slab.c 106.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
30
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
54
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
55 56 57 58
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
59
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68 69 70 71
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
72
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
73 74 75 76 77 78
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
79 80 81 82 83 84 85 86 87
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
88 89 90 91
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
119
#include	<linux/sched/task_stack.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

131 132
#include	"slab.h"

L
Linus Torvalds 已提交
133
/*
134
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
155
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
156 157 158 159 160

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

161 162 163 164 165 166 167 168 169
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

170
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171

L
Linus Torvalds 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
189
	void *entry[];	/*
A
Andrew Morton 已提交
190 191 192 193
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
194 195
};

J
Joonsoo Kim 已提交
196 197 198 199 200
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

201 202 203
/*
 * Need this for bootstrapping a per node allocator.
 */
204
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206
#define	CACHE_CACHE 0
207
#define	SIZE_NODE (MAX_NUMNODES)
208

209
static int drain_freelist(struct kmem_cache *cache,
210
			struct kmem_cache_node *n, int tofree);
211
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 213
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215
static void cache_reap(struct work_struct *unused);
216

217 218 219 220 221
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
222 223
static int slab_early_init = 1;

224
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
225

226
static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 228 229 230
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
231
	parent->total_slabs = 0;
232
	parent->free_slabs = 0;
233 234
	parent->shared = NULL;
	parent->alien = NULL;
235
	parent->colour_next = 0;
236 237 238 239 240
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
241 242 243
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
244
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 246
	} while (0)

A
Andrew Morton 已提交
247 248
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
249 250 251 252
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
253

254 255
#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
257 258 259
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
260 261 262
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
263
 *
A
Adrian Bunk 已提交
264
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
265 266
 * which could lock up otherwise freeable slabs.
 */
267 268
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
269 270 271 272 273 274

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
275
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
276 277 278 279 280
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
281 282
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
285 286 287 288 289
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
290 291 292 293 294 295 296 297 298
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
299
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
300 301 302
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303
#define	STATS_INC_NODEFREES(x)	do { } while (0)
304
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
305
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
306 307 308 309 310 311 312 313
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
314 315
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
316
 * 0		: objp
317
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
318 319
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
320
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
321
 * 		redzone word.
322
 * cachep->obj_offset: The real object.
323 324
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
325
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
326
 */
327
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
328
{
329
	return cachep->obj_offset;
L
Linus Torvalds 已提交
330 331
}

332
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 336
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
337 338
}

339
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
340 341 342
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
343
		return (unsigned long long *)(objp + cachep->size -
344
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
345
					      REDZONE_ALIGN);
346
	return (unsigned long long *) (objp + cachep->size -
347
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
348 349
}

350
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
351 352
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
354 355 356 357
}

#else

358
#define obj_offset(x)			0
359 360
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
361 362 363 364 365
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
366 367
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
368
 */
369 370 371
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
372
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
373

374 375
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
376
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
377
	return page->slab_cache;
378 379
}

380
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
381 382
				 unsigned int idx)
{
383
	return page->s_mem + cache->size * idx;
384 385
}

386
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
387
/* internal cache of cache description objs */
388
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
389 390 391
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
392
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
393
	.name = "kmem_cache",
L
Linus Torvalds 已提交
394 395
};

396
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
397

398
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
399
{
400
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
401 402
}

A
Andrew Morton 已提交
403 404 405
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
406
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
407
		slab_flags_t flags, size_t *left_over)
408
{
409
	unsigned int num;
410
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
411

412 413 414 415 416 417
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
418 419 420 421 422
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
423 424 425 426 427 428
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
429
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
430
		num = slab_size / buffer_size;
431
		*left_over = slab_size % buffer_size;
432
	} else {
433
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
434 435
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
436
	}
437 438

	return num;
L
Linus Torvalds 已提交
439 440
}

441
#if DEBUG
442
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
443

A
Andrew Morton 已提交
444 445
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
446
{
447
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
448
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
449
	dump_stack();
450
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
451
}
452
#endif
L
Linus Torvalds 已提交
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

470 471 472 473 474 475 476 477 478 479 480
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

481 482 483 484 485 486 487
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
488
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
489 490 491

static void init_reap_node(int cpu)
{
492 493
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
494 495 496 497
}

static void next_reap_node(void)
{
498
	int node = __this_cpu_read(slab_reap_node);
499

500
	node = next_node_in(node, node_online_map);
501
	__this_cpu_write(slab_reap_node, node);
502 503 504 505 506 507 508
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
509 510 511 512 513 514 515
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
516
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
517
{
518
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
519

520
	if (reap_work->work.func == NULL) {
521
		init_reap_node(cpu);
522
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
523 524
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
525 526 527
	}
}

528
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
529
{
530 531 532 533 534
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
535
	}
536 537 538 539 540
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
541
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
542 543 544
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
545 546 547 548 549 550 551 552
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transferred to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(ac);
553 554
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
555 556
}

557 558
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
559
{
560 561 562
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
563

564 565
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
566

567 568 569
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
570

571
	slabs_destroy(cachep, &list);
572 573
}

574 575 576 577 578 579 580 581 582 583
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
584
	int nr = min3(from->avail, max, to->limit - to->avail);
585 586 587 588 589 590 591 592 593 594 595 596

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

597 598 599
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
600
#define reap_alien(cachep, n) do { } while (0)
601

J
Joonsoo Kim 已提交
602 603
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
604
{
605
	return NULL;
606 607
}

J
Joonsoo Kim 已提交
608
static inline void free_alien_cache(struct alien_cache **ac_ptr)
609 610 611 612 613 614 615 616 617 618 619 620 621 622
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

623
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
624 625 626 627 628
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
629 630
static inline gfp_t gfp_exact_node(gfp_t flags)
{
631
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
632 633
}

634 635
#else	/* CONFIG_NUMA */

636
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
637
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
638

J
Joonsoo Kim 已提交
639 640 641
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
642
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
643 644 645
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
646
	if (alc) {
647
		kmemleak_no_scan(alc);
648 649 650
		init_arraycache(&alc->ac, entries, batch);
		spin_lock_init(&alc->lock);
	}
J
Joonsoo Kim 已提交
651 652 653 654
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
655
{
J
Joonsoo Kim 已提交
656
	struct alien_cache **alc_ptr;
657 658 659 660
	int i;

	if (limit > 1)
		limit = 12;
661
	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
J
Joonsoo Kim 已提交
662 663 664 665 666 667 668 669 670 671 672 673
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
674 675
		}
	}
J
Joonsoo Kim 已提交
676
	return alc_ptr;
677 678
}

J
Joonsoo Kim 已提交
679
static void free_alien_cache(struct alien_cache **alc_ptr)
680 681 682
{
	int i;

J
Joonsoo Kim 已提交
683
	if (!alc_ptr)
684 685
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
686 687
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
688 689
}

690
static void __drain_alien_cache(struct kmem_cache *cachep,
691 692
				struct array_cache *ac, int node,
				struct list_head *list)
693
{
694
	struct kmem_cache_node *n = get_node(cachep, node);
695 696

	if (ac->avail) {
697
		spin_lock(&n->list_lock);
698 699 700 701 702
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
703 704
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
705

706
		free_block(cachep, ac->entry, ac->avail, node, list);
707
		ac->avail = 0;
708
		spin_unlock(&n->list_lock);
709 710 711
	}
}

712 713 714
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
715
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
716
{
717
	int node = __this_cpu_read(slab_reap_node);
718

719
	if (n->alien) {
J
Joonsoo Kim 已提交
720 721 722 723 724
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
725
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
726 727 728
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
729
				spin_unlock_irq(&alc->lock);
730
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
731
			}
732 733 734 735
		}
	}
}

A
Andrew Morton 已提交
736
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
737
				struct alien_cache **alien)
738
{
P
Pekka Enberg 已提交
739
	int i = 0;
J
Joonsoo Kim 已提交
740
	struct alien_cache *alc;
741 742 743 744
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
745 746
		alc = alien[i];
		if (alc) {
747 748
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
749
			ac = &alc->ac;
750
			spin_lock_irqsave(&alc->lock, flags);
751
			__drain_alien_cache(cachep, ac, i, &list);
752
			spin_unlock_irqrestore(&alc->lock, flags);
753
			slabs_destroy(cachep, &list);
754 755 756
		}
	}
}
757

