slab.c 111.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
188
	void *entry[];	/*
A
Andrew Morton 已提交
189 190 191 192
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
193 194
};

J
Joonsoo Kim 已提交
195 196 197 198 199
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

200 201 202
/*
 * Need this for bootstrapping a per node allocator.
 */
203
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205
#define	CACHE_CACHE 0
206
#define	SIZE_NODE (MAX_NUMNODES)
207

208
static int drain_freelist(struct kmem_cache *cache,
209
			struct kmem_cache_node *n, int tofree);
210
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 212
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214
static void cache_reap(struct work_struct *unused);
215

216 217 218 219 220
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
221 222
static int slab_early_init = 1;

223
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
224

225
static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 227 228 229 230 231
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
232
	parent->colour_next = 0;
233 234 235 236 237
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
238 239 240
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
241
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
242 243
	} while (0)

A
Andrew Morton 已提交
244 245
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
246 247 248 249
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
250

251
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
L
Linus Torvalds 已提交
252
#define CFLGS_OFF_SLAB		(0x80000000UL)
253
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
254 255 256
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
257 258 259
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
260
 *
A
Adrian Bunk 已提交
261
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
262 263
 * which could lock up otherwise freeable slabs.
 */
264 265
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
266 267 268 269 270 271

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
272
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
273 274 275 276 277
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
278 279
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
280
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
281
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
282 283 284 285 286
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
287 288 289 290 291 292 293 294 295
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
296
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
297 298 299
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
300
#define	STATS_INC_NODEFREES(x)	do { } while (0)
301
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
302
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
303 304 305 306 307 308 309 310
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
311 312
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
313
 * 0		: objp
314
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
315 316
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
317
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
318
 * 		redzone word.
319
 * cachep->obj_offset: The real object.
320 321
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
322
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
323
 */
324
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
325
{
326
	return cachep->obj_offset;
L
Linus Torvalds 已提交
327 328
}

329
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
330 331
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
332 333
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
334 335
}

336
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
337 338 339
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
340
		return (unsigned long long *)(objp + cachep->size -
341
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
342
					      REDZONE_ALIGN);
343
	return (unsigned long long *) (objp + cachep->size -
344
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
345 346
}

347
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
348 349
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
350
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
351 352 353 354
}

#else

355
#define obj_offset(x)			0
356 357
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
358 359 360 361
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

362 363
#ifdef CONFIG_DEBUG_SLAB_LEAK

364
static inline bool is_store_user_clean(struct kmem_cache *cachep)
365
{
366 367
	return atomic_read(&cachep->store_user_clean) == 1;
}
368

369 370 371 372
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
373

374 375 376 377
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
378 379 380
}

#else
381
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
382 383 384

#endif

L
Linus Torvalds 已提交
385
/*
386 387
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
388
 */
389 390 391
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
392
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
393

394 395
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
396
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
397
	return page->slab_cache;
398 399
}

400
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
401 402
				 unsigned int idx)
{
403
	return page->s_mem + cache->size * idx;
404 405
}

406
/*
407 408 409
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
410 411 412
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
413
					const struct page *page, void *obj)
414
{
415
	u32 offset = (obj - page->s_mem);
416
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
417 418
}

419
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
420
/* internal cache of cache description objs */
421
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
422 423 424
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
425
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
426
	.name = "kmem_cache",
L
Linus Torvalds 已提交
427 428
};

429
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
430

431
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
432
{
433
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
434 435
}

A
Andrew Morton 已提交
436 437 438
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
439 440
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
441
{
442
	unsigned int num;
443
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
444

445 446 447 448 449 450
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
451 452 453 454 455
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
456 457 458 459 460 461
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
462
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
463
		num = slab_size / buffer_size;
464
		*left_over = slab_size % buffer_size;
465
	} else {
466
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
467 468
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
469
	}
470 471

	return num;
L
Linus Torvalds 已提交
472 473
}

474
#if DEBUG
475
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
476

A
Andrew Morton 已提交
477 478
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
479
{
480
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
481
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
482
	dump_stack();
483
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
484
}
485
#endif
L
Linus Torvalds 已提交
486

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

503 504 505 506 507 508 509 510 511 512 513
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

514 515 516 517 518 519 520
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
521
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
522 523 524 525 526

static void init_reap_node(int cpu)
{
	int node;

527
	node = next_node(cpu_to_mem(cpu), node_online_map);
528
	if (node == MAX_NUMNODES)
529
		node = first_node(node_online_map);
530

531
	per_cpu(slab_reap_node, cpu) = node;
532 533 534 535
}

static void next_reap_node(void)
{
536
	int node = __this_cpu_read(slab_reap_node);
537 538 539 540

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
541
	__this_cpu_write(slab_reap_node, node);
542 543 544 545 546 547 548
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
549 550 551 552 553 554 555
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
556
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
557
{
558
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
559 560 561 562 563 564

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
565
	if (keventd_up() && reap_work->work.func == NULL) {
566
		init_reap_node(cpu);
567
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
568 569
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
570 571 572
	}
}

573
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
574
{
575 576
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
577
	 * However, when such objects are allocated or transferred to another
578 579 580 581
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
582 583 584 585 586 587
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
588
	}
589 590 591 592 593
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
594
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
595 596 597 598 599
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
600 601
}

602 603
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
604
{
605 606 607
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
608

609 610
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
611

612 613 614
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
615

616
	slabs_destroy(cachep, &list);
617 618
}

619 620 621 622 623 624 625 626 627 628
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
629
	int nr = min3(from->avail, max, to->limit - to->avail);
630 631 632 633 634 635 636 637 638 639 640 641

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

642 643 644
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
645
#define reap_alien(cachep, n) do { } while (0)
646

J
Joonsoo Kim 已提交
647 648
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
649
{
650
	return NULL;
651 652
}

J
Joonsoo Kim 已提交
653
static inline void free_alien_cache(struct alien_cache **ac_ptr)
654 655 656 657 658 659 660 661 662 663 664 665 666 667
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

668
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
669 670 671 672 673
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
674 675
static inline gfp_t gfp_exact_node(gfp_t flags)
{
676
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
677 678
}

679 680
#else	/* CONFIG_NUMA */

681
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
682
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
683

J
Joonsoo Kim 已提交
684 685 686
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
687
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
688 689 690 691
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
692
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
693 694 695 696
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
697
{
J
Joonsoo Kim 已提交
698
	struct alien_cache **alc_ptr;
699
	size_t memsize = sizeof(void *) * nr_node_ids;
700 701 702 703
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
717 718
		}
	}
J
Joonsoo Kim 已提交
719
	return alc_ptr;
720 721
}

J
Joonsoo Kim 已提交
722
static void free_alien_cache(struct alien_cache **alc_ptr)
723 724 725
{
	int i;

J
Joonsoo Kim 已提交
726
	if (!alc_ptr)
727 728
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
729 730
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
731 732
}

733
static void __drain_alien_cache(struct kmem_cache *cachep,
734 735
				struct array_cache *ac, int node,
				struct list_head *list)
736
{
737
	struct kmem_cache_node *n = get_node(cachep, node);
738 739

	if (ac->avail) {
740
		spin_lock(&n->list_lock);
741 742 743 744 745
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
746 747
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
748

749
		free_block(cachep, ac->entry, ac->avail, node, list);
750
		ac->avail = 0;
751
		spin_unlock(&n->list_lock);
752 753 754
	}
}

755 756 757
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
758
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
759
{
760
	int node = __this_cpu_read(slab_reap_node);
761

762
	if (n->alien) {
J
Joonsoo Kim 已提交
763 764 765 766 767
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
768
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
769 770 771
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
772
				spin_unlock_irq(&alc->lock);
773
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
774
			}
775 776 777 778
		}
	}
}

