slab.c 110.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
30
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
54
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
55 56 57 58
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
59
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68 69 70 71
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
72
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
73 74 75 76 77 78
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
79 80 81 82 83 84 85 86 87
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
88 89 90 91
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
119
#include	<linux/sched/task_stack.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

131 132
#include	"slab.h"

L
Linus Torvalds 已提交
133
/*
134
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
155
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
156 157 158 159 160

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

161 162 163 164 165 166 167 168 169
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

170
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171

L
Linus Torvalds 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
189
	void *entry[];	/*
A
Andrew Morton 已提交
190 191 192 193
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
194 195
};

J
Joonsoo Kim 已提交
196 197 198 199 200
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

201 202 203
/*
 * Need this for bootstrapping a per node allocator.
 */
204
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206
#define	CACHE_CACHE 0
207
#define	SIZE_NODE (MAX_NUMNODES)
208

209
static int drain_freelist(struct kmem_cache *cache,
210
			struct kmem_cache_node *n, int tofree);
211
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 213
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215
static void cache_reap(struct work_struct *unused);
216

217 218 219 220 221
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
222 223
static int slab_early_init = 1;

224
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
225

226
static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 228 229 230
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
231
	parent->total_slabs = 0;
232
	parent->free_slabs = 0;
233 234
	parent->shared = NULL;
	parent->alien = NULL;
235
	parent->colour_next = 0;
236 237 238 239 240
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
241 242 243
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
244
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 246
	} while (0)

A
Andrew Morton 已提交
247 248
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
249 250 251 252
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
253

254 255
#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
257 258 259
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
260 261 262
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
263
 *
A
Adrian Bunk 已提交
264
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
265 266
 * which could lock up otherwise freeable slabs.
 */
267 268
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
269 270 271 272 273 274

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
275
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
276 277 278 279 280
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
281 282
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
285 286 287 288 289
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
290 291 292 293 294 295 296 297 298
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
299
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
300 301 302
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303
#define	STATS_INC_NODEFREES(x)	do { } while (0)
304
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
305
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
306 307 308 309 310 311 312 313
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
314 315
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
316
 * 0		: objp
317
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
318 319
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
320
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
321
 * 		redzone word.
322
 * cachep->obj_offset: The real object.
323 324
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
325
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
326
 */
327
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
328
{
329
	return cachep->obj_offset;
L
Linus Torvalds 已提交
330 331
}

332
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 336
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
337 338
}

339
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
340 341 342
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
343
		return (unsigned long long *)(objp + cachep->size -
344
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
345
					      REDZONE_ALIGN);
346
	return (unsigned long long *) (objp + cachep->size -
347
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
348 349
}

350
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
351 352
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
354 355 356 357
}

#else

358
#define obj_offset(x)			0
359 360
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
361 362 363 364
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

365 366
#ifdef CONFIG_DEBUG_SLAB_LEAK

367
static inline bool is_store_user_clean(struct kmem_cache *cachep)
368
{
369 370
	return atomic_read(&cachep->store_user_clean) == 1;
}
371

372 373 374 375
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
376

377 378 379 380
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
381 382 383
}

#else
384
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385 386 387

#endif

L
Linus Torvalds 已提交
388
/*
389 390
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
391
 */
392 393 394
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
395
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
396

397 398
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
399
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
400
	return page->slab_cache;
401 402
}

403
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 405
				 unsigned int idx)
{
406
	return page->s_mem + cache->size * idx;
407 408
}

409
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
410
/* internal cache of cache description objs */
411
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
412 413 414
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
415
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
416
	.name = "kmem_cache",
L
Linus Torvalds 已提交
417 418
};

419
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
420

421
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
422
{
423
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
424 425
}

A
Andrew Morton 已提交
426 427 428
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
429
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
430
		slab_flags_t flags, size_t *left_over)
431
{
432
	unsigned int num;
433
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
434

435 436 437 438 439 440
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
441 442 443 444 445
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
446 447 448 449 450 451
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
452
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
453
		num = slab_size / buffer_size;
454
		*left_over = slab_size % buffer_size;
455
	} else {
456
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
457 458
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
459
	}
460 461

	return num;
L
Linus Torvalds 已提交
462 463
}

464
#if DEBUG
465
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
466

A
Andrew Morton 已提交
467 468
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
469
{
470
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
471
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
472
	dump_stack();
473
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
474
}
475
#endif
L
Linus Torvalds 已提交
476

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

493 494 495 496 497 498 499 500 501 502 503
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

504 505 506 507 508 509 510
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
511
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
512 513 514

static void init_reap_node(int cpu)
{
515 516
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
517 518 519 520
}

static void next_reap_node(void)
{
521
	int node = __this_cpu_read(slab_reap_node);
522

523
	node = next_node_in(node, node_online_map);
524
	__this_cpu_write(slab_reap_node, node);
525 526 527 528 529 530 531
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
532 533 534 535 536 537 538
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
539
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
540
{
541
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
542

543
	if (reap_work->work.func == NULL) {
544
		init_reap_node(cpu);
545
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
546 547
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
548 549 550
	}
}

551
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
552
{
553 554 555 556 557
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
558
	}
559 560 561 562 563
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
564
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
565 566 567
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
568 569 570 571 572 573 574 575
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transferred to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(ac);
576 577
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
578 579
}

580 581
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
582
{
583 584 585
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
586

587 588
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
589

590 591 592
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
593

594
	slabs_destroy(cachep, &list);
595 596
}

597 598 599 600 601 602 603 604 605 606
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
607
	int nr = min3(from->avail, max, to->limit - to->avail);
608 609 610 611 612 613 614 615 616 617 618 619

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

620 621 622
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
623
#define reap_alien(cachep, n) do { } while (0)
624

J
Joonsoo Kim 已提交
625 626
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
627
{
628
	return NULL;
629 630
}

J
Joonsoo Kim 已提交
631
static inline void free_alien_cache(struct alien_cache **ac_ptr)
632 633 634 635 636 637 638 639 640 641 642 643 644 645
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

646
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
647 648 649 650 651
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
652 653
static inline gfp_t gfp_exact_node(gfp_t flags)
{
654
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
655 656
}

657 658
#else	/* CONFIG_NUMA */

659
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
660
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
661

J
Joonsoo Kim 已提交
662 663 664
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
665
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
666 667 668
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
669
	if (alc) {
670
		kmemleak_no_scan(alc);
671 672 673
		init_arraycache(&alc->ac, entries, batch);
		spin_lock_init(&alc->lock);
	}
J
Joonsoo Kim 已提交
674 675 676 677
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
678
{
J
Joonsoo Kim 已提交
679
	struct alien_cache **alc_ptr;
680 681 682 683
	int i;

	if (limit > 1)
		limit = 12;
684
	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
J
Joonsoo Kim 已提交
685 686 687 688 689 690 691 692 693 694 695 696
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
697 698
		}
	}
J
Joonsoo Kim 已提交
699
	return alc_ptr;
700 701
}

J
Joonsoo Kim 已提交
702
static void free_alien_cache(struct alien_cache **alc_ptr)
703 704 705
{
	int i;

J
Joonsoo Kim 已提交
706
	if (!alc_ptr)
707 708
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
709 710
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
711 712
}

713
static void __drain_alien_cache(struct kmem_cache *cachep,
714 715
				struct array_cache *ac, int node,
				struct list_head *list)
716
{
717
	struct kmem_cache_node *n = get_node(cachep, node);
718 719

	if (ac->avail) {
720
		spin_lock(&n->list_lock);
721 722 723 724 725
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
726 727
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
728

729
		free_block(cachep, ac->entry, ac->avail, node, list);
730
		ac->avail = 0;
731
		spin_unlock(&n->list_lock);
732 733 734
	}
}

735 736 737
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
738
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
739
{
740
	int node = __this_cpu_read(slab_reap_node);
741

742
	if (n->alien) {
J
Joonsoo Kim 已提交
743 744 745 746 747
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
748
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
749 750 751
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
752
				spin_unlock_irq(&alc->lock);
753
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
754
			}
755 756 757 758
		}
	}
}

A
Andrew Morton 已提交
759
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
760
				struct alien_cache **alien)
761
{
P
Pekka Enberg 已提交
762
	int i = 0;
J
Joonsoo Kim 已提交
763
	struct alien_cache *alc;
764 765 766 767
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
768 769
		alc = alien[i];
		if (alc) {
770 771
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
772
			ac = &alc->ac;
773
			spin_lock_irqsave(&alc->lock, flags);
774
			__drain_alien_cache(cachep, ac, i, &list);
775
			spin_unlock_irqrestore(&alc->lock, flags);
776
			slabs_destroy(cachep, &list);
777 778 779
		}
	}
}
780

