slab.c 107.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
188
	void *entry[];	/*
A
Andrew Morton 已提交
189 190 191 192
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
193 194
};

J
Joonsoo Kim 已提交
195 196 197 198 199
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

200 201 202
/*
 * Need this for bootstrapping a per node allocator.
 */
203
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205
#define	CACHE_CACHE 0
206
#define	SIZE_NODE (MAX_NUMNODES)
207

208
static int drain_freelist(struct kmem_cache *cache,
209
			struct kmem_cache_node *n, int tofree);
210
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 212
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214
static void cache_reap(struct work_struct *unused);
215

216 217
static int slab_early_init = 1;

218
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
219

220
static void kmem_cache_node_init(struct kmem_cache_node *parent)
221 222 223 224 225 226
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
227
	parent->colour_next = 0;
228 229 230 231 232
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
233 234 235
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
236
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
237 238
	} while (0)

A
Andrew Morton 已提交
239 240
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
241 242 243 244
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
245

246
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
L
Linus Torvalds 已提交
247
#define CFLGS_OFF_SLAB		(0x80000000UL)
248
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
249 250 251
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
252 253 254
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
255
 *
A
Adrian Bunk 已提交
256
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
257 258
 * which could lock up otherwise freeable slabs.
 */
259 260
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
261 262 263 264 265 266

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
267
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
268 269 270 271 272
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
273 274
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
275
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
276
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
277 278 279 280 281
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
282 283 284 285 286 287 288 289 290
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
291
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
292 293 294
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
295
#define	STATS_INC_NODEFREES(x)	do { } while (0)
296
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
297
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
298 299 300 301 302 303 304 305
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
306 307
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
308
 * 0		: objp
309
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
310 311
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
312
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
313
 * 		redzone word.
314
 * cachep->obj_offset: The real object.
315 316
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
317
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
318
 */
319
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
320
{
321
	return cachep->obj_offset;
L
Linus Torvalds 已提交
322 323
}

324
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
325 326
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
327 328
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
329 330
}

331
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
332 333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
335
		return (unsigned long long *)(objp + cachep->size -
336
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
337
					      REDZONE_ALIGN);
338
	return (unsigned long long *) (objp + cachep->size -
339
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
340 341
}

342
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
343 344
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
345
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
346 347 348 349
}

#else

350
#define obj_offset(x)			0
351 352
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
353 354 355 356
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

357 358
#ifdef CONFIG_DEBUG_SLAB_LEAK

359
static inline bool is_store_user_clean(struct kmem_cache *cachep)
360
{
361 362
	return atomic_read(&cachep->store_user_clean) == 1;
}
363

364 365 366 367
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
368

369 370 371 372
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
373 374 375
}

#else
376
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
377 378 379

#endif

L
Linus Torvalds 已提交
380
/*
381 382
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
383
 */
384 385 386
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
387
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
388

389 390
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
391
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
392
	return page->slab_cache;
393 394
}

395
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
396 397
				 unsigned int idx)
{
398
	return page->s_mem + cache->size * idx;
399 400
}

401
/*
402 403 404
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
405 406 407
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
408
					const struct page *page, void *obj)
409
{
410
	u32 offset = (obj - page->s_mem);
411
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
412 413
}

414
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
415
/* internal cache of cache description objs */
416
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
417 418 419
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
420
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
421
	.name = "kmem_cache",
L
Linus Torvalds 已提交
422 423
};

424
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
425

426
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
427
{
428
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
429 430
}

A
Andrew Morton 已提交
431 432 433
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
434 435
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
436
{
437
	unsigned int num;
438
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
439

440 441 442 443 444 445
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
446 447 448 449 450
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
451 452 453 454 455 456
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
457
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
458
		num = slab_size / buffer_size;
459
		*left_over = slab_size % buffer_size;
460
	} else {
461
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
462 463
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
464
	}
465 466

	return num;
L
Linus Torvalds 已提交
467 468
}

469
#if DEBUG
470
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
471

A
Andrew Morton 已提交
472 473
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
474
{
475
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
476
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
477
	dump_stack();
478
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
479
}
480
#endif
L
Linus Torvalds 已提交
481

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

498 499 500 501 502 503 504 505 506 507 508
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

509 510 511 512 513 514 515
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
516
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
517 518 519 520 521

static void init_reap_node(int cpu)
{
	int node;

522
	node = next_node(cpu_to_mem(cpu), node_online_map);
523
	if (node == MAX_NUMNODES)
524
		node = first_node(node_online_map);
525

526
	per_cpu(slab_reap_node, cpu) = node;
527 528 529 530
}

static void next_reap_node(void)
{
531
	int node = __this_cpu_read(slab_reap_node);
532 533 534 535

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
536
	__this_cpu_write(slab_reap_node, node);
537 538 539 540 541 542 543
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
544 545 546 547 548 549 550
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
551
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
552
{
553
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
554 555 556 557 558 559

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
560
	if (keventd_up() && reap_work->work.func == NULL) {
561
		init_reap_node(cpu);
562
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
563 564
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
565 566 567
	}
}

568
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
569
{
570 571
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
572
	 * However, when such objects are allocated or transferred to another
573 574 575 576
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
577 578 579 580 581 582
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
583
	}
584 585 586 587 588
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
589
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
590 591 592 593 594
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
595 596
}

597 598
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
599
{
600 601 602
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
603

604 605
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
606

607 608 609
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
610

611
	slabs_destroy(cachep, &list);
612 613
}

614 615 616 617 618 619 620 621 622 623
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
624
	int nr = min3(from->avail, max, to->limit - to->avail);
625 626 627 628 629 630 631 632 633 634 635 636

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

637 638 639
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
640
#define reap_alien(cachep, n) do { } while (0)
641

J
Joonsoo Kim 已提交
642 643
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
644
{
645
	return NULL;
646 647
}

J
Joonsoo Kim 已提交
648
static inline void free_alien_cache(struct alien_cache **ac_ptr)
649 650 651 652 653 654 655 656 657 658 659 660 661 662
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

663
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
664 665 666 667 668
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
669 670
static inline gfp_t gfp_exact_node(gfp_t flags)
{
671
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
672 673
}

674 675
#else	/* CONFIG_NUMA */

676
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
677
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
678

J
Joonsoo Kim 已提交
679 680 681
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
682
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
683 684 685 686
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
687
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
688 689 690 691
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
692
{
J
Joonsoo Kim 已提交
693
	struct alien_cache **alc_ptr;
694
	size_t memsize = sizeof(void *) * nr_node_ids;
695 696 697 698
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
712 713
		}
	}
J
Joonsoo Kim 已提交
714
	return alc_ptr;
715 716
}

J
Joonsoo Kim 已提交
717
static void free_alien_cache(struct alien_cache **alc_ptr)
718 719 720
{
	int i;

J
Joonsoo Kim 已提交
721
	if (!alc_ptr)
722 723
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
724 725
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
726 727
}

728
static void __drain_alien_cache(struct kmem_cache *cachep,
729 730
				struct array_cache *ac, int node,
				struct list_head *list)
731
{
732
	struct kmem_cache_node *n = get_node(cachep, node);
733 734

	if (ac->avail) {
735
		spin_lock(&n->list_lock);
736 737 738 739 740
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
741 742
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
743

744
		free_block(cachep, ac->entry, ac->avail, node, list);
745
		ac->avail = 0;
746
		spin_unlock(&n->list_lock);
747 748 749
	}
}

750 751 752
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
753
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
754
{
755
	int node = __this_cpu_read(slab_reap_node);
756

757
	if (n->alien) {
J
Joonsoo Kim 已提交
758 759 760 761 762
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
763
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
764 765 766
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
767
				spin_unlock_irq(&alc->lock);
768
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
769
			}
770 771 772 773
		}
	}
}

A
Andrew Morton 已提交
774
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
775
				struct alien_cache **alien)
776
{
P
Pekka Enberg 已提交
777
	int i = 0;
J
Joonsoo Kim 已提交
778
	struct alien_cache *alc;
779 780 781 782
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
783 784
		alc = alien[i];
		if (alc) {
785 786
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
787
			ac = &alc->ac;
788
			spin_lock_irqsave(&alc->lock, flags);
789
			__drain_alien_cache(cachep, ac, i, &list);
790
			spin_unlock_irqrestore(&alc->lock, flags);
791
			slabs_destroy(cachep, &list);
792 793 794
		}
	}
}
795