A
Andrew Morton 已提交
779
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
780
				struct alien_cache **alien)
781
{
P
Pekka Enberg 已提交
782
	int i = 0;
J
Joonsoo Kim 已提交
783
	struct alien_cache *alc;
784 785 786 787
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
788 789
		alc = alien[i];
		if (alc) {
790 791
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
792
			ac = &alc->ac;
793
			spin_lock_irqsave(&alc->lock, flags);
794
			__drain_alien_cache(cachep, ac, i, &list);
795
			spin_unlock_irqrestore(&alc->lock, flags);
796
			slabs_destroy(cachep, &list);
797 798 799
		}
	}
}
800

801 802
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
803
{
804
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
805 806
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
807
	LIST_HEAD(list);
P
Pekka Enberg 已提交
808

809
	n = get_node(cachep, node);
810
	STATS_INC_NODEFREES(cachep);
811 812
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
813
		ac = &alien->ac;
814
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
815
		if (unlikely(ac->avail == ac->limit)) {
816
			STATS_INC_ACOVERFLOW(cachep);
817
			__drain_alien_cache(cachep, ac, page_node, &list);
818
		}
819
		ac->entry[ac->avail++] = objp;
820
		spin_unlock(&alien->lock);
821
		slabs_destroy(cachep, &list);
822
	} else {
823
		n = get_node(cachep, page_node);
824
		spin_lock(&n->list_lock);
825
		free_block(cachep, &objp, 1, page_node, &list);
826
		spin_unlock(&n->list_lock);
827
		slabs_destroy(cachep, &list);
828 829 830
	}
	return 1;
}
831 832 833 834 835 836 837 838 839 840 841 842 843 844

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
845 846

/*
847 848
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
849 850 851
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
852
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
853
}
854 855
#endif

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

896
/*
897
 * Allocates and initializes node for a node on each slab cache, used for
898
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
899
 * will be allocated off-node since memory is not yet online for the new node.
900
 * When hotplugging memory or a cpu, existing node are not replaced if
901 902
 * already in use.
 *
903
 * Must hold slab_mutex.
904
 */
905
static int init_cache_node_node(int node)
906
{
907
	int ret;
908 909
	struct kmem_cache *cachep;

910
	list_for_each_entry(cachep, &slab_caches, list) {
911 912 913
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
914
	}
915

916 917 918
	return 0;
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

968 969 970 971 972 973 974 975 976
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
	if (force_change)
		synchronize_sched();

977 978 979 980 981 982 983 984
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

985
static void cpuup_canceled(long cpu)
986 987
{
	struct kmem_cache *cachep;
988
	struct kmem_cache_node *n = NULL;
989
	int node = cpu_to_mem(cpu);
990
	const struct cpumask *mask = cpumask_of_node(node);
991

992
	list_for_each_entry(cachep, &slab_caches, list) {
993 994
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
995
		struct alien_cache **alien;
996
		LIST_HEAD(list);
997

998
		n = get_node(cachep, node);
999
		if (!n)
1000
			continue;
1001

1002
		spin_lock_irq(&n->list_lock);
1003

1004 1005
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1006 1007 1008 1009

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1010
			free_block(cachep, nc->entry, nc->avail, node, &list);
1011 1012
			nc->avail = 0;
		}
1013

1014
		if (!cpumask_empty(mask)) {
1015
			spin_unlock_irq(&n->list_lock);
1016
			goto free_slab;
1017 1018
		}

1019
		shared = n->shared;
1020 1021
		if (shared) {
			free_block(cachep, shared->entry,
1022
				   shared->avail, node, &list);
1023
			n->shared = NULL;
1024 1025
		}

1026 1027
		alien = n->alien;
		n->alien = NULL;
1028

1029
		spin_unlock_irq(&n->list_lock);
1030 1031 1032 1033 1034 1035

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1036 1037

free_slab:
1038
		slabs_destroy(cachep, &list);
1039 1040 1041 1042 1043 1044
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1045
	list_for_each_entry(cachep, &slab_caches, list) {
1046
		n = get_node(cachep, node);
1047
		if (!n)
1048
			continue;
1049
		drain_freelist(cachep, n, INT_MAX);
1050 1051 1052
	}
}

1053
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1054
{
1055
	struct kmem_cache *cachep;
1056
	int node = cpu_to_mem(cpu);
1057
	int err;
L
Linus Torvalds 已提交
1058

1059 1060 1061 1062
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1063
	 * kmem_cache_node and not this cpu's kmem_cache_node
1064
	 */
1065
	err = init_cache_node_node(node);
1066 1067
	if (err < 0)
		goto bad;
1068 1069 1070 1071 1072

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1073
	list_for_each_entry(cachep, &slab_caches, list) {
1074 1075 1076
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1077
	}
1078

1079 1080
	return 0;
bad:
1081
	cpuup_canceled(cpu);
1082 1083 1084
	return -ENOMEM;
}

1085
static int cpuup_callback(struct notifier_block *nfb,
1086 1087 1088 1089 1090 1091 1092 1093
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1094
		mutex_lock(&slab_mutex);
1095
		err = cpuup_prepare(cpu);
1096
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1097 1098
		break;
	case CPU_ONLINE:
1099
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1100 1101 1102
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1103
  	case CPU_DOWN_PREPARE:
1104
  	case CPU_DOWN_PREPARE_FROZEN:
1105
		/*
1106
		 * Shutdown cache reaper. Note that the slab_mutex is
1107 1108 1109 1110
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1111
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1112
		/* Now the cache_reaper is guaranteed to be not running. */
1113
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1114 1115
  		break;
  	case CPU_DOWN_FAILED:
1116
  	case CPU_DOWN_FAILED_FROZEN:
1117 1118
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1119
	case CPU_DEAD:
1120
	case CPU_DEAD_FROZEN:
1121 1122
		/*
		 * Even if all the cpus of a node are down, we don't free the
1123
		 * kmem_cache_node of any cache. This to avoid a race between
1124
		 * cpu_down, and a kmalloc allocation from another cpu for
1125
		 * memory from the node of the cpu going down.  The node
1126 1127 1128
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1129
		/* fall through */
1130
#endif
L
Linus Torvalds 已提交
1131
	case CPU_UP_CANCELED:
1132
	case CPU_UP_CANCELED_FROZEN:
1133
		mutex_lock(&slab_mutex);
1134
		cpuup_canceled(cpu);
1135
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1136 1137
		break;
	}
1138
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1139 1140
}

1141
static struct notifier_block cpucache_notifier = {
1142 1143
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1144

1145 1146 1147 1148 1149 1150
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1151
 * Must hold slab_mutex.
1152
 */
1153
static int __meminit drain_cache_node_node(int node)
1154 1155 1156 1157
{
	struct kmem_cache *cachep;
	int ret = 0;

1158
	list_for_each_entry(cachep, &slab_caches, list) {
1159
		struct kmem_cache_node *n;
1160

1161
		n = get_node(cachep, node);
1162
		if (!n)
1163 1164
			continue;

1165
		drain_freelist(cachep, n, INT_MAX);
1166

1167 1168
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1189
		mutex_lock(&slab_mutex);
1190
		ret = init_cache_node_node(nid);
1191
		mutex_unlock(&slab_mutex);
1192 1193
		break;
	case MEM_GOING_OFFLINE:
1194
		mutex_lock(&slab_mutex);
1195
		ret = drain_cache_node_node(nid);
1196
		mutex_unlock(&slab_mutex);
1197 1198 1199 1200 1201 1202 1203 1204
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1205
	return notifier_from_errno(ret);
1206 1207 1208
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1209
/*
1210
 * swap the static kmem_cache_node with kmalloced memory
1211
 */
1212
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1213
				int nodeid)
1214
{
1215
	struct kmem_cache_node *ptr;
1216

1217
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1218 1219
	BUG_ON(!ptr);

1220
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1221 1222 1223 1224 1225
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1226
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1227
	cachep->node[nodeid] = ptr;
1228 1229
}

1230
/*
1231 1232
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1233
 */
1234
static void __init set_up_node(struct kmem_cache *cachep, int index)
1235 1236 1237 1238
{
	int node;

	for_each_online_node(node) {
1239
		cachep->node[node] = &init_kmem_cache_node[index + node];
1240
		cachep->node[node]->next_reap = jiffies +
1241 1242
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1243 1244 1245
	}
}