781 782
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
783
{
784
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
785 786
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
787
	LIST_HEAD(list);
P
Pekka Enberg 已提交
788

789
	n = get_node(cachep, node);
790
	STATS_INC_NODEFREES(cachep);
791 792
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
793
		ac = &alien->ac;
794
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
795
		if (unlikely(ac->avail == ac->limit)) {
796
			STATS_INC_ACOVERFLOW(cachep);
797
			__drain_alien_cache(cachep, ac, page_node, &list);
798
		}
799
		ac->entry[ac->avail++] = objp;
800
		spin_unlock(&alien->lock);
801
		slabs_destroy(cachep, &list);
802
	} else {
803
		n = get_node(cachep, page_node);
804
		spin_lock(&n->list_lock);
805
		free_block(cachep, &objp, 1, page_node, &list);
806
		spin_unlock(&n->list_lock);
807
		slabs_destroy(cachep, &list);
808 809 810
	}
	return 1;
}
811 812 813 814 815 816 817 818 819 820 821 822 823 824

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
825 826

/*
827 828
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
829 830 831
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
832
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
833
}
834 835
#endif

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

876
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
877
/*
878
 * Allocates and initializes node for a node on each slab cache, used for
879
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
880
 * will be allocated off-node since memory is not yet online for the new node.
881
 * When hotplugging memory or a cpu, existing node are not replaced if
882 883
 * already in use.
 *
884
 * Must hold slab_mutex.
885
 */
886
static int init_cache_node_node(int node)
887
{
888
	int ret;
889 890
	struct kmem_cache *cachep;

891
	list_for_each_entry(cachep, &slab_caches, list) {
892 893 894
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
895
	}
896

897 898
	return 0;
}
899
#endif
900

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

950 951 952 953
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
954
	 * freed after synchronize_rcu().
955
	 */
956
	if (old_shared && force_change)
957
		synchronize_rcu();
958

959 960 961 962 963 964 965 966
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

967 968
#ifdef CONFIG_SMP

969
static void cpuup_canceled(long cpu)
970 971
{
	struct kmem_cache *cachep;
972
	struct kmem_cache_node *n = NULL;
973
	int node = cpu_to_mem(cpu);
974
	const struct cpumask *mask = cpumask_of_node(node);
975

976
	list_for_each_entry(cachep, &slab_caches, list) {
977 978
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
979
		struct alien_cache **alien;
980
		LIST_HEAD(list);
981

982
		n = get_node(cachep, node);
983
		if (!n)
984
			continue;
985

986
		spin_lock_irq(&n->list_lock);
987

988 989
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
990 991 992 993

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
994
			free_block(cachep, nc->entry, nc->avail, node, &list);
995 996
			nc->avail = 0;
		}
997

998
		if (!cpumask_empty(mask)) {
999
			spin_unlock_irq(&n->list_lock);
1000
			goto free_slab;
1001 1002
		}

1003
		shared = n->shared;
1004 1005
		if (shared) {
			free_block(cachep, shared->entry,
1006
				   shared->avail, node, &list);
1007
			n->shared = NULL;
1008 1009
		}

1010 1011
		alien = n->alien;
		n->alien = NULL;
1012

1013
		spin_unlock_irq(&n->list_lock);
1014 1015 1016 1017 1018 1019

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1020 1021

free_slab:
1022
		slabs_destroy(cachep, &list);
1023 1024 1025 1026 1027 1028
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1029
	list_for_each_entry(cachep, &slab_caches, list) {
1030
		n = get_node(cachep, node);
1031
		if (!n)
1032
			continue;
1033
		drain_freelist(cachep, n, INT_MAX);
1034 1035 1036
	}
}

1037
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1038
{
1039
	struct kmem_cache *cachep;
1040
	int node = cpu_to_mem(cpu);
1041
	int err;
L
Linus Torvalds 已提交
1042

1043 1044 1045 1046
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1047
	 * kmem_cache_node and not this cpu's kmem_cache_node
1048
	 */
1049
	err = init_cache_node_node(node);
1050 1051
	if (err < 0)
		goto bad;
1052 1053 1054 1055 1056

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1057
	list_for_each_entry(cachep, &slab_caches, list) {
1058 1059 1060
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1061
	}
1062

1063 1064
	return 0;
bad:
1065
	cpuup_canceled(cpu);
1066 1067 1068
	return -ENOMEM;
}

1069
int slab_prepare_cpu(unsigned int cpu)
1070
{
1071
	int err;
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1096
#endif
1097 1098 1099 1100 1101

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
L
Linus Torvalds 已提交
1102 1103
}

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
L
Linus Torvalds 已提交
1117

1118 1119 1120 1121 1122 1123
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1124
 * Must hold slab_mutex.
1125
 */
1126
static int __meminit drain_cache_node_node(int node)
1127 1128 1129 1130
{
	struct kmem_cache *cachep;
	int ret = 0;

1131
	list_for_each_entry(cachep, &slab_caches, list) {
1132
		struct kmem_cache_node *n;
1133

1134
		n = get_node(cachep, node);
1135
		if (!n)
1136 1137
			continue;

1138
		drain_freelist(cachep, n, INT_MAX);
1139

1140 1141
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1162
		mutex_lock(&slab_mutex);
1163
		ret = init_cache_node_node(nid);
1164
		mutex_unlock(&slab_mutex);
1165 1166
		break;
	case MEM_GOING_OFFLINE:
1167
		mutex_lock(&slab_mutex);
1168
		ret = drain_cache_node_node(nid);
1169
		mutex_unlock(&slab_mutex);
1170 1171 1172 1173 1174 1175 1176 1177
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1178
	return notifier_from_errno(ret);
1179 1180 1181
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1182
/*
1183
 * swap the static kmem_cache_node with kmalloced memory
1184
 */
1185
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1186
				int nodeid)
1187
{
1188
	struct kmem_cache_node *ptr;
1189

1190
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1191 1192
	BUG_ON(!ptr);

1193
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1194 1195 1196 1197 1198
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1199
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1200
	cachep->node[nodeid] = ptr;
1201 1202
}

1203
/*
1204 1205
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1206
 */
1207
static void __init set_up_node(struct kmem_cache *cachep, int index)
1208 1209 1210 1211
{
	int node;

	for_each_online_node(node) {
1212
		cachep->node[node] = &init_kmem_cache_node[index + node];
1213
		cachep->node[node]->next_reap = jiffies +
1214 1215
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1216 1217 1218
	}
}

A
Andrew Morton 已提交
1219 1220 1221
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1222 1223 1224
 */
void __init kmem_cache_init(void)
{
1225 1226
	int i;

1227 1228
	kmem_cache = &kmem_cache_boot;

1229
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1230 1231
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1232
	for (i = 0; i < NUM_INIT_LISTS; i++)
1233
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1234

L
Linus Torvalds 已提交
1235 1236
	/*
	 * Fragmentation resistance on low memory - only use bigger
1237 1238
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1239
	 */
1240
	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1241
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1242 1243 1244

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1245 1246 1247
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1248
	 *    Initially an __init data area is used for the head array and the
1249
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1250
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1251
	 * 2) Create the first kmalloc cache.
1252
	 *    The struct kmem_cache for the new cache is allocated normally.
1253 1254 1255
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1256
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1257
	 *    kmalloc cache with kmalloc allocated arrays.
1258
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1259 1260
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1261 1262
	 */

1263
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1264

E
Eric Dumazet 已提交
1265
	/*
1266
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1267
	 */
1268
	create_boot_cache(kmem_cache, "kmem_cache",
1269
		offsetof(struct kmem_cache, node) +
1270
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1271
				  SLAB_HWCACHE_ALIGN, 0, 0);
1272
	list_add(&kmem_cache->list, &slab_caches);
1273
	memcg_link_cache(kmem_cache);
1274
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1275

A
Andrew Morton 已提交
1276
	/*
1277 1278
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1279
	 */
1280
	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1281
				kmalloc_info[INDEX_NODE].name,
1282 1283
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
				0, kmalloc_size(INDEX_NODE));
1284
	slab_state = PARTIAL_NODE;
1285
	setup_kmalloc_cache_index_table();
1286