796 797
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
798
{
799
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
800 801
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
802
	LIST_HEAD(list);
P
Pekka Enberg 已提交
803

804
	n = get_node(cachep, node);
805
	STATS_INC_NODEFREES(cachep);
806 807
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
808
		ac = &alien->ac;
809
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
810
		if (unlikely(ac->avail == ac->limit)) {
811
			STATS_INC_ACOVERFLOW(cachep);
812
			__drain_alien_cache(cachep, ac, page_node, &list);
813
		}
814
		ac->entry[ac->avail++] = objp;
815
		spin_unlock(&alien->lock);
816
		slabs_destroy(cachep, &list);
817
	} else {
818
		n = get_node(cachep, page_node);
819
		spin_lock(&n->list_lock);
820
		free_block(cachep, &objp, 1, page_node, &list);
821
		spin_unlock(&n->list_lock);
822
		slabs_destroy(cachep, &list);
823 824 825
	}
	return 1;
}
826 827 828 829 830 831 832 833 834 835 836 837 838 839

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
840 841

/*
842 843
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
844 845 846
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
847
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
848
}
849 850
#endif

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

891
/*
892
 * Allocates and initializes node for a node on each slab cache, used for
893
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
894
 * will be allocated off-node since memory is not yet online for the new node.
895
 * When hotplugging memory or a cpu, existing node are not replaced if
896 897
 * already in use.
 *
898
 * Must hold slab_mutex.
899
 */
900
static int init_cache_node_node(int node)
901
{
902
	int ret;
903 904
	struct kmem_cache *cachep;

905
	list_for_each_entry(cachep, &slab_caches, list) {
906 907 908
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
909
	}
910

911 912 913
	return 0;
}

914
static void cpuup_canceled(long cpu)
915 916
{
	struct kmem_cache *cachep;
917
	struct kmem_cache_node *n = NULL;
918
	int node = cpu_to_mem(cpu);
919
	const struct cpumask *mask = cpumask_of_node(node);
920

921
	list_for_each_entry(cachep, &slab_caches, list) {
922 923
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
924
		struct alien_cache **alien;
925
		LIST_HEAD(list);
926

927
		n = get_node(cachep, node);
928
		if (!n)
929
			continue;
930

931
		spin_lock_irq(&n->list_lock);
932

933 934
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
935 936 937 938

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
939
			free_block(cachep, nc->entry, nc->avail, node, &list);
940 941
			nc->avail = 0;
		}
942

943
		if (!cpumask_empty(mask)) {
944
			spin_unlock_irq(&n->list_lock);
945
			goto free_slab;
946 947
		}

948
		shared = n->shared;
949 950
		if (shared) {
			free_block(cachep, shared->entry,
951
				   shared->avail, node, &list);
952
			n->shared = NULL;
953 954
		}

955 956
		alien = n->alien;
		n->alien = NULL;
957

958
		spin_unlock_irq(&n->list_lock);
959 960 961 962 963 964

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
965 966

free_slab:
967
		slabs_destroy(cachep, &list);
968 969 970 971 972 973
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
974
	list_for_each_entry(cachep, &slab_caches, list) {
975
		n = get_node(cachep, node);
976
		if (!n)
977
			continue;
978
		drain_freelist(cachep, n, INT_MAX);
979 980 981
	}
}

982
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
983
{
984
	struct kmem_cache *cachep;
985
	struct kmem_cache_node *n = NULL;
986
	int node = cpu_to_mem(cpu);
987
	int err;
L
Linus Torvalds 已提交
988

989 990 991 992
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
993
	 * kmem_cache_node and not this cpu's kmem_cache_node
994
	 */
995
	err = init_cache_node_node(node);
996 997
	if (err < 0)
		goto bad;
998 999 1000 1001 1002

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1003
	list_for_each_entry(cachep, &slab_caches, list) {
1004
		struct array_cache *shared = NULL;
J
Joonsoo Kim 已提交
1005
		struct alien_cache **alien = NULL;
1006 1007 1008 1009

		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1010
				0xbaadf00d, GFP_KERNEL);
1011
			if (!shared)
L
Linus Torvalds 已提交
1012
				goto bad;
1013 1014
		}
		if (use_alien_caches) {
1015
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1016 1017
			if (!alien) {
				kfree(shared);
1018
				goto bad;
1019
			}
1020
		}
1021
		n = get_node(cachep, node);
1022
		BUG_ON(!n);
1023

1024 1025
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1026 1027 1028 1029
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1030
			n->shared = shared;
1031 1032
			shared = NULL;
		}
1033
#ifdef CONFIG_NUMA
1034 1035
		if (!n->alien) {
			n->alien = alien;
1036
			alien = NULL;
L
Linus Torvalds 已提交
1037
		}
1038
#endif
1039
		spin_unlock_irq(&n->list_lock);
1040 1041 1042
		kfree(shared);
		free_alien_cache(alien);
	}
1043

1044 1045
	return 0;
bad:
1046
	cpuup_canceled(cpu);
1047 1048 1049
	return -ENOMEM;
}

1050
static int cpuup_callback(struct notifier_block *nfb,
1051 1052 1053 1054 1055 1056 1057 1058
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1059
		mutex_lock(&slab_mutex);
1060
		err = cpuup_prepare(cpu);
1061
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1062 1063
		break;
	case CPU_ONLINE:
1064
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1065 1066 1067
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1068
  	case CPU_DOWN_PREPARE:
1069
  	case CPU_DOWN_PREPARE_FROZEN:
1070
		/*
1071
		 * Shutdown cache reaper. Note that the slab_mutex is
1072 1073 1074 1075
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1076
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1077
		/* Now the cache_reaper is guaranteed to be not running. */
1078
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1079 1080
  		break;
  	case CPU_DOWN_FAILED:
1081
  	case CPU_DOWN_FAILED_FROZEN:
1082 1083
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1084
	case CPU_DEAD:
1085
	case CPU_DEAD_FROZEN:
1086 1087
		/*
		 * Even if all the cpus of a node are down, we don't free the
1088
		 * kmem_cache_node of any cache. This to avoid a race between
1089
		 * cpu_down, and a kmalloc allocation from another cpu for
1090
		 * memory from the node of the cpu going down.  The node
1091 1092 1093
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1094
		/* fall through */
1095
#endif
L
Linus Torvalds 已提交
1096
	case CPU_UP_CANCELED:
1097
	case CPU_UP_CANCELED_FROZEN:
1098
		mutex_lock(&slab_mutex);
1099
		cpuup_canceled(cpu);
1100
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1101 1102
		break;
	}
1103
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1104 1105
}

1106
static struct notifier_block cpucache_notifier = {
1107 1108
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1109

1110 1111 1112 1113 1114 1115
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1116
 * Must hold slab_mutex.
1117
 */
1118
static int __meminit drain_cache_node_node(int node)
1119 1120 1121 1122
{
	struct kmem_cache *cachep;
	int ret = 0;

1123
	list_for_each_entry(cachep, &slab_caches, list) {
1124
		struct kmem_cache_node *n;
1125

1126
		n = get_node(cachep, node);
1127
		if (!n)
1128 1129
			continue;

1130
		drain_freelist(cachep, n, INT_MAX);
1131

1132 1133
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1154
		mutex_lock(&slab_mutex);
1155
		ret = init_cache_node_node(nid);
1156
		mutex_unlock(&slab_mutex);
1157 1158
		break;
	case MEM_GOING_OFFLINE:
1159
		mutex_lock(&slab_mutex);
1160
		ret = drain_cache_node_node(nid);
1161
		mutex_unlock(&slab_mutex);
1162 1163 1164 1165 1166 1167 1168 1169
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1170
	return notifier_from_errno(ret);
1171 1172 1173
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1174
/*
1175
 * swap the static kmem_cache_node with kmalloced memory
1176
 */
1177
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1178
				int nodeid)
1179
{
1180
	struct kmem_cache_node *ptr;
1181