T
Thomas Garnier 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
#ifdef CONFIG_SLAB_FREELIST_RANDOM
static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
			size_t count)
{
	size_t i;
	unsigned int rand;

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
static int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp)
{
	unsigned int seed, count = cachep->num;
	struct rnd_state state;

	if (count < 2)
		return 0;

	/* If it fails, we will just use the global lists */
	cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage */
	get_random_bytes_arch(&seed, sizeof(seed));
	prandom_seed_state(&state, seed);

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
static void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp)
{
	return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */


A
Andrew Morton 已提交
1301 1302 1303
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1304 1305 1306
 */
void __init kmem_cache_init(void)
{
1307 1308
	int i;

1309 1310
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1311 1312
	kmem_cache = &kmem_cache_boot;

1313
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1314 1315
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1316
	for (i = 0; i < NUM_INIT_LISTS; i++)
1317
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1318

L
Linus Torvalds 已提交
1319 1320
	/*
	 * Fragmentation resistance on low memory - only use bigger
1321 1322
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1323
	 */
1324
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1325
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1326 1327 1328

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1329 1330 1331
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1332
	 *    Initially an __init data area is used for the head array and the
1333
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1334
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1335
	 * 2) Create the first kmalloc cache.
1336
	 *    The struct kmem_cache for the new cache is allocated normally.
1337 1338 1339
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1340
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1341
	 *    kmalloc cache with kmalloc allocated arrays.
1342
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1343 1344
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1345 1346
	 */

1347
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1348

E
Eric Dumazet 已提交
1349
	/*
1350
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1351
	 */
1352
	create_boot_cache(kmem_cache, "kmem_cache",
1353
		offsetof(struct kmem_cache, node) +
1354
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1355 1356
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1357
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1358

A
Andrew Morton 已提交
1359
	/*
1360 1361
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1362
	 */
1363
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1364
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1365
	slab_state = PARTIAL_NODE;
1366
	setup_kmalloc_cache_index_table();
1367

1368 1369
	slab_early_init = 0;

1370
	/* 5) Replace the bootstrap kmem_cache_node */
1371
	{
P
Pekka Enberg 已提交
1372 1373
		int nid;

1374
		for_each_online_node(nid) {
1375
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1376

1377
			init_list(kmalloc_caches[INDEX_NODE],
1378
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1379 1380
		}
	}
L
Linus Torvalds 已提交
1381

1382
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1383 1384 1385 1386 1387 1388
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1389
	slab_state = UP;
P
Peter Zijlstra 已提交
1390

1391
	/* 6) resize the head arrays to their final sizes */
1392 1393
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1394 1395
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1396
	mutex_unlock(&slab_mutex);
1397

1398 1399 1400
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1401 1402 1403
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1404 1405 1406
	 */
	register_cpu_notifier(&cpucache_notifier);

1407 1408 1409
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1410
	 * node.
1411 1412 1413 1414
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1415 1416 1417
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1425 1426
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1427
	 */
1428
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1429
		start_cpu_timer(cpu);
1430 1431

	/* Done! */
1432
	slab_state = FULL;
L
Linus Torvalds 已提交
1433 1434 1435 1436
	return 0;
}
__initcall(cpucache_init);

1437 1438 1439
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1440
#if DEBUG
1441
	struct kmem_cache_node *n;
1442
	struct page *page;
1443 1444
	unsigned long flags;
	int node;
1445 1446 1447 1448 1449
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1450

1451 1452 1453
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1454
		cachep->name, cachep->size, cachep->gfporder);
1455

1456
	for_each_kmem_cache_node(cachep, node, n) {
1457 1458 1459
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1460
		spin_lock_irqsave(&n->list_lock, flags);
1461
		list_for_each_entry(page, &n->slabs_full, lru) {
1462 1463 1464
			active_objs += cachep->num;
			active_slabs++;
		}
1465 1466
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1467 1468
			active_slabs++;
		}
1469
		list_for_each_entry(page, &n->slabs_free, lru)
1470 1471
			num_slabs++;

1472 1473
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1474 1475 1476

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
1477
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1478 1479 1480
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1481
#endif
1482 1483
}

L
Linus Torvalds 已提交
1484
/*
W
Wang Sheng-Hui 已提交
1485 1486
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1487 1488 1489 1490 1491
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1492 1493
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1494 1495
{
	struct page *page;
1496
	int nr_pages;
1497

1498
	flags |= cachep->allocflags;
1499 1500
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1501

1502
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1503
	if (!page) {
1504
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1505
		return NULL;
1506
	}
L
Linus Torvalds 已提交
1507

1508 1509 1510 1511 1512
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1513
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1514
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1515 1516 1517 1518 1519
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1520

1521
	__SetPageSlab(page);
1522 1523
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1524
		SetPageSlabPfmemalloc(page);
1525

1526 1527 1528 1529 1530 1531 1532 1533
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1534

1535
	return page;
L
Linus Torvalds 已提交
1536 1537 1538 1539 1540
}

/*
 * Interface to system's page release.
 */
1541
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1542
{
1543 1544
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1545

1546
	kmemcheck_free_shadow(page, order);
P
Pekka Enberg 已提交
1547

1548 1549 1550 1551 1552 1553
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1554

1555
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1556
	__ClearPageSlabPfmemalloc(page);
1557
	__ClearPageSlab(page);
1558 1559
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1560

L
Linus Torvalds 已提交
1561 1562
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1563 1564
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1565 1566 1567 1568
}

static void kmem_rcu_free(struct rcu_head *head)
{
1569 1570
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1571

1572 1573 1574 1575
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1576 1577 1578
}

#if DEBUG
1579 1580 1581 1582 1583 1584 1585 1586
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1587 1588

#ifdef CONFIG_DEBUG_PAGEALLOC
1589
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1590
			    unsigned long caller)
L
Linus Torvalds 已提交
1591
{
1592
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1593

1594
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1595

P
Pekka Enberg 已提交
1596
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1597 1598
		return;

P
Pekka Enberg 已提交
1599 1600 1601 1602
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1603 1604 1605 1606 1607 1608 1609
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1610
				*addr++ = svalue;
L
Linus Torvalds 已提交
1611 1612 1613 1614 1615 1616 1617
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1618
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1619
}
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1637 1638
#endif

1639
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1640
{
1641
	int size = cachep->object_size;
1642
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1643 1644

	memset(addr, val, size);
P
Pekka Enberg 已提交
1645
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1646 1647 1648 1649 1650
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1651 1652 1653
	unsigned char error = 0;
	int bad_count = 0;

1654
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1655 1656 1657 1658 1659 1660
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1661 1662
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1663 1664 1665 1666

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1667
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1668
#ifdef CONFIG_X86
1669
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1670
#else
1671
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1672 1673 1674
#endif
		}
	}
L
Linus Torvalds 已提交
1675 1676 1677 1678 1679
}
#endif

#if DEBUG

1680
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1681 1682 1683 1684 1685
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1686 1687 1688
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1689 1690 1691
	}

	if (cachep->flags & SLAB_STORE_USER) {
1692
		pr_err("Last user: [<%p>](%pSR)\n",
J
Joe Perches 已提交
1693 1694
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1695
	}
1696
	realobj = (char *)objp + obj_offset(cachep);
1697
	size = cachep->object_size;
P
Pekka Enberg 已提交
1698
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1699 1700
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1701 1702
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1703 1704 1705 1706
		dump_line(realobj, i, limit);
	}
}

1707
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1708 1709 1710 1711 1712
{
	char *realobj;
	int size, i;
	int lines = 0;

1713 1714 1715
	if (is_debug_pagealloc_cache(cachep))
		return;

1716
	realobj = (char *)objp + obj_offset(cachep);
1717
	size = cachep->object_size;
L
Linus Torvalds 已提交
1718