1287 1288
	slab_early_init = 0;

1289
	/* 5) Replace the bootstrap kmem_cache_node */
1290
	{
P
Pekka Enberg 已提交
1291 1292
		int nid;

1293
		for_each_online_node(nid) {
1294
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1295

1296
			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1297
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1298 1299
		}
	}
L
Linus Torvalds 已提交
1300

1301
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1302 1303 1304 1305 1306 1307 1308
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
1309 1310
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1311 1312
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1313
	mutex_unlock(&slab_mutex);
1314

1315 1316 1317
	/* Done! */
	slab_state = FULL;

1318 1319 1320
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1321
	 * node.
1322 1323 1324 1325
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1326 1327 1328
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1329 1330 1331 1332 1333
	 */
}

static int __init cpucache_init(void)
{
1334
	int ret;
L
Linus Torvalds 已提交
1335

A
Andrew Morton 已提交
1336 1337
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1338
	 */
1339 1340 1341
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1342

L
Linus Torvalds 已提交
1343 1344 1345 1346
	return 0;
}
__initcall(cpucache_init);

1347 1348 1349
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1350
#if DEBUG
1351
	struct kmem_cache_node *n;
1352 1353
	unsigned long flags;
	int node;
1354 1355 1356 1357 1358
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1359

1360 1361 1362
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1363
		cachep->name, cachep->size, cachep->gfporder);
1364

1365
	for_each_kmem_cache_node(cachep, node, n) {
1366
		unsigned long total_slabs, free_slabs, free_objs;
1367

1368
		spin_lock_irqsave(&n->list_lock, flags);
1369 1370 1371
		total_slabs = n->total_slabs;
		free_slabs = n->free_slabs;
		free_objs = n->free_objects;
1372
		spin_unlock_irqrestore(&n->list_lock, flags);
1373

1374 1375 1376 1377
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
			node, total_slabs - free_slabs, total_slabs,
			(total_slabs * cachep->num) - free_objs,
			total_slabs * cachep->num);
1378
	}
1379
#endif
1380 1381
}

L
Linus Torvalds 已提交
1382
/*
W
Wang Sheng-Hui 已提交
1383 1384
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1385 1386 1387 1388 1389
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1390 1391
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1392 1393
{
	struct page *page;
1394
	int nr_pages;
1395

1396
	flags |= cachep->allocflags;
1397

1398
	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1399
	if (!page) {
1400
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1401
		return NULL;
1402
	}
L
Linus Torvalds 已提交
1403

1404 1405 1406 1407 1408
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1409
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1410
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1411
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1412
	else
1413
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1414

1415
	__SetPageSlab(page);
1416 1417
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1418
		SetPageSlabPfmemalloc(page);
1419

1420
	return page;
L
Linus Torvalds 已提交
1421 1422 1423 1424 1425
}

/*
 * Interface to system's page release.
 */
1426
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1427
{
1428 1429
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1430

1431
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1432
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1433
	else
1434
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
J
Joonsoo Kim 已提交
1435

1436
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1437
	__ClearPageSlabPfmemalloc(page);
1438
	__ClearPageSlab(page);
1439 1440
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1441

L
Linus Torvalds 已提交
1442 1443
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1444 1445
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1446 1447 1448 1449
}

static void kmem_rcu_free(struct rcu_head *head)
{
1450 1451
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1452

1453 1454 1455 1456
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1457 1458 1459
}

#if DEBUG
1460 1461 1462 1463 1464 1465 1466 1467
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1468 1469

#ifdef CONFIG_DEBUG_PAGEALLOC
Q
Qian Cai 已提交
1470
static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1471 1472 1473 1474 1475 1476 1477 1478 1479
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
Q
Qian Cai 已提交
1480
				int map) {}
1481

L
Linus Torvalds 已提交
1482 1483
#endif

1484
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1485
{
1486
	int size = cachep->object_size;
1487
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1488 1489

	memset(addr, val, size);
P
Pekka Enberg 已提交
1490
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1491 1492 1493 1494 1495
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1496 1497 1498
	unsigned char error = 0;
	int bad_count = 0;

1499
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1500 1501 1502 1503 1504 1505
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1506 1507
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1508 1509 1510 1511

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1512
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1513
#ifdef CONFIG_X86
1514
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1515
#else
1516
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1517 1518 1519
#endif
		}
	}
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524
}
#endif

#if DEBUG

1525
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1526 1527 1528 1529 1530
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1531 1532 1533
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1534 1535
	}

1536 1537
	if (cachep->flags & SLAB_STORE_USER)
		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1538
	realobj = (char *)objp + obj_offset(cachep);
1539
	size = cachep->object_size;
P
Pekka Enberg 已提交
1540
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1541 1542
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1543 1544
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1545 1546 1547 1548
		dump_line(realobj, i, limit);
	}
}

1549
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1550 1551 1552 1553 1554
{
	char *realobj;
	int size, i;
	int lines = 0;

1555 1556 1557
	if (is_debug_pagealloc_cache(cachep))
		return;

1558
	realobj = (char *)objp + obj_offset(cachep);
1559
	size = cachep->object_size;
L
Linus Torvalds 已提交
1560

P
Pekka Enberg 已提交
1561
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1562
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1563
		if (i == size - 1)
L
Linus Torvalds 已提交
1564 1565 1566 1567 1568 1569
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1570
				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1571 1572
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1573 1574 1575
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1576
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1577
			limit = 16;
P
Pekka Enberg 已提交
1578 1579
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1592
		struct page *page = virt_to_head_page(objp);
1593
		unsigned int objnr;
L
Linus Torvalds 已提交
1594

1595
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1596
		if (objnr) {
1597
			objp = index_to_obj(cachep, page, objnr - 1);
1598
			realobj = (char *)objp + obj_offset(cachep);
1599
			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1600 1601
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1602
		if (objnr + 1 < cachep->num) {
1603
			objp = index_to_obj(cachep, page, objnr + 1);
1604
			realobj = (char *)objp + obj_offset(cachep);
1605
			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1606 1607 1608 1609 1610 1611
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1612
#if DEBUG
1613 1614
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1615 1616
{
	int i;
1617 1618 1619 1620 1621 1622

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1623
	for (i = 0; i < cachep->num; i++) {
1624
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1625 1626 1627

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
Q
Qian Cai 已提交
1628
			slab_kernel_map(cachep, objp, 1);
L
Linus Torvalds 已提交
1629 1630 1631
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1632
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1633
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1634
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1635 1636
		}
	}
1637
}
L
Linus Torvalds 已提交
1638
#else
1639 1640
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1641 1642
{
}
L
Linus Torvalds 已提交
1643 1644
#endif

1645 1646 1647
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1648
 * @page: page pointer being destroyed
1649
 *
W
Wang Sheng-Hui 已提交
1650 1651 1652
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1653
 */
1654
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1655
{
1656
	void *freelist;
1657

1658 1659
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1660
	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1661 1662
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1663
		kmem_freepages(cachep, page);
1664 1665

	/*
1666
	 * From now on, we don't use freelist
1667 1668 1669
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1670
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1671 1672
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1683
/**
1684 1685 1686 1687 1688 1689
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1690 1691 1692 1693
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
1694 1695
 *
 * Return: number of left-over bytes in a slab
1696
 */
A
Andrew Morton 已提交
1697
static size_t calculate_slab_order(struct kmem_cache *cachep,
1698
				size_t size, slab_flags_t flags)
1699 1700
{
	size_t left_over = 0;
1701
	int gfporder;
1702

1703
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1704 1705 1706
		unsigned int num;
		size_t remainder;

1707
		num = cache_estimate(gfporder, size, flags, &remainder);
1708 1709
		if (!num)
			continue;
1710

1711 1712 1713 1714
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1715
		if (flags & CFLGS_OFF_SLAB) {
1716 1717 1718 1719 1720 1721 1722 1723
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1724
			/*
1725
			 * Needed to avoid possible looping condition
1726
			 * in cache_grow_begin()
1727
			 */
1728 1729
			if (OFF_SLAB(freelist_cache))
				continue;
1730

1731 1732 1733
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1734
		}
1735

1736
		/* Found something acceptable - save it away */
1737
		cachep->num = num;
1738
		cachep->gfporder = gfporder;
1739 1740
		left_over = remainder;

1741 1742 1743 1744 1745 1746 1747 1748
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1749 1750 1751 1752
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1753
		if (gfporder >= slab_max_order)
1754 1755
			break;