1182
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1183 1184
	BUG_ON(!ptr);

1185
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1186 1187 1188 1189 1190
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1191
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1192
	cachep->node[nodeid] = ptr;
1193 1194
}

1195
/*
1196 1197
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1198
 */
1199
static void __init set_up_node(struct kmem_cache *cachep, int index)
1200 1201 1202 1203
{
	int node;

	for_each_online_node(node) {
1204
		cachep->node[node] = &init_kmem_cache_node[index + node];
1205
		cachep->node[node]->next_reap = jiffies +
1206 1207
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1208 1209 1210
	}
}

A
Andrew Morton 已提交
1211 1212 1213
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1214 1215 1216
 */
void __init kmem_cache_init(void)
{
1217 1218
	int i;

1219 1220
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1221 1222
	kmem_cache = &kmem_cache_boot;

1223
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1224 1225
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1226
	for (i = 0; i < NUM_INIT_LISTS; i++)
1227
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1228

L
Linus Torvalds 已提交
1229 1230
	/*
	 * Fragmentation resistance on low memory - only use bigger
1231 1232
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1233
	 */
1234
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1235
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1236 1237 1238

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1239 1240 1241
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1242
	 *    Initially an __init data area is used for the head array and the
1243
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1244
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1245
	 * 2) Create the first kmalloc cache.
1246
	 *    The struct kmem_cache for the new cache is allocated normally.
1247 1248 1249
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1250
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1251
	 *    kmalloc cache with kmalloc allocated arrays.
1252
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1253 1254
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1255 1256
	 */

1257
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1258

E
Eric Dumazet 已提交
1259
	/*
1260
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1261
	 */
1262
	create_boot_cache(kmem_cache, "kmem_cache",
1263
		offsetof(struct kmem_cache, node) +
1264
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1265 1266
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1267
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1268

A
Andrew Morton 已提交
1269
	/*
1270 1271
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1272
	 */
1273
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1274
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1275
	slab_state = PARTIAL_NODE;
1276
	setup_kmalloc_cache_index_table();
1277

1278 1279
	slab_early_init = 0;

1280
	/* 5) Replace the bootstrap kmem_cache_node */
1281
	{
P
Pekka Enberg 已提交
1282 1283
		int nid;

1284
		for_each_online_node(nid) {
1285
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1286

1287
			init_list(kmalloc_caches[INDEX_NODE],
1288
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1289 1290
		}
	}
L
Linus Torvalds 已提交
1291

1292
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1293 1294 1295 1296 1297 1298
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1299
	slab_state = UP;
P
Peter Zijlstra 已提交
1300

1301
	/* 6) resize the head arrays to their final sizes */
1302 1303
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1304 1305
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1306
	mutex_unlock(&slab_mutex);
1307

1308 1309 1310
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1311 1312 1313
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1314 1315 1316
	 */
	register_cpu_notifier(&cpucache_notifier);

1317 1318 1319
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1320
	 * node.
1321 1322 1323 1324
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1325 1326 1327
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1328 1329 1330 1331 1332 1333 1334
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1335 1336
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1337
	 */
1338
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1339
		start_cpu_timer(cpu);
1340 1341

	/* Done! */
1342
	slab_state = FULL;
L
Linus Torvalds 已提交
1343 1344 1345 1346
	return 0;
}
__initcall(cpucache_init);

1347 1348 1349
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1350
#if DEBUG
1351
	struct kmem_cache_node *n;
1352
	struct page *page;
1353 1354
	unsigned long flags;
	int node;
1355 1356 1357 1358 1359
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1360

1361 1362 1363
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1364
		cachep->name, cachep->size, cachep->gfporder);
1365

1366
	for_each_kmem_cache_node(cachep, node, n) {
1367 1368 1369
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1370
		spin_lock_irqsave(&n->list_lock, flags);
1371
		list_for_each_entry(page, &n->slabs_full, lru) {
1372 1373 1374
			active_objs += cachep->num;
			active_slabs++;
		}
1375 1376
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1377 1378
			active_slabs++;
		}
1379
		list_for_each_entry(page, &n->slabs_free, lru)
1380 1381
			num_slabs++;

1382 1383
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1384 1385 1386

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
1387
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1388 1389 1390
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1391
#endif
1392 1393
}

L
Linus Torvalds 已提交
1394
/*
W
Wang Sheng-Hui 已提交
1395 1396
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1397 1398 1399 1400 1401
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1402 1403
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1404 1405
{
	struct page *page;
1406
	int nr_pages;
1407

1408
	flags |= cachep->allocflags;
1409 1410
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1411

1412
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1413
	if (!page) {
1414
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1415
		return NULL;
1416
	}
L
Linus Torvalds 已提交
1417

1418 1419 1420 1421 1422
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1423
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1424
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1425 1426 1427 1428 1429
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1430

1431
	__SetPageSlab(page);
1432 1433
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1434
		SetPageSlabPfmemalloc(page);
1435

1436 1437 1438 1439 1440 1441 1442 1443
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1444

1445
	return page;
L
Linus Torvalds 已提交
1446 1447 1448 1449 1450
}

/*
 * Interface to system's page release.
 */
1451
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1452
{
1453 1454
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1455

1456
	kmemcheck_free_shadow(page, order);
P
Pekka Enberg 已提交
1457

1458 1459 1460 1461 1462 1463
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1464

1465
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1466
	__ClearPageSlabPfmemalloc(page);
1467
	__ClearPageSlab(page);
1468 1469
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1470

L
Linus Torvalds 已提交
1471 1472
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1473 1474
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1475 1476 1477 1478
}

static void kmem_rcu_free(struct rcu_head *head)
{
1479 1480
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1481

1482 1483 1484 1485
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1486 1487 1488
}

#if DEBUG
1489 1490 1491 1492 1493 1494 1495 1496
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1497 1498

#ifdef CONFIG_DEBUG_PAGEALLOC
1499
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1500
			    unsigned long caller)
L
Linus Torvalds 已提交
1501
{
1502
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1503

1504
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1505

P
Pekka Enberg 已提交
1506
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1507 1508
		return;

P
Pekka Enberg 已提交
1509 1510 1511 1512
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1513 1514 1515 1516 1517 1518 1519
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1520
				*addr++ = svalue;
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525 1526 1527
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1528
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1529
}
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1547 1548
#endif

1549
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1550
{
1551
	int size = cachep->object_size;
1552
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1553 1554

	memset(addr, val, size);
P
Pekka Enberg 已提交
1555
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1556 1557 1558 1559 1560
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1561 1562 1563
	unsigned char error = 0;
	int bad_count = 0;

1564
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1565 1566 1567 1568 1569 1570
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1571 1572
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1573 1574 1575 1576

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1577
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1578
#ifdef CONFIG_X86
1579
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1580
#else
1581
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1582 1583 1584
#endif
		}
	}
L
Linus Torvalds 已提交
1585 1586 1587 1588 1589
}
#endif

#if DEBUG

1590
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1591 1592 1593 1594 1595
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1596 1597 1598
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1599 1600 1601
	}

	if (cachep->flags & SLAB_STORE_USER) {
1602
		pr_err("Last user: [<%p>](%pSR)\n",
J
Joe Perches 已提交
1603 1604
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1605
	}
1606
	realobj = (char *)objp + obj_offset(cachep);
1607
	size = cachep->object_size;
P
Pekka Enberg 已提交
1608
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1609 1610
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1611 1612
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1613 1614 1615 1616
		dump_line(realobj, i, limit);
	}
}

1617
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1618 1619 1620 1621 1622
{
	char *realobj;
	int size, i;
	int lines = 0;

1623 1624 1625
	if (is_debug_pagealloc_cache(cachep))
		return;

1626
	realobj = (char *)objp + obj_offset(cachep);
1627
	size = cachep->object_size;
L
Linus Torvalds 已提交
1628

P
Pekka Enberg 已提交
1629
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1630
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1631
		if (i == size - 1)
L
Linus Torvalds 已提交
1632 1633 1634 1635 1636 1637
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1638 1639 1640
				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1641 1642 1643
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1644
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1645
			limit = 16;
P
Pekka Enberg 已提交
1646 1647
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1660
		struct page *page = virt_to_head_page(objp);
1661
		unsigned int objnr;
L
Linus Torvalds 已提交
1662