P
Pekka Enberg 已提交
1719
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1720
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1721
		if (i == size - 1)
L
Linus Torvalds 已提交
1722 1723 1724 1725 1726 1727
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1728 1729 1730
				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1731 1732 1733
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1734
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1735
			limit = 16;
P
Pekka Enberg 已提交
1736 1737
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1750
		struct page *page = virt_to_head_page(objp);
1751
		unsigned int objnr;
L
Linus Torvalds 已提交
1752

1753
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1754
		if (objnr) {
1755
			objp = index_to_obj(cachep, page, objnr - 1);
1756
			realobj = (char *)objp + obj_offset(cachep);
1757
			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1758 1759
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1760
		if (objnr + 1 < cachep->num) {
1761
			objp = index_to_obj(cachep, page, objnr + 1);
1762
			realobj = (char *)objp + obj_offset(cachep);
1763
			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1764 1765 1766 1767 1768 1769
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1770
#if DEBUG
1771 1772
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1773 1774
{
	int i;
1775 1776 1777 1778 1779 1780

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1781
	for (i = 0; i < cachep->num; i++) {
1782
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1783 1784 1785

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1786
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1787 1788 1789
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1790
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1791
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1792
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1793 1794
		}
	}
1795
}
L
Linus Torvalds 已提交
1796
#else
1797 1798
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1799 1800
{
}
L
Linus Torvalds 已提交
1801 1802
#endif

1803 1804 1805
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1806
 * @page: page pointer being destroyed
1807
 *
W
Wang Sheng-Hui 已提交
1808 1809 1810
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1811
 */
1812
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1813
{
1814
	void *freelist;
1815

1816 1817
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1818 1819 1820
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1821
		kmem_freepages(cachep, page);
1822 1823

	/*
1824
	 * From now on, we don't use freelist
1825 1826 1827
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1828
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1829 1830
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1841
/**
1842 1843 1844 1845 1846 1847
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1848 1849 1850 1851 1852
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1853
static size_t calculate_slab_order(struct kmem_cache *cachep,
1854
				size_t size, unsigned long flags)
1855 1856
{
	size_t left_over = 0;
1857
	int gfporder;
1858

1859
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1860 1861 1862
		unsigned int num;
		size_t remainder;

1863
		num = cache_estimate(gfporder, size, flags, &remainder);
1864 1865
		if (!num)
			continue;
1866

1867 1868 1869 1870
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1871
		if (flags & CFLGS_OFF_SLAB) {
1872 1873 1874 1875 1876 1877 1878 1879
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1880
			/*
1881
			 * Needed to avoid possible looping condition
1882
			 * in cache_grow_begin()
1883
			 */
1884 1885
			if (OFF_SLAB(freelist_cache))
				continue;
1886

1887 1888 1889
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1890
		}
1891

1892
		/* Found something acceptable - save it away */
1893
		cachep->num = num;
1894
		cachep->gfporder = gfporder;
1895 1896
		left_over = remainder;

1897 1898 1899 1900 1901 1902 1903 1904
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1905 1906 1907 1908
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1909
		if (gfporder >= slab_max_order)
1910 1911
			break;

1912 1913 1914
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1915
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1916 1917 1918 1919 1920
			break;
	}
	return left_over;
}

1921 1922 1923 1924 1925 1926 1927 1928
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1929
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1942
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1943
{
1944
	if (slab_state >= FULL)
1945
		return enable_cpucache(cachep, gfp);
1946

1947 1948 1949 1950
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1951
	if (slab_state == DOWN) {
1952 1953
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1954
	} else if (slab_state == PARTIAL) {
1955 1956
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1957
	} else {
1958
		int node;
1959

1960 1961 1962 1963 1964
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1965 1966
		}
	}
1967

1968
	cachep->node[numa_mem_id()]->next_reap =
1969 1970
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1971 1972 1973 1974 1975 1976 1977

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1978
	return 0;
1979 1980
}

J
Joonsoo Kim 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

2030 2031 2032 2033 2034 2035 2036 2037
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
2038 2039
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
2080
/**
2081
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2082
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2083 2084 2085 2086
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2087
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2101
int
2102
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2103
{
2104
	size_t ralign = BYTES_PER_WORD;
2105
	gfp_t gfp;
2106
	int err;
2107
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2117 2118
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2119
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2120 2121 2122 2123 2124
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2125 2126
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2127 2128 2129
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2130 2131 2132
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2133 2134
	}

D
David Woodhouse 已提交
2135 2136 2137 2138 2139 2140 2141
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2142

2143
	/* 3) caller mandated alignment */
2144 2145
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2146
	}
2147 2148
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2149
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2150
	/*
2151
	 * 4) Store it.
L
Linus Torvalds 已提交
2152
	 */
2153
	cachep->align = ralign;
2154 2155 2156 2157
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2158

2159 2160 2161 2162 2163
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2164 2165
#if DEBUG

2166 2167 2168 2169
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2170 2171
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2172 2173
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2174 2175
	}
	if (flags & SLAB_STORE_USER) {
2176
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2177 2178
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2179
		 */
D
David Woodhouse 已提交
2180 2181 2182 2183
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2184
	}
2185 2186
#endif

A
Alexander Potapenko 已提交
2187 2188
	kasan_cache_create(cachep, &size, &flags);

2189 2190 2191 2192 2193 2194 2195 2196 2197
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2198 2199 2200 2201 2202 2203 2204
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2205
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2217 2218 2219
	}
#endif

2220 2221 2222 2223 2224
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2225
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2226
		flags |= CFLGS_OFF_SLAB;
2227
		goto done;
2228
	}
L
Linus Torvalds 已提交
2229

2230 2231
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2232

2233
	return -E2BIG;
L
Linus Torvalds 已提交
2234

2235 2236
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2237
	cachep->flags = flags;
2238
	cachep->allocflags = __GFP_COMP;
2239
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2240
		cachep->allocflags |= GFP_DMA;
2241
	cachep->size = size;
2242
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2243

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2257 2258
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2259
	}
L
Linus Torvalds 已提交
2260

2261 2262
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2263
		__kmem_cache_release(cachep);
2264
		return err;
2265
	}
L
Linus Torvalds 已提交
2266

2267
	return 0;
L
Linus Torvalds 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2281 2282 2283 2284 2285
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2286
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2287 2288 2289
{
#ifdef CONFIG_SMP
	check_irq_off();
2290
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2291 2292
#endif
}
2293

2294
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2295 2296 2297
{
#ifdef CONFIG_SMP
	check_irq_off();
2298
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2299 2300 2301
#endif
}

L
Linus Torvalds 已提交
2302 2303 2304
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2305
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2306
#define check_spinlock_acquired(x) do { } while(0)
2307
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2308 2309
#endif

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2326

L
Linus Torvalds 已提交
2327 2328
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2329
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2330
	struct array_cache *ac;
2331
	int node = numa_mem_id();
2332
	struct kmem_cache_node *n;
2333
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2334 2335

	check_irq_off();
2336
	ac = cpu_cache_get(cachep);
2337 2338
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2339
	free_block(cachep, ac->entry, ac->avail, node, &list);
2340
	spin_unlock(&n->list_lock);
2341
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2342 2343 2344
	ac->avail = 0;
}

2345
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2346
{
2347
	struct kmem_cache_node *n;
2348
	int node;
2349
	LIST_HEAD(list);
2350

2351
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2352
	check_irq_on();
2353 2354
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2355
			drain_alien_cache(cachep, n->alien);
2356

2357 2358 2359 2360 2361 2362 2363
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2364 2365
}

2366 2367 2368 2369 2370 2371 2372
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2373
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2374
{
2375 2376
	struct list_head *p;
	int nr_freed;
2377
	struct page *page;
L
Linus Torvalds 已提交
2378

2379
	nr_freed = 0;
2380
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2381

2382 2383 2384 2385
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2386 2387
			goto out;
		}
L
Linus Torvalds 已提交
2388

