474

3475
	trace_kmalloc_node(_RET_IP_, ret,
3476
			   size, cachep->size,
3477 3478
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3479
}
3480
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3481 3482
#endif

3483
static __always_inline void *
3484
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3485
{
3486
	struct kmem_cache *cachep;
3487

3488
	cachep = kmalloc_slab(size, flags);
3489 3490
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3491
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3492
}
3493 3494 3495

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3496
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3497
}
3498
EXPORT_SYMBOL(__kmalloc_node);
3499 3500

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3501
		int node, unsigned long caller)
3502
{
3503
	return __do_kmalloc_node(size, flags, node, caller);
3504 3505 3506
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3507 3508

/**
3509
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3510
 * @size: how many bytes of memory are required.
3511
 * @flags: the type of memory to allocate (see kmalloc).
3512
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3513
 */
3514
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3515
					  unsigned long caller)
L
Linus Torvalds 已提交
3516
{
3517
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3518
	void *ret;
L
Linus Torvalds 已提交
3519

3520
	cachep = kmalloc_slab(size, flags);
3521 3522
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3523
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3524

3525
	trace_kmalloc(caller, ret,
3526
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3527 3528

	return ret;
3529 3530 3531 3532
}

void *__kmalloc(size_t size, gfp_t flags)
{
3533
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3534 3535 3536
}
EXPORT_SYMBOL(__kmalloc);

3537
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3538
{
3539
	return __do_kmalloc(size, flags, caller);
3540 3541
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3542

L
Linus Torvalds 已提交
3543 3544 3545 3546 3547 3548 3549 3550
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3551
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3552 3553
{
	unsigned long flags;
3554 3555 3556
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3557 3558

	local_irq_save(flags);
3559
	debug_check_no_locks_freed(objp, cachep->object_size);
3560
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3561
		debug_check_no_obj_freed(objp, cachep->object_size);
3562
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3563
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3564

3565
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3566 3567 3568
}
EXPORT_SYMBOL(kmem_cache_free);

3569 3570 3571 3572 3573 3574 3575 3576 3577
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3578 3579 3580 3581
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3595 3596 3597 3598
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3599 3600
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3601 3602 3603 3604 3605
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3606
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3607 3608
	unsigned long flags;

3609 3610
	trace_kfree(_RET_IP_, objp);

3611
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3612 3613 3614
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3615
	c = virt_to_cache(objp);
3616 3617 3618
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3619
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3620 3621 3622 3623
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3624
/*
3625
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3626
 */
3627
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3628 3629
{
	int node;
3630
	struct kmem_cache_node *n;
3631
	struct array_cache *new_shared;
J
Joonsoo Kim 已提交
3632
	struct alien_cache **new_alien = NULL;
3633

3634
	for_each_online_node(node) {
3635

3636 3637 3638 3639 3640
		if (use_alien_caches) {
			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
			if (!new_alien)
				goto fail;
		}
3641

3642 3643 3644
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3645
				cachep->shared*cachep->batchcount,
3646
					0xbaadf00d, gfp);
3647 3648 3649 3650
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3651
		}
3652

3653
		n = get_node(cachep, node);
3654 3655
		if (n) {
			struct array_cache *shared = n->shared;
3656
			LIST_HEAD(list);
3657

3658
			spin_lock_irq(&n->list_lock);
3659

3660
			if (shared)
3661
				free_block(cachep, shared->entry,
3662
						shared->avail, node, &list);
3663

3664 3665 3666
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3667 3668
				new_alien = NULL;
			}
3669
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3670
					cachep->batchcount + cachep->num;
3671
			spin_unlock_irq(&n->list_lock);
3672
			slabs_destroy(cachep, &list);
3673
			kfree(shared);
3674 3675 3676
			free_alien_cache(new_alien);
			continue;
		}
3677 3678
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3679 3680
			free_alien_cache(new_alien);
			kfree(new_shared);
3681
			goto fail;
3682
		}
3683

3684
		kmem_cache_node_init(n);
3685 3686
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3687 3688 3689
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3690
					cachep->batchcount + cachep->num;
3691
		cachep->node[node] = n;
3692
	}
3693
	return 0;
3694