1663
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1664
		if (objnr) {
1665
			objp = index_to_obj(cachep, page, objnr - 1);
1666
			realobj = (char *)objp + obj_offset(cachep);
1667
			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1668 1669
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1670
		if (objnr + 1 < cachep->num) {
1671
			objp = index_to_obj(cachep, page, objnr + 1);
1672
			realobj = (char *)objp + obj_offset(cachep);
1673
			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1680
#if DEBUG
1681 1682
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1683 1684
{
	int i;
1685 1686 1687 1688 1689 1690

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1691
	for (i = 0; i < cachep->num; i++) {
1692
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1693 1694 1695

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1696
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1697 1698 1699
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1700
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1701
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1702
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1703 1704
		}
	}
1705
}
L
Linus Torvalds 已提交
1706
#else
1707 1708
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1709 1710
{
}
L
Linus Torvalds 已提交
1711 1712
#endif

1713 1714 1715
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1716
 * @page: page pointer being destroyed
1717
 *
W
Wang Sheng-Hui 已提交
1718 1719 1720
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1721
 */
1722
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1723
{
1724
	void *freelist;
1725

1726 1727
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1728 1729 1730
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1731
		kmem_freepages(cachep, page);
1732 1733

	/*
1734
	 * From now on, we don't use freelist
1735 1736 1737
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1738
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1739 1740
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1751
/**
1752 1753 1754 1755 1756 1757
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1758 1759 1760 1761 1762
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1763
static size_t calculate_slab_order(struct kmem_cache *cachep,
1764
				size_t size, unsigned long flags)
1765 1766
{
	size_t left_over = 0;
1767
	int gfporder;
1768

1769
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1770 1771 1772
		unsigned int num;
		size_t remainder;

1773
		num = cache_estimate(gfporder, size, flags, &remainder);
1774 1775
		if (!num)
			continue;
1776

1777 1778 1779 1780
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1781
		if (flags & CFLGS_OFF_SLAB) {
1782 1783 1784 1785 1786 1787 1788 1789
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1790
			/*
1791 1792
			 * Needed to avoid possible looping condition
			 * in cache_grow()
1793
			 */
1794 1795
			if (OFF_SLAB(freelist_cache))
				continue;
1796

1797 1798 1799
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1800
		}
1801

1802
		/* Found something acceptable - save it away */
1803
		cachep->num = num;
1804
		cachep->gfporder = gfporder;
1805 1806
		left_over = remainder;

1807 1808 1809 1810 1811 1812 1813 1814
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1815 1816 1817 1818
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1819
		if (gfporder >= slab_max_order)
1820 1821
			break;

1822 1823 1824
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1825
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1826 1827 1828 1829 1830
			break;
	}
	return left_over;
}

1831 1832 1833 1834 1835 1836 1837 1838
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1839
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1852
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1853
{
1854
	if (slab_state >= FULL)
1855
		return enable_cpucache(cachep, gfp);
1856

1857 1858 1859 1860
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1861
	if (slab_state == DOWN) {
1862 1863
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1864
	} else if (slab_state == PARTIAL) {
1865 1866
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1867
	} else {
1868
		int node;
1869

1870 1871 1872 1873 1874
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1875 1876
		}
	}
1877

1878
	cachep->node[numa_mem_id()]->next_reap =
1879 1880
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1881 1882 1883 1884 1885 1886 1887

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1888
	return 0;
1889 1890
}

J
Joonsoo Kim 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1940 1941 1942 1943 1944 1945 1946 1947
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
1948 1949
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1990
/**
1991
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1992
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1993 1994 1995 1996
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1997
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2011
int
2012
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2013
{
2014
	size_t ralign = BYTES_PER_WORD;
2015
	gfp_t gfp;
2016
	int err;
2017
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2027 2028
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2029
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2035 2036
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2037 2038 2039
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2040 2041 2042
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2043 2044
	}

D
David Woodhouse 已提交
2045 2046 2047 2048 2049 2050 2051
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2052

2053
	/* 3) caller mandated alignment */
2054 2055
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2056
	}
2057 2058
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2059
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2060
	/*
2061
	 * 4) Store it.
L
Linus Torvalds 已提交
2062
	 */
2063
	cachep->align = ralign;
2064 2065 2066 2067
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2068

2069 2070 2071 2072 2073
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2074 2075
#if DEBUG

2076 2077 2078 2079
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2080 2081
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2082 2083
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2084 2085
	}
	if (flags & SLAB_STORE_USER) {
2086
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2087 2088
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2089
		 */
D
David Woodhouse 已提交
2090 2091 2092 2093
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2094
	}
2095 2096
#endif

A
Alexander Potapenko 已提交
2097 2098
	kasan_cache_create(cachep, &size, &flags);

2099 2100 2101 2102 2103 2104 2105 2106 2107
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2108 2109 2110 2111 2112 2113 2114
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2115
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2127 2128 2129
	}
#endif

2130 2131 2132 2133 2134
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2135
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2136
		flags |= CFLGS_OFF_SLAB;
2137
		goto done;
2138
	}
L
Linus Torvalds 已提交
2139

2140 2141
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2142

2143
	return -E2BIG;
L
Linus Torvalds 已提交
2144

2145 2146
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2147
	cachep->flags = flags;
2148
	cachep->allocflags = __GFP_COMP;
2149
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2150
		cachep->allocflags |= GFP_DMA;
2151
	cachep->size = size;
2152
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2153

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2167 2168
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2169
	}
L
Linus Torvalds 已提交
2170

2171 2172
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2173
		__kmem_cache_release(cachep);
2174
		return err;
2175
	}
L
Linus Torvalds 已提交
2176

2177
	return 0;
L
Linus Torvalds 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2191 2192 2193 2194 2195
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2196
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2197 2198 2199
{
#ifdef CONFIG_SMP
	check_irq_off();
2200
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2201 2202
#endif
}
2203

2204
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2205 2206 2207
{
#ifdef CONFIG_SMP
	check_irq_off();
2208
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2209 2210 2211
#endif
}

L
Linus Torvalds 已提交
2212 2213 2214
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2215
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2216
#define check_spinlock_acquired(x) do { } while(0)
2217
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2218 2219
#endif

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2236

L
Linus Torvalds 已提交
2237 2238
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2239
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2240
	struct array_cache *ac;
2241
	int node = numa_mem_id();
2242
	struct kmem_cache_node *n;
2243
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2244 2245

	check_irq_off();
2246
	ac = cpu_cache_get(cachep);
2247 2248
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2249
	free_block(cachep, ac->entry, ac->avail, node, &list);
2250
	spin_unlock(&n->list_lock);
2251
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2252 2253 2254
	ac->avail = 0;
}

2255
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2256
{
2257
	struct kmem_cache_node *n;
2258
	int node;
2259
	LIST_HEAD(list);
2260

2261
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2262
	check_irq_on();
2263 2264
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2265
			drain_alien_cache(cachep, n->alien);
2266

2267 2268 2269 2270 2271 2272 2273
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2274 2275
}

2276 2277 2278 2279 2280 2281 2282
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2283
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2284
{
2285 2286
	struct list_head *p;
	int nr_freed;
2287
	struct page *page;
L
Linus Torvalds 已提交
2288

2289
	nr_freed = 0;
2290
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2291

2292 2293 2294 2295
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2296 2297
			goto out;
		}
L
Linus Torvalds 已提交
2298

2299 2300
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2301 2302 2303 2304
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2305 2306
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2307
		slab_destroy(cache, page);
2308
		nr_freed++;
L
Linus Torvalds 已提交
2309
	}
2310 2311
out:
	return nr_freed;
L
Linus Torvalds 已提交
2312 2313
}

2314
int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2315
{
2316 2317
	int ret = 0;
	int node;
2318
	struct kmem_cache_node *n;
2319 2320 2321 2322

	drain_cpu_caches(cachep);

	check_irq_on();
2323
	for_each_kmem_cache_node(cachep, node, n) {
2324
		drain_freelist(cachep, n, INT_MAX);
2325

