slab.c 111.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
188
	void *entry[];	/*
A
Andrew Morton 已提交
189 190 191 192
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
193 194
};

J
Joonsoo Kim 已提交
195 196 197 198 199
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

200 201 202
/*
 * Need this for bootstrapping a per node allocator.
 */
203
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205
#define	CACHE_CACHE 0
206
#define	SIZE_NODE (MAX_NUMNODES)
207

208
static int drain_freelist(struct kmem_cache *cache,
209
			struct kmem_cache_node *n, int tofree);
210
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 212
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214
static void cache_reap(struct work_struct *unused);
215

216 217 218 219 220
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
221 222
static int slab_early_init = 1;

223
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
224

225
static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 227 228 229 230 231
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
232
	parent->colour_next = 0;
233 234 235 236 237
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
238 239 240
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
241
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
242 243
	} while (0)

A
Andrew Morton 已提交
244 245
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
246 247 248 249
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
250

251
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
L
Linus Torvalds 已提交
252
#define CFLGS_OFF_SLAB		(0x80000000UL)
253
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
254 255 256
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
257 258 259
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
260
 *
A
Adrian Bunk 已提交
261
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
262 263
 * which could lock up otherwise freeable slabs.
 */
264 265
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
266 267 268 269 270 271

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
272
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
273 274 275 276 277
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
278 279
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
280
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
281
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
282 283 284 285 286
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
287 288 289 290 291 292 293 294 295
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
296
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
297 298 299
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
300
#define	STATS_INC_NODEFREES(x)	do { } while (0)
301
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
302
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
303 304 305 306 307 308 309 310
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
311 312
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
313
 * 0		: objp
314
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
315 316
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
317
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
318
 * 		redzone word.
319
 * cachep->obj_offset: The real object.
320 321
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
322
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
323
 */
324
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
325
{
326
	return cachep->obj_offset;
L
Linus Torvalds 已提交
327 328
}

329
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
330 331
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
332 333
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
334 335
}

336
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
337 338 339
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
340
		return (unsigned long long *)(objp + cachep->size -
341
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
342
					      REDZONE_ALIGN);
343
	return (unsigned long long *) (objp + cachep->size -
344
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
345 346
}

347
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
348 349
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
350
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
351 352 353 354
}

#else

355
#define obj_offset(x)			0
356 357
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
358 359 360 361
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

362 363
#ifdef CONFIG_DEBUG_SLAB_LEAK

364
static inline bool is_store_user_clean(struct kmem_cache *cachep)
365
{
366 367
	return atomic_read(&cachep->store_user_clean) == 1;
}
368

369 370 371 372
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
373

374 375 376 377
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
378 379 380
}

#else
381
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
382 383 384

#endif

L
Linus Torvalds 已提交
385
/*
386 387
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
388
 */
389 390 391
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
392
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
393

394 395
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
396
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
397
	return page->slab_cache;
398 399
}

400
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
401 402
				 unsigned int idx)
{
403
	return page->s_mem + cache->size * idx;
404 405
}

406
/*
407 408 409
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
410 411 412
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
413
					const struct page *page, void *obj)
414
{
415
	u32 offset = (obj - page->s_mem);
416
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
417 418
}

419
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
420
/* internal cache of cache description objs */
421
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
422 423 424
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
425
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
426
	.name = "kmem_cache",
L
Linus Torvalds 已提交
427 428
};

429
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
430

431
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
432
{
433
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
434 435
}

A
Andrew Morton 已提交
436 437 438
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
439 440
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
441
{
442
	unsigned int num;
443
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
444

445 446 447 448 449 450
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
451 452 453 454 455
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
456 457 458 459 460 461
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
462
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
463
		num = slab_size / buffer_size;
464
		*left_over = slab_size % buffer_size;
465
	} else {
466
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
467 468
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
469
	}
470 471

	return num;
L
Linus Torvalds 已提交
472 473
}

474
#if DEBUG
475
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
476

A
Andrew Morton 已提交
477 478
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
479
{
480
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
481
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
482
	dump_stack();
483
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
484
}
485
#endif
L
Linus Torvalds 已提交
486

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

503 504 505 506 507 508 509 510 511 512 513
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

514 515 516 517 518 519 520
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
521
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
522 523 524

static void init_reap_node(int cpu)
{
525 526
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
527 528 529 530
}

static void next_reap_node(void)
{
531
	int node = __this_cpu_read(slab_reap_node);
532

533
	node = next_node_in(node, node_online_map);
534
	__this_cpu_write(slab_reap_node, node);
535 536 537 538 539 540 541
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
542 543 544 545 546 547 548
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
549
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
550
{
551
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
552 553 554 555 556 557

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
558
	if (keventd_up() && reap_work->work.func == NULL) {
559
		init_reap_node(cpu);
560
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
561 562
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
563 564 565
	}
}

566
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
567
{
568 569
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
570
	 * However, when such objects are allocated or transferred to another
571 572 573 574
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
575 576 577 578 579 580
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
581
	}
582 583 584 585 586
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
587
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
588 589 590 591 592
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
593 594
}

595 596
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
597
{
598 599 600
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
601

602 603
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
604

605 606 607
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
608

609
	slabs_destroy(cachep, &list);
610 611
}

612 613 614 615 616 617 618 619 620 621
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
622
	int nr = min3(from->avail, max, to->limit - to->avail);
623 624 625 626 627 628 629 630 631 632 633 634

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

635 636 637
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
638
#define reap_alien(cachep, n) do { } while (0)
639

J
Joonsoo Kim 已提交
640 641
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
642
{
643
	return NULL;
644 645
}

J
Joonsoo Kim 已提交
646
static inline void free_alien_cache(struct alien_cache **ac_ptr)
647 648 649 650 651 652 653 654 655 656 657 658 659 660
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

661
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
662 663 664 665 666
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
667 668
static inline gfp_t gfp_exact_node(gfp_t flags)
{
669
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
670 671
}

672 673
#else	/* CONFIG_NUMA */

674
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
675
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
676

J
Joonsoo Kim 已提交
677 678 679
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
680
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
681 682 683 684
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
685
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
686 687 688 689
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
690
{
J
Joonsoo Kim 已提交
691
	struct alien_cache **alc_ptr;
692
	size_t memsize = sizeof(void *) * nr_node_ids;
693 694 695 696
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
710 711
		}
	}
J
Joonsoo Kim 已提交
712
	return alc_ptr;
713 714
}

J
Joonsoo Kim 已提交
715
static void free_alien_cache(struct alien_cache **alc_ptr)
716 717 718
{
	int i;

J
Joonsoo Kim 已提交
719
	if (!alc_ptr)
720 721
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
722 723
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
724 725
}

726
static void __drain_alien_cache(struct kmem_cache *cachep,
727 728
				struct array_cache *ac, int node,
				struct list_head *list)
729
{
730
	struct kmem_cache_node *n = get_node(cachep, node);
731 732

	if (ac->avail) {
733
		spin_lock(&n->list_lock);
734 735 736 737 738
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
739 740
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
741

742
		free_block(cachep, ac->entry, ac->avail, node, list);
743
		ac->avail = 0;
744
		spin_unlock(&n->list_lock);
745 746 747
	}
}

748 749 750
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
751
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
752
{
753
	int node = __this_cpu_read(slab_reap_node);
754

755
	if (n->alien) {
J
Joonsoo Kim 已提交
756 757 758 759 760
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
761
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
762 763 764
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
765
				spin_unlock_irq(&alc->lock);
766
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
767
			}
768 769 770 771
		}
	}
}

A
Andrew Morton 已提交
772
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
773
				struct alien_cache **alien)
774
{
P
Pekka Enberg 已提交
775
	int i = 0;
J
Joonsoo Kim 已提交
776
	struct alien_cache *alc;
777 778 779 780
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
781 782
		alc = alien[i];
		if (alc) {
783 784
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
785
			ac = &alc->ac;
786
			spin_lock_irqsave(&alc->lock, flags);
787
			__drain_alien_cache(cachep, ac, i, &list);
788
			spin_unlock_irqrestore(&alc->lock, flags);
789
			slabs_destroy(cachep, &list);
790 791 792
		}
	}
}
793