758 759
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
760
{
761
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
762 763
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
764
	LIST_HEAD(list);
P
Pekka Enberg 已提交
765

766
	n = get_node(cachep, node);
767
	STATS_INC_NODEFREES(cachep);
768 769
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
770
		ac = &alien->ac;
771
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
772
		if (unlikely(ac->avail == ac->limit)) {
773
			STATS_INC_ACOVERFLOW(cachep);
774
			__drain_alien_cache(cachep, ac, page_node, &list);
775
		}
776
		ac->entry[ac->avail++] = objp;
777
		spin_unlock(&alien->lock);
778
		slabs_destroy(cachep, &list);
779
	} else {
780
		n = get_node(cachep, page_node);
781
		spin_lock(&n->list_lock);
782
		free_block(cachep, &objp, 1, page_node, &list);
783
		spin_unlock(&n->list_lock);
784
		slabs_destroy(cachep, &list);
785 786 787
	}
	return 1;
}
788 789 790 791 792 793 794 795 796 797 798 799 800 801

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
802 803

/*
804 805
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
806 807 808
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
809
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
810
}
811 812
#endif

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

853
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
854
/*
855
 * Allocates and initializes node for a node on each slab cache, used for
856
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
857
 * will be allocated off-node since memory is not yet online for the new node.
858
 * When hotplugging memory or a cpu, existing node are not replaced if
859 860
 * already in use.
 *
861
 * Must hold slab_mutex.
862
 */
863
static int init_cache_node_node(int node)
864
{
865
	int ret;
866 867
	struct kmem_cache *cachep;

868
	list_for_each_entry(cachep, &slab_caches, list) {
869 870 871
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
872
	}
873

874 875
	return 0;
}
876
#endif
877

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

927 928 929 930
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
931
	 * freed after synchronize_rcu().
932
	 */
933
	if (old_shared && force_change)
934
		synchronize_rcu();
935

936 937 938 939 940 941 942 943
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

944 945
#ifdef CONFIG_SMP

946
static void cpuup_canceled(long cpu)
947 948
{
	struct kmem_cache *cachep;
949
	struct kmem_cache_node *n = NULL;
950
	int node = cpu_to_mem(cpu);
951
	const struct cpumask *mask = cpumask_of_node(node);
952

953
	list_for_each_entry(cachep, &slab_caches, list) {
954 955
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
956
		struct alien_cache **alien;
957
		LIST_HEAD(list);
958

959
		n = get_node(cachep, node);
960
		if (!n)
961
			continue;
962

963
		spin_lock_irq(&n->list_lock);
964

965 966
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
967 968 969

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
970 971
		free_block(cachep, nc->entry, nc->avail, node, &list);
		nc->avail = 0;
972

973
		if (!cpumask_empty(mask)) {
974
			spin_unlock_irq(&n->list_lock);
975
			goto free_slab;
976 977
		}

978
		shared = n->shared;
979 980
		if (shared) {
			free_block(cachep, shared->entry,
981
				   shared->avail, node, &list);
982
			n->shared = NULL;
983 984
		}

985 986
		alien = n->alien;
		n->alien = NULL;
987

988
		spin_unlock_irq(&n->list_lock);
989 990 991 992 993 994

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
995 996

free_slab:
997
		slabs_destroy(cachep, &list);
998 999 1000 1001 1002 1003
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1004
	list_for_each_entry(cachep, &slab_caches, list) {
1005
		n = get_node(cachep, node);
1006
		if (!n)
1007
			continue;
1008
		drain_freelist(cachep, n, INT_MAX);
1009 1010 1011
	}
}

1012
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1013
{
1014
	struct kmem_cache *cachep;
1015
	int node = cpu_to_mem(cpu);
1016
	int err;
L
Linus Torvalds 已提交
1017

1018 1019 1020 1021
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1022
	 * kmem_cache_node and not this cpu's kmem_cache_node
1023
	 */
1024
	err = init_cache_node_node(node);
1025 1026
	if (err < 0)
		goto bad;
1027 1028 1029 1030 1031

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1032
	list_for_each_entry(cachep, &slab_caches, list) {
1033 1034 1035
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1036
	}
1037

1038 1039
	return 0;
bad:
1040
	cpuup_canceled(cpu);
1041 1042 1043
	return -ENOMEM;
}

1044
int slab_prepare_cpu(unsigned int cpu)
1045
{
1046
	int err;
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1071
#endif
1072 1073 1074 1075 1076

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
L
Linus Torvalds 已提交
1077 1078
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
L
Linus Torvalds 已提交
1092

1093 1094 1095 1096 1097 1098
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1099
 * Must hold slab_mutex.
1100
 */
1101
static int __meminit drain_cache_node_node(int node)
1102 1103 1104 1105
{
	struct kmem_cache *cachep;
	int ret = 0;

1106
	list_for_each_entry(cachep, &slab_caches, list) {
1107
		struct kmem_cache_node *n;
1108

1109
		n = get_node(cachep, node);
1110
		if (!n)
1111 1112
			continue;

1113
		drain_freelist(cachep, n, INT_MAX);
1114

1115 1116
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1137
		mutex_lock(&slab_mutex);
1138
		ret = init_cache_node_node(nid);
1139
		mutex_unlock(&slab_mutex);
1140 1141
		break;
	case MEM_GOING_OFFLINE:
1142
		mutex_lock(&slab_mutex);
1143
		ret = drain_cache_node_node(nid);
1144
		mutex_unlock(&slab_mutex);
1145 1146 1147 1148 1149 1150 1151 1152
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1153
	return notifier_from_errno(ret);
1154 1155 1156
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1157
/*
1158
 * swap the static kmem_cache_node with kmalloced memory
1159
 */
1160
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1161
				int nodeid)
1162
{
1163
	struct kmem_cache_node *ptr;
1164

1165
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1166 1167
	BUG_ON(!ptr);

1168
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1169 1170 1171 1172 1173
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1174
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1175
	cachep->node[nodeid] = ptr;
1176 1177
}

1178
/*
1179 1180
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1181
 */
1182
static void __init set_up_node(struct kmem_cache *cachep, int index)
1183 1184 1185 1186
{
	int node;

	for_each_online_node(node) {
1187
		cachep->node[node] = &init_kmem_cache_node[index + node];
1188
		cachep->node[node]->next_reap = jiffies +
1189 1190
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1191 1192 1193
	}
}

A
Andrew Morton 已提交
1194 1195 1196
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1197 1198 1199
 */
void __init kmem_cache_init(void)
{
1200 1201
	int i;

1202 1203
	kmem_cache = &kmem_cache_boot;

1204
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1205 1206
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1207
	for (i = 0; i < NUM_INIT_LISTS; i++)
1208
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1209

L
Linus Torvalds 已提交
1210 1211
	/*
	 * Fragmentation resistance on low memory - only use bigger
1212 1213
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1214
	 */
1215
	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1216
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1217 1218 1219

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1220 1221 1222
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1223
	 *    Initially an __init data area is used for the head array and the
1224
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1225
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1226
	 * 2) Create the first kmalloc cache.
1227
	 *    The struct kmem_cache for the new cache is allocated normally.
1228 1229 1230
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1231
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1232
	 *    kmalloc cache with kmalloc allocated arrays.
1233
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1234 1235
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1236 1237
	 */

1238
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1239

E
Eric Dumazet 已提交
1240
	/*
1241
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1242
	 */
1243
	create_boot_cache(kmem_cache, "kmem_cache",
1244
		offsetof(struct kmem_cache, node) +
1245
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1246
				  SLAB_HWCACHE_ALIGN, 0, 0);
1247
	list_add(&kmem_cache->list, &slab_caches);
1248
	memcg_link_cache(kmem_cache);
1249
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1250

A
Andrew Morton 已提交
1251
	/*
1252 1253
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1254
	 */
1255
	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1256
				kmalloc_info[INDEX_NODE].name,
1257 1258
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
				0, kmalloc_size(INDEX_NODE));
1259
	slab_state = PARTIAL_NODE;
1260
	setup_kmalloc_cache_index_table();
1261

1262 1263
	slab_early_init = 0;