2326 2327
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2328 2329 2330 2331
	}
	return (ret ? 1 : 0);
}

2332
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2333 2334 2335 2336 2337
{
	return __kmem_cache_shrink(cachep, false);
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2338
{
2339
	int i;
2340
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2341

2342
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2343

2344
	/* NUMA: free the node structures */
2345 2346 2347 2348 2349
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2350
	}
L
Linus Torvalds 已提交
2351 2352
}

2353 2354
/*
 * Get the memory for a slab management obj.
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2366
 */
2367
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2368 2369
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2370
{
2371
	void *freelist;
2372
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2373

2374 2375 2376
	page->s_mem = addr + colour_off;
	page->active = 0;

2377 2378 2379
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2380
		/* Slab management obj is off-slab. */
2381
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2382
					      local_flags, nodeid);
2383
		if (!freelist)
L
Linus Torvalds 已提交
2384 2385
			return NULL;
	} else {
2386 2387 2388
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2389
	}
2390

2391
	return freelist;
L
Linus Torvalds 已提交
2392 2393
}

2394
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2395
{
2396
	return ((freelist_idx_t *)page->freelist)[idx];
2397 2398 2399
}

static inline void set_free_obj(struct page *page,
2400
					unsigned int idx, freelist_idx_t val)
2401
{
2402
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2403 2404
}

2405
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2406
{
2407
#if DEBUG
L
Linus Torvalds 已提交
2408 2409 2410
	int i;

	for (i = 0; i < cachep->num; i++) {
2411
		void *objp = index_to_obj(cachep, page, i);
2412

L
Linus Torvalds 已提交
2413 2414 2415 2416 2417 2418 2419 2420
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2421 2422 2423
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2424
		 */
A
Alexander Potapenko 已提交
2425 2426 2427
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2428
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2429 2430 2431
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2432 2433 2434

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2435
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2436
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2437
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2438
		}
2439 2440 2441 2442 2443
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2444
	}
L
Linus Torvalds 已提交
2445
#endif
2446 2447 2448 2449 2450 2451
}

static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2452
	void *objp;
2453 2454 2455

	cache_init_objs_debug(cachep, page);

2456 2457 2458 2459 2460
	if (OBJFREELIST_SLAB(cachep)) {
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2461 2462
	for (i = 0; i < cachep->num; i++) {
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2463 2464 2465 2466 2467 2468
		if (DEBUG == 0 && cachep->ctor) {
			objp = index_to_obj(cachep, page, i);
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2469

2470
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2471 2472 2473
	}
}

2474
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2475
{
2476 2477
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2478
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2479
		else
2480
			BUG_ON(cachep->allocflags & GFP_DMA);
2481
	}
L
Linus Torvalds 已提交
2482 2483
}

2484
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2485
{
2486
	void *objp;
2487

2488
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2489
	page->active++;
2490

2491 2492 2493 2494 2495
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2496 2497 2498
	return objp;
}

2499 2500
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2501
{
2502
	unsigned int objnr = obj_to_index(cachep, page, objp);
2503
#if DEBUG
J
Joonsoo Kim 已提交
2504
	unsigned int i;
2505 2506

	/* Verify double free bug */
2507
	for (i = page->active; i < cachep->num; i++) {
2508
		if (get_free_obj(page, i) == objnr) {
2509
			pr_err("slab: double free detected in cache '%s', objp %p\n",
J
Joe Perches 已提交
2510
			       cachep->name, objp);
2511 2512
			BUG();
		}
2513 2514
	}
#endif
2515
	page->active--;
2516 2517 2518
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2519
	set_free_obj(page, page->active, objnr);
2520 2521
}

2522 2523 2524
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2525
 * virtual address for kfree, ksize, and slab debugging.
2526
 */
2527
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2528
			   void *freelist)
L
Linus Torvalds 已提交
2529
{
2530
	page->slab_cache = cache;
2531
	page->freelist = freelist;
L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2538
static int cache_grow(struct kmem_cache *cachep,
2539
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2540
{
2541
	void *freelist;
P
Pekka Enberg 已提交
2542 2543
	size_t offset;
	gfp_t local_flags;
2544
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2545

A
Andrew Morton 已提交
2546 2547 2548
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2549
	 */
2550 2551 2552 2553
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
2554
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2555

2556
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2557
	check_irq_off();
2558
	n = get_node(cachep, nodeid);
2559
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2560 2561

	/* Get colour for the slab, and cal the next value. */
2562 2563 2564 2565 2566
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2567

2568
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2569

2570
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2581 2582 2583
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2584
	 */
2585 2586 2587
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2588 2589 2590
		goto failed;

	/* Get slab management. */
2591
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2592
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2593
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2594 2595
		goto opps1;

2596
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2597

A
Alexander Potapenko 已提交
2598
	kasan_poison_slab(page);
2599
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2600

2601
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2602 2603
		local_irq_disable();
	check_irq_off();
2604
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2605 2606

	/* Make slab active. */
2607
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2608
	STATS_INC_GROWN(cachep);
2609 2610
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2611
	return 1;
A
Andrew Morton 已提交
2612
opps1:
2613
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2614
failed:
2615
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2630
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2631 2632
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2633 2634 2635
	}
}

2636 2637
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2638
	unsigned long long redzone1, redzone2;
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2654 2655
	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
2656 2657
}

2658
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2659
				   unsigned long caller)
L
Linus Torvalds 已提交
2660 2661
{
	unsigned int objnr;
2662
	struct page *page;
L
Linus Torvalds 已提交
2663

2664 2665
	BUG_ON(virt_to_cache(objp) != cachep);

2666
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2667
	kfree_debugcheck(objp);
2668
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2669 2670

	if (cachep->flags & SLAB_RED_ZONE) {
2671
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2672 2673 2674
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2675 2676
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2677
		*dbg_userword(cachep, objp) = (void *)caller;
2678
	}
L
Linus Torvalds 已提交
2679

2680
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2681 2682

	BUG_ON(objnr >= cachep->num);
2683
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2684 2685 2686

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2687
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2712
static inline void fixup_slab_list(struct kmem_cache *cachep,
2713 2714
				struct kmem_cache_node *n, struct page *page,
				void **list)
2715 2716 2717
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2718
	if (page->active == cachep->num) {
2719
		list_add(&page->lru, &n->slabs_full);
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2733 2734 2735
		list_add(&page->lru, &n->slabs_partial);
}

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
					struct page *page, bool pfmemalloc)
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
	if (!page->active)
		list_add_tail(&page->lru, &n->slabs_free);
	else
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	list_for_each_entry(page, &n->slabs_free, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
{
	struct page *page;

	page = list_first_entry_or_null(&n->slabs_partial,
			struct page, lru);
	if (!page) {
		n->free_touched = 1;
		page = list_first_entry_or_null(&n->slabs_free,
				struct page, lru);
	}

2787 2788 2789
	if (sk_memalloc_socks())
		return get_valid_first_slab(n, page, pfmemalloc);

2790 2791 2792
	return page;
}

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2822 2823
{
	int batchcount;
2824
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2825
	struct array_cache *ac;
P
Pekka Enberg 已提交
2826
	int node;
2827
	void *list = NULL;
P
Pekka Enberg 已提交
2828

L
Linus Torvalds 已提交
2829
	check_irq_off();
2830
	node = numa_mem_id();
2831

2832
retry:
2833
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2834 2835
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2836 2837 2838 2839
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2840 2841 2842
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2843
	n = get_node(cachep, node);
2844

2845 2846
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2847

2848
	/* See if we can refill from the shared array */
2849 2850
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2851
		goto alloc_done;
2852
	}
2853

L
Linus Torvalds 已提交
2854
	while (batchcount > 0) {
2855
		struct page *page;
L
Linus Torvalds 已提交
2856
		/* Get slab alloc is to come from. */
2857
		page = get_first_slab(n, false);
2858 2859
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
2860 2861

		check_spinlock_acquired(cachep);
2862 2863 2864 2865 2866 2867

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2868
		BUG_ON(page->active >= cachep->num);
2869

2870
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2871 2872 2873 2874
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2875
			ac->entry[ac->avail++] = slab_get_obj(cachep, page);
L
Linus Torvalds 已提交
2876 2877
		}

