slab.c 109.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
30
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
54
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
55 56 57 58
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
59
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68 69 70 71
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
72
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
73 74 75 76 77 78
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
79 80 81 82 83 84 85 86 87
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
88 89 90 91
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
119
#include	<linux/sched/task_stack.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

131 132
#include	"slab.h"

L
Linus Torvalds 已提交
133
/*
134
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
155
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
156 157 158 159 160

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

161 162 163 164 165 166 167 168 169
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

170
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171

L
Linus Torvalds 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
189
	void *entry[];	/*
A
Andrew Morton 已提交
190 191 192 193
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
194 195
};

J
Joonsoo Kim 已提交
196 197 198 199 200
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

201 202 203
/*
 * Need this for bootstrapping a per node allocator.
 */
204
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206
#define	CACHE_CACHE 0
207
#define	SIZE_NODE (MAX_NUMNODES)
208

209
static int drain_freelist(struct kmem_cache *cache,
210
			struct kmem_cache_node *n, int tofree);
211
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 213
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215
static void cache_reap(struct work_struct *unused);
216

217 218 219 220 221
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
222 223
static int slab_early_init = 1;

224
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
225

226
static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 228 229 230
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
231
	parent->total_slabs = 0;
232
	parent->free_slabs = 0;
233 234
	parent->shared = NULL;
	parent->alien = NULL;
235
	parent->colour_next = 0;
236 237 238 239 240
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
241 242 243
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
244
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 246
	} while (0)

A
Andrew Morton 已提交
247 248
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
249 250 251 252
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
253

254 255
#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
257 258 259
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
260 261 262
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
263
 *
A
Adrian Bunk 已提交
264
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
265 266
 * which could lock up otherwise freeable slabs.
 */
267 268
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
269 270 271 272 273 274

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
275
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
276 277 278 279 280
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
281 282
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
285 286 287 288 289
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
290 291 292 293 294 295 296 297 298
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
299
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
300 301 302
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303
#define	STATS_INC_NODEFREES(x)	do { } while (0)
304
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
305
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
306 307 308 309 310 311 312 313
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
314 315
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
316
 * 0		: objp
317
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
318 319
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
320
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
321
 * 		redzone word.
322
 * cachep->obj_offset: The real object.
323 324
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
325
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
326
 */
327
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
328
{
329
	return cachep->obj_offset;
L
Linus Torvalds 已提交
330 331
}

332
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 336
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
337 338
}

339
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
340 341 342
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
343
		return (unsigned long long *)(objp + cachep->size -
344
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
345
					      REDZONE_ALIGN);
346
	return (unsigned long long *) (objp + cachep->size -
347
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
348 349
}

350
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
351 352
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
354 355 356 357
}

#else

358
#define obj_offset(x)			0
359 360
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
361 362 363 364
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

365 366
#ifdef CONFIG_DEBUG_SLAB_LEAK

367
static inline bool is_store_user_clean(struct kmem_cache *cachep)
368
{
369 370
	return atomic_read(&cachep->store_user_clean) == 1;
}
371

372 373 374 375
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
376

377 378 379 380
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
381 382 383
}

#else
384
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385 386 387

#endif

L
Linus Torvalds 已提交
388
/*
389 390
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
391
 */
392 393 394
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
395
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
396

397 398
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
399
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
400
	return page->slab_cache;
401 402
}

403
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 405
				 unsigned int idx)
{
406
	return page->s_mem + cache->size * idx;
407 408
}

409
/*
410 411 412
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
413 414 415
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416
					const struct page *page, void *obj)
417
{
418
	u32 offset = (obj - page->s_mem);
419
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 421
}

422
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
423
/* internal cache of cache description objs */
424
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
425 426 427
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
428
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
429
	.name = "kmem_cache",
L
Linus Torvalds 已提交
430 431
};

432
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
433

434
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
435
{
436
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
437 438
}

A
Andrew Morton 已提交
439 440 441
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
442
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443
		slab_flags_t flags, size_t *left_over)
444
{
445
	unsigned int num;
446
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
447

448 449 450 451 452 453
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
454 455 456 457 458
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
459 460 461 462 463 464
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
465
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466
		num = slab_size / buffer_size;
467
		*left_over = slab_size % buffer_size;
468
	} else {
469
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 471
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
472
	}
473 474

	return num;
L
Linus Torvalds 已提交
475 476
}

477
#if DEBUG
478
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
479

A
Andrew Morton 已提交
480 481
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
482
{
483
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
484
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
485
	dump_stack();
486
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
487
}
488
#endif
L
Linus Torvalds 已提交
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

506 507 508 509 510 511 512 513 514 515 516
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

517 518 519 520 521 522 523
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
524
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525 526 527

static void init_reap_node(int cpu)
{
528 529
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
530 531 532 533
}

static void next_reap_node(void)
{
534
	int node = __this_cpu_read(slab_reap_node);
535

536
	node = next_node_in(node, node_online_map);
537
	__this_cpu_write(slab_reap_node, node);
538 539 540 541 542 543 544
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
545 546 547 548 549 550 551
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
552
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
553
{
554
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
555

556
	if (reap_work->work.func == NULL) {
557
		init_reap_node(cpu);
558
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 560
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
561 562 563
	}
}

564
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
565
{
566 567
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
568
	 * However, when such objects are allocated or transferred to another
569 570 571 572
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
573 574 575 576 577 578
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
579
	}
580 581 582 583 584
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
585
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 587 588 589 590
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
591 592
}

593 594
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
595
{
596 597 598
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
599

600 601
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
602

603 604 605
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
606

607
	slabs_destroy(cachep, &list);
608 609
}

610 611 612 613 614 615 616 617 618 619
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
620
	int nr = min3(from->avail, max, to->limit - to->avail);
621 622 623 624 625 626 627 628 629 630 631 632

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

633 634 635
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
636
#define reap_alien(cachep, n) do { } while (0)
637

J
Joonsoo Kim 已提交
638 639
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
640
{
641
	return NULL;
642 643
}

J
Joonsoo Kim 已提交
644
static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 646 647 648 649 650 651 652 653 654 655 656 657 658
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

659
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 661 662 663 664
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
665 666
static inline gfp_t gfp_exact_node(gfp_t flags)
{
667
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
668 669
}

670 671
#else	/* CONFIG_NUMA */

672
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674

J
Joonsoo Kim 已提交
675 676 677
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
678
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
679 680 681 682
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
683
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
684 685 686 687
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688
{
J
Joonsoo Kim 已提交
689
	struct alien_cache **alc_ptr;
690
	size_t memsize = sizeof(void *) * nr_node_ids;
691 692 693 694
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
708 709
		}
	}
J
Joonsoo Kim 已提交
710
	return alc_ptr;
711 712
}

J
Joonsoo Kim 已提交
713
static void free_alien_cache(struct alien_cache **alc_ptr)
714 715 716
{
	int i;

J
Joonsoo Kim 已提交
717
	if (!alc_ptr)
718 719
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
720 721
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
722 723
}

724
static void __drain_alien_cache(struct kmem_cache *cachep,
725 726
				struct array_cache *ac, int node,
				struct list_head *list)
727
{
728
	struct kmem_cache_node *n = get_node(cachep, node);
729 730

	if (ac->avail) {
731
		spin_lock(&n->list_lock);
732 733 734 735 736
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
737 738
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
739

740
		free_block(cachep, ac->entry, ac->avail, node, list);
741
		ac->avail = 0;
742
		spin_unlock(&n->list_lock);
743 744 745
	}
}

746 747 748
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
749
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750
{
751
	int node = __this_cpu_read(slab_reap_node);
752

753
	if (n->alien) {
J
Joonsoo Kim 已提交
754 755 756 757 758
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
759
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 761 762
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
763
				spin_unlock_irq(&alc->lock);
764
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
765
			}
766 767 768 769
		}
	}
}