794 795
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
796
{
797
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
798 799
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
800
	LIST_HEAD(list);
P
Pekka Enberg 已提交
801

802
	n = get_node(cachep, node);
803
	STATS_INC_NODEFREES(cachep);
804 805
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
806
		ac = &alien->ac;
807
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
808
		if (unlikely(ac->avail == ac->limit)) {
809
			STATS_INC_ACOVERFLOW(cachep);
810
			__drain_alien_cache(cachep, ac, page_node, &list);
811
		}
812
		ac->entry[ac->avail++] = objp;
813
		spin_unlock(&alien->lock);
814
		slabs_destroy(cachep, &list);
815
	} else {
816
		n = get_node(cachep, page_node);
817
		spin_lock(&n->list_lock);
818
		free_block(cachep, &objp, 1, page_node, &list);
819
		spin_unlock(&n->list_lock);
820
		slabs_destroy(cachep, &list);
821 822 823
	}
	return 1;
}
824 825 826 827 828 829 830 831 832 833 834 835 836 837

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
838 839

/*
840 841
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
842 843 844
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
845
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
846
}
847 848
#endif

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

889
/*
890
 * Allocates and initializes node for a node on each slab cache, used for
891
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
892
 * will be allocated off-node since memory is not yet online for the new node.
893
 * When hotplugging memory or a cpu, existing node are not replaced if
894 895
 * already in use.
 *
896
 * Must hold slab_mutex.
897
 */
898
static int init_cache_node_node(int node)
899
{
900
	int ret;
901 902
	struct kmem_cache *cachep;

903
	list_for_each_entry(cachep, &slab_caches, list) {
904 905 906
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
907
	}
908

909 910 911
	return 0;
}

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

961 962 963 964 965 966 967 968 969
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
	if (force_change)
		synchronize_sched();

970 971 972 973 974 975 976 977
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

978
static void cpuup_canceled(long cpu)
979 980
{
	struct kmem_cache *cachep;
981
	struct kmem_cache_node *n = NULL;
982
	int node = cpu_to_mem(cpu);
983
	const struct cpumask *mask = cpumask_of_node(node);
984

985
	list_for_each_entry(cachep, &slab_caches, list) {
986 987
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
988
		struct alien_cache **alien;
989
		LIST_HEAD(list);
990

991
		n = get_node(cachep, node);
992
		if (!n)
993
			continue;
994

995
		spin_lock_irq(&n->list_lock);
996

997 998
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
999 1000 1001 1002

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1003
			free_block(cachep, nc->entry, nc->avail, node, &list);
1004 1005
			nc->avail = 0;
		}
1006

1007
		if (!cpumask_empty(mask)) {
1008
			spin_unlock_irq(&n->list_lock);
1009
			goto free_slab;
1010 1011
		}

1012
		shared = n->shared;
1013 1014
		if (shared) {
			free_block(cachep, shared->entry,
1015
				   shared->avail, node, &list);
1016
			n->shared = NULL;
1017 1018
		}

1019 1020
		alien = n->alien;
		n->alien = NULL;
1021

1022
		spin_unlock_irq(&n->list_lock);
1023 1024 1025 1026 1027 1028

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1029 1030

free_slab:
1031
		slabs_destroy(cachep, &list);
1032 1033 1034 1035 1036 1037
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1038
	list_for_each_entry(cachep, &slab_caches, list) {
1039
		n = get_node(cachep, node);
1040
		if (!n)
1041
			continue;
1042
		drain_freelist(cachep, n, INT_MAX);
1043 1044 1045
	}
}

1046
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1047
{
1048
	struct kmem_cache *cachep;
1049
	int node = cpu_to_mem(cpu);
1050
	int err;
L
Linus Torvalds 已提交
1051

1052 1053 1054 1055
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1056
	 * kmem_cache_node and not this cpu's kmem_cache_node
1057
	 */
1058
	err = init_cache_node_node(node);
1059 1060
	if (err < 0)
		goto bad;
1061 1062 1063 1064 1065

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1066
	list_for_each_entry(cachep, &slab_caches, list) {
1067 1068 1069
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1070
	}
1071

1072 1073
	return 0;
bad:
1074
	cpuup_canceled(cpu);
1075 1076 1077
	return -ENOMEM;
}

1078
static int cpuup_callback(struct notifier_block *nfb,
1079 1080 1081 1082 1083 1084 1085 1086
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1087
		mutex_lock(&slab_mutex);
1088
		err = cpuup_prepare(cpu);
1089
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1090 1091
		break;
	case CPU_ONLINE:
1092
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1093 1094 1095
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1096
  	case CPU_DOWN_PREPARE:
1097
  	case CPU_DOWN_PREPARE_FROZEN:
1098
		/*
1099
		 * Shutdown cache reaper. Note that the slab_mutex is
1100 1101 1102 1103
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1104
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1105
		/* Now the cache_reaper is guaranteed to be not running. */
1106
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1107 1108
  		break;
  	case CPU_DOWN_FAILED:
1109
  	case CPU_DOWN_FAILED_FROZEN:
1110 1111
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1112
	case CPU_DEAD:
1113
	case CPU_DEAD_FROZEN:
1114 1115
		/*
		 * Even if all the cpus of a node are down, we don't free the
1116
		 * kmem_cache_node of any cache. This to avoid a race between
1117
		 * cpu_down, and a kmalloc allocation from another cpu for
1118
		 * memory from the node of the cpu going down.  The node
1119 1120 1121
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1122
		/* fall through */
1123
#endif
L
Linus Torvalds 已提交
1124
	case CPU_UP_CANCELED:
1125
	case CPU_UP_CANCELED_FROZEN:
1126
		mutex_lock(&slab_mutex);
1127
		cpuup_canceled(cpu);
1128
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1129 1130
		break;
	}
1131
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1132 1133
}

1134
static struct notifier_block cpucache_notifier = {
1135 1136
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1137

1138 1139 1140 1141 1142 1143
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1144
 * Must hold slab_mutex.
1145
 */
1146
static int __meminit drain_cache_node_node(int node)
1147 1148 1149 1150
{
	struct kmem_cache *cachep;
	int ret = 0;

1151
	list_for_each_entry(cachep, &slab_caches, list) {
1152
		struct kmem_cache_node *n;
1153

1154
		n = get_node(cachep, node);
1155
		if (!n)
1156 1157
			continue;

1158
		drain_freelist(cachep, n, INT_MAX);
1159

1160 1161
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1182
		mutex_lock(&slab_mutex);
1183
		ret = init_cache_node_node(nid);
1184
		mutex_unlock(&slab_mutex);
1185 1186
		break;
	case MEM_GOING_OFFLINE:
1187
		mutex_lock(&slab_mutex);
1188
		ret = drain_cache_node_node(nid);
1189
		mutex_unlock(&slab_mutex);
1190 1191 1192 1193 1194 1195 1196 1197
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1198
	return notifier_from_errno(ret);
1199 1200 1201
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1202
/*
1203
 * swap the static kmem_cache_node with kmalloced memory
1204
 */
1205
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1206
				int nodeid)
1207
{
1208
	struct kmem_cache_node *ptr;
1209

1210
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1211 1212
	BUG_ON(!ptr);

1213
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1214 1215 1216 1217 1218
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1219
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1220
	cachep->node[nodeid] = ptr;
1221 1222
}

1223
/*
1224 1225
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1226
 */
1227
static void __init set_up_node(struct kmem_cache *cachep, int index)
1228 1229 1230 1231
{
	int node;

	for_each_online_node(node) {
1232
		cachep->node[node] = &init_kmem_cache_node[index + node];
1233
		cachep->node[node]->next_reap = jiffies +
1234 1235
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1236 1237 1238
	}
}