2878
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
2879 2880
	}

A
Andrew Morton 已提交
2881
must_grow:
2882
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2883
alloc_done:
2884
	spin_unlock(&n->list_lock);
2885
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2886 2887 2888

	if (unlikely(!ac->avail)) {
		int x;
2889 2890 2891 2892 2893 2894 2895 2896 2897

		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

D
David Rientjes 已提交
2898
		x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2899

A
Andrew Morton 已提交
2900
		/* cache_grow can reenable interrupts, then ac could change. */
2901
		ac = cpu_cache_get(cachep);
2902
		node = numa_mem_id();
2903 2904

		/* no objects in sight? abort */
2905
		if (!x && ac->avail == 0)
L
Linus Torvalds 已提交
2906 2907
			return NULL;

A
Andrew Morton 已提交
2908
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2909 2910 2911
			goto retry;
	}
	ac->touched = 1;
2912

2913
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2914 2915
}

A
Andrew Morton 已提交
2916 2917
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2918
{
2919
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
2920 2921 2922 2923 2924 2925
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2926
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2927
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2928
{
P
Pekka Enberg 已提交
2929
	if (!objp)
L
Linus Torvalds 已提交
2930
		return objp;
P
Pekka Enberg 已提交
2931
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2932
		check_poison_obj(cachep, objp);
2933
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
2934 2935 2936
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2937
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2938 2939

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2940 2941
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
2942
			slab_error(cachep, "double free, or memory outside object was overwritten");
2943 2944 2945
			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2946 2947 2948 2949
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2950

2951
	objp += obj_offset(cachep);
2952
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2953
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2954 2955
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2956
		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
2957
		       objp, (int)ARCH_SLAB_MINALIGN);
2958
	}
L
Linus Torvalds 已提交
2959 2960 2961 2962 2963 2964
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2965
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2966
{
P
Pekka Enberg 已提交
2967
	void *objp;
L
Linus Torvalds 已提交
2968 2969
	struct array_cache *ac;

2970
	check_irq_off();
2971

2972
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2973 2974
	if (likely(ac->avail)) {
		ac->touched = 1;
2975
		objp = ac->entry[--ac->avail];
2976

2977 2978
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
2979
	}
2980 2981

	STATS_INC_ALLOCMISS(cachep);
2982
	objp = cache_alloc_refill(cachep, flags);
2983 2984 2985 2986 2987 2988 2989
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
2990 2991 2992 2993 2994
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
2995 2996
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
2997 2998 2999
	return objp;
}

3000
#ifdef CONFIG_NUMA
3001
/*
3002
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3003 3004 3005 3006 3007 3008 3009 3010
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3011
	if (in_interrupt() || (flags & __GFP_THISNODE))
3012
		return NULL;
3013
	nid_alloc = nid_here = numa_mem_id();
3014
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3015
		nid_alloc = cpuset_slab_spread_node();
3016
	else if (current->mempolicy)
3017
		nid_alloc = mempolicy_slab_node();
3018
	if (nid_alloc != nid_here)
3019
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3020 3021 3022
	return NULL;
}

3023 3024
/*
 * Fallback function if there was no memory available and no objects on a
3025
 * certain node and fall back is permitted. First we scan all the
3026
 * available node for available objects. If that fails then we
3027 3028 3029
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3030
 */
3031
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3032
{
3033 3034
	struct zonelist *zonelist;
	gfp_t local_flags;
3035
	struct zoneref *z;
3036 3037
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3038
	void *obj = NULL;
3039
	int nid;
3040
	unsigned int cpuset_mems_cookie;
3041 3042 3043 3044

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3045
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3046

3047
retry_cpuset:
3048
	cpuset_mems_cookie = read_mems_allowed_begin();
3049
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3050

3051 3052 3053 3054 3055
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3056 3057
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3058

3059
		if (cpuset_zone_allowed(zone, flags) &&
3060 3061
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3062
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3063
					gfp_exact_node(flags), nid);
3064 3065 3066
				if (obj)
					break;
		}
3067 3068
	}

3069
	if (!obj) {
3070 3071 3072 3073 3074 3075
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3076 3077
		struct page *page;

3078
		if (gfpflags_allow_blocking(local_flags))
3079 3080
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3081
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3082
		if (gfpflags_allow_blocking(local_flags))
3083
			local_irq_disable();
3084
		if (page) {
3085 3086 3087
			/*
			 * Insert into the appropriate per node queues
			 */
3088 3089
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3090
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3091
					gfp_exact_node(flags), nid);
3092 3093 3094 3095 3096 3097 3098 3099
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3100
				/* cache_grow already freed obj */
3101 3102 3103
				obj = NULL;
			}
		}
3104
	}
3105

3106
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3107
		goto retry_cpuset;
3108 3109 3110
	return obj;
}

3111 3112
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3113
 */
3114
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3115
				int nodeid)
3116
{
3117
	struct page *page;
3118
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3119
	void *obj;
3120
	void *list = NULL;
P
Pekka Enberg 已提交
3121 3122
	int x;

3123
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3124
	n = get_node(cachep, nodeid);
3125
	BUG_ON(!n);
P
Pekka Enberg 已提交
3126

A
Andrew Morton 已提交
3127
retry:
3128
	check_irq_off();
3129
	spin_lock(&n->list_lock);
3130
	page = get_first_slab(n, false);
3131 3132
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3133 3134 3135 3136 3137 3138 3139

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3140
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3141

3142
	obj = slab_get_obj(cachep, page);
3143
	n->free_objects--;
P
Pekka Enberg 已提交
3144

3145
	fixup_slab_list(cachep, n, page, &list);
3146

3147
	spin_unlock(&n->list_lock);
3148
	fixup_objfreelist_debug(cachep, &list);
P
Pekka Enberg 已提交
3149
	goto done;
3150

A
Andrew Morton 已提交
3151
must_grow:
3152
	spin_unlock(&n->list_lock);
D
David Rientjes 已提交
3153
	x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3154 3155
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3156

3157
	return fallback_alloc(cachep, flags);
3158

A
Andrew Morton 已提交
3159
done:
P
Pekka Enberg 已提交
3160
	return obj;
3161
}
3162 3163

static __always_inline void *
3164
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3165
		   unsigned long caller)
3166 3167 3168
{
	unsigned long save_flags;
	void *ptr;
3169
	int slab_node = numa_mem_id();
3170

3171
	flags &= gfp_allowed_mask;
3172 3173
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3174 3175
		return NULL;

3176 3177 3178
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3179
	if (nodeid == NUMA_NO_NODE)
3180
		nodeid = slab_node;
3181

3182
	if (unlikely(!get_node(cachep, nodeid))) {
3183 3184 3185 3186 3187
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3188
	if (nodeid == slab_node) {
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3205 3206
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3207

3208
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3209 3210 3211 3212 3213 3214 3215 3216
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3217
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3228 3229
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3245
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3246 3247 3248 3249
{
	unsigned long save_flags;
	void *objp;

3250
	flags &= gfp_allowed_mask;
3251 3252
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3253 3254
		return NULL;

3255 3256 3257 3258 3259 3260 3261
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3262 3263
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3264

3265
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3266 3267
	return objp;
}
3268 3269

/*
3270
 * Caller needs to acquire correct kmem_cache_node's list_lock
3271
 * @list: List of detached free slabs should be freed by caller
3272
 */
3273 3274
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3275 3276
{
	int i;
3277
	struct kmem_cache_node *n = get_node(cachep, node);
L
Linus Torvalds 已提交
3278 3279

	for (i = 0; i < nr_objects; i++) {
3280
		void *objp;
3281
		struct page *page;
L
Linus Torvalds 已提交
3282

3283 3284
		objp = objpp[i];

3285 3286
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3287
		check_spinlock_acquired_node(cachep, node);
3288
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3289
		STATS_DEC_ACTIVE(cachep);
3290
		n->free_objects++;
L
Linus Torvalds 已提交
3291 3292

		/* fixup slab chains */
3293
		if (page->active == 0) {
3294 3295
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3296
				list_add_tail(&page->lru, list);
L
Linus Torvalds 已提交
3297
			} else {
3298
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3299 3300 3301 3302 3303 3304
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3305
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3306 3307 3308 3309
		}
	}
}