A
Andrew Morton 已提交
770
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
771
				struct alien_cache **alien)
772
{
P
Pekka Enberg 已提交
773
	int i = 0;
J
Joonsoo Kim 已提交
774
	struct alien_cache *alc;
775 776 777 778
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
779 780
		alc = alien[i];
		if (alc) {
781 782
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
783
			ac = &alc->ac;
784
			spin_lock_irqsave(&alc->lock, flags);
785
			__drain_alien_cache(cachep, ac, i, &list);
786
			spin_unlock_irqrestore(&alc->lock, flags);
787
			slabs_destroy(cachep, &list);
788 789 790
		}
	}
}
791

792 793
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
794
{
795
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
796 797
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
798
	LIST_HEAD(list);
P
Pekka Enberg 已提交
799

800
	n = get_node(cachep, node);
801
	STATS_INC_NODEFREES(cachep);
802 803
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
804
		ac = &alien->ac;
805
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
806
		if (unlikely(ac->avail == ac->limit)) {
807
			STATS_INC_ACOVERFLOW(cachep);
808
			__drain_alien_cache(cachep, ac, page_node, &list);
809
		}
810
		ac->entry[ac->avail++] = objp;
811
		spin_unlock(&alien->lock);
812
		slabs_destroy(cachep, &list);
813
	} else {
814
		n = get_node(cachep, page_node);
815
		spin_lock(&n->list_lock);
816
		free_block(cachep, &objp, 1, page_node, &list);
817
		spin_unlock(&n->list_lock);
818
		slabs_destroy(cachep, &list);
819 820 821
	}
	return 1;
}
822 823 824 825 826 827 828 829 830 831 832 833 834 835

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
836 837

/*
838 839
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
840 841 842
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
843
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
844
}
845 846
#endif

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

887
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888
/*
889
 * Allocates and initializes node for a node on each slab cache, used for
890
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
891
 * will be allocated off-node since memory is not yet online for the new node.
892
 * When hotplugging memory or a cpu, existing node are not replaced if
893 894
 * already in use.
 *
895
 * Must hold slab_mutex.
896
 */
897
static int init_cache_node_node(int node)
898
{
899
	int ret;
900 901
	struct kmem_cache *cachep;

902
	list_for_each_entry(cachep, &slab_caches, list) {
903 904 905
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
906
	}
907

908 909
	return 0;
}
910
#endif
911

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

961 962 963 964 965 966
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
967
	if (old_shared && force_change)
968 969
		synchronize_sched();

970 971 972 973 974 975 976 977
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

978 979
#ifdef CONFIG_SMP

980
static void cpuup_canceled(long cpu)
981 982
{
	struct kmem_cache *cachep;
983
	struct kmem_cache_node *n = NULL;
984
	int node = cpu_to_mem(cpu);
985
	const struct cpumask *mask = cpumask_of_node(node);
986

987
	list_for_each_entry(cachep, &slab_caches, list) {
988 989
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
990
		struct alien_cache **alien;
991
		LIST_HEAD(list);
992

993
		n = get_node(cachep, node);
994
		if (!n)
995
			continue;
996

997
		spin_lock_irq(&n->list_lock);
998

999 1000
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1001 1002 1003 1004

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1005
			free_block(cachep, nc->entry, nc->avail, node, &list);
1006 1007
			nc->avail = 0;
		}
1008

1009
		if (!cpumask_empty(mask)) {
1010
			spin_unlock_irq(&n->list_lock);
1011
			goto free_slab;
1012 1013
		}

1014
		shared = n->shared;
1015 1016
		if (shared) {
			free_block(cachep, shared->entry,
1017
				   shared->avail, node, &list);
1018
			n->shared = NULL;
1019 1020
		}

1021 1022
		alien = n->alien;
		n->alien = NULL;
1023

1024
		spin_unlock_irq(&n->list_lock);
1025 1026 1027 1028 1029 1030

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1031 1032

free_slab:
1033
		slabs_destroy(cachep, &list);
1034 1035 1036 1037 1038 1039
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1040
	list_for_each_entry(cachep, &slab_caches, list) {
1041
		n = get_node(cachep, node);
1042
		if (!n)
1043
			continue;
1044
		drain_freelist(cachep, n, INT_MAX);
1045 1046 1047
	}
}

1048
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1049
{
1050
	struct kmem_cache *cachep;
1051
	int node = cpu_to_mem(cpu);
1052
	int err;
L
Linus Torvalds 已提交
1053

1054 1055 1056 1057
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1058
	 * kmem_cache_node and not this cpu's kmem_cache_node
1059
	 */
1060
	err = init_cache_node_node(node);
1061 1062
	if (err < 0)
		goto bad;
1063 1064 1065 1066 1067

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1068
	list_for_each_entry(cachep, &slab_caches, list) {
1069 1070 1071
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1072
	}
1073

1074 1075
	return 0;
bad:
1076
	cpuup_canceled(cpu);
1077 1078 1079
	return -ENOMEM;
}

1080
int slab_prepare_cpu(unsigned int cpu)
1081
{
1082
	int err;
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1107
#endif
1108 1109 1110 1111 1112

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
L
Linus Torvalds 已提交
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
L
Linus Torvalds 已提交
1128

1129 1130 1131 1132 1133 1134
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1135
 * Must hold slab_mutex.
1136
 */
1137
static int __meminit drain_cache_node_node(int node)
1138 1139 1140 1141
{
	struct kmem_cache *cachep;
	int ret = 0;

1142
	list_for_each_entry(cachep, &slab_caches, list) {
1143
		struct kmem_cache_node *n;
1144

1145
		n = get_node(cachep, node);
1146
		if (!n)
1147 1148
			continue;

1149
		drain_freelist(cachep, n, INT_MAX);
1150

1151 1152
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1173
		mutex_lock(&slab_mutex);
1174
		ret = init_cache_node_node(nid);
1175
		mutex_unlock(&slab_mutex);
1176 1177
		break;
	case MEM_GOING_OFFLINE:
1178
		mutex_lock(&slab_mutex);
1179
		ret = drain_cache_node_node(nid);
1180
		mutex_unlock(&slab_mutex);
1181 1182 1183 1184 1185 1186 1187 1188
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1189
	return notifier_from_errno(ret);
1190 1191 1192
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1193
/*
1194
 * swap the static kmem_cache_node with kmalloced memory
1195
 */
1196
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197
				int nodeid)
1198
{
1199
	struct kmem_cache_node *ptr;
1200

1201
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 1203
	BUG_ON(!ptr);

1204
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 1206 1207 1208 1209
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1210
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211
	cachep->node[nodeid] = ptr;
1212 1213
}

1214
/*
1215 1216
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1217
 */
1218
static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 1220 1221 1222
{
	int node;

	for_each_online_node(node) {
1223
		cachep->node[node] = &init_kmem_cache_node[index + node];
1224
		cachep->node[node]->next_reap = jiffies +
1225 1226
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 1228 1229
	}
}

A
Andrew Morton 已提交
1230 1231 1232
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1233 1234 1235
 */
void __init kmem_cache_init(void)
{
1236 1237
	int i;

1238 1239
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1240 1241
	kmem_cache = &kmem_cache_boot;

1242
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 1244
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1245
	for (i = 0; i < NUM_INIT_LISTS; i++)
1246
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1247

L
Linus Torvalds 已提交
1248 1249
	/*
	 * Fragmentation resistance on low memory - only use bigger
1250 1251
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1252
	 */
1253
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1255 1256 1257

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1258 1259 1260
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1261
	 *    Initially an __init data area is used for the head array and the
1262
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1263
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1264
	 * 2) Create the first kmalloc cache.
1265
	 *    The struct kmem_cache for the new cache is allocated normally.
1266 1267 1268
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1269
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1270
	 *    kmalloc cache with kmalloc allocated arrays.
1271
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272 1273
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1274 1275
	 */

1276
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1277

E
Eric Dumazet 已提交
1278
	/*
1279
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1280
	 */
1281
	create_boot_cache(kmem_cache, "kmem_cache",
1282
		offsetof(struct kmem_cache, node) +
1283
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1284 1285
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1286
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1287

A
Andrew Morton 已提交
1288
	/*
1289 1290
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1291
	 */
1292 1293
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
				kmalloc_info[INDEX_NODE].name,
1294
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1295
	slab_state = PARTIAL_NODE;
1296
	setup_kmalloc_cache_index_table();
1297