A
Andrew Morton 已提交
1239 1240 1241
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1242 1243 1244
 */
void __init kmem_cache_init(void)
{
1245 1246
	int i;

1247 1248
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1249 1250
	kmem_cache = &kmem_cache_boot;

1251
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1252 1253
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1254
	for (i = 0; i < NUM_INIT_LISTS; i++)
1255
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1256

L
Linus Torvalds 已提交
1257 1258
	/*
	 * Fragmentation resistance on low memory - only use bigger
1259 1260
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1261
	 */
1262
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1263
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1264 1265 1266

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1267 1268 1269
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1270
	 *    Initially an __init data area is used for the head array and the
1271
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1272
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1273
	 * 2) Create the first kmalloc cache.
1274
	 *    The struct kmem_cache for the new cache is allocated normally.
1275 1276 1277
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1278
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1279
	 *    kmalloc cache with kmalloc allocated arrays.
1280
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1281 1282
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1283 1284
	 */

1285
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1286

E
Eric Dumazet 已提交
1287
	/*
1288
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1289
	 */
1290
	create_boot_cache(kmem_cache, "kmem_cache",
1291
		offsetof(struct kmem_cache, node) +
1292
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1293 1294
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1295
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1296

A
Andrew Morton 已提交
1297
	/*
1298 1299
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1300
	 */
1301
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1302
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1303
	slab_state = PARTIAL_NODE;
1304
	setup_kmalloc_cache_index_table();
1305

1306 1307
	slab_early_init = 0;

1308
	/* 5) Replace the bootstrap kmem_cache_node */
1309
	{
P
Pekka Enberg 已提交
1310 1311
		int nid;

1312
		for_each_online_node(nid) {
1313
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1314

1315
			init_list(kmalloc_caches[INDEX_NODE],
1316
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1317 1318
		}
	}
L
Linus Torvalds 已提交
1319

1320
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1321 1322 1323 1324 1325 1326
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1327
	slab_state = UP;
P
Peter Zijlstra 已提交
1328

1329
	/* 6) resize the head arrays to their final sizes */
1330 1331
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1332 1333
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1334
	mutex_unlock(&slab_mutex);
1335

1336 1337 1338
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1339 1340 1341
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1342 1343 1344
	 */
	register_cpu_notifier(&cpucache_notifier);

1345 1346 1347
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1348
	 * node.
1349 1350 1351 1352
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1353 1354 1355
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1356 1357 1358 1359 1360 1361 1362
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1363 1364
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1365
	 */
1366
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1367
		start_cpu_timer(cpu);
1368 1369

	/* Done! */
1370
	slab_state = FULL;
L
Linus Torvalds 已提交
1371 1372 1373 1374
	return 0;
}
__initcall(cpucache_init);

1375 1376 1377
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1378
#if DEBUG
1379
	struct kmem_cache_node *n;
1380
	struct page *page;
1381 1382
	unsigned long flags;
	int node;
1383 1384 1385 1386 1387
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1388

1389 1390 1391
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1392
		cachep->name, cachep->size, cachep->gfporder);
1393

1394
	for_each_kmem_cache_node(cachep, node, n) {
1395 1396 1397
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1398
		spin_lock_irqsave(&n->list_lock, flags);
1399
		list_for_each_entry(page, &n->slabs_full, lru) {
1400 1401 1402
			active_objs += cachep->num;
			active_slabs++;
		}
1403 1404
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1405 1406
			active_slabs++;
		}
1407
		list_for_each_entry(page, &n->slabs_free, lru)
1408 1409
			num_slabs++;

1410 1411
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1412 1413 1414

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
1415
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1416 1417 1418
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1419
#endif
1420 1421
}

L
Linus Torvalds 已提交
1422
/*
W
Wang Sheng-Hui 已提交
1423 1424
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1430 1431
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1432 1433
{
	struct page *page;
1434
	int nr_pages;
1435

1436
	flags |= cachep->allocflags;
1437 1438
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1439

1440
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1441
	if (!page) {
1442
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1443
		return NULL;
1444
	}
L
Linus Torvalds 已提交
1445

1446 1447 1448 1449 1450
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1451
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1452
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1453 1454 1455 1456 1457
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1458

1459
	__SetPageSlab(page);
1460 1461
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1462
		SetPageSlabPfmemalloc(page);
1463

1464 1465 1466 1467 1468 1469 1470 1471
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1472

1473
	return page;
L
Linus Torvalds 已提交
1474 1475 1476 1477 1478
}

/*
 * Interface to system's page release.
 */
1479
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1480
{
1481 1482
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1483

1484
	kmemcheck_free_shadow(page, order);
P
Pekka Enberg 已提交
1485

1486 1487 1488 1489 1490 1491
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1492

1493
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1494
	__ClearPageSlabPfmemalloc(page);
1495
	__ClearPageSlab(page);
1496 1497
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1498

L
Linus Torvalds 已提交
1499 1500
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1501 1502
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1503 1504 1505 1506
}

static void kmem_rcu_free(struct rcu_head *head)
{
1507 1508
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1509

1510 1511 1512 1513
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1514 1515 1516
}

#if DEBUG
1517 1518 1519 1520 1521 1522 1523 1524
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1525 1526

#ifdef CONFIG_DEBUG_PAGEALLOC
1527
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1528
			    unsigned long caller)
L
Linus Torvalds 已提交
1529
{
1530
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1531

1532
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1533

P
Pekka Enberg 已提交
1534
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1535 1536
		return;

P
Pekka Enberg 已提交
1537 1538 1539 1540
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1541 1542 1543 1544 1545 1546 1547
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1548
				*addr++ = svalue;
L
Linus Torvalds 已提交
1549 1550 1551 1552 1553 1554 1555
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1556
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1557
}
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1575 1576
#endif

1577
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1578
{
1579
	int size = cachep->object_size;
1580
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1581 1582

	memset(addr, val, size);
P
Pekka Enberg 已提交
1583
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1584 1585 1586 1587 1588
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1589 1590 1591
	unsigned char error = 0;
	int bad_count = 0;

1592
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1593 1594 1595 1596 1597 1598
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1599 1600
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1601 1602 1603 1604

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1605
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1606
#ifdef CONFIG_X86
1607
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1608
#else
1609
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1610 1611 1612
#endif
		}
	}
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617
}
#endif

#if DEBUG

1618
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1619 1620 1621 1622 1623
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1624 1625 1626
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1627 1628 1629
	}

	if (cachep->flags & SLAB_STORE_USER) {
1630
		pr_err("Last user: [<%p>](%pSR)\n",
J
Joe Perches 已提交
1631 1632
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1633
	}
1634
	realobj = (char *)objp + obj_offset(cachep);
1635
	size = cachep->object_size;
P
Pekka Enberg 已提交
1636
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1637 1638
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1639 1640
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1641 1642 1643 1644
		dump_line(realobj, i, limit);
	}
}

1645
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1646 1647 1648 1649 1650
{
	char *realobj;
	int size, i;
	int lines = 0;

1651 1652 1653
	if (is_debug_pagealloc_cache(cachep))
		return;

1654
	realobj = (char *)objp + obj_offset(cachep);
1655
	size = cachep->object_size;
L
Linus Torvalds 已提交
1656

P
Pekka Enberg 已提交
1657
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1658
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1659
		if (i == size - 1)
L
Linus Torvalds 已提交
1660 1661 1662 1663 1664 1665
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1666 1667 1668
				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1669 1670 1671
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1672
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1673
			limit = 16;
P
Pekka Enberg 已提交
1674 1675
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1688
		struct page *page = virt_to_head_page(objp);
1689
		unsigned int objnr;
L
Linus Torvalds 已提交
1690