1756 1757 1758
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1759
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1760 1761 1762 1763 1764
			break;
	}
	return left_over;
}

1765 1766 1767 1768 1769 1770 1771 1772
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1773
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1786
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1787
{
1788
	if (slab_state >= FULL)
1789
		return enable_cpucache(cachep, gfp);
1790

1791 1792 1793 1794
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1795
	if (slab_state == DOWN) {
1796 1797
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1798
	} else if (slab_state == PARTIAL) {
1799 1800
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1801
	} else {
1802
		int node;
1803

1804 1805 1806 1807 1808
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1809 1810
		}
	}
1811

1812
	cachep->node[numa_mem_id()]->next_reap =
1813 1814
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1815 1816 1817 1818 1819 1820 1821

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1822
	return 0;
1823 1824
}

1825
slab_flags_t kmem_cache_flags(unsigned int object_size,
1826
	slab_flags_t flags, const char *name,
J
Joonsoo Kim 已提交
1827 1828 1829 1830 1831 1832
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
1833
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1834
		   slab_flags_t flags, void (*ctor)(void *))
J
Joonsoo Kim 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1851
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1852
			size_t size, slab_flags_t flags)
1853 1854 1855 1856 1857
{
	size_t left;

	cachep->num = 0;

1858
	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1874
static bool set_off_slab_cache(struct kmem_cache *cachep,
1875
			size_t size, slab_flags_t flags)
1876 1877 1878 1879 1880 1881
{
	size_t left;

	cachep->num = 0;

	/*
1882 1883
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
1909
			size_t size, slab_flags_t flags)
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1924
/**
1925
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1926
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1927 1928 1929 1930
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1931
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
1944 1945
 *
 * Return: a pointer to the created cache or %NULL in case of error
L
Linus Torvalds 已提交
1946
 */
1947
int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
L
Linus Torvalds 已提交
1948
{
1949
	size_t ralign = BYTES_PER_WORD;
1950
	gfp_t gfp;
1951
	int err;
1952
	unsigned int size = cachep->size;
L
Linus Torvalds 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
1962 1963
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
1964
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1965
	if (!(flags & SLAB_TYPESAFE_BY_RCU))
L
Linus Torvalds 已提交
1966 1967 1968 1969
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
1970 1971
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
1972 1973 1974
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
1975
	size = ALIGN(size, BYTES_PER_WORD);
L
Linus Torvalds 已提交
1976

D
David Woodhouse 已提交
1977 1978 1979 1980
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
1981
		size = ALIGN(size, REDZONE_ALIGN);
D
David Woodhouse 已提交
1982
	}
1983

1984
	/* 3) caller mandated alignment */
1985 1986
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
1987
	}
1988 1989
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
1990
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
1991
	/*
1992
	 * 4) Store it.
L
Linus Torvalds 已提交
1993
	 */
1994
	cachep->align = ralign;
1995 1996 1997 1998
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
1999

2000 2001 2002 2003 2004
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2005 2006
#if DEBUG

2007 2008 2009 2010
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2011 2012
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2013 2014
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2015 2016
	}
	if (flags & SLAB_STORE_USER) {
2017
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2018 2019
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2020
		 */
D
David Woodhouse 已提交
2021 2022 2023 2024
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2025
	}
2026 2027
#endif

A
Alexander Potapenko 已提交
2028 2029
	kasan_cache_create(cachep, &size, &flags);

2030 2031 2032 2033 2034 2035 2036 2037 2038
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2039 2040 2041 2042 2043 2044 2045
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2046
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2058 2059 2060
	}
#endif

2061 2062 2063 2064 2065
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2066
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2067
		flags |= CFLGS_OFF_SLAB;
2068
		goto done;
2069
	}
L
Linus Torvalds 已提交
2070

2071 2072
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2073

2074
	return -E2BIG;
L
Linus Torvalds 已提交
2075

2076 2077
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2078
	cachep->flags = flags;
2079
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2080
	if (flags & SLAB_CACHE_DMA)
2081
		cachep->allocflags |= GFP_DMA;
2082 2083
	if (flags & SLAB_CACHE_DMA32)
		cachep->allocflags |= GFP_DMA32;
2084 2085
	if (flags & SLAB_RECLAIM_ACCOUNT)
		cachep->allocflags |= __GFP_RECLAIMABLE;
2086
	cachep->size = size;
2087
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2102 2103
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2104
	}
L
Linus Torvalds 已提交
2105

2106 2107
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2108
		__kmem_cache_release(cachep);
2109
		return err;
2110
	}
L
Linus Torvalds 已提交
2111

2112
	return 0;
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2126 2127 2128 2129 2130
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2131
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2132 2133 2134
{
#ifdef CONFIG_SMP
	check_irq_off();
2135
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2136 2137
#endif
}
2138

2139
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2140 2141 2142
{
#ifdef CONFIG_SMP
	check_irq_off();
2143
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2144 2145 2146
#endif
}

L
Linus Torvalds 已提交
2147 2148 2149
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2150
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2151
#define check_spinlock_acquired(x) do { } while(0)
2152
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2153 2154
#endif

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2171

L
Linus Torvalds 已提交
2172 2173
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2174
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2175
	struct array_cache *ac;
2176
	int node = numa_mem_id();
2177
	struct kmem_cache_node *n;
2178
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2179 2180

	check_irq_off();
2181
	ac = cpu_cache_get(cachep);
2182 2183
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2184
	free_block(cachep, ac->entry, ac->avail, node, &list);
2185
	spin_unlock(&n->list_lock);
2186
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2187 2188 2189
	ac->avail = 0;
}

2190
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2191
{
2192
	struct kmem_cache_node *n;
2193
	int node;
2194
	LIST_HEAD(list);
2195

2196
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2197
	check_irq_on();
2198 2199
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2200
			drain_alien_cache(cachep, n->alien);
2201

2202 2203 2204 2205 2206 2207 2208
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2209 2210
}

2211 2212 2213 2214 2215 2216 2217
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2218
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2219
{
2220 2221
	struct list_head *p;
	int nr_freed;
2222
	struct page *page;
L
Linus Torvalds 已提交
2223

2224
	nr_freed = 0;
2225
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2226

2227 2228 2229 2230
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2231 2232
			goto out;
		}
L
Linus Torvalds 已提交
2233

2234 2235
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2236
		n->free_slabs--;
2237
		n->total_slabs--;
2238 2239 2240 2241
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2242 2243
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2244
		slab_destroy(cache, page);
2245
		nr_freed++;
L
Linus Torvalds 已提交
2246
	}
2247 2248
out:
	return nr_freed;
L
Linus Torvalds 已提交
2249 2250
}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial))
			return false;
	return true;
}

2263
int __kmem_cache_shrink(struct kmem_cache *cachep)
2264
{
2265 2266
	int ret = 0;
	int node;
2267
	struct kmem_cache_node *n;
2268 2269 2270 2271

	drain_cpu_caches(cachep);

	check_irq_on();
2272
	for_each_kmem_cache_node(cachep, node, n) {
2273
		drain_freelist(cachep, n, INT_MAX);
2274

2275 2276
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2277 2278 2279 2280
	}
	return (ret ? 1 : 0);
}

2281 2282 2283 2284 2285 2286 2287
#ifdef CONFIG_MEMCG
void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
{
	__kmem_cache_shrink(cachep);
}
#endif

2288
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2289
{
2290
	return __kmem_cache_shrink(cachep);
2291 2292 2293
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2294
{
2295
	int i;
2296
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2297

T
Thomas Garnier 已提交
2298 2299
	cache_random_seq_destroy(cachep);

2300
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2301

2302
	/* NUMA: free the node structures */
2303 2304 2305 2306 2307
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2308
	}
L
Linus Torvalds 已提交
2309 2310
}

2311 2312
/*
 * Get the memory for a slab management obj.
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2324
 */
2325
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2326 2327
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2328
{
2329
	void *freelist;
2330
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2331

2332
	page->s_mem = addr + colour_off;
2333 2334
	page->active = 0;

2335 2336 2337
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2338
		/* Slab management obj is off-slab. */
2339
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2340
					      local_flags, nodeid);
2341
		if (!freelist)
L
Linus Torvalds 已提交
2342 2343
			return NULL;
	} else {
2344 2345 2346
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2347
	}
2348