2389 2390
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2391 2392 2393 2394
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2395 2396
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2397
		slab_destroy(cache, page);
2398
		nr_freed++;
L
Linus Torvalds 已提交
2399
	}
2400 2401
out:
	return nr_freed;
L
Linus Torvalds 已提交
2402 2403
}

2404
int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2405
{
2406 2407
	int ret = 0;
	int node;
2408
	struct kmem_cache_node *n;
2409 2410 2411 2412

	drain_cpu_caches(cachep);

	check_irq_on();
2413
	for_each_kmem_cache_node(cachep, node, n) {
2414
		drain_freelist(cachep, n, INT_MAX);
2415

2416 2417
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2418 2419 2420 2421
	}
	return (ret ? 1 : 0);
}

2422
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2423 2424 2425 2426 2427
{
	return __kmem_cache_shrink(cachep, false);
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2428
{
2429
	int i;
2430
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2431

T
Thomas Garnier 已提交
2432 2433
	cache_random_seq_destroy(cachep);

2434
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2435

2436
	/* NUMA: free the node structures */
2437 2438 2439 2440 2441
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2442
	}
L
Linus Torvalds 已提交
2443 2444
}

2445 2446
/*
 * Get the memory for a slab management obj.
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2458
 */
2459
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2460 2461
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2462
{
2463
	void *freelist;
2464
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2465

2466 2467 2468
	page->s_mem = addr + colour_off;
	page->active = 0;

2469 2470 2471
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2472
		/* Slab management obj is off-slab. */
2473
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2474
					      local_flags, nodeid);
2475
		if (!freelist)
L
Linus Torvalds 已提交
2476 2477
			return NULL;
	} else {
2478 2479 2480
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2481
	}
2482

2483
	return freelist;
L
Linus Torvalds 已提交
2484 2485
}

2486
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2487
{
2488
	return ((freelist_idx_t *)page->freelist)[idx];
2489 2490 2491
}

static inline void set_free_obj(struct page *page,
2492
					unsigned int idx, freelist_idx_t val)
2493
{
2494
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2495 2496
}

2497
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2498
{
2499
#if DEBUG
L
Linus Torvalds 已提交
2500 2501 2502
	int i;

	for (i = 0; i < cachep->num; i++) {
2503
		void *objp = index_to_obj(cachep, page, i);
2504

L
Linus Torvalds 已提交
2505 2506 2507 2508 2509 2510 2511 2512
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2513 2514 2515
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2516
		 */
A
Alexander Potapenko 已提交
2517 2518 2519
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2520
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2521 2522 2523
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2524 2525 2526

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2527
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2528
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2529
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2530
		}
2531 2532 2533 2534 2535
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2536
	}
L
Linus Torvalds 已提交
2537
#endif
2538 2539
}

T
Thomas Garnier 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
		freelist_idx_t *list;
		unsigned int count;
		unsigned int rand;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
	get_random_bytes_arch(&rand, sizeof(rand));

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
		state->pos = 0;
		state->rand = rand;
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
	return (state->list[state->pos++] + state->rand) % state->count;
}

/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
	unsigned int objfreelist = 0, i, count = cachep->num;
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
		freelist_randomize(&state.rnd_state, page->freelist, count);
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2636 2637 2638 2639
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2640
	void *objp;
T
Thomas Garnier 已提交
2641
	bool shuffled;
2642 2643 2644

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2645 2646 2647 2648
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2649 2650 2651 2652
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2653 2654
	for (i = 0; i < cachep->num; i++) {
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2655 2656 2657 2658 2659 2660
		if (DEBUG == 0 && cachep->ctor) {
			objp = index_to_obj(cachep, page, i);
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2661

T
Thomas Garnier 已提交
2662 2663
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2664 2665 2666
	}
}

2667
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2668
{
2669 2670
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2671
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2672
		else
2673
			BUG_ON(cachep->allocflags & GFP_DMA);
2674
	}
L
Linus Torvalds 已提交
2675 2676
}

2677
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2678
{
2679
	void *objp;
2680

2681
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2682
	page->active++;
2683

2684 2685 2686 2687 2688
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2689 2690 2691
	return objp;
}

2692 2693
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2694
{
2695
	unsigned int objnr = obj_to_index(cachep, page, objp);
2696
#if DEBUG
J
Joonsoo Kim 已提交
2697
	unsigned int i;
2698 2699

	/* Verify double free bug */
2700
	for (i = page->active; i < cachep->num; i++) {
2701
		if (get_free_obj(page, i) == objnr) {
2702
			pr_err("slab: double free detected in cache '%s', objp %p\n",
J
Joe Perches 已提交
2703
			       cachep->name, objp);
2704 2705
			BUG();
		}
2706 2707
	}
#endif
2708
	page->active--;
2709 2710 2711
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2712
	set_free_obj(page, page->active, objnr);
2713 2714
}

2715 2716 2717
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2718
 * virtual address for kfree, ksize, and slab debugging.
2719
 */
2720
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2721
			   void *freelist)
L
Linus Torvalds 已提交
2722
{
2723
	page->slab_cache = cache;
2724
	page->freelist = freelist;
L
Linus Torvalds 已提交
2725 2726 2727 2728 2729 2730
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2731 2732
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2733
{
2734
	void *freelist;
P
Pekka Enberg 已提交
2735 2736
	size_t offset;
	gfp_t local_flags;
2737
	int page_node;
2738
	struct kmem_cache_node *n;
2739
	struct page *page;
L
Linus Torvalds 已提交
2740

A
Andrew Morton 已提交
2741 2742 2743
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2744
	 */
2745 2746 2747 2748
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
2749
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2750 2751

	check_irq_off();
2752
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2763 2764 2765
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2766
	 */
2767
	page = kmem_getpages(cachep, local_flags, nodeid);
2768
	if (!page)
L
Linus Torvalds 已提交
2769 2770
		goto failed;

2771 2772
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

L
Linus Torvalds 已提交
2785
	/* Get slab management. */
2786
	freelist = alloc_slabmgmt(cachep, page, offset,
2787
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2788
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2789 2790
		goto opps1;

2791
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2792

A
Alexander Potapenko 已提交
2793
	kasan_poison_slab(page);
2794
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2795

2796
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2797 2798
		local_irq_disable();

2799 2800
	return page;

A
Andrew Morton 已提交
2801
opps1:
2802
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2803
failed:
2804
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2805
		local_irq_disable();
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
	if (!page->active)
		list_add_tail(&page->lru, &(n->slabs_free));
	else
		fixup_slab_list(cachep, n, page, &list);
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2844
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2845 2846
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2847 2848 2849
	}
}

2850 2851
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2852
	unsigned long long redzone1, redzone2;
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2868 2869
	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
2870 2871
}

2872
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2873
				   unsigned long caller)
L
Linus Torvalds 已提交
2874 2875
{
	unsigned int objnr;
2876
	struct page *page;
L
Linus Torvalds 已提交
2877

2878 2879
	BUG_ON(virt_to_cache(objp) != cachep);

2880
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2881
	kfree_debugcheck(objp);
2882
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2883 2884

	if (cachep->flags & SLAB_RED_ZONE) {
2885
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2886 2887 2888
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2889 2890
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2891
		*dbg_userword(cachep, objp) = (void *)caller;
2892
	}
L
Linus Torvalds 已提交
2893

2894
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2895 2896

	BUG_ON(objnr >= cachep->num);
2897
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2898 2899 2900

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2901
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2926
static inline void fixup_slab_list(struct kmem_cache *cachep,
2927 2928
				struct kmem_cache_node *n, struct page *page,
				void **list)
2929 2930 2931
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2932
	if (page->active == cachep->num) {
2933
		list_add(&page->lru, &n->slabs_full);
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2947 2948 2949
		list_add(&page->lru, &n->slabs_partial);
}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
					struct page *page, bool pfmemalloc)
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
	if (!page->active)
		list_add_tail(&page->lru, &n->slabs_free);
	else
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	list_for_each_entry(page, &n->slabs_free, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
{
	struct page *page;

	page = list_first_entry_or_null(&n->slabs_partial,
			struct page, lru);
	if (!page) {
		n->free_touched = 1;
		page = list_first_entry_or_null(&n->slabs_free,
				struct page, lru);
	}