1691
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1692
		if (objnr) {
1693
			objp = index_to_obj(cachep, page, objnr - 1);
1694
			realobj = (char *)objp + obj_offset(cachep);
1695
			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1696 1697
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1698
		if (objnr + 1 < cachep->num) {
1699
			objp = index_to_obj(cachep, page, objnr + 1);
1700
			realobj = (char *)objp + obj_offset(cachep);
1701
			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1702 1703 1704 1705 1706 1707
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1708
#if DEBUG
1709 1710
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1711 1712
{
	int i;
1713 1714 1715 1716 1717 1718

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1719
	for (i = 0; i < cachep->num; i++) {
1720
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1721 1722 1723

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1724
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1725 1726 1727
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1728
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1729
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1730
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1731 1732
		}
	}
1733
}
L
Linus Torvalds 已提交
1734
#else
1735 1736
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1737 1738
{
}
L
Linus Torvalds 已提交
1739 1740
#endif

1741 1742 1743
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1744
 * @page: page pointer being destroyed
1745
 *
W
Wang Sheng-Hui 已提交
1746 1747 1748
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1749
 */
1750
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1751
{
1752
	void *freelist;
1753

1754 1755
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1756 1757 1758
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1759
		kmem_freepages(cachep, page);
1760 1761

	/*
1762
	 * From now on, we don't use freelist
1763 1764 1765
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1766
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1767 1768
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1779
/**
1780 1781 1782 1783 1784 1785
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1786 1787 1788 1789 1790
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1791
static size_t calculate_slab_order(struct kmem_cache *cachep,
1792
				size_t size, unsigned long flags)
1793 1794
{
	size_t left_over = 0;
1795
	int gfporder;
1796

1797
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1798 1799 1800
		unsigned int num;
		size_t remainder;

1801
		num = cache_estimate(gfporder, size, flags, &remainder);
1802 1803
		if (!num)
			continue;
1804

1805 1806 1807 1808
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1809
		if (flags & CFLGS_OFF_SLAB) {
1810 1811 1812 1813 1814 1815 1816 1817
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1818
			/*
1819
			 * Needed to avoid possible looping condition
1820
			 * in cache_grow_begin()
1821
			 */
1822 1823
			if (OFF_SLAB(freelist_cache))
				continue;
1824

1825 1826 1827
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1828
		}
1829

1830
		/* Found something acceptable - save it away */
1831
		cachep->num = num;
1832
		cachep->gfporder = gfporder;
1833 1834
		left_over = remainder;

1835 1836 1837 1838 1839 1840 1841 1842
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1843 1844 1845 1846
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1847
		if (gfporder >= slab_max_order)
1848 1849
			break;

1850 1851 1852
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1853
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1854 1855 1856 1857 1858
			break;
	}
	return left_over;
}

1859 1860 1861 1862 1863 1864 1865 1866
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1867
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1880
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1881
{
1882
	if (slab_state >= FULL)
1883
		return enable_cpucache(cachep, gfp);
1884

1885 1886 1887 1888
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1889
	if (slab_state == DOWN) {
1890 1891
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1892
	} else if (slab_state == PARTIAL) {
1893 1894
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1895
	} else {
1896
		int node;
1897

1898 1899 1900 1901 1902
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1903 1904
		}
	}
1905

1906
	cachep->node[numa_mem_id()]->next_reap =
1907 1908
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1909 1910 1911 1912 1913 1914 1915

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1916
	return 0;
1917 1918
}

J
Joonsoo Kim 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1968 1969 1970 1971 1972 1973 1974 1975
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
1976 1977
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
2018
/**
2019
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2020
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2021 2022 2023 2024
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2025
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2039
int
2040
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2041
{
2042
	size_t ralign = BYTES_PER_WORD;
2043
	gfp_t gfp;
2044
	int err;
2045
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2055 2056
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2057
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2058 2059 2060 2061 2062
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2063 2064
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2065 2066 2067
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2068 2069 2070
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2071 2072
	}

D
David Woodhouse 已提交
2073 2074 2075 2076 2077 2078 2079
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2080

2081
	/* 3) caller mandated alignment */
2082 2083
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2084
	}
2085 2086
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2087
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2088
	/*
2089
	 * 4) Store it.
L
Linus Torvalds 已提交
2090
	 */
2091
	cachep->align = ralign;
2092 2093 2094 2095
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2096

2097 2098 2099 2100 2101
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2102 2103
#if DEBUG

2104 2105 2106 2107
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2108 2109
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2110 2111
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2112 2113
	}
	if (flags & SLAB_STORE_USER) {
2114
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2115 2116
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2117
		 */
D
David Woodhouse 已提交
2118 2119 2120 2121
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2122
	}
2123 2124
#endif

A
Alexander Potapenko 已提交
2125 2126
	kasan_cache_create(cachep, &size, &flags);

2127 2128 2129 2130 2131 2132 2133 2134 2135
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2136 2137 2138 2139 2140 2141 2142
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2143
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2155 2156 2157
	}
#endif

2158 2159 2160 2161 2162
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2163
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2164
		flags |= CFLGS_OFF_SLAB;
2165
		goto done;
2166
	}
L
Linus Torvalds 已提交
2167

2168 2169
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2170

2171
	return -E2BIG;
L
Linus Torvalds 已提交
2172

2173 2174
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2175
	cachep->flags = flags;
2176
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2177
	if (flags & SLAB_CACHE_DMA)
2178
		cachep->allocflags |= GFP_DMA;
2179
	cachep->size = size;
2180
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2181

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2195 2196
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2197
	}
L
Linus Torvalds 已提交
2198

2199 2200
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2201
		__kmem_cache_release(cachep);
2202
		return err;
2203
	}
L
Linus Torvalds 已提交
2204

2205
	return 0;
L
Linus Torvalds 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2219 2220 2221 2222 2223
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2224
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2225 2226 2227
{
#ifdef CONFIG_SMP
	check_irq_off();
2228
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2229 2230
#endif
}
2231

2232
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2233 2234 2235
{
#ifdef CONFIG_SMP
	check_irq_off();
2236
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2237 2238 2239
#endif
}

L
Linus Torvalds 已提交
2240 2241 2242
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2243
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2244
#define check_spinlock_acquired(x) do { } while(0)
2245
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2246 2247
#endif

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2264

L
Linus Torvalds 已提交
2265 2266
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2267
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2268
	struct array_cache *ac;
2269
	int node = numa_mem_id();
2270
	struct kmem_cache_node *n;
2271
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2272 2273

	check_irq_off();
2274
	ac = cpu_cache_get(cachep);
2275 2276
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2277
	free_block(cachep, ac->entry, ac->avail, node, &list);
2278
	spin_unlock(&n->list_lock);
2279
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2280 2281 2282
	ac->avail = 0;
}

2283
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2284
{
2285
	struct kmem_cache_node *n;
2286
	int node;
2287
	LIST_HEAD(list);
2288

2289
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2290
	check_irq_on();
2291 2292
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2293
			drain_alien_cache(cachep, n->alien);
2294

2295 2296 2297 2298 2299 2300 2301
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2302 2303
}

2304 2305 2306 2307 2308 2309 2310
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2311
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2312
{
2313 2314
	struct list_head *p;
	int nr_freed;
2315
	struct page *page;
L
Linus Torvalds 已提交
2316

2317
	nr_freed = 0;
2318
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2319

2320 2321 2322 2323
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2324 2325
			goto out;
		}
L
Linus Torvalds 已提交
2326

2327 2328
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2329 2330 2331 2332
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2333 2334
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2335
		slab_destroy(cache, page);
2336
		nr_freed++;
L
Linus Torvalds 已提交
2337
	}
2338 2339
out:
	return nr_freed;
L
Linus Torvalds 已提交
2340 2341
}

2342
int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2343
{
2344 2345
	int ret = 0;
	int node;
2346
	struct kmem_cache_node *n;
2347 2348 2349 2350

	drain_cpu_caches(cachep);

	check_irq_on();
2351
	for_each_kmem_cache_node(cachep, node, n) {
2352
		drain_freelist(cachep, n, INT_MAX);
2353