1298 1299
	slab_early_init = 0;

1300
	/* 5) Replace the bootstrap kmem_cache_node */
1301
	{
P
Pekka Enberg 已提交
1302 1303
		int nid;

1304
		for_each_online_node(nid) {
1305
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306

1307
			init_list(kmalloc_caches[INDEX_NODE],
1308
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309 1310
		}
	}
L
Linus Torvalds 已提交
1311

1312
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313 1314 1315 1316 1317 1318
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1319
	slab_state = UP;
P
Peter Zijlstra 已提交
1320

1321
	/* 6) resize the head arrays to their final sizes */
1322 1323
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1324 1325
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1326
	mutex_unlock(&slab_mutex);
1327

1328 1329 1330
	/* Done! */
	slab_state = FULL;

1331 1332 1333
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1334
	 * node.
1335 1336 1337 1338
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1339 1340 1341
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1342 1343 1344 1345 1346
	 */
}

static int __init cpucache_init(void)
{
1347
	int ret;
L
Linus Torvalds 已提交
1348

A
Andrew Morton 已提交
1349 1350
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1351
	 */
1352 1353 1354
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1355 1356

	/* Done! */
1357
	slab_state = FULL;
L
Linus Torvalds 已提交
1358 1359 1360 1361
	return 0;
}
__initcall(cpucache_init);

1362 1363 1364
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1365
#if DEBUG
1366
	struct kmem_cache_node *n;
1367 1368
	unsigned long flags;
	int node;
1369 1370 1371 1372 1373
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1374

1375 1376 1377
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1378
		cachep->name, cachep->size, cachep->gfporder);
1379

1380
	for_each_kmem_cache_node(cachep, node, n) {
1381
		unsigned long total_slabs, free_slabs, free_objs;
1382

1383
		spin_lock_irqsave(&n->list_lock, flags);
1384 1385 1386
		total_slabs = n->total_slabs;
		free_slabs = n->free_slabs;
		free_objs = n->free_objects;
1387
		spin_unlock_irqrestore(&n->list_lock, flags);
1388

1389 1390 1391 1392
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
			node, total_slabs - free_slabs, total_slabs,
			(total_slabs * cachep->num) - free_objs,
			total_slabs * cachep->num);
1393
	}
1394
#endif
1395 1396
}

L
Linus Torvalds 已提交
1397
/*
W
Wang Sheng-Hui 已提交
1398 1399
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1400 1401 1402 1403 1404
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1405 1406
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1407 1408
{
	struct page *page;
1409
	int nr_pages;
1410

1411
	flags |= cachep->allocflags;
1412

1413
	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1414
	if (!page) {
1415
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1416
		return NULL;
1417
	}
L
Linus Torvalds 已提交
1418

1419 1420 1421 1422 1423
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1424
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1425
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1427
	else
1428
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1429

1430
	__SetPageSlab(page);
1431 1432
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1433
		SetPageSlabPfmemalloc(page);
1434

1435
	return page;
L
Linus Torvalds 已提交
1436 1437 1438 1439 1440
}

/*
 * Interface to system's page release.
 */
1441
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1442
{
1443 1444
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1445

1446
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1447
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1448
	else
1449
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
J
Joonsoo Kim 已提交
1450

1451
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1452
	__ClearPageSlabPfmemalloc(page);
1453
	__ClearPageSlab(page);
1454 1455
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1456

L
Linus Torvalds 已提交
1457 1458
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1459 1460
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1461 1462 1463 1464
}

static void kmem_rcu_free(struct rcu_head *head)
{
1465 1466
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1467

1468 1469 1470 1471
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1472 1473 1474
}

#if DEBUG
1475 1476 1477 1478 1479 1480 1481 1482
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1483 1484

#ifdef CONFIG_DEBUG_PAGEALLOC
1485
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1486
			    unsigned long caller)
L
Linus Torvalds 已提交
1487
{
1488
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1489

1490
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1491

P
Pekka Enberg 已提交
1492
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1493 1494
		return;

P
Pekka Enberg 已提交
1495 1496 1497 1498
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1499 1500 1501 1502 1503 1504 1505
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1506
				*addr++ = svalue;
L
Linus Torvalds 已提交
1507 1508 1509 1510 1511 1512 1513
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1514
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1515
}
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1533 1534
#endif

1535
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1536
{
1537
	int size = cachep->object_size;
1538
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1539 1540

	memset(addr, val, size);
P
Pekka Enberg 已提交
1541
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1542 1543 1544 1545 1546
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1547 1548 1549
	unsigned char error = 0;
	int bad_count = 0;

1550
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1551 1552 1553 1554 1555 1556
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1557 1558
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1559 1560 1561 1562

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1563
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1564
#ifdef CONFIG_X86
1565
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1566
#else
1567
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1568 1569 1570
#endif
		}
	}
L
Linus Torvalds 已提交
1571 1572 1573 1574 1575
}
#endif

#if DEBUG

1576
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1582 1583 1584
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1585 1586 1587
	}

	if (cachep->flags & SLAB_STORE_USER) {
1588
		pr_err("Last user: [<%p>](%pSR)\n",
J
Joe Perches 已提交
1589 1590
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1591
	}
1592
	realobj = (char *)objp + obj_offset(cachep);
1593
	size = cachep->object_size;
P
Pekka Enberg 已提交
1594
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1595 1596
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1597 1598
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1599 1600 1601 1602
		dump_line(realobj, i, limit);
	}
}

1603
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1604 1605 1606 1607 1608
{
	char *realobj;
	int size, i;
	int lines = 0;

1609 1610 1611
	if (is_debug_pagealloc_cache(cachep))
		return;

1612
	realobj = (char *)objp + obj_offset(cachep);
1613
	size = cachep->object_size;
L
Linus Torvalds 已提交
1614

P
Pekka Enberg 已提交
1615
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1616
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1617
		if (i == size - 1)
L
Linus Torvalds 已提交
1618 1619 1620 1621 1622 1623
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1624 1625 1626
				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1627 1628 1629
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1630
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1631
			limit = 16;
P
Pekka Enberg 已提交
1632 1633
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1646
		struct page *page = virt_to_head_page(objp);
1647
		unsigned int objnr;
L
Linus Torvalds 已提交
1648

1649
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1650
		if (objnr) {
1651
			objp = index_to_obj(cachep, page, objnr - 1);
1652
			realobj = (char *)objp + obj_offset(cachep);
1653
			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1654 1655
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1656
		if (objnr + 1 < cachep->num) {
1657
			objp = index_to_obj(cachep, page, objnr + 1);
1658
			realobj = (char *)objp + obj_offset(cachep);
1659
			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1660 1661 1662 1663 1664 1665
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1666
#if DEBUG
1667 1668
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1669 1670
{
	int i;
1671 1672 1673 1674 1675 1676

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1677
	for (i = 0; i < cachep->num; i++) {
1678
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1679 1680 1681

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1682
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1683 1684 1685
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1686
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1687
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1688
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1689 1690
		}
	}
1691
}
L
Linus Torvalds 已提交
1692
#else
1693 1694
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1695 1696
{
}
L
Linus Torvalds 已提交
1697 1698
#endif

1699 1700 1701
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1702
 * @page: page pointer being destroyed
1703
 *
W
Wang Sheng-Hui 已提交
1704 1705 1706
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1707
 */
1708
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1709
{
1710
	void *freelist;
1711

1712 1713
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1714
	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1715 1716
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1717
		kmem_freepages(cachep, page);
1718 1719

	/*
1720
	 * From now on, we don't use freelist
1721 1722 1723
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1724
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1725 1726
}

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1737
/**
1738 1739 1740 1741 1742 1743
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1744 1745 1746 1747 1748
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1749
static size_t calculate_slab_order(struct kmem_cache *cachep,
1750
				size_t size, slab_flags_t flags)
1751 1752
{
	size_t left_over = 0;
1753
	int gfporder;
1754

1755
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1756 1757 1758
		unsigned int num;
		size_t remainder;