1264
	/* 5) Replace the bootstrap kmem_cache_node */
1265
	{
P
Pekka Enberg 已提交
1266 1267
		int nid;

1268
		for_each_online_node(nid) {
1269
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1270

1271
			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1272
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1273 1274
		}
	}
L
Linus Torvalds 已提交
1275

1276
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1277 1278 1279 1280 1281 1282 1283
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
1284 1285
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1286 1287
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1288
	mutex_unlock(&slab_mutex);
1289

1290 1291 1292
	/* Done! */
	slab_state = FULL;

1293 1294 1295
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1296
	 * node.
1297 1298 1299 1300
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1301 1302 1303
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1304 1305 1306 1307 1308
	 */
}

static int __init cpucache_init(void)
{
1309
	int ret;
L
Linus Torvalds 已提交
1310

A
Andrew Morton 已提交
1311 1312
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1313
	 */
1314 1315 1316
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1317

L
Linus Torvalds 已提交
1318 1319 1320 1321
	return 0;
}
__initcall(cpucache_init);

1322 1323 1324
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1325
#if DEBUG
1326
	struct kmem_cache_node *n;
1327 1328
	unsigned long flags;
	int node;
1329 1330 1331 1332 1333
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1334

1335 1336 1337
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1338
		cachep->name, cachep->size, cachep->gfporder);
1339

1340
	for_each_kmem_cache_node(cachep, node, n) {
1341
		unsigned long total_slabs, free_slabs, free_objs;
1342

1343
		spin_lock_irqsave(&n->list_lock, flags);
1344 1345 1346
		total_slabs = n->total_slabs;
		free_slabs = n->free_slabs;
		free_objs = n->free_objects;
1347
		spin_unlock_irqrestore(&n->list_lock, flags);
1348

1349 1350 1351 1352
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
			node, total_slabs - free_slabs, total_slabs,
			(total_slabs * cachep->num) - free_objs,
			total_slabs * cachep->num);
1353
	}
1354
#endif
1355 1356
}

L
Linus Torvalds 已提交
1357
/*
W
Wang Sheng-Hui 已提交
1358 1359
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1360 1361 1362 1363 1364
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1365 1366
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1367 1368
{
	struct page *page;
1369
	int nr_pages;
1370

1371
	flags |= cachep->allocflags;
1372

1373
	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1374
	if (!page) {
1375
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1376
		return NULL;
1377
	}
L
Linus Torvalds 已提交
1378

1379 1380 1381 1382 1383
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1384
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1385
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1386
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1387
	else
1388
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1389

1390
	__SetPageSlab(page);
1391 1392
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1393
		SetPageSlabPfmemalloc(page);
1394

1395
	return page;
L
Linus Torvalds 已提交
1396 1397 1398 1399 1400
}

/*
 * Interface to system's page release.
 */
1401
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1402
{
1403 1404
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1405

1406
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1407
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1408
	else
1409
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
J
Joonsoo Kim 已提交
1410

1411
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1412
	__ClearPageSlabPfmemalloc(page);
1413
	__ClearPageSlab(page);
1414 1415
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1416

L
Linus Torvalds 已提交
1417 1418
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1419 1420
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1421 1422 1423 1424
}

static void kmem_rcu_free(struct rcu_head *head)
{
1425 1426
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1427

1428 1429 1430 1431
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1432 1433 1434
}

#if DEBUG
1435 1436 1437 1438 1439 1440 1441 1442
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1443 1444

#ifdef CONFIG_DEBUG_PAGEALLOC
Q
Qian Cai 已提交
1445
static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1446 1447 1448 1449 1450 1451 1452 1453 1454
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
Q
Qian Cai 已提交
1455
				int map) {}
1456

L
Linus Torvalds 已提交
1457 1458
#endif

1459
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1460
{
1461
	int size = cachep->object_size;
1462
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1463 1464

	memset(addr, val, size);
P
Pekka Enberg 已提交
1465
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1466 1467 1468 1469 1470
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1471 1472 1473
	unsigned char error = 0;
	int bad_count = 0;

1474
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1475 1476 1477 1478 1479 1480
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1481 1482
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1483 1484 1485 1486

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1487
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1488
#ifdef CONFIG_X86
1489
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1490
#else
1491
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1492 1493 1494
#endif
		}
	}
L
Linus Torvalds 已提交
1495 1496 1497 1498 1499
}
#endif

#if DEBUG

1500
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1501 1502 1503 1504 1505
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1506 1507 1508
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1509 1510
	}

1511 1512
	if (cachep->flags & SLAB_STORE_USER)
		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1513
	realobj = (char *)objp + obj_offset(cachep);
1514
	size = cachep->object_size;
P
Pekka Enberg 已提交
1515
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1516 1517
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1518 1519
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1520 1521 1522 1523
		dump_line(realobj, i, limit);
	}
}

1524
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1525 1526 1527 1528 1529
{
	char *realobj;
	int size, i;
	int lines = 0;

1530 1531 1532
	if (is_debug_pagealloc_cache(cachep))
		return;

1533
	realobj = (char *)objp + obj_offset(cachep);
1534
	size = cachep->object_size;
L
Linus Torvalds 已提交
1535

P
Pekka Enberg 已提交
1536
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1537
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1538
		if (i == size - 1)
L
Linus Torvalds 已提交
1539 1540 1541 1542 1543 1544
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1545
				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1546 1547
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1548 1549 1550
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1551
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1552
			limit = 16;
P
Pekka Enberg 已提交
1553 1554
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1567
		struct page *page = virt_to_head_page(objp);
1568
		unsigned int objnr;
L
Linus Torvalds 已提交
1569

1570
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1571
		if (objnr) {
1572
			objp = index_to_obj(cachep, page, objnr - 1);
1573
			realobj = (char *)objp + obj_offset(cachep);
1574
			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1575 1576
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1577
		if (objnr + 1 < cachep->num) {
1578
			objp = index_to_obj(cachep, page, objnr + 1);
1579
			realobj = (char *)objp + obj_offset(cachep);
1580
			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1581 1582 1583 1584 1585 1586
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1587
#if DEBUG
1588 1589
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1590 1591
{
	int i;
1592 1593 1594 1595 1596 1597

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1598
	for (i = 0; i < cachep->num; i++) {
1599
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1600 1601 1602

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
Q
Qian Cai 已提交
1603
			slab_kernel_map(cachep, objp, 1);
L
Linus Torvalds 已提交
1604 1605 1606
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1607
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1608
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1609
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1610 1611
		}
	}
1612
}
L
Linus Torvalds 已提交
1613
#else
1614 1615
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1616 1617
{
}
L
Linus Torvalds 已提交
1618 1619
#endif

1620 1621 1622
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1623
 * @page: page pointer being destroyed
1624
 *
W
Wang Sheng-Hui 已提交
1625 1626 1627
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1628
 */
1629
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1630
{
1631
	void *freelist;
1632

1633 1634
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1635
	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1636 1637
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1638
		kmem_freepages(cachep, page);
1639 1640

	/*
1641
	 * From now on, we don't use freelist
1642 1643 1644
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1645
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1646 1647
}

1648 1649 1650 1651
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

1652 1653
	list_for_each_entry_safe(page, n, list, slab_list) {
		list_del(&page->slab_list);
1654 1655 1656 1657
		slab_destroy(cachep, page);
	}
}

1658
/**
1659 1660 1661 1662 1663 1664
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1665 1666 1667 1668
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
1669 1670
 *
 * Return: number of left-over bytes in a slab
1671
 */
A
Andrew Morton 已提交
1672
static size_t calculate_slab_order(struct kmem_cache *cachep,
1673
				size_t size, slab_flags_t flags)
1674 1675
{
	size_t left_over = 0;
1676
	int gfporder;
1677

1678
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1679 1680 1681
		unsigned int num;
		size_t remainder;

1682
		num = cache_estimate(gfporder, size, flags, &remainder);
1683 1684
		if (!num)
			continue;
1685

1686 1687 1688 1689
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1690
		if (flags & CFLGS_OFF_SLAB) {
1691 1692 1693 1694 1695 1696 1697 1698
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1699
			/*
1700
			 * Needed to avoid possible looping condition
1701
			 * in cache_grow_begin()
1702
			 */
1703 1704
			if (OFF_SLAB(freelist_cache))
				continue;
1705