3001 3002 3003
	if (sk_memalloc_socks())
		return get_valid_first_slab(n, page, pfmemalloc);

3004 3005 3006
	return page;
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

3059
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3060 3061
{
	int batchcount;
3062
	struct kmem_cache_node *n;
3063
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
3064
	int node;
3065
	void *list = NULL;
3066
	struct page *page;
P
Pekka Enberg 已提交
3067

L
Linus Torvalds 已提交
3068
	check_irq_off();
3069
	node = numa_mem_id();
3070

3071
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3072 3073
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3074 3075 3076 3077
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3078 3079 3080
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3081
	n = get_node(cachep, node);
3082

3083
	BUG_ON(ac->avail > 0 || !n);
3084 3085 3086 3087
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

3088
	spin_lock(&n->list_lock);
3089
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
3090

3091
	/* See if we can refill from the shared array */
3092 3093
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
3094
		goto alloc_done;
3095
	}
3096

L
Linus Torvalds 已提交
3097 3098
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
3099
		page = get_first_slab(n, false);
3100 3101
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
3102 3103

		check_spinlock_acquired(cachep);
3104

3105
		batchcount = alloc_block(cachep, ac, page, batchcount);
3106
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
3107 3108
	}

A
Andrew Morton 已提交
3109
must_grow:
3110
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3111
alloc_done:
3112
	spin_unlock(&n->list_lock);
3113
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
3114

3115
direct_grow:
L
Linus Torvalds 已提交
3116
	if (unlikely(!ac->avail)) {
3117 3118 3119 3120 3121 3122 3123 3124
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3125
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3126

3127 3128 3129 3130
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3131
		ac = cpu_cache_get(cachep);
3132 3133 3134
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3135

3136
		if (!ac->avail)
L
Linus Torvalds 已提交
3137 3138 3139
			return NULL;
	}
	ac->touched = 1;
3140

3141
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3142 3143
}

A
Andrew Morton 已提交
3144 3145
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3146
{
3147
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3148 3149 3150 3151 3152 3153
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3154
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3155
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3156
{
P
Pekka Enberg 已提交
3157
	if (!objp)
L
Linus Torvalds 已提交
3158
		return objp;
P
Pekka Enberg 已提交
3159
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3160
		check_poison_obj(cachep, objp);
3161
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
3162 3163 3164
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3165
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3166 3167

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3168 3169
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3170
			slab_error(cachep, "double free, or memory outside object was overwritten");
3171 3172 3173
			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3174 3175 3176 3177
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3178

3179
	objp += obj_offset(cachep);
3180
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3181
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3182 3183
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3184
		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3185
		       objp, (int)ARCH_SLAB_MINALIGN);
3186
	}
L
Linus Torvalds 已提交
3187 3188 3189 3190 3191 3192
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3193
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3194
{
P
Pekka Enberg 已提交
3195
	void *objp;
L
Linus Torvalds 已提交
3196 3197
	struct array_cache *ac;

3198
	check_irq_off();
3199

3200
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3201 3202
	if (likely(ac->avail)) {
		ac->touched = 1;
3203
		objp = ac->entry[--ac->avail];
3204

3205 3206
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3207
	}
3208 3209

	STATS_INC_ALLOCMISS(cachep);
3210
	objp = cache_alloc_refill(cachep, flags);
3211 3212 3213 3214 3215 3216 3217
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3218 3219 3220 3221 3222
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3223 3224
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3225 3226 3227
	return objp;
}

3228
#ifdef CONFIG_NUMA
3229
/*
3230
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3231 3232 3233 3234 3235 3236 3237 3238
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3239
	if (in_interrupt() || (flags & __GFP_THISNODE))
3240
		return NULL;
3241
	nid_alloc = nid_here = numa_mem_id();
3242
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3243
		nid_alloc = cpuset_slab_spread_node();
3244
	else if (current->mempolicy)
3245
		nid_alloc = mempolicy_slab_node();
3246
	if (nid_alloc != nid_here)
3247
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3248 3249 3250
	return NULL;
}

3251 3252
/*
 * Fallback function if there was no memory available and no objects on a
3253
 * certain node and fall back is permitted. First we scan all the
3254
 * available node for available objects. If that fails then we
3255 3256 3257
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3258
 */
3259
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3260
{
3261
	struct zonelist *zonelist;
3262
	struct zoneref *z;
3263 3264
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3265
	void *obj = NULL;
3266
	struct page *page;
3267
	int nid;
3268
	unsigned int cpuset_mems_cookie;
3269 3270 3271 3272

	if (flags & __GFP_THISNODE)
		return NULL;

3273
retry_cpuset:
3274
	cpuset_mems_cookie = read_mems_allowed_begin();
3275
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3276

3277 3278 3279 3280 3281
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3282 3283
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3284

3285
		if (cpuset_zone_allowed(zone, flags) &&
3286 3287
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3288
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3289
					gfp_exact_node(flags), nid);
3290 3291 3292
				if (obj)
					break;
		}
3293 3294
	}

3295
	if (!obj) {
3296 3297 3298 3299 3300 3301
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3302 3303 3304 3305
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3306 3307
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3308

3309
			/*
3310 3311
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3312
			 */
3313 3314
			if (!obj)
				goto retry;
3315
		}
3316
	}
3317

3318
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3319
		goto retry_cpuset;
3320 3321 3322
	return obj;
}

3323 3324
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3325
 */
3326
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3327
				int nodeid)
3328
{
3329
	struct page *page;
3330
	struct kmem_cache_node *n;
3331
	void *obj = NULL;
3332
	void *list = NULL;
P
Pekka Enberg 已提交
3333

3334
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3335
	n = get_node(cachep, nodeid);
3336
	BUG_ON(!n);
P
Pekka Enberg 已提交
3337

3338
	check_irq_off();
3339
	spin_lock(&n->list_lock);
3340
	page = get_first_slab(n, false);
3341 3342
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3343 3344 3345 3346 3347 3348 3349

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3350
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3351

3352
	obj = slab_get_obj(cachep, page);
3353
	n->free_objects--;
P
Pekka Enberg 已提交
3354

3355
	fixup_slab_list(cachep, n, page, &list);
3356

3357
	spin_unlock(&n->list_lock);
3358
	fixup_objfreelist_debug(cachep, &list);
3359
	return obj;
3360

A
Andrew Morton 已提交
3361
must_grow:
3362
	spin_unlock(&n->list_lock);
3363
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3364 3365 3366 3367
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3368
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3369

3370
	return obj ? obj : fallback_alloc(cachep, flags);
3371
}
3372 3373

static __always_inline void *
3374
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3375
		   unsigned long caller)
3376 3377 3378
{
	unsigned long save_flags;
	void *ptr;
3379
	int slab_node = numa_mem_id();
3380

3381
	flags &= gfp_allowed_mask;
3382 3383
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3384 3385
		return NULL;

3386 3387 3388
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3389
	if (nodeid == NUMA_NO_NODE)
3390
		nodeid = slab_node;
3391

3392
	if (unlikely(!get_node(cachep, nodeid))) {
3393 3394 3395 3396 3397
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3398
	if (nodeid == slab_node) {
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3415 3416
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3417

3418
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3419 3420 3421 3422 3423 3424 3425 3426
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3427
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3438 3439
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3455
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3456 3457 3458 3459
{
	unsigned long save_flags;
	void *objp;

3460
	flags &= gfp_allowed_mask;
3461 3462
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3463 3464
		return NULL;

3465 3466 3467 3468 3469 3470 3471
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3472 3473
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3474

3475
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3476 3477
	return objp;
}
3478 3479