1759
		num = cache_estimate(gfporder, size, flags, &remainder);
1760 1761
		if (!num)
			continue;
1762

1763 1764 1765 1766
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1767
		if (flags & CFLGS_OFF_SLAB) {
1768 1769 1770 1771 1772 1773 1774 1775
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1776
			/*
1777
			 * Needed to avoid possible looping condition
1778
			 * in cache_grow_begin()
1779
			 */
1780 1781
			if (OFF_SLAB(freelist_cache))
				continue;
1782

1783 1784 1785
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1786
		}
1787

1788
		/* Found something acceptable - save it away */
1789
		cachep->num = num;
1790
		cachep->gfporder = gfporder;
1791 1792
		left_over = remainder;

1793 1794 1795 1796 1797 1798 1799 1800
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1801 1802 1803 1804
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1805
		if (gfporder >= slab_max_order)
1806 1807
			break;

1808 1809 1810
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1811
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1812 1813 1814 1815 1816
			break;
	}
	return left_over;
}

1817 1818 1819 1820 1821 1822 1823 1824
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1825
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1838
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1839
{
1840
	if (slab_state >= FULL)
1841
		return enable_cpucache(cachep, gfp);
1842

1843 1844 1845 1846
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1847
	if (slab_state == DOWN) {
1848 1849
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1850
	} else if (slab_state == PARTIAL) {
1851 1852
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1853
	} else {
1854
		int node;
1855

1856 1857 1858 1859 1860
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1861 1862
		}
	}
1863

1864
	cachep->node[numa_mem_id()]->next_reap =
1865 1866
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1867 1868 1869 1870 1871 1872 1873

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1874
	return 0;
1875 1876
}

1877 1878
slab_flags_t kmem_cache_flags(unsigned long object_size,
	slab_flags_t flags, const char *name,
J
Joonsoo Kim 已提交
1879 1880 1881 1882 1883 1884 1885
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
1886
		   slab_flags_t flags, void (*ctor)(void *))
J
Joonsoo Kim 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1903
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1904
			size_t size, slab_flags_t flags)
1905 1906 1907 1908 1909
{
	size_t left;

	cachep->num = 0;

1910
	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1926
static bool set_off_slab_cache(struct kmem_cache *cachep,
1927
			size_t size, slab_flags_t flags)
1928 1929 1930 1931 1932 1933
{
	size_t left;

	cachep->num = 0;

	/*
1934 1935
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
1961
			size_t size, slab_flags_t flags)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1976
/**
1977
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1978
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1979 1980 1981 1982
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1983
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1997
int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
L
Linus Torvalds 已提交
1998
{
1999
	size_t ralign = BYTES_PER_WORD;
2000
	gfp_t gfp;
2001
	int err;
2002
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2012 2013
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2014
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2015
	if (!(flags & SLAB_TYPESAFE_BY_RCU))
L
Linus Torvalds 已提交
2016 2017 2018 2019
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2020 2021
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2022 2023 2024
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
2025
	size = ALIGN(size, BYTES_PER_WORD);
L
Linus Torvalds 已提交
2026

D
David Woodhouse 已提交
2027 2028 2029 2030
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
2031
		size = ALIGN(size, REDZONE_ALIGN);
D
David Woodhouse 已提交
2032
	}
2033

2034
	/* 3) caller mandated alignment */
2035 2036
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2037
	}
2038 2039
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2040
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2041
	/*
2042
	 * 4) Store it.
L
Linus Torvalds 已提交
2043
	 */
2044
	cachep->align = ralign;
2045 2046 2047 2048
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2049

2050 2051 2052 2053 2054
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2055 2056
#if DEBUG

2057 2058 2059 2060
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2061 2062
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2063 2064
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2065 2066
	}
	if (flags & SLAB_STORE_USER) {
2067
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2068 2069
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2070
		 */
D
David Woodhouse 已提交
2071 2072 2073 2074
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2075
	}
2076 2077
#endif

A
Alexander Potapenko 已提交
2078 2079
	kasan_cache_create(cachep, &size, &flags);

2080 2081 2082 2083 2084 2085 2086 2087 2088
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2089 2090 2091 2092 2093 2094 2095
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2096
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2108 2109 2110
	}
#endif

2111 2112 2113 2114 2115
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2116
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2117
		flags |= CFLGS_OFF_SLAB;
2118
		goto done;
2119
	}
L
Linus Torvalds 已提交
2120

2121 2122
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2123

2124
	return -E2BIG;
L
Linus Torvalds 已提交
2125

2126 2127
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2128
	cachep->flags = flags;
2129
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2130
	if (flags & SLAB_CACHE_DMA)
2131
		cachep->allocflags |= GFP_DMA;
2132 2133
	if (flags & SLAB_RECLAIM_ACCOUNT)
		cachep->allocflags |= __GFP_RECLAIMABLE;
2134
	cachep->size = size;
2135
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2136

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2150 2151
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2152
	}
L
Linus Torvalds 已提交
2153

2154 2155
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2156
		__kmem_cache_release(cachep);
2157
		return err;
2158
	}
L
Linus Torvalds 已提交
2159

2160
	return 0;
L
Linus Torvalds 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2174 2175 2176 2177 2178
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2179
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2180 2181 2182
{
#ifdef CONFIG_SMP
	check_irq_off();
2183
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2184 2185
#endif
}
2186

2187
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2188 2189 2190
{
#ifdef CONFIG_SMP
	check_irq_off();
2191
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2192 2193 2194
#endif
}

L
Linus Torvalds 已提交
2195 2196 2197
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2198
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2199
#define check_spinlock_acquired(x) do { } while(0)
2200
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2201 2202
#endif

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2219

L
Linus Torvalds 已提交
2220 2221
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2222
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2223
	struct array_cache *ac;
2224
	int node = numa_mem_id();
2225
	struct kmem_cache_node *n;
2226
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2227 2228

	check_irq_off();
2229
	ac = cpu_cache_get(cachep);
2230 2231
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2232
	free_block(cachep, ac->entry, ac->avail, node, &list);
2233
	spin_unlock(&n->list_lock);
2234
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2235 2236 2237
	ac->avail = 0;
}

2238
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2239
{
2240
	struct kmem_cache_node *n;
2241
	int node;
2242
	LIST_HEAD(list);
2243

2244
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2245
	check_irq_on();
2246 2247
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2248
			drain_alien_cache(cachep, n->alien);
2249

2250 2251 2252 2253 2254 2255 2256
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2257 2258
}

2259 2260 2261 2262 2263 2264 2265
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2266
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2267
{
2268 2269
	struct list_head *p;
	int nr_freed;
2270
	struct page *page;
L
Linus Torvalds 已提交
2271

2272
	nr_freed = 0;
2273
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2274

2275 2276 2277 2278
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2279 2280
			goto out;
		}
L
Linus Torvalds 已提交
2281

2282 2283
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2284
		n->free_slabs--;
2285
		n->total_slabs--;
2286 2287 2288 2289
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2290 2291
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2292
		slab_destroy(cache, page);
2293
		nr_freed++;
L
Linus Torvalds 已提交
2294
	}
2295 2296
out:
	return nr_freed;
L
Linus Torvalds 已提交
2297 2298
}

2299
int __kmem_cache_shrink(struct kmem_cache *cachep)
2300
{
2301 2302
	int ret = 0;
	int node;
2303
	struct kmem_cache_node *n;
2304 2305 2306 2307

	drain_cpu_caches(cachep);

	check_irq_on();
2308
	for_each_kmem_cache_node(cachep, node, n) {
2309
		drain_freelist(cachep, n, INT_MAX);
2310

2311 2312
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2313 2314 2315 2316
	}
	return (ret ? 1 : 0);
}

2317 2318 2319 2320 2321 2322 2323
#ifdef CONFIG_MEMCG
void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
{
	__kmem_cache_shrink(cachep);
}
#endif

2324
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2325
{
2326
	return __kmem_cache_shrink(cachep);
2327 2328 2329
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2330
{
2331
	int i;
2332
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2333

T
Thomas Garnier 已提交
2334 2335
	cache_random_seq_destroy(cachep);