1706 1707 1708
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1709
		}
1710

1711
		/* Found something acceptable - save it away */
1712
		cachep->num = num;
1713
		cachep->gfporder = gfporder;
1714 1715
		left_over = remainder;

1716 1717 1718 1719 1720 1721 1722 1723
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1724 1725 1726 1727
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1728
		if (gfporder >= slab_max_order)
1729 1730
			break;

1731 1732 1733
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1734
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1735 1736 1737 1738 1739
			break;
	}
	return left_over;
}

1740 1741 1742 1743 1744 1745 1746 1747
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1748
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1761
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1762
{
1763
	if (slab_state >= FULL)
1764
		return enable_cpucache(cachep, gfp);
1765

1766 1767 1768 1769
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1770
	if (slab_state == DOWN) {
1771 1772
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1773
	} else if (slab_state == PARTIAL) {
1774 1775
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1776
	} else {
1777
		int node;
1778

1779 1780 1781 1782 1783
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1784 1785
		}
	}
1786

1787
	cachep->node[numa_mem_id()]->next_reap =
1788 1789
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1790 1791 1792 1793 1794 1795 1796

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1797
	return 0;
1798 1799
}

1800
slab_flags_t kmem_cache_flags(unsigned int object_size,
1801
	slab_flags_t flags, const char *name,
J
Joonsoo Kim 已提交
1802 1803 1804 1805 1806 1807
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
1808
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1809
		   slab_flags_t flags, void (*ctor)(void *))
J
Joonsoo Kim 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1826
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1827
			size_t size, slab_flags_t flags)
1828 1829 1830 1831 1832
{
	size_t left;

	cachep->num = 0;

1833
	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1849
static bool set_off_slab_cache(struct kmem_cache *cachep,
1850
			size_t size, slab_flags_t flags)
1851 1852 1853 1854 1855 1856
{
	size_t left;

	cachep->num = 0;

	/*
1857 1858
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
1884
			size_t size, slab_flags_t flags)
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1899
/**
1900
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1901
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1902 1903 1904 1905
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1906
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
1919 1920
 *
 * Return: a pointer to the created cache or %NULL in case of error
L
Linus Torvalds 已提交
1921
 */
1922
int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
L
Linus Torvalds 已提交
1923
{
1924
	size_t ralign = BYTES_PER_WORD;
1925
	gfp_t gfp;
1926
	int err;
1927
	unsigned int size = cachep->size;
L
Linus Torvalds 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
1937 1938
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
1939
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1940
	if (!(flags & SLAB_TYPESAFE_BY_RCU))
L
Linus Torvalds 已提交
1941 1942 1943 1944
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
1945 1946
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
1947 1948 1949
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
1950
	size = ALIGN(size, BYTES_PER_WORD);
L
Linus Torvalds 已提交
1951

D
David Woodhouse 已提交
1952 1953 1954 1955
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
1956
		size = ALIGN(size, REDZONE_ALIGN);
D
David Woodhouse 已提交
1957
	}
1958

1959
	/* 3) caller mandated alignment */
1960 1961
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
1962
	}
1963 1964
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
1965
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
1966
	/*
1967
	 * 4) Store it.
L
Linus Torvalds 已提交
1968
	 */
1969
	cachep->align = ralign;
1970 1971 1972 1973
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
1974

1975 1976 1977 1978 1979
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
1980 1981
#if DEBUG

1982 1983 1984 1985
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
1986 1987
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
1988 1989
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
1990 1991
	}
	if (flags & SLAB_STORE_USER) {
1992
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
1993 1994
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
1995
		 */
D
David Woodhouse 已提交
1996 1997 1998 1999
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2000
	}
2001 2002
#endif

A
Alexander Potapenko 已提交
2003 2004
	kasan_cache_create(cachep, &size, &flags);

2005 2006 2007 2008 2009 2010 2011 2012 2013
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2014 2015 2016 2017 2018 2019 2020
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2021
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2033 2034 2035
	}
#endif

2036 2037 2038 2039 2040
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2041
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2042
		flags |= CFLGS_OFF_SLAB;
2043
		goto done;
2044
	}
L
Linus Torvalds 已提交
2045

2046 2047
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2048

2049
	return -E2BIG;
L
Linus Torvalds 已提交
2050

2051 2052
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2053
	cachep->flags = flags;
2054
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2055
	if (flags & SLAB_CACHE_DMA)
2056
		cachep->allocflags |= GFP_DMA;
2057 2058
	if (flags & SLAB_CACHE_DMA32)
		cachep->allocflags |= GFP_DMA32;
2059 2060
	if (flags & SLAB_RECLAIM_ACCOUNT)
		cachep->allocflags |= __GFP_RECLAIMABLE;
2061
	cachep->size = size;
2062
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2063

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2077 2078
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2079
	}
L
Linus Torvalds 已提交
2080

2081 2082
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2083
		__kmem_cache_release(cachep);
2084
		return err;
2085
	}
L
Linus Torvalds 已提交
2086

2087
	return 0;
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2101 2102 2103 2104 2105
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2106
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2107 2108 2109
{
#ifdef CONFIG_SMP
	check_irq_off();
2110
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2111 2112
#endif
}
2113

2114
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2115 2116 2117
{
#ifdef CONFIG_SMP
	check_irq_off();
2118
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2119 2120 2121
#endif
}

L
Linus Torvalds 已提交
2122 2123 2124
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2125
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2126
#define check_spinlock_acquired(x) do { } while(0)
2127
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2128 2129
#endif

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2146

L
Linus Torvalds 已提交
2147 2148
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2149
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2150
	struct array_cache *ac;
2151
	int node = numa_mem_id();
2152
	struct kmem_cache_node *n;
2153
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2154 2155

	check_irq_off();
2156
	ac = cpu_cache_get(cachep);
2157 2158
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2159
	free_block(cachep, ac->entry, ac->avail, node, &list);
2160
	spin_unlock(&n->list_lock);
2161
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2162 2163 2164
	ac->avail = 0;
}

2165
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2166
{
2167
	struct kmem_cache_node *n;
2168
	int node;
2169
	LIST_HEAD(list);
2170

2171
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2172
	check_irq_on();
2173 2174
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2175
			drain_alien_cache(cachep, n->alien);
2176

2177 2178 2179 2180 2181 2182 2183
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2184 2185
}

2186 2187 2188 2189 2190 2191 2192
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2193
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2194
{
2195 2196
	struct list_head *p;
	int nr_freed;
2197
	struct page *page;
L
Linus Torvalds 已提交
2198

2199
	nr_freed = 0;
2200
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2201

2202 2203 2204 2205
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2206 2207
			goto out;
		}
L
Linus Torvalds 已提交
2208

2209 2210
		page = list_entry(p, struct page, slab_list);
		list_del(&page->slab_list);
2211
		n->free_slabs--;
2212
		n->total_slabs--;
2213 2214 2215 2216
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2217 2218
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2219
		slab_destroy(cache, page);
2220
		nr_freed++;
L
Linus Torvalds 已提交
2221
	}
2222 2223
out:
	return nr_freed;
L
Linus Torvalds 已提交
2224 2225
}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial))
			return false;
	return true;
}

2238
int __kmem_cache_shrink(struct kmem_cache *cachep)
2239
{
2240 2241
	int ret = 0;
	int node;
2242
	struct kmem_cache_node *n;
2243 2244 2245 2246

	drain_cpu_caches(cachep);

	check_irq_on();
2247
	for_each_kmem_cache_node(cachep, node, n) {
2248
		drain_freelist(cachep, n, INT_MAX);
2249

2250 2251
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2252 2253 2254 2255
	}
	return (ret ? 1 : 0);
}

2256 2257 2258 2259 2260 2261 2262
#ifdef CONFIG_MEMCG
void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
{
	__kmem_cache_shrink(cachep);
}
#endif

2263
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2264
{
2265
	return __kmem_cache_shrink(cachep);
2266 2267 2268
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2269
{
2270
	int i;
2271
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2272

T
Thomas Garnier 已提交
2273 2274
	cache_random_seq_destroy(cachep);