2349
	return freelist;
L
Linus Torvalds 已提交
2350 2351
}

2352
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2353
{
2354
	return ((freelist_idx_t *)page->freelist)[idx];
2355 2356 2357
}

static inline void set_free_obj(struct page *page,
2358
					unsigned int idx, freelist_idx_t val)
2359
{
2360
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2361 2362
}

2363
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2364
{
2365
#if DEBUG
L
Linus Torvalds 已提交
2366 2367 2368
	int i;

	for (i = 0; i < cachep->num; i++) {
2369
		void *objp = index_to_obj(cachep, page, i);
2370

L
Linus Torvalds 已提交
2371 2372 2373 2374 2375 2376 2377 2378
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2379 2380 2381
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2382
		 */
A
Alexander Potapenko 已提交
2383 2384 2385
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2386
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2387 2388 2389
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2390 2391 2392

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2393
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2394
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2395
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2396
		}
2397 2398 2399
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
Q
Qian Cai 已提交
2400
			slab_kernel_map(cachep, objp, 0);
2401
		}
2402
	}
L
Linus Torvalds 已提交
2403
#endif
2404 2405
}

T
Thomas Garnier 已提交
2406 2407 2408 2409 2410
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2411
		unsigned int *list;
T
Thomas Garnier 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
		unsigned int count;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2429
	rand = get_random_int();
T
Thomas Garnier 已提交
2430 2431 2432 2433 2434 2435 2436 2437

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
2438
		state->pos = rand % count;
T
Thomas Garnier 已提交
2439 2440 2441 2442 2443 2444 2445 2446
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
2447 2448 2449
	if (state->pos >= state->count)
		state->pos = 0;
	return state->list[state->pos++];
T
Thomas Garnier 已提交
2450 2451
}

2452 2453 2454 2455 2456 2457 2458
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2459 2460 2461 2462 2463 2464
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2465
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2490 2491 2492 2493 2494 2495 2496 2497 2498
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2517 2518 2519 2520
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2521
	void *objp;
T
Thomas Garnier 已提交
2522
	bool shuffled;
2523 2524 2525

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2526 2527 2528 2529
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2530 2531 2532 2533
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2534
	for (i = 0; i < cachep->num; i++) {
2535
		objp = index_to_obj(cachep, page, i);
2536
		objp = kasan_init_slab_obj(cachep, objp);
2537

2538
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2539 2540 2541 2542 2543
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2544

T
Thomas Garnier 已提交
2545 2546
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2547 2548 2549
	}
}

2550
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2551
{
2552
	void *objp;
2553

2554
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2555
	page->active++;
2556

2557 2558 2559 2560 2561
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2562 2563 2564
	return objp;
}

2565 2566
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2567
{
2568
	unsigned int objnr = obj_to_index(cachep, page, objp);
2569
#if DEBUG
J
Joonsoo Kim 已提交
2570
	unsigned int i;
2571 2572

	/* Verify double free bug */
2573
	for (i = page->active; i < cachep->num; i++) {
2574
		if (get_free_obj(page, i) == objnr) {
2575
			pr_err("slab: double free detected in cache '%s', objp %px\n",
J
Joe Perches 已提交
2576
			       cachep->name, objp);
2577 2578
			BUG();
		}
2579 2580
	}
#endif
2581
	page->active--;
2582 2583 2584
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2585
	set_free_obj(page, page->active, objnr);
2586 2587
}

2588 2589 2590
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2591
 * virtual address for kfree, ksize, and slab debugging.
2592
 */
2593
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2594
			   void *freelist)
L
Linus Torvalds 已提交
2595
{
2596
	page->slab_cache = cache;
2597
	page->freelist = freelist;
L
Linus Torvalds 已提交
2598 2599 2600 2601 2602 2603
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2604 2605
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2606
{
2607
	void *freelist;
P
Pekka Enberg 已提交
2608 2609
	size_t offset;
	gfp_t local_flags;
2610
	int page_node;
2611
	struct kmem_cache_node *n;
2612
	struct page *page;
L
Linus Torvalds 已提交
2613

A
Andrew Morton 已提交
2614 2615 2616
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2617
	 */
2618
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2619
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2620 2621 2622 2623
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2624
	}
2625
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
C
Christoph Lameter 已提交
2626
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2627 2628

	check_irq_off();
2629
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2630 2631
		local_irq_enable();

A
Andrew Morton 已提交
2632 2633 2634
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2635
	 */
2636
	page = kmem_getpages(cachep, local_flags, nodeid);
2637
	if (!page)
L
Linus Torvalds 已提交
2638 2639
		goto failed;

2640 2641
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

2654 2655 2656 2657 2658 2659 2660
	/*
	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
	 * page_address() in the latter returns a non-tagged pointer,
	 * as it should be for slab pages.
	 */
	kasan_poison_slab(page);

L
Linus Torvalds 已提交
2661
	/* Get slab management. */
2662
	freelist = alloc_slabmgmt(cachep, page, offset,
2663
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2664
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2665 2666
		goto opps1;

2667
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2668

2669
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2670

2671
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2672 2673
		local_irq_disable();

2674 2675
	return page;

A
Andrew Morton 已提交
2676
opps1:
2677
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2678
failed:
2679
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2680
		local_irq_disable();
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
2698
	n->total_slabs++;
2699
	if (!page->active) {
2700
		list_add_tail(&page->lru, &(n->slabs_free));
2701
		n->free_slabs++;
2702
	} else
2703
		fixup_slab_list(cachep, n, page, &list);
2704

2705 2706 2707 2708 2709
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2722
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2723 2724
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2725 2726 2727
	}
}

2728 2729
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2730
	unsigned long long redzone1, redzone2;
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2746
	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2747
	       obj, redzone1, redzone2);
2748 2749
}

2750
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2751
				   unsigned long caller)
L
Linus Torvalds 已提交
2752 2753
{
	unsigned int objnr;
2754
	struct page *page;
L
Linus Torvalds 已提交
2755

2756 2757
	BUG_ON(virt_to_cache(objp) != cachep);

2758
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2759
	kfree_debugcheck(objp);
2760
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2761 2762

	if (cachep->flags & SLAB_RED_ZONE) {
2763
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2764 2765 2766
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2767 2768
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2769
		*dbg_userword(cachep, objp) = (void *)caller;
2770
	}
L
Linus Torvalds 已提交
2771

2772
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2773 2774

	BUG_ON(objnr >= cachep->num);
2775
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2776 2777 2778

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
Q
Qian Cai 已提交
2779
		slab_kernel_map(cachep, objp, 0);
L
Linus Torvalds 已提交
2780 2781 2782 2783 2784 2785 2786 2787 2788
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2804
static inline void fixup_slab_list(struct kmem_cache *cachep,
2805 2806
				struct kmem_cache_node *n, struct page *page,
				void **list)
2807 2808 2809
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2810
	if (page->active == cachep->num) {
2811
		list_add(&page->lru, &n->slabs_full);
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2825 2826 2827
		list_add(&page->lru, &n->slabs_partial);
}

2828 2829
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2830
					struct page *page, bool pfmemalloc)
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
2849
	if (!page->active) {
2850
		list_add_tail(&page->lru, &n->slabs_free);
2851
		n->free_slabs++;
2852
	} else
2853 2854 2855 2856 2857 2858 2859
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

2860
	n->free_touched = 1;
2861
	list_for_each_entry(page, &n->slabs_free, lru) {
2862
		if (!PageSlabPfmemalloc(page)) {
2863
			n->free_slabs--;
2864
			return page;
2865
		}
2866 2867 2868 2869 2870 2871
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2872 2873 2874
{
	struct page *page;

2875
	assert_spin_locked(&n->list_lock);
2876
	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2877 2878
	if (!page) {
		n->free_touched = 1;
2879 2880
		page = list_first_entry_or_null(&n->slabs_free, struct page,
						lru);
2881
		if (page)
2882
			n->free_slabs--;
2883 2884
	}

2885
	if (sk_memalloc_socks())
2886
		page = get_valid_first_slab(n, page, pfmemalloc);
2887

2888 2889 2890
	return page;
}

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2943
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2944 2945
{
	int batchcount;
2946
	struct kmem_cache_node *n;
2947
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
2948
	int node;
2949
	void *list = NULL;
2950
	struct page *page;
P
Pekka Enberg 已提交
2951

L
Linus Torvalds 已提交
2952
	check_irq_off();
2953
	node = numa_mem_id();
2954

2955
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2956 2957
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2958 2959 2960 2961
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2962 2963 2964
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2965
	n = get_node(cachep, node);
2966