/*
3480
 * Caller needs to acquire correct kmem_cache_node's list_lock
3481
 * @list: List of detached free slabs should be freed by caller
3482
 */
3483 3484
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3485 3486
{
	int i;
3487
	struct kmem_cache_node *n = get_node(cachep, node);
3488 3489 3490
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3491 3492

	for (i = 0; i < nr_objects; i++) {
3493
		void *objp;
3494
		struct page *page;
L
Linus Torvalds 已提交
3495

3496 3497
		objp = objpp[i];

3498 3499
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3500
		check_spinlock_acquired_node(cachep, node);
3501
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3502 3503 3504
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3505 3506 3507
		if (page->active == 0)
			list_add(&page->lru, &n->slabs_free);
		else {
L
Linus Torvalds 已提交
3508 3509 3510 3511
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3512
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3513 3514
		}
	}
3515 3516 3517 3518 3519 3520 3521 3522

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
		list_del(&page->lru);
		list_add(&page->lru, list);
	}
L
Linus Torvalds 已提交
3523 3524
}

3525
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3526 3527
{
	int batchcount;
3528
	struct kmem_cache_node *n;
3529
	int node = numa_mem_id();
3530
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3531 3532

	batchcount = ac->batchcount;
3533

L
Linus Torvalds 已提交
3534
	check_irq_off();
3535
	n = get_node(cachep, node);
3536 3537 3538
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3539
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3540 3541 3542
		if (max) {
			if (batchcount > max)
				batchcount = max;
3543
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3544
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3545 3546 3547 3548 3549
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3550
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3551
free_done:
L
Linus Torvalds 已提交
3552 3553 3554
#if STATS
	{
		int i = 0;
3555
		struct page *page;
L
Linus Torvalds 已提交
3556

3557
		list_for_each_entry(page, &n->slabs_free, lru) {
3558
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3559 3560 3561 3562 3563 3564

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3565
	spin_unlock(&n->list_lock);
3566
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3567
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3568
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3569 3570 3571
}

/*
A
Andrew Morton 已提交
3572 3573
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3574
 */
3575
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3576
				unsigned long caller)
L
Linus Torvalds 已提交
3577
{
3578
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3579

A
Alexander Potapenko 已提交
3580 3581
	kasan_slab_free(cachep, objp);

L
Linus Torvalds 已提交
3582
	check_irq_off();
3583
	kmemleak_free_recursive(objp, cachep->flags);
3584
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3585

3586
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3587

3588 3589 3590 3591 3592 3593 3594
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3595
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3596 3597
		return;

3598
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3599 3600 3601 3602 3603
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3604

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3625
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3626
{
3627
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3628

3629
	kasan_slab_alloc(cachep, ret, flags);
3630
	trace_kmem_cache_alloc(_RET_IP_, ret,
3631
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3632 3633

	return ret;
L
Linus Torvalds 已提交
3634 3635 3636
}
EXPORT_SYMBOL(kmem_cache_alloc);

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3647
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3648
			  void **p)
3649
{
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3668 3669
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3680
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3681 3682 3683
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3684 3685 3686
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3687
#ifdef CONFIG_TRACING
3688
void *
3689
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3690
{
3691 3692
	void *ret;

3693
	ret = slab_alloc(cachep, flags, _RET_IP_);
3694

3695
	kasan_kmalloc(cachep, ret, size, flags);
3696
	trace_kmalloc(_RET_IP_, ret,
3697
		      size, cachep->size, flags);
3698
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3699
}
3700
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3701 3702
#endif

L
Linus Torvalds 已提交
3703
#ifdef CONFIG_NUMA
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3715 3716
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3717
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3718

3719
	kasan_slab_alloc(cachep, ret, flags);
3720
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3721
				    cachep->object_size, cachep->size,
3722
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3723 3724

	return ret;
3725
}
L
Linus Torvalds 已提交
3726 3727
EXPORT_SYMBOL(kmem_cache_alloc_node);

3728
#ifdef CONFIG_TRACING
3729
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3730
				  gfp_t flags,
3731 3732
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3733
{
3734 3735
	void *ret;

3736
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3737 3738

	kasan_kmalloc(cachep, ret, size, flags);
3739
	trace_kmalloc_node(_RET_IP_, ret,
3740
			   size, cachep->size,
3741 3742
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3743
}
3744
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3745 3746
#endif

3747
static __always_inline void *
3748
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3749
{
3750
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3751
	void *ret;
3752

3753
	cachep = kmalloc_slab(size, flags);
3754 3755
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3756
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3757
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3758 3759

	return ret;
3760
}
3761 3762 3763

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3764
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3765
}
3766
EXPORT_SYMBOL(__kmalloc_node);
3767 3768

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3769
		int node, unsigned long caller)
3770
{
3771
	return __do_kmalloc_node(size, flags, node, caller);
3772 3773 3774
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3775 3776

/**
3777
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3778
 * @size: how many bytes of memory are required.
3779
 * @flags: the type of memory to allocate (see kmalloc).
3780
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3781
 */
3782
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3783
					  unsigned long caller)
L
Linus Torvalds 已提交
3784
{
3785
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3786
	void *ret;
L
Linus Torvalds 已提交
3787

3788
	cachep = kmalloc_slab(size, flags);
3789 3790
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3791
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3792

3793
	kasan_kmalloc(cachep, ret, size, flags);
3794
	trace_kmalloc(caller, ret,
3795
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3796 3797

	return ret;
3798 3799 3800 3801
}

void *__kmalloc(size_t size, gfp_t flags)
{
3802
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3803 3804 3805
}
EXPORT_SYMBOL(__kmalloc);

3806
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3807
{
3808
	return __do_kmalloc(size, flags, caller);
3809 3810
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3811

L
Linus Torvalds 已提交
3812 3813 3814 3815 3816 3817 3818 3819
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3820
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3821 3822
{
	unsigned long flags;
3823 3824 3825
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3826 3827

	local_irq_save(flags);
3828
	debug_check_no_locks_freed(objp, cachep->object_size);
3829
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3830
		debug_check_no_obj_freed(objp, cachep->object_size);
3831
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3832
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3833

3834
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3835 3836 3837
}
EXPORT_SYMBOL(kmem_cache_free);

3838 3839 3840 3841 3842 3843 3844 3845 3846
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3847 3848 3849 3850
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3864 3865 3866 3867
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3868 3869
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3870 3871 3872 3873 3874
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3875
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3876 3877
	unsigned long flags;

3878 3879
	trace_kfree(_RET_IP_, objp);

3880
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3881 3882 3883
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3884
	c = virt_to_cache(objp);
3885 3886 3887
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3888
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3889 3890 3891 3892
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3893
/*
3894
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3895
 */
3896
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3897
{
3898
	int ret;
3899
	int node;
3900
	struct kmem_cache_node *n;
3901

3902
	for_each_online_node(node) {
3903 3904
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3905 3906 3907
			goto fail;

	}
3908

3909
	return 0;
3910

A
Andrew Morton 已提交
3911
fail:
3912
	if (!cachep->list.next) {
3913 3914 3915
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3916 3917
			n = get_node(cachep, node);
			if (n) {
3918 3919 3920
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3921
				cachep->node[node] = NULL;
3922 3923 3924 3925
			}
			node--;
		}
	}
3926
	return -ENOMEM;
3927 3928
}

3929
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3930
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3931
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3932
{
3933 3934
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3935

3936 3937
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3938 3939
		return -ENOMEM;

3940 3941 3942
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3943

L
Linus Torvalds 已提交
3944 3945 3946
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3947
	cachep->shared = shared;
L
Linus Torvalds 已提交
3948

3949
	if (!prev)
3950
		goto setup_node;
3951 3952

	for_each_online_cpu(cpu) {
3953
		LIST_HEAD(list);
3954 3955
		int node;
		struct kmem_cache_node *n;
3956
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3957

3958
		node = cpu_to_mem(cpu);
3959 3960
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3961
		free_block(cachep, ac->entry, ac->avail, node, &list);
3962
		spin_unlock_irq(&n->list_lock);
3963
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3964
	}
3965 3966
	free_percpu(prev);