2354 2355
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2356 2357 2358 2359
	}
	return (ret ? 1 : 0);
}

2360
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2361 2362 2363 2364 2365
{
	return __kmem_cache_shrink(cachep, false);
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2366
{
2367
	int i;
2368
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2369

T
Thomas Garnier 已提交
2370 2371
	cache_random_seq_destroy(cachep);

2372
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2373

2374
	/* NUMA: free the node structures */
2375 2376 2377 2378 2379
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2380
	}
L
Linus Torvalds 已提交
2381 2382
}

2383 2384
/*
 * Get the memory for a slab management obj.
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2396
 */
2397
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2398 2399
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2400
{
2401
	void *freelist;
2402
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2403

2404 2405 2406
	page->s_mem = addr + colour_off;
	page->active = 0;

2407 2408 2409
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2410
		/* Slab management obj is off-slab. */
2411
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2412
					      local_flags, nodeid);
2413
		if (!freelist)
L
Linus Torvalds 已提交
2414 2415
			return NULL;
	} else {
2416 2417 2418
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2419
	}
2420

2421
	return freelist;
L
Linus Torvalds 已提交
2422 2423
}

2424
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2425
{
2426
	return ((freelist_idx_t *)page->freelist)[idx];
2427 2428 2429
}

static inline void set_free_obj(struct page *page,
2430
					unsigned int idx, freelist_idx_t val)
2431
{
2432
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2433 2434
}

2435
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2436
{
2437
#if DEBUG
L
Linus Torvalds 已提交
2438 2439 2440
	int i;

	for (i = 0; i < cachep->num; i++) {
2441
		void *objp = index_to_obj(cachep, page, i);
2442

L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448 2449 2450
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2451 2452 2453
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2454
		 */
A
Alexander Potapenko 已提交
2455 2456 2457
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2458
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2459 2460 2461
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2462 2463 2464

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2465
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2466
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2467
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2468
		}
2469 2470 2471 2472 2473
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2474
	}
L
Linus Torvalds 已提交
2475
#endif
2476 2477
}

T
Thomas Garnier 已提交
2478 2479 2480 2481 2482
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2483
		unsigned int *list;
T
Thomas Garnier 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
		unsigned int count;
		unsigned int rand;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2502
	rand = get_random_int();
T
Thomas Garnier 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
		state->pos = 0;
		state->rand = rand;
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
	return (state->list[state->pos++] + state->rand) % state->count;
}

2524 2525 2526 2527 2528 2529 2530
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2531 2532 2533 2534 2535 2536
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2537
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2562 2563 2564 2565 2566 2567 2568 2569 2570
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2589 2590 2591 2592
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2593
	void *objp;
T
Thomas Garnier 已提交
2594
	bool shuffled;
2595 2596 2597

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2598 2599 2600 2601
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2602 2603 2604 2605
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2606
	for (i = 0; i < cachep->num; i++) {
2607 2608 2609
		objp = index_to_obj(cachep, page, i);
		kasan_init_slab_obj(cachep, objp);

2610
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2611 2612 2613 2614 2615
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2616

T
Thomas Garnier 已提交
2617 2618
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2619 2620 2621
	}
}

2622
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2623
{
2624
	void *objp;
2625

2626
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2627
	page->active++;
2628

2629 2630 2631 2632 2633
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2634 2635 2636
	return objp;
}

2637 2638
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2639
{
2640
	unsigned int objnr = obj_to_index(cachep, page, objp);
2641
#if DEBUG
J
Joonsoo Kim 已提交
2642
	unsigned int i;
2643 2644

	/* Verify double free bug */
2645
	for (i = page->active; i < cachep->num; i++) {
2646
		if (get_free_obj(page, i) == objnr) {
2647
			pr_err("slab: double free detected in cache '%s', objp %p\n",
J
Joe Perches 已提交
2648
			       cachep->name, objp);
2649 2650
			BUG();
		}
2651 2652
	}
#endif
2653
	page->active--;
2654 2655 2656
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2657
	set_free_obj(page, page->active, objnr);
2658 2659
}

2660 2661 2662
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2663
 * virtual address for kfree, ksize, and slab debugging.
2664
 */
2665
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2666
			   void *freelist)
L
Linus Torvalds 已提交
2667
{
2668
	page->slab_cache = cache;
2669
	page->freelist = freelist;
L
Linus Torvalds 已提交
2670 2671 2672 2673 2674 2675
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2676 2677
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2678
{
2679
	void *freelist;
P
Pekka Enberg 已提交
2680 2681
	size_t offset;
	gfp_t local_flags;
2682
	int page_node;
2683
	struct kmem_cache_node *n;
2684
	struct page *page;
L
Linus Torvalds 已提交
2685

A
Andrew Morton 已提交
2686 2687 2688
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2689
	 */
2690
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2691
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2692 2693 2694 2695
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2696
	}
C
Christoph Lameter 已提交
2697
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2698 2699

	check_irq_off();
2700
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2701 2702
		local_irq_enable();

A
Andrew Morton 已提交
2703 2704 2705
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2706
	 */
2707
	page = kmem_getpages(cachep, local_flags, nodeid);
2708
	if (!page)
L
Linus Torvalds 已提交
2709 2710
		goto failed;

2711 2712
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

L
Linus Torvalds 已提交
2725
	/* Get slab management. */
2726
	freelist = alloc_slabmgmt(cachep, page, offset,
2727
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2728
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2729 2730
		goto opps1;

2731
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2732

A
Alexander Potapenko 已提交
2733
	kasan_poison_slab(page);
2734
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2735

2736
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2737 2738
		local_irq_disable();

2739 2740
	return page;

A
Andrew Morton 已提交
2741
opps1:
2742
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2743
failed:
2744
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2745
		local_irq_disable();
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
	if (!page->active)
		list_add_tail(&page->lru, &(n->slabs_free));
	else
		fixup_slab_list(cachep, n, page, &list);
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2784
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2785 2786
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2787 2788 2789
	}
}

2790 2791
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2792
	unsigned long long redzone1, redzone2;
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2808 2809
	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
2810 2811
}

2812
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2813
				   unsigned long caller)
L
Linus Torvalds 已提交
2814 2815
{
	unsigned int objnr;
2816
	struct page *page;
L
Linus Torvalds 已提交
2817

2818 2819
	BUG_ON(virt_to_cache(objp) != cachep);

2820
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2821
	kfree_debugcheck(objp);
2822
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2823 2824

	if (cachep->flags & SLAB_RED_ZONE) {
2825
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2826 2827 2828
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2829 2830
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2831
		*dbg_userword(cachep, objp) = (void *)caller;
2832
	}
L
Linus Torvalds 已提交
2833

2834
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2835 2836

	BUG_ON(objnr >= cachep->num);
2837
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2838 2839 2840

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2841
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2842 2843 2844 2845 2846 2847 2848 2849 2850
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2866
static inline void fixup_slab_list(struct kmem_cache *cachep,
2867 2868
				struct kmem_cache_node *n, struct page *page,
				void **list)
2869 2870 2871
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2872
	if (page->active == cachep->num) {
2873
		list_add(&page->lru, &n->slabs_full);
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2887 2888 2889
		list_add(&page->lru, &n->slabs_partial);
}

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
					struct page *page, bool pfmemalloc)
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
	if (!page->active)
		list_add_tail(&page->lru, &n->slabs_free);
	else
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	list_for_each_entry(page, &n->slabs_free, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
{
	struct page *page;

	page = list_first_entry_or_null(&n->slabs_partial,
			struct page, lru);
	if (!page) {
		n->free_touched = 1;
		page = list_first_entry_or_null(&n->slabs_free,
				struct page, lru);
	}

2941 2942 2943
	if (sk_memalloc_socks())
		return get_valid_first_slab(n, page, pfmemalloc);