2967
	BUG_ON(ac->avail > 0 || !n);
2968 2969 2970 2971
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

2972
	spin_lock(&n->list_lock);
2973
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
2974

2975
	/* See if we can refill from the shared array */
2976 2977
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
2978
		goto alloc_done;
2979
	}
2980

L
Linus Torvalds 已提交
2981 2982
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
2983
		page = get_first_slab(n, false);
2984 2985
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
2986 2987

		check_spinlock_acquired(cachep);
2988

2989
		batchcount = alloc_block(cachep, ac, page, batchcount);
2990
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
2991 2992
	}

A
Andrew Morton 已提交
2993
must_grow:
2994
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2995
alloc_done:
2996
	spin_unlock(&n->list_lock);
2997
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2998

2999
direct_grow:
L
Linus Torvalds 已提交
3000
	if (unlikely(!ac->avail)) {
3001 3002 3003 3004 3005 3006 3007 3008
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3009
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3010

3011 3012 3013 3014
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3015
		ac = cpu_cache_get(cachep);
3016 3017 3018
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3019

3020
		if (!ac->avail)
L
Linus Torvalds 已提交
3021 3022 3023
			return NULL;
	}
	ac->touched = 1;
3024

3025
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3026 3027
}

A
Andrew Morton 已提交
3028 3029
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3030
{
3031
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3032 3033 3034
}

#if DEBUG
A
Andrew Morton 已提交
3035
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3036
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3037
{
3038
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
P
Pekka Enberg 已提交
3039
	if (!objp)
L
Linus Torvalds 已提交
3040
		return objp;
P
Pekka Enberg 已提交
3041
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3042
		check_poison_obj(cachep, objp);
Q
Qian Cai 已提交
3043
		slab_kernel_map(cachep, objp, 1);
L
Linus Torvalds 已提交
3044 3045 3046
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3047
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3048 3049

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3050 3051
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3052
			slab_error(cachep, "double free, or memory outside object was overwritten");
3053
			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3054 3055
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3056 3057 3058 3059
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3060

3061
	objp += obj_offset(cachep);
3062
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3063
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3064 3065
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3066
		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3067
		       objp, (int)ARCH_SLAB_MINALIGN);
3068
	}
L
Linus Torvalds 已提交
3069 3070 3071 3072 3073 3074
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3075
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3076
{
P
Pekka Enberg 已提交
3077
	void *objp;
L
Linus Torvalds 已提交
3078 3079
	struct array_cache *ac;

3080
	check_irq_off();
3081

3082
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3083 3084
	if (likely(ac->avail)) {
		ac->touched = 1;
3085
		objp = ac->entry[--ac->avail];
3086

3087 3088
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3089
	}
3090 3091

	STATS_INC_ALLOCMISS(cachep);
3092
	objp = cache_alloc_refill(cachep, flags);
3093 3094 3095 3096 3097 3098 3099
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3100 3101 3102 3103 3104
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3105 3106
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3107 3108 3109
	return objp;
}

3110
#ifdef CONFIG_NUMA
3111
/*
3112
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3113 3114 3115 3116 3117 3118 3119 3120
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3121
	if (in_interrupt() || (flags & __GFP_THISNODE))
3122
		return NULL;
3123
	nid_alloc = nid_here = numa_mem_id();
3124
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3125
		nid_alloc = cpuset_slab_spread_node();
3126
	else if (current->mempolicy)
3127
		nid_alloc = mempolicy_slab_node();
3128
	if (nid_alloc != nid_here)
3129
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3130 3131 3132
	return NULL;
}

3133 3134
/*
 * Fallback function if there was no memory available and no objects on a
3135
 * certain node and fall back is permitted. First we scan all the
3136
 * available node for available objects. If that fails then we
3137 3138 3139
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3140
 */
3141
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3142
{
3143
	struct zonelist *zonelist;
3144
	struct zoneref *z;
3145 3146
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3147
	void *obj = NULL;
3148
	struct page *page;
3149
	int nid;
3150
	unsigned int cpuset_mems_cookie;
3151 3152 3153 3154

	if (flags & __GFP_THISNODE)
		return NULL;

3155
retry_cpuset:
3156
	cpuset_mems_cookie = read_mems_allowed_begin();
3157
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3158

3159 3160 3161 3162 3163
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3164 3165
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3166

3167
		if (cpuset_zone_allowed(zone, flags) &&
3168 3169
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3170
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3171
					gfp_exact_node(flags), nid);
3172 3173 3174
				if (obj)
					break;
		}
3175 3176
	}

3177
	if (!obj) {
3178 3179 3180 3181 3182 3183
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3184 3185 3186 3187
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3188 3189
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3190

3191
			/*
3192 3193
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3194
			 */
3195 3196
			if (!obj)
				goto retry;
3197
		}
3198
	}
3199

3200
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3201
		goto retry_cpuset;
3202 3203 3204
	return obj;
}

3205 3206
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3207
 */
3208
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3209
				int nodeid)
3210
{
3211
	struct page *page;
3212
	struct kmem_cache_node *n;
3213
	void *obj = NULL;
3214
	void *list = NULL;
P
Pekka Enberg 已提交
3215

3216
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3217
	n = get_node(cachep, nodeid);
3218
	BUG_ON(!n);
P
Pekka Enberg 已提交
3219

3220
	check_irq_off();
3221
	spin_lock(&n->list_lock);
3222
	page = get_first_slab(n, false);
3223 3224
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3225 3226 3227 3228 3229 3230 3231

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3232
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3233

3234
	obj = slab_get_obj(cachep, page);
3235
	n->free_objects--;
P
Pekka Enberg 已提交
3236

3237
	fixup_slab_list(cachep, n, page, &list);
3238

3239
	spin_unlock(&n->list_lock);
3240
	fixup_objfreelist_debug(cachep, &list);
3241
	return obj;
3242

A
Andrew Morton 已提交
3243
must_grow:
3244
	spin_unlock(&n->list_lock);
3245
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3246 3247 3248 3249
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3250
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3251

3252
	return obj ? obj : fallback_alloc(cachep, flags);
3253
}
3254 3255

static __always_inline void *
3256
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3257
		   unsigned long caller)
3258 3259 3260
{
	unsigned long save_flags;
	void *ptr;
3261
	int slab_node = numa_mem_id();
3262

3263
	flags &= gfp_allowed_mask;
3264 3265
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3266 3267
		return NULL;

3268 3269 3270
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3271
	if (nodeid == NUMA_NO_NODE)
3272
		nodeid = slab_node;
3273

3274
	if (unlikely(!get_node(cachep, nodeid))) {
3275 3276 3277 3278 3279
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3280
	if (nodeid == slab_node) {
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3297 3298
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3299

3300
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3301 3302 3303 3304 3305 3306 3307 3308
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3309
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3320 3321
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3337
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3338 3339 3340 3341
{
	unsigned long save_flags;
	void *objp;

3342
	flags &= gfp_allowed_mask;
3343 3344
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3345 3346
		return NULL;

3347 3348 3349 3350 3351 3352 3353
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3354 3355
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3356

3357
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3358 3359
	return objp;
}
3360 3361

/*
3362
 * Caller needs to acquire correct kmem_cache_node's list_lock
3363
 * @list: List of detached free slabs should be freed by caller
3364
 */
3365 3366
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3367 3368
{
	int i;
3369
	struct kmem_cache_node *n = get_node(cachep, node);
3370 3371 3372
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3373 3374

	for (i = 0; i < nr_objects; i++) {
3375
		void *objp;
3376
		struct page *page;
L
Linus Torvalds 已提交
3377

3378 3379
		objp = objpp[i];

3380 3381
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3382
		check_spinlock_acquired_node(cachep, node);
3383
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3384 3385 3386
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3387
		if (page->active == 0) {
3388
			list_add(&page->lru, &n->slabs_free);
3389 3390
			n->free_slabs++;
		} else {
L
Linus Torvalds 已提交
3391 3392 3393 3394
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3395
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3396 3397
		}
	}
3398 3399 3400 3401 3402

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
3403
		list_move(&page->lru, list);
3404
		n->free_slabs--;
3405
		n->total_slabs--;
3406
	}
L
Linus Torvalds 已提交
3407 3408
}