2275
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2276

2277
	/* NUMA: free the node structures */
2278 2279 2280 2281 2282
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2283
	}
L
Linus Torvalds 已提交
2284 2285
}

2286 2287
/*
 * Get the memory for a slab management obj.
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2299
 */
2300
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2301 2302
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2303
{
2304
	void *freelist;
2305
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2306

2307
	page->s_mem = addr + colour_off;
2308 2309
	page->active = 0;

2310 2311 2312
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2313
		/* Slab management obj is off-slab. */
2314
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2315
					      local_flags, nodeid);
2316
		if (!freelist)
L
Linus Torvalds 已提交
2317 2318
			return NULL;
	} else {
2319 2320 2321
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2322
	}
2323

2324
	return freelist;
L
Linus Torvalds 已提交
2325 2326
}

2327
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2328
{
2329
	return ((freelist_idx_t *)page->freelist)[idx];
2330 2331 2332
}

static inline void set_free_obj(struct page *page,
2333
					unsigned int idx, freelist_idx_t val)
2334
{
2335
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2336 2337
}

2338
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2339
{
2340
#if DEBUG
L
Linus Torvalds 已提交
2341 2342 2343
	int i;

	for (i = 0; i < cachep->num; i++) {
2344
		void *objp = index_to_obj(cachep, page, i);
2345

L
Linus Torvalds 已提交
2346 2347 2348 2349 2350 2351 2352 2353
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2354 2355 2356
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2357
		 */
A
Alexander Potapenko 已提交
2358 2359 2360
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2361
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2362 2363 2364
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2365 2366 2367

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2368
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2369
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2370
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2371
		}
2372 2373 2374
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
Q
Qian Cai 已提交
2375
			slab_kernel_map(cachep, objp, 0);
2376
		}
2377
	}
L
Linus Torvalds 已提交
2378
#endif
2379 2380
}

T
Thomas Garnier 已提交
2381 2382 2383 2384 2385
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2386
		unsigned int *list;
T
Thomas Garnier 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
		unsigned int count;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2404
	rand = get_random_int();
T
Thomas Garnier 已提交
2405 2406 2407 2408 2409 2410 2411 2412

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
2413
		state->pos = rand % count;
T
Thomas Garnier 已提交
2414 2415 2416 2417 2418 2419 2420 2421
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
2422 2423 2424
	if (state->pos >= state->count)
		state->pos = 0;
	return state->list[state->pos++];
T
Thomas Garnier 已提交
2425 2426
}

2427 2428 2429 2430 2431 2432 2433
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2434 2435 2436 2437 2438 2439
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2440
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2465 2466 2467 2468 2469 2470 2471 2472 2473
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2492 2493 2494 2495
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2496
	void *objp;
T
Thomas Garnier 已提交
2497
	bool shuffled;
2498 2499 2500

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2501 2502 2503 2504
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2505 2506 2507 2508
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2509
	for (i = 0; i < cachep->num; i++) {
2510
		objp = index_to_obj(cachep, page, i);
2511
		objp = kasan_init_slab_obj(cachep, objp);
2512

2513
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2514 2515 2516 2517 2518
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2519

T
Thomas Garnier 已提交
2520 2521
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2522 2523 2524
	}
}

2525
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2526
{
2527
	void *objp;
2528

2529
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2530
	page->active++;
2531 2532 2533 2534

	return objp;
}

2535 2536
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2537
{
2538
	unsigned int objnr = obj_to_index(cachep, page, objp);
2539
#if DEBUG
J
Joonsoo Kim 已提交
2540
	unsigned int i;
2541 2542

	/* Verify double free bug */
2543
	for (i = page->active; i < cachep->num; i++) {
2544
		if (get_free_obj(page, i) == objnr) {
2545
			pr_err("slab: double free detected in cache '%s', objp %px\n",
J
Joe Perches 已提交
2546
			       cachep->name, objp);
2547 2548
			BUG();
		}
2549 2550
	}
#endif
2551
	page->active--;
2552 2553 2554
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2555
	set_free_obj(page, page->active, objnr);
2556 2557
}

2558 2559 2560
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2561
 * virtual address for kfree, ksize, and slab debugging.
2562
 */
2563
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2564
			   void *freelist)
L
Linus Torvalds 已提交
2565
{
2566
	page->slab_cache = cache;
2567
	page->freelist = freelist;
L
Linus Torvalds 已提交
2568 2569 2570 2571 2572 2573
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2574 2575
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2576
{
2577
	void *freelist;
P
Pekka Enberg 已提交
2578 2579
	size_t offset;
	gfp_t local_flags;
2580
	int page_node;
2581
	struct kmem_cache_node *n;
2582
	struct page *page;
L
Linus Torvalds 已提交
2583

A
Andrew Morton 已提交
2584 2585 2586
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2587
	 */
2588
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2589
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2590 2591 2592 2593
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2594
	}
2595
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
C
Christoph Lameter 已提交
2596
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2597 2598

	check_irq_off();
2599
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2600 2601
		local_irq_enable();

A
Andrew Morton 已提交
2602 2603 2604
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2605
	 */
2606
	page = kmem_getpages(cachep, local_flags, nodeid);
2607
	if (!page)
L
Linus Torvalds 已提交
2608 2609
		goto failed;

2610 2611
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

2624 2625 2626 2627 2628 2629 2630
	/*
	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
	 * page_address() in the latter returns a non-tagged pointer,
	 * as it should be for slab pages.
	 */
	kasan_poison_slab(page);

L
Linus Torvalds 已提交
2631
	/* Get slab management. */
2632
	freelist = alloc_slabmgmt(cachep, page, offset,
2633
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2634
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2635 2636
		goto opps1;

2637
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2638

2639
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2640

2641
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2642 2643
		local_irq_disable();

2644 2645
	return page;

A
Andrew Morton 已提交
2646
opps1:
2647
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2648
failed:
2649
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2650
		local_irq_disable();
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

2664
	INIT_LIST_HEAD(&page->slab_list);
2665 2666 2667
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
2668
	n->total_slabs++;
2669
	if (!page->active) {
2670
		list_add_tail(&page->slab_list, &n->slabs_free);
2671
		n->free_slabs++;
2672
	} else
2673
		fixup_slab_list(cachep, n, page, &list);
2674

2675 2676 2677 2678 2679
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2692
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2693 2694
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2695 2696 2697
	}
}

2698 2699
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2700
	unsigned long long redzone1, redzone2;
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2716
	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2717
	       obj, redzone1, redzone2);
2718 2719
}

2720
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2721
				   unsigned long caller)
L
Linus Torvalds 已提交
2722 2723
{
	unsigned int objnr;
2724
	struct page *page;
L
Linus Torvalds 已提交
2725

2726 2727
	BUG_ON(virt_to_cache(objp) != cachep);

2728
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2729
	kfree_debugcheck(objp);
2730
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2731 2732

	if (cachep->flags & SLAB_RED_ZONE) {
2733
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2734 2735 2736
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
Q
Qian Cai 已提交
2737
	if (cachep->flags & SLAB_STORE_USER)
2738
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2739

2740
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2741 2742

	BUG_ON(objnr >= cachep->num);
2743
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2744 2745 2746

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
Q
Qian Cai 已提交
2747
		slab_kernel_map(cachep, objp, 0);
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2772
static inline void fixup_slab_list(struct kmem_cache *cachep,
2773 2774
				struct kmem_cache_node *n, struct page *page,
				void **list)
2775 2776
{
	/* move slabp to correct slabp list: */
2777
	list_del(&page->slab_list);
2778
	if (page->active == cachep->num) {
2779
		list_add(&page->slab_list, &n->slabs_full);
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2793
		list_add(&page->slab_list, &n->slabs_partial);
2794 2795
}

2796 2797
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2798
					struct page *page, bool pfmemalloc)
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
2816
	list_del(&page->slab_list);
2817
	if (!page->active) {
2818
		list_add_tail(&page->slab_list, &n->slabs_free);
2819
		n->free_slabs++;
2820
	} else
2821
		list_add_tail(&page->slab_list, &n->slabs_partial);
2822

2823
	list_for_each_entry(page, &n->slabs_partial, slab_list) {
2824 2825 2826 2827
		if (!PageSlabPfmemalloc(page))
			return page;
	}