2944 2945 2946
	return page;
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2999
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3000 3001
{
	int batchcount;
3002
	struct kmem_cache_node *n;
3003
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
3004
	int node;
3005
	void *list = NULL;
3006
	struct page *page;
P
Pekka Enberg 已提交
3007

L
Linus Torvalds 已提交
3008
	check_irq_off();
3009
	node = numa_mem_id();
3010

3011
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3012 3013
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3014 3015 3016 3017
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3018 3019 3020
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3021
	n = get_node(cachep, node);
3022

3023
	BUG_ON(ac->avail > 0 || !n);
3024 3025 3026 3027
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

3028
	spin_lock(&n->list_lock);
3029
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
3030

3031
	/* See if we can refill from the shared array */
3032 3033
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
3034
		goto alloc_done;
3035
	}
3036

L
Linus Torvalds 已提交
3037 3038
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
3039
		page = get_first_slab(n, false);
3040 3041
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
3042 3043

		check_spinlock_acquired(cachep);
3044

3045
		batchcount = alloc_block(cachep, ac, page, batchcount);
3046
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
3047 3048
	}

A
Andrew Morton 已提交
3049
must_grow:
3050
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3051
alloc_done:
3052
	spin_unlock(&n->list_lock);
3053
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
3054

3055
direct_grow:
L
Linus Torvalds 已提交
3056
	if (unlikely(!ac->avail)) {
3057 3058 3059 3060 3061 3062 3063 3064
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3065
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3066

3067 3068 3069 3070
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3071
		ac = cpu_cache_get(cachep);
3072 3073 3074
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3075

3076
		if (!ac->avail)
L
Linus Torvalds 已提交
3077 3078 3079
			return NULL;
	}
	ac->touched = 1;
3080

3081
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3082 3083
}

A
Andrew Morton 已提交
3084 3085
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3086
{
3087
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3088 3089 3090
}

#if DEBUG
A
Andrew Morton 已提交
3091
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3092
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3093
{
P
Pekka Enberg 已提交
3094
	if (!objp)
L
Linus Torvalds 已提交
3095
		return objp;
P
Pekka Enberg 已提交
3096
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3097
		check_poison_obj(cachep, objp);
3098
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
3099 3100 3101
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3102
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3103 3104

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3105 3106
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3107
			slab_error(cachep, "double free, or memory outside object was overwritten");
3108 3109 3110
			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3111 3112 3113 3114
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3115

3116
	objp += obj_offset(cachep);
3117
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3118
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3119 3120
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3121
		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3122
		       objp, (int)ARCH_SLAB_MINALIGN);
3123
	}
L
Linus Torvalds 已提交
3124 3125 3126 3127 3128 3129
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3130
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3131
{
P
Pekka Enberg 已提交
3132
	void *objp;
L
Linus Torvalds 已提交
3133 3134
	struct array_cache *ac;

3135
	check_irq_off();
3136

3137
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3138 3139
	if (likely(ac->avail)) {
		ac->touched = 1;
3140
		objp = ac->entry[--ac->avail];
3141

3142 3143
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3144
	}
3145 3146

	STATS_INC_ALLOCMISS(cachep);
3147
	objp = cache_alloc_refill(cachep, flags);
3148 3149 3150 3151 3152 3153 3154
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3155 3156 3157 3158 3159
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3160 3161
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3162 3163 3164
	return objp;
}

3165
#ifdef CONFIG_NUMA
3166
/*
3167
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3168 3169 3170 3171 3172 3173 3174 3175
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3176
	if (in_interrupt() || (flags & __GFP_THISNODE))
3177
		return NULL;
3178
	nid_alloc = nid_here = numa_mem_id();
3179
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3180
		nid_alloc = cpuset_slab_spread_node();
3181
	else if (current->mempolicy)
3182
		nid_alloc = mempolicy_slab_node();
3183
	if (nid_alloc != nid_here)
3184
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3185 3186 3187
	return NULL;
}

3188 3189
/*
 * Fallback function if there was no memory available and no objects on a
3190
 * certain node and fall back is permitted. First we scan all the
3191
 * available node for available objects. If that fails then we
3192 3193 3194
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3195
 */
3196
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3197
{
3198
	struct zonelist *zonelist;
3199
	struct zoneref *z;
3200 3201
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3202
	void *obj = NULL;
3203
	struct page *page;
3204
	int nid;
3205
	unsigned int cpuset_mems_cookie;
3206 3207 3208 3209

	if (flags & __GFP_THISNODE)
		return NULL;

3210
retry_cpuset:
3211
	cpuset_mems_cookie = read_mems_allowed_begin();
3212
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3213

3214 3215 3216 3217 3218
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3219 3220
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3221

3222
		if (cpuset_zone_allowed(zone, flags) &&
3223 3224
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3225
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3226
					gfp_exact_node(flags), nid);
3227 3228 3229
				if (obj)
					break;
		}
3230 3231
	}

3232
	if (!obj) {
3233 3234 3235 3236 3237 3238
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3239 3240 3241 3242
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3243 3244
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3245

3246
			/*
3247 3248
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3249
			 */
3250 3251
			if (!obj)
				goto retry;
3252
		}
3253
	}
3254

3255
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3256
		goto retry_cpuset;
3257 3258 3259
	return obj;
}

3260 3261
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3262
 */
3263
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3264
				int nodeid)
3265
{
3266
	struct page *page;
3267
	struct kmem_cache_node *n;
3268
	void *obj = NULL;
3269
	void *list = NULL;
P
Pekka Enberg 已提交
3270

3271
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3272
	n = get_node(cachep, nodeid);
3273
	BUG_ON(!n);
P
Pekka Enberg 已提交
3274

3275
	check_irq_off();
3276
	spin_lock(&n->list_lock);
3277
	page = get_first_slab(n, false);
3278 3279
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3280 3281 3282 3283 3284 3285 3286

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3287
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3288

3289
	obj = slab_get_obj(cachep, page);
3290
	n->free_objects--;
P
Pekka Enberg 已提交
3291

3292
	fixup_slab_list(cachep, n, page, &list);
3293

3294
	spin_unlock(&n->list_lock);
3295
	fixup_objfreelist_debug(cachep, &list);
3296
	return obj;
3297

A
Andrew Morton 已提交
3298
must_grow:
3299
	spin_unlock(&n->list_lock);
3300
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3301 3302 3303 3304
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3305
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3306

3307
	return obj ? obj : fallback_alloc(cachep, flags);
3308
}
3309 3310

static __always_inline void *
3311
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3312
		   unsigned long caller)
3313 3314 3315
{
	unsigned long save_flags;
	void *ptr;
3316
	int slab_node = numa_mem_id();
3317

3318
	flags &= gfp_allowed_mask;
3319 3320
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3321 3322
		return NULL;

3323 3324 3325
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3326
	if (nodeid == NUMA_NO_NODE)
3327
		nodeid = slab_node;
3328

3329
	if (unlikely(!get_node(cachep, nodeid))) {
3330 3331 3332 3333 3334
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3335
	if (nodeid == slab_node) {
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3352 3353
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3354

3355
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3356 3357 3358 3359 3360 3361 3362 3363
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3364
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3375 3376
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3392
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3393 3394 3395 3396
{
	unsigned long save_flags;
	void *objp;

3397
	flags &= gfp_allowed_mask;
3398 3399
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3400 3401
		return NULL;

3402 3403 3404 3405 3406 3407 3408
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3409 3410
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3411

3412
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3413 3414
	return objp;
}
3415 3416

/*
3417
 * Caller needs to acquire correct kmem_cache_node's list_lock
3418
 * @list: List of detached free slabs should be freed by caller
3419
 */
3420 3421
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3422 3423
{
	int i;
3424
	struct kmem_cache_node *n = get_node(cachep, node);
3425 3426 3427
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3428 3429

	for (i = 0; i < nr_objects; i++) {
3430
		void *objp;
3431
		struct page *page;
L
Linus Torvalds 已提交
3432

3433 3434
		objp = objpp[i];