A
Andrew Morton 已提交
3695
fail:
3696
	if (!cachep->list.next) {
3697 3698 3699
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3700 3701
			n = get_node(cachep, node);
			if (n) {
3702 3703 3704
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3705
				cachep->node[node] = NULL;
3706 3707 3708 3709
			}
			node--;
		}
	}
3710
	return -ENOMEM;
3711 3712
}

3713
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3714
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3715
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3716
{
3717 3718
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3719

3720 3721
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3722 3723
		return -ENOMEM;

3724 3725 3726
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3727

L
Linus Torvalds 已提交
3728 3729 3730
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3731
	cachep->shared = shared;
L
Linus Torvalds 已提交
3732

3733 3734 3735 3736
	if (!prev)
		goto alloc_node;

	for_each_online_cpu(cpu) {
3737
		LIST_HEAD(list);
3738 3739
		int node;
		struct kmem_cache_node *n;
3740
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3741

3742
		node = cpu_to_mem(cpu);
3743 3744
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3745
		free_block(cachep, ac->entry, ac->avail, node, &list);
3746
		spin_unlock_irq(&n->list_lock);
3747
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3748
	}
3749 3750 3751
	free_percpu(prev);

alloc_node:
3752
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3753 3754
}

G
Glauber Costa 已提交
3755 3756 3757 3758
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3759
	struct kmem_cache *c;
G
Glauber Costa 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3769 3770 3771 3772
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3773 3774 3775 3776 3777
	}

	return ret;
}

3778
/* Called with slab_mutex held always */
3779
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3780 3781
{
	int err;
G
Glauber Costa 已提交
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3792

G
Glauber Costa 已提交
3793 3794
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3795 3796
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3797 3798
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3799
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3800 3801 3802 3803
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3804
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3805
		limit = 1;
3806
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3807
		limit = 8;
3808
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3809
		limit = 24;
3810
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3811 3812 3813 3814
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3815 3816
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3817 3818 3819 3820 3821 3822 3823 3824
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3825
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3826 3827 3828
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3829 3830 3831
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3832 3833 3834 3835
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3836 3837 3838
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3839 3840
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3841
		       cachep->name, -err);
3842
	return err;
L
Linus Torvalds 已提交
3843 3844
}

3845
/*
3846 3847
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3848
 * if drain_array() is used on the shared array.
3849
 */
3850
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3851
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3852
{
3853
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3854 3855
	int tofree;

3856 3857
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3858 3859
	if (ac->touched && !force) {
		ac->touched = 0;
3860
	} else {
3861
		spin_lock_irq(&n->list_lock);
3862 3863 3864 3865
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
3866
			free_block(cachep, ac->entry, tofree, node, &list);
3867 3868 3869 3870
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3871
		spin_unlock_irq(&n->list_lock);
3872
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3873 3874 3875 3876 3877
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3878
 * @w: work descriptor
L
Linus Torvalds 已提交
3879 3880 3881 3882 3883 3884
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3885 3886
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3887
 */
3888
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3889
{
3890
	struct kmem_cache *searchp;
3891
	struct kmem_cache_node *n;
3892
	int node = numa_mem_id();
3893
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3894

3895
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3896
		/* Give up. Setup the next iteration. */
3897
		goto out;
L
Linus Torvalds 已提交
3898

3899
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3900 3901
		check_irq_on();

3902
		/*
3903
		 * We only take the node lock if absolutely necessary and we
3904 3905 3906
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3907
		n = get_node(searchp, node);
3908

3909
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3910

3911
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3912

3913 3914 3915 3916
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3917
		if (time_after(n->next_reap, jiffies))
3918
			goto next;
L
Linus Torvalds 已提交
3919

3920
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
3921

3922
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
3923

3924 3925
		if (n->free_touched)
			n->free_touched = 0;
3926 3927
		else {
			int freed;
L
Linus Torvalds 已提交
3928

3929
			freed = drain_freelist(searchp, n, (n->free_limit +
3930 3931 3932
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3933
next:
L
Linus Torvalds 已提交
3934 3935 3936
		cond_resched();
	}
	check_irq_on();
3937
	mutex_unlock(&slab_mutex);
3938
	next_reap_node();
3939
out:
A
Andrew Morton 已提交
3940
	/* Set up the next iteration */
3941
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
3942 3943
}