2336
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2337

2338
	/* NUMA: free the node structures */
2339 2340 2341 2342 2343
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2344
	}
L
Linus Torvalds 已提交
2345 2346
}

2347 2348
/*
 * Get the memory for a slab management obj.
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2360
 */
2361
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2362 2363
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2364
{
2365
	void *freelist;
2366
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2367

2368 2369 2370
	page->s_mem = addr + colour_off;
	page->active = 0;

2371 2372 2373
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2374
		/* Slab management obj is off-slab. */
2375
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2376
					      local_flags, nodeid);
2377
		if (!freelist)
L
Linus Torvalds 已提交
2378 2379
			return NULL;
	} else {
2380 2381 2382
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2383
	}
2384

2385
	return freelist;
L
Linus Torvalds 已提交
2386 2387
}

2388
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2389
{
2390
	return ((freelist_idx_t *)page->freelist)[idx];
2391 2392 2393
}

static inline void set_free_obj(struct page *page,
2394
					unsigned int idx, freelist_idx_t val)
2395
{
2396
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2397 2398
}

2399
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2400
{
2401
#if DEBUG
L
Linus Torvalds 已提交
2402 2403 2404
	int i;

	for (i = 0; i < cachep->num; i++) {
2405
		void *objp = index_to_obj(cachep, page, i);
2406

L
Linus Torvalds 已提交
2407 2408 2409 2410 2411 2412 2413 2414
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2415 2416 2417
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2418
		 */
A
Alexander Potapenko 已提交
2419 2420 2421
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2422
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2423 2424 2425
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2426 2427 2428

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2429
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2430
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2431
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2432
		}
2433 2434 2435 2436 2437
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2438
	}
L
Linus Torvalds 已提交
2439
#endif
2440 2441
}

T
Thomas Garnier 已提交
2442 2443 2444 2445 2446
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2447
		unsigned int *list;
T
Thomas Garnier 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
		unsigned int count;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2465
	rand = get_random_int();
T
Thomas Garnier 已提交
2466 2467 2468 2469 2470 2471 2472 2473

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
2474
		state->pos = rand % count;
T
Thomas Garnier 已提交
2475 2476 2477 2478 2479 2480 2481 2482
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
2483 2484 2485
	if (state->pos >= state->count)
		state->pos = 0;
	return state->list[state->pos++];
T
Thomas Garnier 已提交
2486 2487
}

2488 2489 2490 2491 2492 2493 2494
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2495 2496 2497 2498 2499 2500
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2501
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2526 2527 2528 2529 2530 2531 2532 2533 2534
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2553 2554 2555 2556
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2557
	void *objp;
T
Thomas Garnier 已提交
2558
	bool shuffled;
2559 2560 2561

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2562 2563 2564 2565
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2566 2567 2568 2569
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2570
	for (i = 0; i < cachep->num; i++) {
2571 2572 2573
		objp = index_to_obj(cachep, page, i);
		kasan_init_slab_obj(cachep, objp);

2574
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2575 2576 2577 2578 2579
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2580

T
Thomas Garnier 已提交
2581 2582
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2583 2584 2585
	}
}

2586
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2587
{
2588
	void *objp;
2589

2590
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2591
	page->active++;
2592

2593 2594 2595 2596 2597
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2598 2599 2600
	return objp;
}

2601 2602
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2603
{
2604
	unsigned int objnr = obj_to_index(cachep, page, objp);
2605
#if DEBUG
J
Joonsoo Kim 已提交
2606
	unsigned int i;
2607 2608

	/* Verify double free bug */
2609
	for (i = page->active; i < cachep->num; i++) {
2610
		if (get_free_obj(page, i) == objnr) {
2611
			pr_err("slab: double free detected in cache '%s', objp %p\n",
J
Joe Perches 已提交
2612
			       cachep->name, objp);
2613 2614
			BUG();
		}
2615 2616
	}
#endif
2617
	page->active--;
2618 2619 2620
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2621
	set_free_obj(page, page->active, objnr);
2622 2623
}

2624 2625 2626
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2627
 * virtual address for kfree, ksize, and slab debugging.
2628
 */
2629
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2630
			   void *freelist)
L
Linus Torvalds 已提交
2631
{
2632
	page->slab_cache = cache;
2633
	page->freelist = freelist;
L
Linus Torvalds 已提交
2634 2635 2636 2637 2638 2639
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2640 2641
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2642
{
2643
	void *freelist;
P
Pekka Enberg 已提交
2644 2645
	size_t offset;
	gfp_t local_flags;
2646
	int page_node;
2647
	struct kmem_cache_node *n;
2648
	struct page *page;
L
Linus Torvalds 已提交
2649

A
Andrew Morton 已提交
2650 2651 2652
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2653
	 */
2654
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2655
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2656 2657 2658 2659
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2660
	}
C
Christoph Lameter 已提交
2661
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2662 2663

	check_irq_off();
2664
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2665 2666
		local_irq_enable();

A
Andrew Morton 已提交
2667 2668 2669
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2670
	 */
2671
	page = kmem_getpages(cachep, local_flags, nodeid);
2672
	if (!page)
L
Linus Torvalds 已提交
2673 2674
		goto failed;

2675 2676
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

L
Linus Torvalds 已提交
2689
	/* Get slab management. */
2690
	freelist = alloc_slabmgmt(cachep, page, offset,
2691
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2692
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2693 2694
		goto opps1;

2695
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2696

A
Alexander Potapenko 已提交
2697
	kasan_poison_slab(page);
2698
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2699

2700
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2701 2702
		local_irq_disable();

2703 2704
	return page;

A
Andrew Morton 已提交
2705
opps1:
2706
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2707
failed:
2708
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2709
		local_irq_disable();
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
2727
	n->total_slabs++;
2728
	if (!page->active) {
2729
		list_add_tail(&page->lru, &(n->slabs_free));
2730
		n->free_slabs++;
2731
	} else
2732
		fixup_slab_list(cachep, n, page, &list);
2733

2734 2735 2736 2737 2738
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2751
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2752 2753
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2754 2755 2756
	}
}

2757 2758
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2759
	unsigned long long redzone1, redzone2;
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2775 2776
	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
2777 2778
}

2779
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2780
				   unsigned long caller)
L
Linus Torvalds 已提交
2781 2782
{
	unsigned int objnr;
2783
	struct page *page;
L
Linus Torvalds 已提交
2784

2785 2786
	BUG_ON(virt_to_cache(objp) != cachep);

2787
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2788
	kfree_debugcheck(objp);
2789
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2790 2791

	if (cachep->flags & SLAB_RED_ZONE) {
2792
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2793 2794 2795
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2796 2797
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2798
		*dbg_userword(cachep, objp) = (void *)caller;
2799
	}
L
Linus Torvalds 已提交
2800

2801
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2802 2803

	BUG_ON(objnr >= cachep->num);
2804
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2805 2806 2807

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2808
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2833
static inline void fixup_slab_list(struct kmem_cache *cachep,
2834 2835
				struct kmem_cache_node *n, struct page *page,
				void **list)
2836 2837 2838
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2839
	if (page->active == cachep->num) {
2840
		list_add(&page->lru, &n->slabs_full);
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2854 2855 2856
		list_add(&page->lru, &n->slabs_partial);
}

2857 2858
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2859
					struct page *page, bool pfmemalloc)
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
2878
	if (!page->active) {
2879
		list_add_tail(&page->lru, &n->slabs_free);
2880
		n->free_slabs++;
2881
	} else
2882 2883 2884 2885 2886 2887 2888
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

2889
	n->free_touched = 1;
2890
	list_for_each_entry(page, &n->slabs_free, lru) {
2891
		if (!PageSlabPfmemalloc(page)) {
2892
			n->free_slabs--;
2893
			return page;
2894
		}
2895 2896 2897 2898 2899 2900
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2901 2902 2903
{
	struct page *page;

2904
	assert_spin_locked(&n->list_lock);
2905
	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2906 2907
	if (!page) {
		n->free_touched = 1;
2908 2909
		page = list_first_entry_or_null(&n->slabs_free, struct page,
						lru);
2910
		if (page)
2911
			n->free_slabs--;
2912 2913
	}