2828
	n->free_touched = 1;
2829
	list_for_each_entry(page, &n->slabs_free, slab_list) {
2830
		if (!PageSlabPfmemalloc(page)) {
2831
			n->free_slabs--;
2832
			return page;
2833
		}
2834 2835 2836 2837 2838 2839
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2840 2841 2842
{
	struct page *page;

2843
	assert_spin_locked(&n->list_lock);
2844 2845
	page = list_first_entry_or_null(&n->slabs_partial, struct page,
					slab_list);
2846 2847
	if (!page) {
		n->free_touched = 1;
2848
		page = list_first_entry_or_null(&n->slabs_free, struct page,
2849
						slab_list);
2850
		if (page)
2851
			n->free_slabs--;
2852 2853
	}

2854
	if (sk_memalloc_socks())
2855
		page = get_valid_first_slab(n, page, pfmemalloc);
2856

2857 2858 2859
	return page;
}

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2912
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2913 2914
{
	int batchcount;
2915
	struct kmem_cache_node *n;
2916
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
2917
	int node;
2918
	void *list = NULL;
2919
	struct page *page;
P
Pekka Enberg 已提交
2920

L
Linus Torvalds 已提交
2921
	check_irq_off();
2922
	node = numa_mem_id();
2923

2924
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2925 2926
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2927 2928 2929 2930
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2931 2932 2933
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2934
	n = get_node(cachep, node);
2935

2936
	BUG_ON(ac->avail > 0 || !n);
2937 2938 2939 2940
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

2941
	spin_lock(&n->list_lock);
2942
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
2943

2944
	/* See if we can refill from the shared array */
2945 2946
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
2947
		goto alloc_done;
2948
	}
2949

L
Linus Torvalds 已提交
2950 2951
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
2952
		page = get_first_slab(n, false);
2953 2954
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
2955 2956

		check_spinlock_acquired(cachep);
2957

2958
		batchcount = alloc_block(cachep, ac, page, batchcount);
2959
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
2960 2961
	}

A
Andrew Morton 已提交
2962
must_grow:
2963
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2964
alloc_done:
2965
	spin_unlock(&n->list_lock);
2966
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2967

2968
direct_grow:
L
Linus Torvalds 已提交
2969
	if (unlikely(!ac->avail)) {
2970 2971 2972 2973 2974 2975 2976 2977
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

2978
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2979

2980 2981 2982 2983
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
2984
		ac = cpu_cache_get(cachep);
2985 2986 2987
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
2988

2989
		if (!ac->avail)
L
Linus Torvalds 已提交
2990 2991 2992
			return NULL;
	}
	ac->touched = 1;
2993

2994
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2995 2996
}

A
Andrew Morton 已提交
2997 2998
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2999
{
3000
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3001 3002 3003
}

#if DEBUG
A
Andrew Morton 已提交
3004
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3005
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3006
{
3007
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
P
Pekka Enberg 已提交
3008
	if (!objp)
L
Linus Torvalds 已提交
3009
		return objp;
P
Pekka Enberg 已提交
3010
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3011
		check_poison_obj(cachep, objp);
Q
Qian Cai 已提交
3012
		slab_kernel_map(cachep, objp, 1);
L
Linus Torvalds 已提交
3013 3014 3015
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3016
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3017 3018

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3019 3020
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3021
			slab_error(cachep, "double free, or memory outside object was overwritten");
3022
			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3023 3024
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3025 3026 3027 3028
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3029

3030
	objp += obj_offset(cachep);
3031
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3032
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3033 3034
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3035
		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3036
		       objp, (int)ARCH_SLAB_MINALIGN);
3037
	}
L
Linus Torvalds 已提交
3038 3039 3040 3041 3042 3043
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3044
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3045
{
P
Pekka Enberg 已提交
3046
	void *objp;
L
Linus Torvalds 已提交
3047 3048
	struct array_cache *ac;

3049
	check_irq_off();
3050

3051
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3052 3053
	if (likely(ac->avail)) {
		ac->touched = 1;
3054
		objp = ac->entry[--ac->avail];
3055

3056 3057
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3058
	}
3059 3060

	STATS_INC_ALLOCMISS(cachep);
3061
	objp = cache_alloc_refill(cachep, flags);
3062 3063 3064 3065 3066 3067 3068
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3069 3070 3071 3072 3073
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3074 3075
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3076 3077 3078
	return objp;
}

3079
#ifdef CONFIG_NUMA
3080
/*
3081
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3082 3083 3084 3085 3086 3087 3088 3089
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3090
	if (in_interrupt() || (flags & __GFP_THISNODE))
3091
		return NULL;
3092
	nid_alloc = nid_here = numa_mem_id();
3093
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3094
		nid_alloc = cpuset_slab_spread_node();
3095
	else if (current->mempolicy)
3096
		nid_alloc = mempolicy_slab_node();
3097
	if (nid_alloc != nid_here)
3098
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3099 3100 3101
	return NULL;
}

3102 3103
/*
 * Fallback function if there was no memory available and no objects on a
3104
 * certain node and fall back is permitted. First we scan all the
3105
 * available node for available objects. If that fails then we
3106 3107 3108
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3109
 */
3110
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3111
{
3112
	struct zonelist *zonelist;
3113
	struct zoneref *z;
3114 3115
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3116
	void *obj = NULL;
3117
	struct page *page;
3118
	int nid;
3119
	unsigned int cpuset_mems_cookie;
3120 3121 3122 3123

	if (flags & __GFP_THISNODE)
		return NULL;

3124
retry_cpuset:
3125
	cpuset_mems_cookie = read_mems_allowed_begin();
3126
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3127

3128 3129 3130 3131 3132
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3133 3134
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3135

3136
		if (cpuset_zone_allowed(zone, flags) &&
3137 3138
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3139
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3140
					gfp_exact_node(flags), nid);
3141 3142 3143
				if (obj)
					break;
		}
3144 3145
	}

3146
	if (!obj) {
3147 3148 3149 3150 3151 3152
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3153 3154 3155 3156
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3157 3158
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3159

3160
			/*
3161 3162
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3163
			 */
3164 3165
			if (!obj)
				goto retry;
3166
		}
3167
	}
3168

3169
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3170
		goto retry_cpuset;
3171 3172 3173
	return obj;
}

3174 3175
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3176
 */
3177
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3178
				int nodeid)
3179
{
3180
	struct page *page;
3181
	struct kmem_cache_node *n;
3182
	void *obj = NULL;
3183
	void *list = NULL;
P
Pekka Enberg 已提交
3184

3185
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3186
	n = get_node(cachep, nodeid);
3187
	BUG_ON(!n);
P
Pekka Enberg 已提交
3188

3189
	check_irq_off();
3190
	spin_lock(&n->list_lock);
3191
	page = get_first_slab(n, false);
3192 3193
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3194 3195 3196 3197 3198 3199 3200

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3201
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3202

3203
	obj = slab_get_obj(cachep, page);
3204
	n->free_objects--;
P
Pekka Enberg 已提交
3205

3206
	fixup_slab_list(cachep, n, page, &list);
3207

3208
	spin_unlock(&n->list_lock);
3209
	fixup_objfreelist_debug(cachep, &list);
3210
	return obj;
3211

A
Andrew Morton 已提交
3212
must_grow:
3213
	spin_unlock(&n->list_lock);
3214
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3215 3216 3217 3218
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3219
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3220

3221
	return obj ? obj : fallback_alloc(cachep, flags);
3222
}
3223 3224

static __always_inline void *
3225
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3226
		   unsigned long caller)
3227 3228 3229
{
	unsigned long save_flags;
	void *ptr;
3230
	int slab_node = numa_mem_id();
3231

3232
	flags &= gfp_allowed_mask;
3233 3234
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3235 3236
		return NULL;

3237 3238 3239
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3240
	if (nodeid == NUMA_NO_NODE)
3241
		nodeid = slab_node;
3242

3243
	if (unlikely(!get_node(cachep, nodeid))) {
3244 3245 3246 3247 3248
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3249
	if (nodeid == slab_node) {
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3266 3267
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3268

3269
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3270 3271 3272 3273 3274 3275 3276 3277
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3278
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3289 3290
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3306
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3307 3308 3309 3310
{
	unsigned long save_flags;
	void *objp;