3310
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3311 3312
{
	int batchcount;
3313
	struct kmem_cache_node *n;
3314
	int node = numa_mem_id();
3315
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3316 3317

	batchcount = ac->batchcount;
3318

L
Linus Torvalds 已提交
3319
	check_irq_off();
3320
	n = get_node(cachep, node);
3321 3322 3323
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3324
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3325 3326 3327
		if (max) {
			if (batchcount > max)
				batchcount = max;
3328
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3329
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3330 3331 3332 3333 3334
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3335
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3336
free_done:
L
Linus Torvalds 已提交
3337 3338 3339
#if STATS
	{
		int i = 0;
3340
		struct page *page;
L
Linus Torvalds 已提交
3341

3342
		list_for_each_entry(page, &n->slabs_free, lru) {
3343
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3344 3345 3346 3347 3348 3349

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3350
	spin_unlock(&n->list_lock);
3351
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3352
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3353
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3354 3355 3356
}

/*
A
Andrew Morton 已提交
3357 3358
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3359
 */
3360
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3361
				unsigned long caller)
L
Linus Torvalds 已提交
3362
{
3363
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3364

A
Alexander Potapenko 已提交
3365 3366
	kasan_slab_free(cachep, objp);

L
Linus Torvalds 已提交
3367
	check_irq_off();
3368
	kmemleak_free_recursive(objp, cachep->flags);
3369
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3370

3371
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3372

3373 3374 3375 3376 3377 3378 3379
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3380
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3381 3382
		return;

3383
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3384 3385 3386 3387 3388
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3389

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3410
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3411
{
3412
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3413

3414
	kasan_slab_alloc(cachep, ret, flags);
3415
	trace_kmem_cache_alloc(_RET_IP_, ret,
3416
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3417 3418

	return ret;
L
Linus Torvalds 已提交
3419 3420 3421
}
EXPORT_SYMBOL(kmem_cache_alloc);

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3432
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3433
			  void **p)
3434
{
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3453 3454
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3465
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3466 3467 3468
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3469 3470 3471
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3472
#ifdef CONFIG_TRACING
3473
void *
3474
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3475
{
3476 3477
	void *ret;

3478
	ret = slab_alloc(cachep, flags, _RET_IP_);
3479

3480
	kasan_kmalloc(cachep, ret, size, flags);
3481
	trace_kmalloc(_RET_IP_, ret,
3482
		      size, cachep->size, flags);
3483
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3484
}
3485
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3486 3487
#endif

L
Linus Torvalds 已提交
3488
#ifdef CONFIG_NUMA
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3500 3501
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3502
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3503

3504
	kasan_slab_alloc(cachep, ret, flags);
3505
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3506
				    cachep->object_size, cachep->size,
3507
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3508 3509

	return ret;
3510
}
L
Linus Torvalds 已提交
3511 3512
EXPORT_SYMBOL(kmem_cache_alloc_node);

3513
#ifdef CONFIG_TRACING
3514
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3515
				  gfp_t flags,
3516 3517
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3518
{
3519 3520
	void *ret;

3521
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3522 3523

	kasan_kmalloc(cachep, ret, size, flags);
3524
	trace_kmalloc_node(_RET_IP_, ret,
3525
			   size, cachep->size,
3526 3527
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3528
}
3529
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3530 3531
#endif

3532
static __always_inline void *
3533
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3534
{
3535
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3536
	void *ret;
3537

3538
	cachep = kmalloc_slab(size, flags);
3539 3540
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3541
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3542
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3543 3544

	return ret;
3545
}
3546 3547 3548

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3549
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3550
}
3551
EXPORT_SYMBOL(__kmalloc_node);
3552 3553

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3554
		int node, unsigned long caller)
3555
{
3556
	return __do_kmalloc_node(size, flags, node, caller);
3557 3558 3559
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3560 3561

/**
3562
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3563
 * @size: how many bytes of memory are required.
3564
 * @flags: the type of memory to allocate (see kmalloc).
3565
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3566
 */
3567
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3568
					  unsigned long caller)
L
Linus Torvalds 已提交
3569
{
3570
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3571
	void *ret;
L
Linus Torvalds 已提交
3572

3573
	cachep = kmalloc_slab(size, flags);
3574 3575
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3576
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3577

3578
	kasan_kmalloc(cachep, ret, size, flags);
3579
	trace_kmalloc(caller, ret,
3580
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3581 3582

	return ret;
3583 3584 3585 3586
}

void *__kmalloc(size_t size, gfp_t flags)
{
3587
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3588 3589 3590
}
EXPORT_SYMBOL(__kmalloc);

3591
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3592
{
3593
	return __do_kmalloc(size, flags, caller);
3594 3595
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3596

L
Linus Torvalds 已提交
3597 3598 3599 3600 3601 3602 3603 3604
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3605
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3606 3607
{
	unsigned long flags;
3608 3609 3610
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3611 3612

	local_irq_save(flags);
3613
	debug_check_no_locks_freed(objp, cachep->object_size);
3614
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3615
		debug_check_no_obj_freed(objp, cachep->object_size);
3616
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3617
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3618

3619
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3620 3621 3622
}
EXPORT_SYMBOL(kmem_cache_free);

3623 3624 3625 3626 3627 3628 3629 3630 3631
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3632 3633 3634 3635
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3649 3650 3651 3652
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3653 3654
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3655 3656 3657 3658 3659
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3660
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3661 3662
	unsigned long flags;

3663 3664
	trace_kfree(_RET_IP_, objp);

3665
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3666 3667 3668
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3669
	c = virt_to_cache(objp);
3670 3671 3672
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3673
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3674 3675 3676 3677
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3678
/*
3679
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3680
 */
3681
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3682 3683
{
	int node;
3684
	struct kmem_cache_node *n;
3685
	struct array_cache *new_shared;
J
Joonsoo Kim 已提交
3686
	struct alien_cache **new_alien = NULL;
3687

3688
	for_each_online_node(node) {
3689

3690 3691 3692 3693 3694
		if (use_alien_caches) {
			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
			if (!new_alien)
				goto fail;
		}
3695

3696 3697 3698
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3699
				cachep->shared*cachep->batchcount,
3700
					0xbaadf00d, gfp);
3701 3702 3703 3704
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3705
		}
3706

3707
		n = get_node(cachep, node);
3708 3709
		if (n) {
			struct array_cache *shared = n->shared;
3710
			LIST_HEAD(list);
3711

3712
			spin_lock_irq(&n->list_lock);
3713

3714
			if (shared)
3715
				free_block(cachep, shared->entry,
3716
						shared->avail, node, &list);
3717

3718 3719 3720
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3721 3722
				new_alien = NULL;
			}
3723
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3724
					cachep->batchcount + cachep->num;
3725
			spin_unlock_irq(&n->list_lock);
3726
			slabs_destroy(cachep, &list);
3727
			kfree(shared);
3728 3729 3730
			free_alien_cache(new_alien);
			continue;
		}
3731 3732
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3733 3734
			free_alien_cache(new_alien);
			kfree(new_shared);
3735
			goto fail;
3736
		}
3737

3738
		kmem_cache_node_init(n);
3739 3740
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3741 3742 3743
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3744
					cachep->batchcount + cachep->num;
3745
		cachep->node[node] = n;
3746
	}
3747
	return 0;
3748

A
Andrew Morton 已提交
3749
fail:
3750
	if (!cachep->list.next) {
3751 3752 3753
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3754 3755
			n = get_node(cachep, node);
			if (n) {
3756 3757 3758
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3759
				cachep->node[node] = NULL;
3760 3761 3762 3763
			}
			node--;
		}
	}
3764
	return -ENOMEM;
3765 3766
}

3767
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3768
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3769
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3770
{
3771 3772
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3773

3774 3775
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3776 3777
		return -ENOMEM;

3778 3779 3780
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3781

L
Linus Torvalds 已提交
3782 3783 3784
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3785
	cachep->shared = shared;
L
Linus Torvalds 已提交
3786