2914
	if (sk_memalloc_socks())
2915
		page = get_valid_first_slab(n, page, pfmemalloc);
2916

2917 2918 2919
	return page;
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2972
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2973 2974
{
	int batchcount;
2975
	struct kmem_cache_node *n;
2976
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
2977
	int node;
2978
	void *list = NULL;
2979
	struct page *page;
P
Pekka Enberg 已提交
2980

L
Linus Torvalds 已提交
2981
	check_irq_off();
2982
	node = numa_mem_id();
2983

2984
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2985 2986
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2987 2988 2989 2990
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2991 2992 2993
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2994
	n = get_node(cachep, node);
2995

2996
	BUG_ON(ac->avail > 0 || !n);
2997 2998 2999 3000
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

3001
	spin_lock(&n->list_lock);
3002
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
3003

3004
	/* See if we can refill from the shared array */
3005 3006
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
3007
		goto alloc_done;
3008
	}
3009

L
Linus Torvalds 已提交
3010 3011
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
3012
		page = get_first_slab(n, false);
3013 3014
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
3015 3016

		check_spinlock_acquired(cachep);
3017

3018
		batchcount = alloc_block(cachep, ac, page, batchcount);
3019
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
3020 3021
	}

A
Andrew Morton 已提交
3022
must_grow:
3023
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3024
alloc_done:
3025
	spin_unlock(&n->list_lock);
3026
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
3027

3028
direct_grow:
L
Linus Torvalds 已提交
3029
	if (unlikely(!ac->avail)) {
3030 3031 3032 3033 3034 3035 3036 3037
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3038
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3039

3040 3041 3042 3043
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3044
		ac = cpu_cache_get(cachep);
3045 3046 3047
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3048

3049
		if (!ac->avail)
L
Linus Torvalds 已提交
3050 3051 3052
			return NULL;
	}
	ac->touched = 1;
3053

3054
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3055 3056
}

A
Andrew Morton 已提交
3057 3058
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3059
{
3060
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3061 3062 3063
}

#if DEBUG
A
Andrew Morton 已提交
3064
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3065
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3066
{
P
Pekka Enberg 已提交
3067
	if (!objp)
L
Linus Torvalds 已提交
3068
		return objp;
P
Pekka Enberg 已提交
3069
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3070
		check_poison_obj(cachep, objp);
3071
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
3072 3073 3074
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3075
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3076 3077

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3078 3079
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3080
			slab_error(cachep, "double free, or memory outside object was overwritten");
3081 3082 3083
			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3084 3085 3086 3087
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3088

3089
	objp += obj_offset(cachep);
3090
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3091
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3092 3093
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3094
		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3095
		       objp, (int)ARCH_SLAB_MINALIGN);
3096
	}
L
Linus Torvalds 已提交
3097 3098 3099 3100 3101 3102
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3103
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3104
{
P
Pekka Enberg 已提交
3105
	void *objp;
L
Linus Torvalds 已提交
3106 3107
	struct array_cache *ac;

3108
	check_irq_off();
3109

3110
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3111 3112
	if (likely(ac->avail)) {
		ac->touched = 1;
3113
		objp = ac->entry[--ac->avail];
3114

3115 3116
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3117
	}
3118 3119

	STATS_INC_ALLOCMISS(cachep);
3120
	objp = cache_alloc_refill(cachep, flags);
3121 3122 3123 3124 3125 3126 3127
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3128 3129 3130 3131 3132
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3133 3134
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3135 3136 3137
	return objp;
}

3138
#ifdef CONFIG_NUMA
3139
/*
3140
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3141 3142 3143 3144 3145 3146 3147 3148
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3149
	if (in_interrupt() || (flags & __GFP_THISNODE))
3150
		return NULL;
3151
	nid_alloc = nid_here = numa_mem_id();
3152
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3153
		nid_alloc = cpuset_slab_spread_node();
3154
	else if (current->mempolicy)
3155
		nid_alloc = mempolicy_slab_node();
3156
	if (nid_alloc != nid_here)
3157
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3158 3159 3160
	return NULL;
}

3161 3162
/*
 * Fallback function if there was no memory available and no objects on a
3163
 * certain node and fall back is permitted. First we scan all the
3164
 * available node for available objects. If that fails then we
3165 3166 3167
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3168
 */
3169
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3170
{
3171
	struct zonelist *zonelist;
3172
	struct zoneref *z;
3173 3174
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3175
	void *obj = NULL;
3176
	struct page *page;
3177
	int nid;
3178
	unsigned int cpuset_mems_cookie;
3179 3180 3181 3182

	if (flags & __GFP_THISNODE)
		return NULL;

3183
retry_cpuset:
3184
	cpuset_mems_cookie = read_mems_allowed_begin();
3185
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3186

3187 3188 3189 3190 3191
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3192 3193
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3194

3195
		if (cpuset_zone_allowed(zone, flags) &&
3196 3197
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3198
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3199
					gfp_exact_node(flags), nid);
3200 3201 3202
				if (obj)
					break;
		}
3203 3204
	}

3205
	if (!obj) {
3206 3207 3208 3209 3210 3211
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3212 3213 3214 3215
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3216 3217
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3218

3219
			/*
3220 3221
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3222
			 */
3223 3224
			if (!obj)
				goto retry;
3225
		}
3226
	}
3227

3228
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3229
		goto retry_cpuset;
3230 3231 3232
	return obj;
}

3233 3234
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3235
 */
3236
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3237
				int nodeid)
3238
{
3239
	struct page *page;
3240
	struct kmem_cache_node *n;
3241
	void *obj = NULL;
3242
	void *list = NULL;
P
Pekka Enberg 已提交
3243

3244
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3245
	n = get_node(cachep, nodeid);
3246
	BUG_ON(!n);
P
Pekka Enberg 已提交
3247

3248
	check_irq_off();
3249
	spin_lock(&n->list_lock);
3250
	page = get_first_slab(n, false);
3251 3252
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3253 3254 3255 3256 3257 3258 3259

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3260
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3261

3262
	obj = slab_get_obj(cachep, page);
3263
	n->free_objects--;
P
Pekka Enberg 已提交
3264

3265
	fixup_slab_list(cachep, n, page, &list);
3266

3267
	spin_unlock(&n->list_lock);
3268
	fixup_objfreelist_debug(cachep, &list);
3269
	return obj;
3270

A
Andrew Morton 已提交
3271
must_grow:
3272
	spin_unlock(&n->list_lock);
3273
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3274 3275 3276 3277
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3278
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3279

3280
	return obj ? obj : fallback_alloc(cachep, flags);
3281
}
3282 3283

static __always_inline void *
3284
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3285
		   unsigned long caller)
3286 3287 3288
{
	unsigned long save_flags;
	void *ptr;
3289
	int slab_node = numa_mem_id();
3290

3291
	flags &= gfp_allowed_mask;
3292 3293
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3294 3295
		return NULL;

3296 3297 3298
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3299
	if (nodeid == NUMA_NO_NODE)
3300
		nodeid = slab_node;
3301

3302
	if (unlikely(!get_node(cachep, nodeid))) {
3303 3304 3305 3306 3307
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3308
	if (nodeid == slab_node) {
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3325 3326
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3327

3328
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3329 3330 3331 3332 3333 3334 3335 3336
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3337
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3348 3349
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3365
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3366 3367 3368 3369
{
	unsigned long save_flags;
	void *objp;

3370
	flags &= gfp_allowed_mask;
3371 3372
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3373 3374
		return NULL;

3375 3376 3377 3378 3379 3380 3381
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3382 3383
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3384

3385
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3386 3387
	return objp;
}
3388 3389

/*
3390
 * Caller needs to acquire correct kmem_cache_node's list_lock
3391
 * @list: List of detached free slabs should be freed by caller
3392
 */
3393 3394
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3395 3396
{
	int i;
3397
	struct kmem_cache_node *n = get_node(cachep, node);
3398 3399 3400
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3401 3402

	for (i = 0; i < nr_objects; i++) {
3403
		void *objp;
3404
		struct page *page;
L
Linus Torvalds 已提交
3405