3409
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3410 3411
{
	int batchcount;
3412
	struct kmem_cache_node *n;
3413
	int node = numa_mem_id();
3414
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3415 3416

	batchcount = ac->batchcount;
3417

L
Linus Torvalds 已提交
3418
	check_irq_off();
3419
	n = get_node(cachep, node);
3420 3421 3422
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3423
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3424 3425 3426
		if (max) {
			if (batchcount > max)
				batchcount = max;
3427
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3428
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3429 3430 3431 3432 3433
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3434
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3435
free_done:
L
Linus Torvalds 已提交
3436 3437 3438
#if STATS
	{
		int i = 0;
3439
		struct page *page;
L
Linus Torvalds 已提交
3440

3441
		list_for_each_entry(page, &n->slabs_free, lru) {
3442
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3443 3444 3445 3446 3447 3448

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3449
	spin_unlock(&n->list_lock);
3450
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3451
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3452
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3453 3454 3455
}

/*
A
Andrew Morton 已提交
3456 3457
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3458
 */
3459 3460
static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
					 unsigned long caller)
L
Linus Torvalds 已提交
3461
{
3462
	/* Put the object into the quarantine, don't touch it for now. */
3463
	if (kasan_slab_free(cachep, objp, _RET_IP_))
3464 3465 3466 3467
		return;

	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3468

3469 3470 3471 3472
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3473

L
Linus Torvalds 已提交
3474
	check_irq_off();
3475
	kmemleak_free_recursive(objp, cachep->flags);
3476
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3477

3478 3479 3480 3481 3482 3483 3484
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3485
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3486 3487
		return;

3488
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3489 3490 3491 3492 3493
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3494

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3505 3506 3507 3508 3509 3510 3511 3512 3513
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
3514 3515
 *
 * Return: pointer to the new object or %NULL in case of error
L
Linus Torvalds 已提交
3516
 */
3517
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3518
{
3519
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3520

3521
	trace_kmem_cache_alloc(_RET_IP_, ret,
3522
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3523 3524

	return ret;
L
Linus Torvalds 已提交
3525 3526 3527
}
EXPORT_SYMBOL(kmem_cache_alloc);

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3538
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3539
			  void **p)
3540
{
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3559 3560
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3571
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3572 3573 3574
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3575 3576 3577
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3578
#ifdef CONFIG_TRACING
3579
void *
3580
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3581
{
3582 3583
	void *ret;

3584
	ret = slab_alloc(cachep, flags, _RET_IP_);
3585

3586
	ret = kasan_kmalloc(cachep, ret, size, flags);
3587
	trace_kmalloc(_RET_IP_, ret,
3588
		      size, cachep->size, flags);
3589
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3590
}
3591
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3592 3593
#endif

L
Linus Torvalds 已提交
3594
#ifdef CONFIG_NUMA
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
3605 3606
 *
 * Return: pointer to the new object or %NULL in case of error
3607
 */
3608 3609
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3610
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3611

3612
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3613
				    cachep->object_size, cachep->size,
3614
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3615 3616

	return ret;
3617
}
L
Linus Torvalds 已提交
3618 3619
EXPORT_SYMBOL(kmem_cache_alloc_node);

3620
#ifdef CONFIG_TRACING
3621
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3622
				  gfp_t flags,
3623 3624
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3625
{
3626 3627
	void *ret;

3628
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3629

3630
	ret = kasan_kmalloc(cachep, ret, size, flags);
3631
	trace_kmalloc_node(_RET_IP_, ret,
3632
			   size, cachep->size,
3633 3634
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3635
}
3636
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3637 3638
#endif

3639
static __always_inline void *
3640
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3641
{
3642
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3643
	void *ret;
3644

3645 3646
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
		return NULL;
3647
	cachep = kmalloc_slab(size, flags);
3648 3649
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3650
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3651
	ret = kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3652 3653

	return ret;
3654
}
3655 3656 3657

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3658
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3659
}
3660
EXPORT_SYMBOL(__kmalloc_node);
3661 3662

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3663
		int node, unsigned long caller)
3664
{
3665
	return __do_kmalloc_node(size, flags, node, caller);
3666 3667 3668
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3669 3670

/**
3671
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3672
 * @size: how many bytes of memory are required.
3673
 * @flags: the type of memory to allocate (see kmalloc).
3674
 * @caller: function caller for debug tracking of the caller
3675 3676
 *
 * Return: pointer to the allocated memory or %NULL in case of error
L
Linus Torvalds 已提交
3677
 */
3678
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3679
					  unsigned long caller)
L
Linus Torvalds 已提交
3680
{
3681
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3682
	void *ret;
L
Linus Torvalds 已提交
3683

3684 3685
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
		return NULL;
3686
	cachep = kmalloc_slab(size, flags);
3687 3688
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3689
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3690

3691
	ret = kasan_kmalloc(cachep, ret, size, flags);
3692
	trace_kmalloc(caller, ret,
3693
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3694 3695

	return ret;
3696 3697 3698 3699
}

void *__kmalloc(size_t size, gfp_t flags)
{
3700
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3701 3702 3703
}
EXPORT_SYMBOL(__kmalloc);

3704
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3705
{
3706
	return __do_kmalloc(size, flags, caller);
3707 3708
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3709

L
Linus Torvalds 已提交
3710 3711 3712 3713 3714 3715 3716 3717
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3718
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3719 3720
{
	unsigned long flags;
3721 3722 3723
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3724 3725

	local_irq_save(flags);
3726
	debug_check_no_locks_freed(objp, cachep->object_size);
3727
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3728
		debug_check_no_obj_freed(objp, cachep->object_size);
3729
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3730
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3731

3732
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3733 3734 3735
}
EXPORT_SYMBOL(kmem_cache_free);

3736 3737 3738 3739 3740 3741 3742 3743 3744
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3745 3746 3747 3748
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3762 3763 3764 3765
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3766 3767
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3768 3769 3770 3771 3772
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3773
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3774 3775
	unsigned long flags;

3776 3777
	trace_kfree(_RET_IP_, objp);

3778
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3779 3780 3781
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3782
	c = virt_to_cache(objp);
3783 3784 3785
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3786
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3787 3788 3789 3790
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3791
/*
3792
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3793
 */
3794
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3795
{
3796
	int ret;
3797
	int node;
3798
	struct kmem_cache_node *n;
3799

3800
	for_each_online_node(node) {
3801 3802
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3803 3804 3805
			goto fail;

	}
3806

3807
	return 0;
3808

A
Andrew Morton 已提交
3809
fail:
3810
	if (!cachep->list.next) {
3811 3812 3813
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3814 3815
			n = get_node(cachep, node);
			if (n) {
3816 3817 3818
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3819
				cachep->node[node] = NULL;
3820 3821 3822 3823
			}
			node--;
		}
	}
3824
	return -ENOMEM;
3825 3826
}

3827
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3828
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3829
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3830
{
3831 3832
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3833

3834 3835
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3836 3837
		return -ENOMEM;

3838 3839
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
3840 3841 3842 3843 3844 3845
	/*
	 * Without a previous cpu_cache there's no need to synchronize remote
	 * cpus, so skip the IPIs.
	 */
	if (prev)
		kick_all_cpus_sync();
3846

L
Linus Torvalds 已提交
3847 3848 3849
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3850
	cachep->shared = shared;
L
Linus Torvalds 已提交
3851

3852
	if (!prev)
3853
		goto setup_node;
3854 3855

	for_each_online_cpu(cpu) {
3856
		LIST_HEAD(list);
3857 3858
		int node;
		struct kmem_cache_node *n;
3859
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3860

3861
		node = cpu_to_mem(cpu);
3862 3863
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3864
		free_block(cachep, ac->entry, ac->avail, node, &list);
3865
		spin_unlock_irq(&n->list_lock);
3866
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3867
	}
3868 3869
	free_percpu(prev);

3870 3871
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3872 3873
}

G
Glauber Costa 已提交
3874 3875 3876 3877
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3878
	struct kmem_cache *c;
G
Glauber Costa 已提交
3879 3880 3881 3882 3883 3884 3885 3886 3887

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3888 3889 3890 3891
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3892 3893 3894 3895 3896
	}

	return ret;
}

3897
/* Called with slab_mutex held always */
3898
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3899 3900
{
	int err;
G
Glauber Costa 已提交
3901 3902 3903 3904
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3905
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3906 3907 3908
	if (err)
		goto end;

G
Glauber Costa 已提交
3909 3910 3911 3912 3913 3914
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3915