3787 3788 3789 3790
	if (!prev)
		goto alloc_node;

	for_each_online_cpu(cpu) {
3791
		LIST_HEAD(list);
3792 3793
		int node;
		struct kmem_cache_node *n;
3794
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3795

3796
		node = cpu_to_mem(cpu);
3797 3798
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3799
		free_block(cachep, ac->entry, ac->avail, node, &list);
3800
		spin_unlock_irq(&n->list_lock);
3801
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3802
	}
3803 3804 3805
	free_percpu(prev);

alloc_node:
3806
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3807 3808
}

G
Glauber Costa 已提交
3809 3810 3811 3812
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3813
	struct kmem_cache *c;
G
Glauber Costa 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3823 3824 3825 3826
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3827 3828 3829 3830 3831
	}

	return ret;
}

3832
/* Called with slab_mutex held always */
3833
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3834 3835
{
	int err;
G
Glauber Costa 已提交
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3846

G
Glauber Costa 已提交
3847 3848
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3849 3850
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3851 3852
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3853
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3854 3855 3856 3857
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3858
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3859
		limit = 1;
3860
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3861
		limit = 8;
3862
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3863
		limit = 24;
3864
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3865 3866 3867 3868
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3869 3870
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3871 3872 3873 3874 3875 3876 3877 3878
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3879
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3880 3881 3882
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3883 3884 3885
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3886 3887 3888 3889
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3890 3891 3892
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3893
	if (err)
3894
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
3895
		       cachep->name, -err);
3896
	return err;
L
Linus Torvalds 已提交
3897 3898
}

3899
/*
3900 3901
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3902
 * if drain_array() is used on the shared array.
3903
 */
3904
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3905
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
3906
{
3907
	LIST_HEAD(list);
3908 3909 3910

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
3911

3912 3913
	if (!ac || !ac->avail)
		return;
3914 3915

	if (ac->touched) {
L
Linus Torvalds 已提交
3916
		ac->touched = 0;
3917
		return;
L
Linus Torvalds 已提交
3918
	}
3919 3920 3921 3922 3923 3924

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3925 3926 3927 3928
}

/**
 * cache_reap - Reclaim memory from caches.
3929
 * @w: work descriptor
L
Linus Torvalds 已提交
3930 3931 3932 3933 3934 3935
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3936 3937
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3938
 */
3939
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3940
{
3941
	struct kmem_cache *searchp;
3942
	struct kmem_cache_node *n;
3943
	int node = numa_mem_id();
3944
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3945

3946
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3947
		/* Give up. Setup the next iteration. */
3948
		goto out;
L
Linus Torvalds 已提交
3949

3950
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3951 3952
		check_irq_on();

3953
		/*
3954
		 * We only take the node lock if absolutely necessary and we
3955 3956 3957
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3958
		n = get_node(searchp, node);
3959

3960
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3961

3962
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
3963

3964 3965 3966 3967
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3968
		if (time_after(n->next_reap, jiffies))
3969
			goto next;
L
Linus Torvalds 已提交
3970

3971
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
3972

3973
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
3974

3975 3976
		if (n->free_touched)
			n->free_touched = 0;
3977 3978
		else {
			int freed;
L
Linus Torvalds 已提交
3979

3980
			freed = drain_freelist(searchp, n, (n->free_limit +
3981 3982 3983
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3984
next:
L
Linus Torvalds 已提交
3985 3986 3987
		cond_resched();
	}
	check_irq_on();
3988
	mutex_unlock(&slab_mutex);
3989
	next_reap_node();
3990
out:
A
Andrew Morton 已提交
3991
	/* Set up the next iteration */
3992
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
3993 3994
}

3995
#ifdef CONFIG_SLABINFO
3996
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
3997
{
3998
	struct page *page;
P
Pekka Enberg 已提交
3999 4000 4001 4002
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4003
	const char *name;
L
Linus Torvalds 已提交
4004
	char *error = NULL;
4005
	int node;
4006
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4007 4008 4009

	active_objs = 0;
	num_slabs = 0;
4010
	for_each_kmem_cache_node(cachep, node, n) {
4011

4012
		check_irq_on();
4013
		spin_lock_irq(&n->list_lock);
4014

4015 4016
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
4017 4018 4019 4020
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4021 4022
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4023
				error = "slabs_partial accounting error";
4024
			if (!page->active && !error)
4025
				error = "slabs_partial accounting error";
4026
			active_objs += page->active;
4027 4028
			active_slabs++;
		}
4029 4030
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4031
				error = "slabs_free accounting error";
4032 4033
			num_slabs++;
		}
4034 4035 4036
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4037

4038
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4039
	}
P
Pekka Enberg 已提交
4040 4041
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4042
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4043 4044
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4045
	name = cachep->name;
L
Linus Torvalds 已提交
4046
	if (error)
4047
		pr_err("slab: cache %s error: %s\n", name, error);
L
Linus Torvalds 已提交
4048

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4063
#if STATS
4064
	{			/* node stats */
L
Linus Torvalds 已提交
4065 4066 4067 4068 4069 4070 4071
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4072
		unsigned long node_frees = cachep->node_frees;
4073
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4074

J
Joe Perches 已提交
4075
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4076 4077 4078
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4079 4080 4081 4082 4083 4084 4085 4086 4087
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4088
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4101
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4102
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4103
{
P
Pekka Enberg 已提交
4104
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4105
	int limit, batchcount, shared, res;
4106
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4107

L
Linus Torvalds 已提交
4108 4109 4110 4111
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4112
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4123
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4124
	res = -EINVAL;
4125
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4126
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4127 4128
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4129
				res = 0;
L
Linus Torvalds 已提交
4130
			} else {
4131
				res = do_tune_cpucache(cachep, limit,
4132 4133
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4134 4135 4136 4137
			}
			break;
		}
	}
4138
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4139 4140 4141 4142
	if (res >= 0)
		res = count;
	return res;
}
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4176 4177
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4178 4179
{
	void *p;
4180 4181
	int i, j;
	unsigned long v;
4182

4183 4184
	if (n[0] == n[1])
		return;
4185
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4196
			continue;
4197

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4208 4209 4210 4211 4212 4213 4214 4215
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4216
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4217

4218
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4219
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4220
		if (modname[0])
4221 4222 4223 4224 4225 4226 4227 4228 4229
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4230
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4231
	struct page *page;
4232
	struct kmem_cache_node *n;
4233
	const char *name;
4234
	unsigned long *x = m->private;
4235 4236 4237 4238 4239 4240 4241 4242
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4254

4255
		for_each_kmem_cache_node(cachep, node, n) {
4256

4257 4258
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4259

4260 4261 4262 4263 4264 4265 4266
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4267 4268

	name = cachep->name;
4269
	if (x[0] == x[1]) {
4270
		/* Increase the buffer size */
4271
		mutex_unlock(&slab_mutex);
4272
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4273 4274
		if (!m->private) {
			/* Too bad, we are really out */
4275
			m->private = x;
4276
			mutex_lock(&slab_mutex);
4277 4278
			return -ENOMEM;
		}
4279 4280
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4281
		mutex_lock(&slab_mutex);
4282 4283 4284 4285
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4286 4287 4288
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4289 4290
		seq_putc(m, '\n');
	}
4291

4292 4293 4294
	return 0;
}

4295
static const struct seq_operations slabstats_op = {
4296
	.start = slab_start,
4297 4298
	.next = slab_next,
	.stop = slab_stop,
4299 4300
	.show = leaks_show,
};
4301 4302 4303

static int slabstats_open(struct inode *inode, struct file *file)
{
4304 4305 4306 4307 4308 4309 4310 4311 4312
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4327
#endif
4328 4329 4330
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4331 4332
#endif

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4345
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4346
{
A
Alexander Potapenko 已提交
4347 4348
	size_t size;

4349 4350
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4351
		return 0;
L
Linus Torvalds 已提交
4352

A
Alexander Potapenko 已提交
4353 4354 4355 4356
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4357
	kasan_krealloc(objp, size, GFP_NOWAIT);
A
Alexander Potapenko 已提交
4358 4359

	return size;
L
Linus Torvalds 已提交
4360
}
K
Kirill A. Shutemov 已提交
4361
EXPORT_SYMBOL(ksize);