3406 3407
		objp = objpp[i];

3408 3409
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3410
		check_spinlock_acquired_node(cachep, node);
3411
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3412 3413 3414
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3415
		if (page->active == 0) {
3416
			list_add(&page->lru, &n->slabs_free);
3417 3418
			n->free_slabs++;
		} else {
L
Linus Torvalds 已提交
3419 3420 3421 3422
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3423
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3424 3425
		}
	}
3426 3427 3428 3429 3430

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
3431
		list_move(&page->lru, list);
3432
		n->free_slabs--;
3433
		n->total_slabs--;
3434
	}
L
Linus Torvalds 已提交
3435 3436
}

3437
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3438 3439
{
	int batchcount;
3440
	struct kmem_cache_node *n;
3441
	int node = numa_mem_id();
3442
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3443 3444

	batchcount = ac->batchcount;
3445

L
Linus Torvalds 已提交
3446
	check_irq_off();
3447
	n = get_node(cachep, node);
3448 3449 3450
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3451
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3452 3453 3454
		if (max) {
			if (batchcount > max)
				batchcount = max;
3455
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3456
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3457 3458 3459 3460 3461
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3462
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3463
free_done:
L
Linus Torvalds 已提交
3464 3465 3466
#if STATS
	{
		int i = 0;
3467
		struct page *page;
L
Linus Torvalds 已提交
3468

3469
		list_for_each_entry(page, &n->slabs_free, lru) {
3470
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3471 3472 3473 3474 3475 3476

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3477
	spin_unlock(&n->list_lock);
3478
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3479
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3480
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3481 3482 3483
}

/*
A
Andrew Morton 已提交
3484 3485
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3486
 */
3487
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3488
				unsigned long caller)
L
Linus Torvalds 已提交
3489
{
3490 3491 3492 3493 3494 3495
	/* Put the object into the quarantine, don't touch it for now. */
	if (kasan_slab_free(cachep, objp))
		return;

	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3496

3497 3498 3499 3500
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3501

L
Linus Torvalds 已提交
3502
	check_irq_off();
3503
	kmemleak_free_recursive(objp, cachep->flags);
3504
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3505

3506 3507 3508 3509 3510 3511 3512
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3513
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3514 3515
		return;

3516
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3517 3518 3519 3520 3521
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3522

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3543
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3544
{
3545
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3546

3547
	kasan_slab_alloc(cachep, ret, flags);
3548
	trace_kmem_cache_alloc(_RET_IP_, ret,
3549
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3550 3551

	return ret;
L
Linus Torvalds 已提交
3552 3553 3554
}
EXPORT_SYMBOL(kmem_cache_alloc);

3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3565
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3566
			  void **p)
3567
{
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3586 3587
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3598
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3599 3600 3601
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3602 3603 3604
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3605
#ifdef CONFIG_TRACING
3606
void *
3607
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3608
{
3609 3610
	void *ret;

3611
	ret = slab_alloc(cachep, flags, _RET_IP_);
3612

3613
	kasan_kmalloc(cachep, ret, size, flags);
3614
	trace_kmalloc(_RET_IP_, ret,
3615
		      size, cachep->size, flags);
3616
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3617
}
3618
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3619 3620
#endif

L
Linus Torvalds 已提交
3621
#ifdef CONFIG_NUMA
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3633 3634
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3635
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3636

3637
	kasan_slab_alloc(cachep, ret, flags);
3638
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3639
				    cachep->object_size, cachep->size,
3640
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3641 3642

	return ret;
3643
}
L
Linus Torvalds 已提交
3644 3645
EXPORT_SYMBOL(kmem_cache_alloc_node);

3646
#ifdef CONFIG_TRACING
3647
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3648
				  gfp_t flags,
3649 3650
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3651
{
3652 3653
	void *ret;

3654
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3655 3656

	kasan_kmalloc(cachep, ret, size, flags);
3657
	trace_kmalloc_node(_RET_IP_, ret,
3658
			   size, cachep->size,
3659 3660
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3661
}
3662
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3663 3664
#endif

3665
static __always_inline void *
3666
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3667
{
3668
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3669
	void *ret;
3670

3671
	cachep = kmalloc_slab(size, flags);
3672 3673
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3674
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3675
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3676 3677

	return ret;
3678
}
3679 3680 3681

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3682
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3683
}
3684
EXPORT_SYMBOL(__kmalloc_node);
3685 3686

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3687
		int node, unsigned long caller)
3688
{
3689
	return __do_kmalloc_node(size, flags, node, caller);
3690 3691 3692
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3693 3694

/**
3695
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3696
 * @size: how many bytes of memory are required.
3697
 * @flags: the type of memory to allocate (see kmalloc).
3698
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3699
 */
3700
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3701
					  unsigned long caller)
L
Linus Torvalds 已提交
3702
{
3703
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3704
	void *ret;
L
Linus Torvalds 已提交
3705

3706
	cachep = kmalloc_slab(size, flags);
3707 3708
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3709
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3710

3711
	kasan_kmalloc(cachep, ret, size, flags);
3712
	trace_kmalloc(caller, ret,
3713
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3714 3715

	return ret;
3716 3717 3718 3719
}

void *__kmalloc(size_t size, gfp_t flags)
{
3720
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3721 3722 3723
}
EXPORT_SYMBOL(__kmalloc);

3724
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3725
{
3726
	return __do_kmalloc(size, flags, caller);
3727 3728
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3729

L
Linus Torvalds 已提交
3730 3731 3732 3733 3734 3735 3736 3737
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3738
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3739 3740
{
	unsigned long flags;
3741 3742 3743
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3744 3745

	local_irq_save(flags);
3746
	debug_check_no_locks_freed(objp, cachep->object_size);
3747
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3748
		debug_check_no_obj_freed(objp, cachep->object_size);
3749
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3750
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3751

3752
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3753 3754 3755
}
EXPORT_SYMBOL(kmem_cache_free);

3756 3757 3758 3759 3760 3761 3762 3763 3764
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3765 3766 3767 3768
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3782 3783 3784 3785
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3786 3787
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3788 3789 3790 3791 3792
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3793
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3794 3795
	unsigned long flags;

3796 3797
	trace_kfree(_RET_IP_, objp);

3798
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3799 3800 3801
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3802
	c = virt_to_cache(objp);
3803 3804 3805
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3806
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3807 3808 3809 3810
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3811
/*
3812
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3813
 */
3814
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3815
{
3816
	int ret;
3817
	int node;
3818
	struct kmem_cache_node *n;
3819

3820
	for_each_online_node(node) {
3821 3822
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3823 3824 3825
			goto fail;

	}
3826

3827
	return 0;
3828

A
Andrew Morton 已提交
3829
fail:
3830
	if (!cachep->list.next) {
3831 3832 3833
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3834 3835
			n = get_node(cachep, node);
			if (n) {
3836 3837 3838
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3839
				cachep->node[node] = NULL;
3840 3841 3842 3843
			}
			node--;
		}
	}
3844
	return -ENOMEM;
3845 3846
}

3847
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3848
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3849
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3850
{
3851 3852
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3853

3854 3855
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3856 3857
		return -ENOMEM;

3858 3859
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
3860 3861 3862 3863 3864 3865
	/*
	 * Without a previous cpu_cache there's no need to synchronize remote
	 * cpus, so skip the IPIs.
	 */
	if (prev)
		kick_all_cpus_sync();
3866

L
Linus Torvalds 已提交
3867 3868 3869
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3870
	cachep->shared = shared;
L
Linus Torvalds 已提交
3871

3872
	if (!prev)
3873
		goto setup_node;
3874 3875

	for_each_online_cpu(cpu) {
3876
		LIST_HEAD(list);
3877 3878
		int node;
		struct kmem_cache_node *n;
3879
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3880

3881
		node = cpu_to_mem(cpu);
3882 3883
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3884
		free_block(cachep, ac->entry, ac->avail, node, &list);
3885
		spin_unlock_irq(&n->list_lock);
3886
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3887
	}
3888 3889
	free_percpu(prev);