3944
#ifdef CONFIG_SLABINFO
3945
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
3946
{
3947
	struct page *page;
P
Pekka Enberg 已提交
3948 3949 3950 3951
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3952
	const char *name;
L
Linus Torvalds 已提交
3953
	char *error = NULL;
3954
	int node;
3955
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3956 3957 3958

	active_objs = 0;
	num_slabs = 0;
3959
	for_each_kmem_cache_node(cachep, node, n) {
3960

3961
		check_irq_on();
3962
		spin_lock_irq(&n->list_lock);
3963

3964 3965
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
3966 3967 3968 3969
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3970 3971
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
3972
				error = "slabs_partial accounting error";
3973
			if (!page->active && !error)
3974
				error = "slabs_partial accounting error";
3975
			active_objs += page->active;
3976 3977
			active_slabs++;
		}
3978 3979
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
3980
				error = "slabs_free accounting error";
3981 3982
			num_slabs++;
		}
3983 3984 3985
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
3986

3987
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3988
	}
P
Pekka Enberg 已提交
3989 3990
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3991
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3992 3993
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3994
	name = cachep->name;
L
Linus Torvalds 已提交
3995 3996 3997
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4012
#if STATS
4013
	{			/* node stats */
L
Linus Torvalds 已提交
4014 4015 4016 4017 4018 4019 4020
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4021
		unsigned long node_frees = cachep->node_frees;
4022
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4023

J
Joe Perches 已提交
4024
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4025 4026 4027
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4028 4029 4030 4031 4032 4033 4034 4035 4036
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4037
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4050
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4051
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4052
{
P
Pekka Enberg 已提交
4053
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4054
	int limit, batchcount, shared, res;
4055
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4056

L
Linus Torvalds 已提交
4057 4058 4059 4060
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4061
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4072
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4073
	res = -EINVAL;
4074
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4075
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4076 4077
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4078
				res = 0;
L
Linus Torvalds 已提交
4079
			} else {
4080
				res = do_tune_cpucache(cachep, limit,
4081 4082
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4083 4084 4085 4086
			}
			break;
		}
	}
4087
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4088 4089 4090 4091
	if (res >= 0)
		res = count;
	return res;
}
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4125 4126
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4127 4128
{
	void *p;
4129 4130
	int i, j;
	unsigned long v;
4131

4132 4133
	if (n[0] == n[1])
		return;
4134
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4145
			continue;
4146

4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4157 4158 4159 4160 4161 4162 4163 4164
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4165
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4166

4167
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4168
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4169
		if (modname[0])
4170 4171 4172 4173 4174 4175 4176 4177 4178
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4179
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4180
	struct page *page;
4181
	struct kmem_cache_node *n;
4182
	const char *name;
4183
	unsigned long *x = m->private;
4184 4185 4186 4187 4188 4189 4190 4191
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4203

4204
		for_each_kmem_cache_node(cachep, node, n) {
4205

4206 4207
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4208

4209 4210 4211 4212 4213 4214 4215
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4216 4217

	name = cachep->name;
4218
	if (x[0] == x[1]) {
4219
		/* Increase the buffer size */
4220
		mutex_unlock(&slab_mutex);
4221
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4222 4223
		if (!m->private) {
			/* Too bad, we are really out */
4224
			m->private = x;
4225
			mutex_lock(&slab_mutex);
4226 4227
			return -ENOMEM;
		}
4228 4229
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4230
		mutex_lock(&slab_mutex);
4231 4232 4233 4234
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4235 4236 4237
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4238 4239
		seq_putc(m, '\n');
	}
4240

4241 4242 4243
	return 0;
}

4244
static const struct seq_operations slabstats_op = {
4245
	.start = slab_start,
4246 4247
	.next = slab_next,
	.stop = slab_stop,
4248 4249
	.show = leaks_show,
};
4250 4251 4252

static int slabstats_open(struct inode *inode, struct file *file)
{
4253 4254 4255 4256 4257 4258 4259 4260 4261
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4276
#endif
4277 4278 4279
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4280 4281
#endif

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4294
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4295
{
4296 4297
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4298
		return 0;
L
Linus Torvalds 已提交
4299

4300
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4301
}
K
Kirill A. Shutemov 已提交
4302
EXPORT_SYMBOL(ksize);