3435 3436
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3437
		check_spinlock_acquired_node(cachep, node);
3438
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3439 3440 3441
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3442 3443 3444
		if (page->active == 0)
			list_add(&page->lru, &n->slabs_free);
		else {
L
Linus Torvalds 已提交
3445 3446 3447 3448
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3449
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3450 3451
		}
	}
3452 3453 3454 3455 3456

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
3457
		list_move(&page->lru, list);
3458
	}
L
Linus Torvalds 已提交
3459 3460
}

3461
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3462 3463
{
	int batchcount;
3464
	struct kmem_cache_node *n;
3465
	int node = numa_mem_id();
3466
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3467 3468

	batchcount = ac->batchcount;
3469

L
Linus Torvalds 已提交
3470
	check_irq_off();
3471
	n = get_node(cachep, node);
3472 3473 3474
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3475
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3476 3477 3478
		if (max) {
			if (batchcount > max)
				batchcount = max;
3479
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3480
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3481 3482 3483 3484 3485
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3486
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3487
free_done:
L
Linus Torvalds 已提交
3488 3489 3490
#if STATS
	{
		int i = 0;
3491
		struct page *page;
L
Linus Torvalds 已提交
3492

3493
		list_for_each_entry(page, &n->slabs_free, lru) {
3494
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3495 3496 3497 3498 3499 3500

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3501
	spin_unlock(&n->list_lock);
3502
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3503
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3504
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3505 3506 3507
}

/*
A
Andrew Morton 已提交
3508 3509
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3510
 */
3511
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3512
				unsigned long caller)
L
Linus Torvalds 已提交
3513
{
3514 3515 3516 3517 3518 3519
	/* Put the object into the quarantine, don't touch it for now. */
	if (kasan_slab_free(cachep, objp))
		return;

	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3520

3521 3522 3523 3524
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3525

L
Linus Torvalds 已提交
3526
	check_irq_off();
3527
	kmemleak_free_recursive(objp, cachep->flags);
3528
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3529

3530
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3531

3532 3533 3534 3535 3536 3537 3538
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3539
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3540 3541
		return;

3542
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3543 3544 3545 3546 3547
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3548

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3569
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3570
{
3571
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3572

3573
	kasan_slab_alloc(cachep, ret, flags);
3574
	trace_kmem_cache_alloc(_RET_IP_, ret,
3575
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3576 3577

	return ret;
L
Linus Torvalds 已提交
3578 3579 3580
}
EXPORT_SYMBOL(kmem_cache_alloc);

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3591
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3592
			  void **p)
3593
{
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3612 3613
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3624
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3625 3626 3627
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3628 3629 3630
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3631
#ifdef CONFIG_TRACING
3632
void *
3633
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3634
{
3635 3636
	void *ret;

3637
	ret = slab_alloc(cachep, flags, _RET_IP_);
3638

3639
	kasan_kmalloc(cachep, ret, size, flags);
3640
	trace_kmalloc(_RET_IP_, ret,
3641
		      size, cachep->size, flags);
3642
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3643
}
3644
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3645 3646
#endif

L
Linus Torvalds 已提交
3647
#ifdef CONFIG_NUMA
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3659 3660
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3661
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3662

3663
	kasan_slab_alloc(cachep, ret, flags);
3664
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3665
				    cachep->object_size, cachep->size,
3666
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3667 3668

	return ret;
3669
}
L
Linus Torvalds 已提交
3670 3671
EXPORT_SYMBOL(kmem_cache_alloc_node);

3672
#ifdef CONFIG_TRACING
3673
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3674
				  gfp_t flags,
3675 3676
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3677
{
3678 3679
	void *ret;

3680
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3681 3682

	kasan_kmalloc(cachep, ret, size, flags);
3683
	trace_kmalloc_node(_RET_IP_, ret,
3684
			   size, cachep->size,
3685 3686
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3687
}
3688
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3689 3690
#endif

3691
static __always_inline void *
3692
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3693
{
3694
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3695
	void *ret;
3696

3697
	cachep = kmalloc_slab(size, flags);
3698 3699
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3700
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3701
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3702 3703

	return ret;
3704
}
3705 3706 3707

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3708
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3709
}
3710
EXPORT_SYMBOL(__kmalloc_node);
3711 3712

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3713
		int node, unsigned long caller)
3714
{
3715
	return __do_kmalloc_node(size, flags, node, caller);
3716 3717 3718
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3719 3720

/**
3721
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3722
 * @size: how many bytes of memory are required.
3723
 * @flags: the type of memory to allocate (see kmalloc).
3724
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3725
 */
3726
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3727
					  unsigned long caller)
L
Linus Torvalds 已提交
3728
{
3729
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3730
	void *ret;
L
Linus Torvalds 已提交
3731

3732
	cachep = kmalloc_slab(size, flags);
3733 3734
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3735
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3736

3737
	kasan_kmalloc(cachep, ret, size, flags);
3738
	trace_kmalloc(caller, ret,
3739
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3740 3741

	return ret;
3742 3743 3744 3745
}

void *__kmalloc(size_t size, gfp_t flags)
{
3746
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3747 3748 3749
}
EXPORT_SYMBOL(__kmalloc);

3750
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3751
{
3752
	return __do_kmalloc(size, flags, caller);
3753 3754
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3755

L
Linus Torvalds 已提交
3756 3757 3758 3759 3760 3761 3762 3763
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3764
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3765 3766
{
	unsigned long flags;
3767 3768 3769
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3770 3771

	local_irq_save(flags);
3772
	debug_check_no_locks_freed(objp, cachep->object_size);
3773
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3774
		debug_check_no_obj_freed(objp, cachep->object_size);
3775
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3776
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3777

3778
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3779 3780 3781
}
EXPORT_SYMBOL(kmem_cache_free);

3782 3783 3784 3785 3786 3787 3788 3789 3790
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3791 3792 3793 3794
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3808 3809 3810 3811
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3812 3813
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3814 3815 3816 3817 3818
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3819
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3820 3821
	unsigned long flags;

3822 3823
	trace_kfree(_RET_IP_, objp);

3824
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3825 3826 3827
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3828
	c = virt_to_cache(objp);
3829 3830 3831
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3832
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3833 3834 3835 3836
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3837
/*
3838
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3839
 */
3840
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3841
{
3842
	int ret;
3843
	int node;
3844
	struct kmem_cache_node *n;
3845

3846
	for_each_online_node(node) {
3847 3848
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3849 3850 3851
			goto fail;

	}
3852

3853
	return 0;
3854

A
Andrew Morton 已提交
3855
fail:
3856
	if (!cachep->list.next) {
3857 3858 3859
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3860 3861
			n = get_node(cachep, node);
			if (n) {
3862 3863 3864
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3865
				cachep->node[node] = NULL;
3866 3867 3868 3869
			}
			node--;
		}
	}
3870
	return -ENOMEM;
3871 3872
}

3873
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3874
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3875
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3876
{
3877 3878
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3879

3880 3881
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3882 3883
		return -ENOMEM;

3884 3885 3886
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3887

L
Linus Torvalds 已提交
3888 3889 3890
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3891
	cachep->shared = shared;
L
Linus Torvalds 已提交
3892

3893
	if (!prev)
3894
		goto setup_node;
3895 3896

	for_each_online_cpu(cpu) {
3897
		LIST_HEAD(list);
3898 3899
		int node;
		struct kmem_cache_node *n;
3900
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3901

3902
		node = cpu_to_mem(cpu);
3903 3904
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3905
		free_block(cachep, ac->entry, ac->avail, node, &list);
3906
		spin_unlock_irq(&n->list_lock);
3907
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3908
	}
3909 3910
	free_percpu(prev);

3911 3912
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3913 3914
}

G
Glauber Costa 已提交
3915 3916 3917 3918
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3919
	struct kmem_cache *c;
G
Glauber Costa 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3929 3930 3931 3932
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3933 3934 3935 3936 3937
	}

	return ret;
}

3938
/* Called with slab_mutex held always */
3939
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3940 3941
{
	int err;
G
Glauber Costa 已提交
3942 3943 3944 3945
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3946
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3947 3948 3949
	if (err)
		goto end;