3967 3968
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3969 3970
}

G
Glauber Costa 已提交
3971 3972 3973 3974
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3975
	struct kmem_cache *c;
G
Glauber Costa 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3985 3986 3987 3988
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3989 3990 3991 3992 3993
	}

	return ret;
}

3994
/* Called with slab_mutex held always */
3995
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3996 3997
{
	int err;
G
Glauber Costa 已提交
3998 3999 4000 4001
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

T
Thomas Garnier 已提交
4002 4003 4004 4005
	err = cache_random_seq_create(cachep, gfp);
	if (err)
		goto end;

G
Glauber Costa 已提交
4006 4007 4008 4009 4010 4011
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
4012

G
Glauber Costa 已提交
4013 4014
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
4015 4016
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4017 4018
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4019
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4020 4021 4022 4023
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4024
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4025
		limit = 1;
4026
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4027
		limit = 8;
4028
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4029
		limit = 24;
4030
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4031 4032 4033 4034
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4035 4036
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4037 4038 4039 4040 4041 4042 4043 4044
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4045
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4046 4047 4048
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4049 4050 4051
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4052 4053 4054 4055
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
4056 4057 4058
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
4059
end:
L
Linus Torvalds 已提交
4060
	if (err)
4061
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
4062
		       cachep->name, -err);
4063
	return err;
L
Linus Torvalds 已提交
4064 4065
}

4066
/*
4067 4068
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4069
 * if drain_array() is used on the shared array.
4070
 */
4071
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4072
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
4073
{
4074
	LIST_HEAD(list);
4075 4076 4077

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
4078

4079 4080
	if (!ac || !ac->avail)
		return;
4081 4082

	if (ac->touched) {
L
Linus Torvalds 已提交
4083
		ac->touched = 0;
4084
		return;
L
Linus Torvalds 已提交
4085
	}
4086 4087 4088 4089 4090 4091

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4092 4093 4094 4095
}

/**
 * cache_reap - Reclaim memory from caches.
4096
 * @w: work descriptor
L
Linus Torvalds 已提交
4097 4098 4099 4100 4101 4102
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4103 4104
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4105
 */
4106
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4107
{
4108
	struct kmem_cache *searchp;
4109
	struct kmem_cache_node *n;
4110
	int node = numa_mem_id();
4111
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4112

4113
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4114
		/* Give up. Setup the next iteration. */
4115
		goto out;
L
Linus Torvalds 已提交
4116

4117
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4118 4119
		check_irq_on();

4120
		/*
4121
		 * We only take the node lock if absolutely necessary and we
4122 4123 4124
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4125
		n = get_node(searchp, node);
4126

4127
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4128

4129
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4130

4131 4132 4133 4134
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4135
		if (time_after(n->next_reap, jiffies))
4136
			goto next;
L
Linus Torvalds 已提交
4137

4138
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4139

4140
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4141

4142 4143
		if (n->free_touched)
			n->free_touched = 0;
4144 4145
		else {
			int freed;
L
Linus Torvalds 已提交
4146

4147
			freed = drain_freelist(searchp, n, (n->free_limit +
4148 4149 4150
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4151
next:
L
Linus Torvalds 已提交
4152 4153 4154
		cond_resched();
	}
	check_irq_on();
4155
	mutex_unlock(&slab_mutex);
4156
	next_reap_node();
4157
out:
A
Andrew Morton 已提交
4158
	/* Set up the next iteration */
4159
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4160 4161
}

4162
#ifdef CONFIG_SLABINFO
4163
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4164
{
4165
	struct page *page;
P
Pekka Enberg 已提交
4166 4167 4168 4169
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4170
	const char *name;
L
Linus Torvalds 已提交
4171
	char *error = NULL;
4172
	int node;
4173
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4174 4175 4176

	active_objs = 0;
	num_slabs = 0;
4177
	for_each_kmem_cache_node(cachep, node, n) {
4178

4179
		check_irq_on();
4180
		spin_lock_irq(&n->list_lock);
4181

4182 4183
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
4184 4185 4186 4187
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4188 4189
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4190
				error = "slabs_partial accounting error";
4191
			if (!page->active && !error)
4192
				error = "slabs_partial accounting error";
4193
			active_objs += page->active;
4194 4195
			active_slabs++;
		}
4196 4197
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4198
				error = "slabs_free accounting error";
4199 4200
			num_slabs++;
		}
4201 4202 4203
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4204

4205
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4206
	}
P
Pekka Enberg 已提交
4207 4208
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4209
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4210 4211
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4212
	name = cachep->name;
L
Linus Torvalds 已提交
4213
	if (error)
4214
		pr_err("slab: cache %s error: %s\n", name, error);
L
Linus Torvalds 已提交
4215

4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4230
#if STATS
4231
	{			/* node stats */
L
Linus Torvalds 已提交
4232 4233 4234 4235 4236 4237 4238
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4239
		unsigned long node_frees = cachep->node_frees;
4240
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4241

J
Joe Perches 已提交
4242
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4243 4244 4245
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4246 4247 4248 4249 4250 4251 4252 4253 4254
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4255
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4268
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4269
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4270
{
P
Pekka Enberg 已提交
4271
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4272
	int limit, batchcount, shared, res;
4273
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4274

L
Linus Torvalds 已提交
4275 4276 4277 4278
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4279
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4290
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4291
	res = -EINVAL;
4292
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4293
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4294 4295
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4296
				res = 0;
L
Linus Torvalds 已提交
4297
			} else {
4298
				res = do_tune_cpucache(cachep, limit,
4299 4300
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4301 4302 4303 4304
			}
			break;
		}
	}
4305
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4306 4307 4308 4309
	if (res >= 0)
		res = count;
	return res;
}
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4343 4344
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4345 4346
{
	void *p;
4347 4348
	int i, j;
	unsigned long v;
4349

4350 4351
	if (n[0] == n[1])
		return;
4352
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4363
			continue;
4364

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4375 4376 4377 4378 4379 4380 4381 4382
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4383
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4384

4385
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4386
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4387
		if (modname[0])
4388 4389 4390 4391 4392 4393 4394 4395 4396
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4397
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4398
	struct page *page;
4399
	struct kmem_cache_node *n;
4400
	const char *name;
4401
	unsigned long *x = m->private;
4402 4403 4404 4405 4406 4407 4408 4409
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4421

4422
		for_each_kmem_cache_node(cachep, node, n) {
4423

4424 4425
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4426

4427 4428 4429 4430 4431 4432 4433
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4434 4435

	name = cachep->name;
4436
	if (x[0] == x[1]) {
4437
		/* Increase the buffer size */
4438
		mutex_unlock(&slab_mutex);
4439
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4440 4441
		if (!m->private) {
			/* Too bad, we are really out */
4442
			m->private = x;
4443
			mutex_lock(&slab_mutex);
4444 4445
			return -ENOMEM;
		}
4446 4447
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4448
		mutex_lock(&slab_mutex);
4449 4450 4451 4452
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4453 4454 4455
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4456 4457
		seq_putc(m, '\n');
	}
4458

4459 4460 4461
	return 0;
}

4462
static const struct seq_operations slabstats_op = {
4463
	.start = slab_start,
4464 4465
	.next = slab_next,
	.stop = slab_stop,
4466 4467
	.show = leaks_show,
};
4468 4469 4470

static int slabstats_open(struct inode *inode, struct file *file)
{
4471 4472 4473 4474 4475 4476 4477 4478 4479
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4494
#endif
4495 4496 4497
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4498 4499
#endif

4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4512
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4513
{
A
Alexander Potapenko 已提交
4514 4515
	size_t size;

4516 4517
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4518
		return 0;
L
Linus Torvalds 已提交
4519

A
Alexander Potapenko 已提交
4520 4521 4522 4523
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4524
	kasan_krealloc(objp, size, GFP_NOWAIT);
A
Alexander Potapenko 已提交
4525 4526

	return size;
L
Linus Torvalds 已提交
4527
}
K
Kirill A. Shutemov 已提交
4528
EXPORT_SYMBOL(ksize);