G
Glauber Costa 已提交
3916 3917
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3918 3919
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3920 3921
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3922
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3923 3924 3925 3926
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3927
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3928
		limit = 1;
3929
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3930
		limit = 8;
3931
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3932
		limit = 24;
3933
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3934 3935 3936 3937
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3938 3939
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3940 3941 3942 3943 3944 3945 3946 3947
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3948
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3949 3950 3951
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3952 3953 3954
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3955 3956 3957 3958
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3959 3960 3961
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
3962
end:
L
Linus Torvalds 已提交
3963
	if (err)
3964
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
3965
		       cachep->name, -err);
3966
	return err;
L
Linus Torvalds 已提交
3967 3968
}

3969
/*
3970 3971
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3972
 * if drain_array() is used on the shared array.
3973
 */
3974
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3975
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
3976
{
3977
	LIST_HEAD(list);
3978 3979 3980

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
3981

3982 3983
	if (!ac || !ac->avail)
		return;
3984 3985

	if (ac->touched) {
L
Linus Torvalds 已提交
3986
		ac->touched = 0;
3987
		return;
L
Linus Torvalds 已提交
3988
	}
3989 3990 3991 3992 3993 3994

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3995 3996 3997 3998
}

/**
 * cache_reap - Reclaim memory from caches.
3999
 * @w: work descriptor
L
Linus Torvalds 已提交
4000 4001 4002 4003 4004 4005
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4006 4007
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4008
 */
4009
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4010
{
4011
	struct kmem_cache *searchp;
4012
	struct kmem_cache_node *n;
4013
	int node = numa_mem_id();
4014
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4015

4016
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4017
		/* Give up. Setup the next iteration. */
4018
		goto out;
L
Linus Torvalds 已提交
4019

4020
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4021 4022
		check_irq_on();

4023
		/*
4024
		 * We only take the node lock if absolutely necessary and we
4025 4026 4027
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4028
		n = get_node(searchp, node);
4029

4030
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4031

4032
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4033

4034 4035 4036 4037
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4038
		if (time_after(n->next_reap, jiffies))
4039
			goto next;
L
Linus Torvalds 已提交
4040

4041
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4042

4043
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4044

4045 4046
		if (n->free_touched)
			n->free_touched = 0;
4047 4048
		else {
			int freed;
L
Linus Torvalds 已提交
4049

4050
			freed = drain_freelist(searchp, n, (n->free_limit +
4051 4052 4053
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4054
next:
L
Linus Torvalds 已提交
4055 4056 4057
		cond_resched();
	}
	check_irq_on();
4058
	mutex_unlock(&slab_mutex);
4059
	next_reap_node();
4060
out:
A
Andrew Morton 已提交
4061
	/* Set up the next iteration */
4062 4063
	schedule_delayed_work_on(smp_processor_id(), work,
				round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4064 4065
}

4066
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4067
{
4068
	unsigned long active_objs, num_objs, active_slabs;
4069 4070
	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long free_slabs = 0;
4071
	int node;
4072
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4073

4074
	for_each_kmem_cache_node(cachep, node, n) {
4075
		check_irq_on();
4076
		spin_lock_irq(&n->list_lock);
4077

4078 4079
		total_slabs += n->total_slabs;
		free_slabs += n->free_slabs;
4080
		free_objs += n->free_objects;
4081

4082 4083
		if (n->shared)
			shared_avail += n->shared->avail;
4084

4085
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4086
	}
4087 4088
	num_objs = total_slabs * cachep->num;
	active_slabs = total_slabs - free_slabs;
4089
	active_objs = num_objs - free_objs;
L
Linus Torvalds 已提交
4090

4091 4092 4093
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
4094
	sinfo->num_slabs = total_slabs;
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4105
#if STATS
4106
	{			/* node stats */
L
Linus Torvalds 已提交
4107 4108 4109 4110 4111 4112 4113
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4114
		unsigned long node_frees = cachep->node_frees;
4115
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4116

J
Joe Perches 已提交
4117
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4118 4119 4120
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4121 4122 4123 4124 4125 4126 4127 4128 4129
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4130
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
4142 4143
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
4144
 */
4145
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4146
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4147
{
P
Pekka Enberg 已提交
4148
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4149
	int limit, batchcount, shared, res;
4150
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4151

L
Linus Torvalds 已提交
4152 4153 4154 4155
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4156
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4167
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4168
	res = -EINVAL;
4169
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4170
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4171 4172
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4173
				res = 0;
L
Linus Torvalds 已提交
4174
			} else {
4175
				res = do_tune_cpucache(cachep, limit,
4176 4177
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4178 4179 4180 4181
			}
			break;
		}
	}
4182
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4183 4184 4185 4186
	if (res >= 0)
		res = count;
	return res;
}
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4220 4221
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4222 4223
{
	void *p;
4224 4225
	int i, j;
	unsigned long v;
4226

4227 4228
	if (n[0] == n[1])
		return;
4229
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4240
			continue;
4241

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4252 4253 4254 4255 4256 4257 4258 4259
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4260
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4261

4262
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4263
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4264
		if (modname[0])
4265 4266 4267 4268
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
4269
	seq_printf(m, "%px", (void *)address);
4270 4271 4272 4273
}

static int leaks_show(struct seq_file *m, void *p)
{
4274 4275
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
					       root_caches_node);
4276
	struct page *page;
4277
	struct kmem_cache_node *n;
4278
	const char *name;
4279
	unsigned long *x = m->private;
4280 4281 4282 4283 4284 4285 4286 4287
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4299

4300
		for_each_kmem_cache_node(cachep, node, n) {
4301

4302 4303
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4304

4305 4306 4307 4308 4309 4310 4311
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4312 4313

	name = cachep->name;
4314
	if (x[0] == x[1]) {
4315
		/* Increase the buffer size */
4316
		mutex_unlock(&slab_mutex);
K
Kees Cook 已提交
4317 4318
		m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
				     GFP_KERNEL);
4319 4320
		if (!m->private) {
			/* Too bad, we are really out */
4321
			m->private = x;
4322
			mutex_lock(&slab_mutex);
4323 4324
			return -ENOMEM;
		}
4325 4326
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4327
		mutex_lock(&slab_mutex);
4328 4329 4330 4331
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4332 4333 4334
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4335 4336
		seq_putc(m, '\n');
	}
4337

4338 4339 4340
	return 0;
}

4341
static const struct seq_operations slabstats_op = {
4342
	.start = slab_start,
4343 4344
	.next = slab_next,
	.stop = slab_stop,
4345 4346
	.show = leaks_show,
};
4347 4348 4349

static int slabstats_open(struct inode *inode, struct file *file)
{
4350 4351 4352 4353 4354 4355 4356 4357 4358
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4373
#endif
4374 4375 4376
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4377

K
Kees Cook 已提交
4378 4379
#ifdef CONFIG_HARDENED_USERCOPY
/*
4380 4381 4382
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
4383 4384 4385 4386
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
4387 4388
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
4389 4390 4391 4392 4393
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

4394 4395
	ptr = kasan_reset_tag(ptr);

K
Kees Cook 已提交
4396 4397 4398 4399 4400 4401 4402 4403
	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

4404 4405 4406 4407
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= cachep->useroffset &&
	    offset - cachep->useroffset <= cachep->usersize &&
	    n <= cachep->useroffset - offset + cachep->usersize)
4408
		return;
K
Kees Cook 已提交
4409

4410 4411 4412 4413 4414 4415
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
4416 4417
	if (usercopy_fallback &&
	    offset <= cachep->object_size &&
4418 4419 4420 4421
	    n <= cachep->object_size - offset) {
		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
4422

4423
	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
K
Kees Cook 已提交
4424 4425 4426
}
#endif /* CONFIG_HARDENED_USERCOPY */

4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
4438 4439
 *
 * Return: size of the actual memory used by @objp in bytes
4440
 */
P
Pekka Enberg 已提交
4441
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4442
{
A
Alexander Potapenko 已提交
4443 4444
	size_t size;

4445 4446
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4447
		return 0;
L
Linus Torvalds 已提交
4448

A
Alexander Potapenko 已提交
4449 4450 4451 4452
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4453
	kasan_unpoison_shadow(objp, size);
A
Alexander Potapenko 已提交
4454 4455

	return size;
L
Linus Torvalds 已提交
4456
}
K
Kirill A. Shutemov 已提交
4457
EXPORT_SYMBOL(ksize);