3890 3891
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3892 3893
}

G
Glauber Costa 已提交
3894 3895 3896 3897
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3898
	struct kmem_cache *c;
G
Glauber Costa 已提交
3899 3900 3901 3902 3903 3904 3905 3906 3907

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3908 3909 3910 3911
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3912 3913 3914 3915 3916
	}

	return ret;
}

3917
/* Called with slab_mutex held always */
3918
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3919 3920
{
	int err;
G
Glauber Costa 已提交
3921 3922 3923 3924
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3925
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3926 3927 3928
	if (err)
		goto end;

G
Glauber Costa 已提交
3929 3930 3931 3932 3933 3934
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3935

G
Glauber Costa 已提交
3936 3937
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3938 3939
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3940 3941
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3942
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3943 3944 3945 3946
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3947
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3948
		limit = 1;
3949
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3950
		limit = 8;
3951
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3952
		limit = 24;
3953
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3954 3955 3956 3957
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3958 3959
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3960 3961 3962 3963 3964 3965 3966 3967
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3968
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3969 3970 3971
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3972 3973 3974
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3975 3976 3977 3978
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3979 3980 3981
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
3982
end:
L
Linus Torvalds 已提交
3983
	if (err)
3984
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
3985
		       cachep->name, -err);
3986
	return err;
L
Linus Torvalds 已提交
3987 3988
}

3989
/*
3990 3991
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3992
 * if drain_array() is used on the shared array.
3993
 */
3994
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3995
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
3996
{
3997
	LIST_HEAD(list);
3998 3999 4000

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
4001

4002 4003
	if (!ac || !ac->avail)
		return;
4004 4005

	if (ac->touched) {
L
Linus Torvalds 已提交
4006
		ac->touched = 0;
4007
		return;
L
Linus Torvalds 已提交
4008
	}
4009 4010 4011 4012 4013 4014

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4015 4016 4017 4018
}

/**
 * cache_reap - Reclaim memory from caches.
4019
 * @w: work descriptor
L
Linus Torvalds 已提交
4020 4021 4022 4023 4024 4025
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4026 4027
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4028
 */
4029
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4030
{
4031
	struct kmem_cache *searchp;
4032
	struct kmem_cache_node *n;
4033
	int node = numa_mem_id();
4034
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4035

4036
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4037
		/* Give up. Setup the next iteration. */
4038
		goto out;
L
Linus Torvalds 已提交
4039

4040
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4041 4042
		check_irq_on();

4043
		/*
4044
		 * We only take the node lock if absolutely necessary and we
4045 4046 4047
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4048
		n = get_node(searchp, node);
4049

4050
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4051

4052
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4053

4054 4055 4056 4057
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4058
		if (time_after(n->next_reap, jiffies))
4059
			goto next;
L
Linus Torvalds 已提交
4060

4061
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4062

4063
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4064

4065 4066
		if (n->free_touched)
			n->free_touched = 0;
4067 4068
		else {
			int freed;
L
Linus Torvalds 已提交
4069

4070
			freed = drain_freelist(searchp, n, (n->free_limit +
4071 4072 4073
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4074
next:
L
Linus Torvalds 已提交
4075 4076 4077
		cond_resched();
	}
	check_irq_on();
4078
	mutex_unlock(&slab_mutex);
4079
	next_reap_node();
4080
out:
A
Andrew Morton 已提交
4081
	/* Set up the next iteration */
4082
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4083 4084
}

4085
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4086
{
4087
	unsigned long active_objs, num_objs, active_slabs;
4088 4089
	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long free_slabs = 0;
4090
	int node;
4091
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4092

4093
	for_each_kmem_cache_node(cachep, node, n) {
4094
		check_irq_on();
4095
		spin_lock_irq(&n->list_lock);
4096

4097 4098
		total_slabs += n->total_slabs;
		free_slabs += n->free_slabs;
4099
		free_objs += n->free_objects;
4100

4101 4102
		if (n->shared)
			shared_avail += n->shared->avail;
4103

4104
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4105
	}
4106 4107
	num_objs = total_slabs * cachep->num;
	active_slabs = total_slabs - free_slabs;
4108
	active_objs = num_objs - free_objs;
L
Linus Torvalds 已提交
4109

4110 4111 4112
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
4113
	sinfo->num_slabs = total_slabs;
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4124
#if STATS
4125
	{			/* node stats */
L
Linus Torvalds 已提交
4126 4127 4128 4129 4130 4131 4132
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4133
		unsigned long node_frees = cachep->node_frees;
4134
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4135

J
Joe Perches 已提交
4136
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4137 4138 4139
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4140 4141 4142 4143 4144 4145 4146 4147 4148
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4149
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4162
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4163
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4164
{
P
Pekka Enberg 已提交
4165
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4166
	int limit, batchcount, shared, res;
4167
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4168

L
Linus Torvalds 已提交
4169 4170 4171 4172
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4173
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4184
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4185
	res = -EINVAL;
4186
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4187
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4188 4189
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4190
				res = 0;
L
Linus Torvalds 已提交
4191
			} else {
4192
				res = do_tune_cpucache(cachep, limit,
4193 4194
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4195 4196 4197 4198
			}
			break;
		}
	}
4199
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4200 4201 4202 4203
	if (res >= 0)
		res = count;
	return res;
}
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4237 4238
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4239 4240
{
	void *p;
4241 4242
	int i, j;
	unsigned long v;
4243

4244 4245
	if (n[0] == n[1])
		return;
4246
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4257
			continue;
4258

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4269 4270 4271 4272 4273 4274 4275 4276
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4277
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4278

4279
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4280
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4281
		if (modname[0])
4282 4283 4284 4285 4286 4287 4288 4289 4290
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4291
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4292
	struct page *page;
4293
	struct kmem_cache_node *n;
4294
	const char *name;
4295
	unsigned long *x = m->private;
4296 4297 4298 4299 4300 4301 4302 4303
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4315

4316
		for_each_kmem_cache_node(cachep, node, n) {
4317

4318 4319
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4320

4321 4322 4323 4324 4325 4326 4327
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4328 4329

	name = cachep->name;
4330
	if (x[0] == x[1]) {
4331
		/* Increase the buffer size */
4332
		mutex_unlock(&slab_mutex);
4333
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4334 4335
		if (!m->private) {
			/* Too bad, we are really out */
4336
			m->private = x;
4337
			mutex_lock(&slab_mutex);
4338 4339
			return -ENOMEM;
		}
4340 4341
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4342
		mutex_lock(&slab_mutex);
4343 4344 4345 4346
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4347 4348 4349
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4350 4351
		seq_putc(m, '\n');
	}
4352

4353 4354 4355
	return 0;
}

4356
static const struct seq_operations slabstats_op = {
4357
	.start = slab_start,
4358 4359
	.next = slab_next,
	.stop = slab_stop,
4360 4361
	.show = leaks_show,
};
4362 4363 4364

static int slabstats_open(struct inode *inode, struct file *file)
{
4365 4366 4367 4368 4369 4370 4371 4372 4373
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4388
#endif
4389 4390 4391
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4392

K
Kees Cook 已提交
4393 4394 4395 4396 4397 4398 4399
#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects objects that are incorrectly sized.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
4400 4401
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

	/* Allow address range falling entirely within object size. */
	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4417
		return;
K
Kees Cook 已提交
4418

4419
	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
K
Kees Cook 已提交
4420 4421 4422
}
#endif /* CONFIG_HARDENED_USERCOPY */

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4435
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4436
{
A
Alexander Potapenko 已提交
4437 4438
	size_t size;

4439 4440
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4441
		return 0;
L
Linus Torvalds 已提交
4442

A
Alexander Potapenko 已提交
4443 4444 4445 4446
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4447
	kasan_unpoison_shadow(objp, size);
A
Alexander Potapenko 已提交
4448 4449

	return size;
L
Linus Torvalds 已提交
4450
}
K
Kirill A. Shutemov 已提交
4451
EXPORT_SYMBOL(ksize);