3311
	flags &= gfp_allowed_mask;
3312 3313
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3314 3315
		return NULL;

3316 3317 3318 3319 3320 3321 3322
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3323 3324
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3325

3326
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3327 3328
	return objp;
}
3329 3330

/*
3331
 * Caller needs to acquire correct kmem_cache_node's list_lock
3332
 * @list: List of detached free slabs should be freed by caller
3333
 */
3334 3335
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3336 3337
{
	int i;
3338
	struct kmem_cache_node *n = get_node(cachep, node);
3339 3340 3341
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3342 3343

	for (i = 0; i < nr_objects; i++) {
3344
		void *objp;
3345
		struct page *page;
L
Linus Torvalds 已提交
3346

3347 3348
		objp = objpp[i];

3349
		page = virt_to_head_page(objp);
3350
		list_del(&page->slab_list);
3351
		check_spinlock_acquired_node(cachep, node);
3352
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3353 3354 3355
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3356
		if (page->active == 0) {
3357
			list_add(&page->slab_list, &n->slabs_free);
3358 3359
			n->free_slabs++;
		} else {
L
Linus Torvalds 已提交
3360 3361 3362 3363
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3364
			list_add_tail(&page->slab_list, &n->slabs_partial);
L
Linus Torvalds 已提交
3365 3366
		}
	}
3367 3368 3369 3370

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

3371 3372
		page = list_last_entry(&n->slabs_free, struct page, slab_list);
		list_move(&page->slab_list, list);
3373
		n->free_slabs--;
3374
		n->total_slabs--;
3375
	}
L
Linus Torvalds 已提交
3376 3377
}

3378
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3379 3380
{
	int batchcount;
3381
	struct kmem_cache_node *n;
3382
	int node = numa_mem_id();
3383
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3384 3385

	batchcount = ac->batchcount;
3386

L
Linus Torvalds 已提交
3387
	check_irq_off();
3388
	n = get_node(cachep, node);
3389 3390 3391
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3392
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3393 3394 3395
		if (max) {
			if (batchcount > max)
				batchcount = max;
3396
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3397
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3398 3399 3400 3401 3402
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3403
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3404
free_done:
L
Linus Torvalds 已提交
3405 3406 3407
#if STATS
	{
		int i = 0;
3408
		struct page *page;
L
Linus Torvalds 已提交
3409

3410
		list_for_each_entry(page, &n->slabs_free, slab_list) {
3411
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3412 3413 3414 3415 3416 3417

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3418
	spin_unlock(&n->list_lock);
3419
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3420
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3421
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3422 3423 3424
}

/*
A
Andrew Morton 已提交
3425 3426
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3427
 */
3428 3429
static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
					 unsigned long caller)
L
Linus Torvalds 已提交
3430
{
3431
	/* Put the object into the quarantine, don't touch it for now. */
3432
	if (kasan_slab_free(cachep, objp, _RET_IP_))
3433 3434 3435 3436
		return;

	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3437

3438 3439 3440 3441
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3442

L
Linus Torvalds 已提交
3443
	check_irq_off();
3444
	kmemleak_free_recursive(objp, cachep->flags);
3445
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3446

3447 3448 3449 3450 3451 3452 3453
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3454
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3455 3456
		return;

3457
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3458 3459 3460 3461 3462
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3463

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3474 3475 3476 3477 3478 3479 3480 3481 3482
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
3483 3484
 *
 * Return: pointer to the new object or %NULL in case of error
L
Linus Torvalds 已提交
3485
 */
3486
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3487
{
3488
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3489

3490
	trace_kmem_cache_alloc(_RET_IP_, ret,
3491
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3492 3493

	return ret;
L
Linus Torvalds 已提交
3494 3495 3496
}
EXPORT_SYMBOL(kmem_cache_alloc);

3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3507
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3508
			  void **p)
3509
{
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3528 3529
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3540
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3541 3542 3543
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3544 3545 3546
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3547
#ifdef CONFIG_TRACING
3548
void *
3549
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3550
{
3551 3552
	void *ret;

3553
	ret = slab_alloc(cachep, flags, _RET_IP_);
3554

3555
	ret = kasan_kmalloc(cachep, ret, size, flags);
3556
	trace_kmalloc(_RET_IP_, ret,
3557
		      size, cachep->size, flags);
3558
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3559
}
3560
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3561 3562
#endif

L
Linus Torvalds 已提交
3563
#ifdef CONFIG_NUMA
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
3574 3575
 *
 * Return: pointer to the new object or %NULL in case of error
3576
 */
3577 3578
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3579
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3580

3581
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3582
				    cachep->object_size, cachep->size,
3583
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3584 3585

	return ret;
3586
}
L
Linus Torvalds 已提交
3587 3588
EXPORT_SYMBOL(kmem_cache_alloc_node);

3589
#ifdef CONFIG_TRACING
3590
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3591
				  gfp_t flags,
3592 3593
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3594
{
3595 3596
	void *ret;

3597
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3598

3599
	ret = kasan_kmalloc(cachep, ret, size, flags);
3600
	trace_kmalloc_node(_RET_IP_, ret,
3601
			   size, cachep->size,
3602 3603
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3604
}
3605
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3606 3607
#endif

3608
static __always_inline void *
3609
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3610
{
3611
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3612
	void *ret;
3613

3614 3615
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
		return NULL;
3616
	cachep = kmalloc_slab(size, flags);
3617 3618
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3619
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3620
	ret = kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3621 3622

	return ret;
3623
}
3624 3625 3626

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3627
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3628
}
3629
EXPORT_SYMBOL(__kmalloc_node);
3630 3631

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3632
		int node, unsigned long caller)
3633
{
3634
	return __do_kmalloc_node(size, flags, node, caller);
3635 3636 3637
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3638 3639

/**
3640
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3641
 * @size: how many bytes of memory are required.
3642
 * @flags: the type of memory to allocate (see kmalloc).
3643
 * @caller: function caller for debug tracking of the caller
3644 3645
 *
 * Return: pointer to the allocated memory or %NULL in case of error
L
Linus Torvalds 已提交
3646
 */
3647
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3648
					  unsigned long caller)
L
Linus Torvalds 已提交
3649
{
3650
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3651
	void *ret;
L
Linus Torvalds 已提交
3652

3653 3654
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
		return NULL;
3655
	cachep = kmalloc_slab(size, flags);
3656 3657
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3658
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3659

3660
	ret = kasan_kmalloc(cachep, ret, size, flags);
3661
	trace_kmalloc(caller, ret,
3662
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3663 3664

	return ret;
3665 3666 3667 3668
}

void *__kmalloc(size_t size, gfp_t flags)
{
3669
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3670 3671 3672
}
EXPORT_SYMBOL(__kmalloc);

3673
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3674
{
3675
	return __do_kmalloc(size, flags, caller);
3676 3677
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3678

L
Linus Torvalds 已提交
3679 3680 3681 3682 3683 3684 3685 3686
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3687
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3688 3689
{
	unsigned long flags;
3690 3691 3692
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3693 3694

	local_irq_save(flags);
3695
	debug_check_no_locks_freed(objp, cachep->object_size);
3696
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3697
		debug_check_no_obj_freed(objp, cachep->object_size);
3698
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3699
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3700

3701
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3702 3703 3704
}
EXPORT_SYMBOL(kmem_cache_free);

3705 3706 3707 3708 3709 3710 3711 3712 3713
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3714 3715 3716 3717
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3731 3732 3733 3734
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3735 3736
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3737 3738 3739 3740 3741
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3742
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3743 3744
	unsigned long flags;

3745 3746
	trace_kfree(_RET_IP_, objp);

3747
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3748 3749 3750
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3751
	c = virt_to_cache(objp);
3752 3753 3754
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3755
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3756 3757 3758 3759
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3760
/*
3761
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3762
 */
3763
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3764
{
3765
	int ret;
3766
	int node;
3767
	struct kmem_cache_node *n;
3768

3769
	for_each_online_node(node) {
3770 3771
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3772 3773 3774
			goto fail;