G
Glauber Costa 已提交
3950 3951 3952 3953 3954 3955
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3956

G
Glauber Costa 已提交
3957 3958
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3959 3960
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3961 3962
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3963
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3964 3965 3966 3967
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3968
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3969
		limit = 1;
3970
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3971
		limit = 8;
3972
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3973
		limit = 24;
3974
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3975 3976 3977 3978
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3979 3980
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3981 3982 3983 3984 3985 3986 3987 3988
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3989
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3990 3991 3992
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3993 3994 3995
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3996 3997 3998 3999
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
4000 4001 4002
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
4003
end:
L
Linus Torvalds 已提交
4004
	if (err)
4005
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
4006
		       cachep->name, -err);
4007
	return err;
L
Linus Torvalds 已提交
4008 4009
}

4010
/*
4011 4012
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4013
 * if drain_array() is used on the shared array.
4014
 */
4015
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4016
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
4017
{
4018
	LIST_HEAD(list);
4019 4020 4021

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
4022

4023 4024
	if (!ac || !ac->avail)
		return;
4025 4026

	if (ac->touched) {
L
Linus Torvalds 已提交
4027
		ac->touched = 0;
4028
		return;
L
Linus Torvalds 已提交
4029
	}
4030 4031 4032 4033 4034 4035

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4036 4037 4038 4039
}

/**
 * cache_reap - Reclaim memory from caches.
4040
 * @w: work descriptor
L
Linus Torvalds 已提交
4041 4042 4043 4044 4045 4046
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4047 4048
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4049
 */
4050
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4051
{
4052
	struct kmem_cache *searchp;
4053
	struct kmem_cache_node *n;
4054
	int node = numa_mem_id();
4055
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4056

4057
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4058
		/* Give up. Setup the next iteration. */
4059
		goto out;
L
Linus Torvalds 已提交
4060

4061
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4062 4063
		check_irq_on();

4064
		/*
4065
		 * We only take the node lock if absolutely necessary and we
4066 4067 4068
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4069
		n = get_node(searchp, node);
4070

4071
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4072

4073
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4074

4075 4076 4077 4078
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4079
		if (time_after(n->next_reap, jiffies))
4080
			goto next;
L
Linus Torvalds 已提交
4081

4082
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4083

4084
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4085

4086 4087
		if (n->free_touched)
			n->free_touched = 0;
4088 4089
		else {
			int freed;
L
Linus Torvalds 已提交
4090

4091
			freed = drain_freelist(searchp, n, (n->free_limit +
4092 4093 4094
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4095
next:
L
Linus Torvalds 已提交
4096 4097 4098
		cond_resched();
	}
	check_irq_on();
4099
	mutex_unlock(&slab_mutex);
4100
	next_reap_node();
4101
out:
A
Andrew Morton 已提交
4102
	/* Set up the next iteration */
4103
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4104 4105
}

4106
#ifdef CONFIG_SLABINFO
4107
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4108
{
4109
	struct page *page;
P
Pekka Enberg 已提交
4110 4111 4112 4113
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4114
	const char *name;
L
Linus Torvalds 已提交
4115
	char *error = NULL;
4116
	int node;
4117
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4118 4119 4120

	active_objs = 0;
	num_slabs = 0;
4121
	for_each_kmem_cache_node(cachep, node, n) {
4122

4123
		check_irq_on();
4124
		spin_lock_irq(&n->list_lock);
4125

4126 4127
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
4128 4129 4130 4131
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4132 4133
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4134
				error = "slabs_partial accounting error";
4135
			if (!page->active && !error)
4136
				error = "slabs_partial accounting error";
4137
			active_objs += page->active;
4138 4139
			active_slabs++;
		}
4140 4141
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4142
				error = "slabs_free accounting error";
4143 4144
			num_slabs++;
		}
4145 4146 4147
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4148

4149
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4150
	}
P
Pekka Enberg 已提交
4151 4152
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4153
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4154 4155
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4156
	name = cachep->name;
L
Linus Torvalds 已提交
4157
	if (error)
4158
		pr_err("slab: cache %s error: %s\n", name, error);
L
Linus Torvalds 已提交
4159

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4174
#if STATS
4175
	{			/* node stats */
L
Linus Torvalds 已提交
4176 4177 4178 4179 4180 4181 4182
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4183
		unsigned long node_frees = cachep->node_frees;
4184
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4185

J
Joe Perches 已提交
4186
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4187 4188 4189
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4190 4191 4192 4193 4194 4195 4196 4197 4198
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4199
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4212
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4213
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4214
{
P
Pekka Enberg 已提交
4215
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4216
	int limit, batchcount, shared, res;
4217
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4218

L
Linus Torvalds 已提交
4219 4220 4221 4222
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4223
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4234
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4235
	res = -EINVAL;
4236
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4237
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4238 4239
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4240
				res = 0;
L
Linus Torvalds 已提交
4241
			} else {
4242
				res = do_tune_cpucache(cachep, limit,
4243 4244
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4245 4246 4247 4248
			}
			break;
		}
	}
4249
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4250 4251 4252 4253
	if (res >= 0)
		res = count;
	return res;
}
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4287 4288
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4289 4290
{
	void *p;
4291 4292
	int i, j;
	unsigned long v;
4293

4294 4295
	if (n[0] == n[1])
		return;
4296
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4307
			continue;
4308

4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4319 4320 4321 4322 4323 4324 4325 4326
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4327
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4328

4329
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4330
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4331
		if (modname[0])
4332 4333 4334 4335 4336 4337 4338 4339 4340
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4341
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4342
	struct page *page;
4343
	struct kmem_cache_node *n;
4344
	const char *name;
4345
	unsigned long *x = m->private;
4346 4347 4348 4349 4350 4351 4352 4353
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4365

4366
		for_each_kmem_cache_node(cachep, node, n) {
4367

4368 4369
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4370

4371 4372 4373 4374 4375 4376 4377
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4378 4379

	name = cachep->name;
4380
	if (x[0] == x[1]) {
4381
		/* Increase the buffer size */
4382
		mutex_unlock(&slab_mutex);
4383
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4384 4385
		if (!m->private) {
			/* Too bad, we are really out */
4386
			m->private = x;
4387
			mutex_lock(&slab_mutex);
4388 4389
			return -ENOMEM;
		}
4390 4391
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4392
		mutex_lock(&slab_mutex);
4393 4394 4395 4396
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4397 4398 4399
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4400 4401
		seq_putc(m, '\n');
	}
4402

4403 4404 4405
	return 0;
}

4406
static const struct seq_operations slabstats_op = {
4407
	.start = slab_start,
4408 4409
	.next = slab_next,
	.stop = slab_stop,
4410 4411
	.show = leaks_show,
};
4412 4413 4414

static int slabstats_open(struct inode *inode, struct file *file)
{
4415 4416 4417 4418 4419 4420 4421 4422 4423
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4438
#endif
4439 4440 4441
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4442 4443
#endif

K
Kees Cook 已提交
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects objects that are incorrectly sized.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page)
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

	/* Allow address range falling entirely within object size. */
	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
		return NULL;

	return cachep->name;
}
#endif /* CONFIG_HARDENED_USERCOPY */

4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4486
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4487
{
A
Alexander Potapenko 已提交
4488 4489
	size_t size;

4490 4491
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4492
		return 0;
L
Linus Torvalds 已提交
4493

A
Alexander Potapenko 已提交
4494 4495 4496 4497
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4498
	kasan_unpoison_shadow(objp, size);
A
Alexander Potapenko 已提交
4499 4500

	return size;
L
Linus Torvalds 已提交
4501
}
K
Kirill A. Shutemov 已提交
4502
EXPORT_SYMBOL(ksize);