	}
3775

3776
	return 0;
3777

A
Andrew Morton 已提交
3778
fail:
3779
	if (!cachep->list.next) {
3780 3781 3782
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3783 3784
			n = get_node(cachep, node);
			if (n) {
3785 3786 3787
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3788
				cachep->node[node] = NULL;
3789 3790 3791 3792
			}
			node--;
		}
	}
3793
	return -ENOMEM;
3794 3795
}

3796
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3797
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3798
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3799
{
3800 3801
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3802

3803 3804
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3805 3806
		return -ENOMEM;

3807 3808
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
3809 3810 3811 3812 3813 3814
	/*
	 * Without a previous cpu_cache there's no need to synchronize remote
	 * cpus, so skip the IPIs.
	 */
	if (prev)
		kick_all_cpus_sync();
3815

L
Linus Torvalds 已提交
3816 3817 3818
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3819
	cachep->shared = shared;
L
Linus Torvalds 已提交
3820

3821
	if (!prev)
3822
		goto setup_node;
3823 3824

	for_each_online_cpu(cpu) {
3825
		LIST_HEAD(list);
3826 3827
		int node;
		struct kmem_cache_node *n;
3828
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3829

3830
		node = cpu_to_mem(cpu);
3831 3832
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3833
		free_block(cachep, ac->entry, ac->avail, node, &list);
3834
		spin_unlock_irq(&n->list_lock);
3835
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3836
	}
3837 3838
	free_percpu(prev);

3839 3840
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3841 3842
}

G
Glauber Costa 已提交
3843 3844 3845 3846
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3847
	struct kmem_cache *c;
G
Glauber Costa 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3857 3858 3859 3860
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3861 3862 3863 3864 3865
	}

	return ret;
}

3866
/* Called with slab_mutex held always */
3867
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3868 3869
{
	int err;
G
Glauber Costa 已提交
3870 3871 3872 3873
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3874
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3875 3876 3877
	if (err)
		goto end;

G
Glauber Costa 已提交
3878 3879 3880 3881 3882 3883
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3884

G
Glauber Costa 已提交
3885 3886
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3887 3888
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3889 3890
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3891
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3892 3893 3894 3895
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3896
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3897
		limit = 1;
3898
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3899
		limit = 8;
3900
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3901
		limit = 24;
3902
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3903 3904 3905 3906
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3907 3908
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3909 3910 3911 3912 3913 3914 3915 3916
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3917
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3918 3919 3920
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3921 3922 3923
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3924 3925 3926 3927
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3928 3929 3930
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
3931
end:
L
Linus Torvalds 已提交
3932
	if (err)
3933
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
3934
		       cachep->name, -err);
3935
	return err;
L
Linus Torvalds 已提交
3936 3937
}

3938
/*
3939 3940
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3941
 * if drain_array() is used on the shared array.
3942
 */
3943
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3944
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
3945
{
3946
	LIST_HEAD(list);
3947 3948 3949

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
3950

3951 3952
	if (!ac || !ac->avail)
		return;
3953 3954

	if (ac->touched) {
L
Linus Torvalds 已提交
3955
		ac->touched = 0;
3956
		return;
L
Linus Torvalds 已提交
3957
	}
3958 3959 3960 3961 3962 3963

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3964 3965 3966 3967
}

/**
 * cache_reap - Reclaim memory from caches.
3968
 * @w: work descriptor
L
Linus Torvalds 已提交
3969 3970 3971 3972 3973 3974
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3975 3976
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3977
 */
3978
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3979
{
3980
	struct kmem_cache *searchp;
3981
	struct kmem_cache_node *n;
3982
	int node = numa_mem_id();
3983
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3984

3985
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3986
		/* Give up. Setup the next iteration. */
3987
		goto out;
L
Linus Torvalds 已提交
3988

3989
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3990 3991
		check_irq_on();

3992
		/*
3993
		 * We only take the node lock if absolutely necessary and we
3994 3995 3996
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3997
		n = get_node(searchp, node);
3998

3999
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4000

4001
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4002

4003 4004 4005 4006
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4007
		if (time_after(n->next_reap, jiffies))
4008
			goto next;
L
Linus Torvalds 已提交
4009

4010
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4011

4012
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4013

4014 4015
		if (n->free_touched)
			n->free_touched = 0;
4016 4017
		else {
			int freed;
L
Linus Torvalds 已提交
4018

4019
			freed = drain_freelist(searchp, n, (n->free_limit +
4020 4021 4022
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4023
next:
L
Linus Torvalds 已提交
4024 4025 4026
		cond_resched();
	}
	check_irq_on();
4027
	mutex_unlock(&slab_mutex);
4028
	next_reap_node();
4029
out:
A
Andrew Morton 已提交
4030
	/* Set up the next iteration */
4031 4032
	schedule_delayed_work_on(smp_processor_id(), work,
				round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4033 4034
}

4035
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4036
{
4037
	unsigned long active_objs, num_objs, active_slabs;
4038 4039
	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long free_slabs = 0;
4040
	int node;
4041
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4042

4043
	for_each_kmem_cache_node(cachep, node, n) {
4044
		check_irq_on();
4045
		spin_lock_irq(&n->list_lock);
4046

4047 4048
		total_slabs += n->total_slabs;
		free_slabs += n->free_slabs;
4049
		free_objs += n->free_objects;
4050

4051 4052
		if (n->shared)
			shared_avail += n->shared->avail;
4053

4054
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4055
	}
4056 4057
	num_objs = total_slabs * cachep->num;
	active_slabs = total_slabs - free_slabs;
4058
	active_objs = num_objs - free_objs;
L
Linus Torvalds 已提交
4059

4060 4061 4062
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
4063
	sinfo->num_slabs = total_slabs;
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4074
#if STATS
4075
	{			/* node stats */
L
Linus Torvalds 已提交
4076 4077 4078 4079 4080 4081 4082
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4083
		unsigned long node_frees = cachep->node_frees;
4084
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4085

J
Joe Perches 已提交
4086
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4087 4088 4089
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4090 4091 4092 4093 4094 4095 4096 4097 4098
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4099
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
4111 4112
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
4113
 */
4114
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4115
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4116
{
P
Pekka Enberg 已提交
4117
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4118
	int limit, batchcount, shared, res;
4119
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4120

L
Linus Torvalds 已提交
4121 4122 4123 4124
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4125
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4136
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4137
	res = -EINVAL;
4138
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4139
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4140 4141
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4142
				res = 0;
L
Linus Torvalds 已提交
4143
			} else {
4144
				res = do_tune_cpucache(cachep, limit,
4145 4146
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4147 4148 4149 4150
			}
			break;
		}
	}
4151
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4152 4153 4154 4155
	if (res >= 0)
		res = count;
	return res;
}
4156

K
Kees Cook 已提交
4157 4158
#ifdef CONFIG_HARDENED_USERCOPY
/*
4159 4160 4161
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
4162 4163 4164 4165
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
4166 4167
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
4168 4169 4170 4171 4172
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

4173 4174
	ptr = kasan_reset_tag(ptr);

K
Kees Cook 已提交
4175 4176 4177 4178 4179 4180 4181 4182
	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

4183 4184 4185 4186
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= cachep->useroffset &&
	    offset - cachep->useroffset <= cachep->usersize &&
	    n <= cachep->useroffset - offset + cachep->usersize)
4187
		return;
K
Kees Cook 已提交
4188

4189 4190 4191 4192 4193 4194
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
4195 4196
	if (usercopy_fallback &&
	    offset <= cachep->object_size &&
4197 4198 4199 4200
	    n <= cachep->object_size - offset) {
		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
4201

4202
	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
K
Kees Cook 已提交
4203 4204 4205
}
#endif /* CONFIG_HARDENED_USERCOPY */

4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
4217 4218
 *
 * Return: size of the actual memory used by @objp in bytes
4219
 */
P
Pekka Enberg 已提交
4220
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4221
{
A
Alexander Potapenko 已提交
4222 4223
	size_t size;

4224 4225
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4226
		return 0;
L
Linus Torvalds 已提交
4227

A
Alexander Potapenko 已提交
4228 4229 4230 4231
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4232
	kasan_unpoison_shadow(objp, size);
A
Alexander Potapenko 已提交
4233 4234

	return size;
L
Linus Torvalds 已提交
4235
}
K
Kirill A. Shutemov 已提交
4236
EXPORT_SYMBOL(ksize);