slab.c 106.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
188
	void *entry[];	/*
A
Andrew Morton 已提交
189 190 191 192
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
193 194
};

J
Joonsoo Kim 已提交
195 196 197 198 199
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

200 201 202
/*
 * Need this for bootstrapping a per node allocator.
 */
203
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205
#define	CACHE_CACHE 0
206
#define	SIZE_NODE (MAX_NUMNODES)
207

208
static int drain_freelist(struct kmem_cache *cache,
209
			struct kmem_cache_node *n, int tofree);
210
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 212
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214
static void cache_reap(struct work_struct *unused);
215

216 217
static int slab_early_init = 1;

218
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
219

220
static void kmem_cache_node_init(struct kmem_cache_node *parent)
221 222 223 224 225 226
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
227
	parent->colour_next = 0;
228 229 230 231 232
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
233 234 235
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
236
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
237 238
	} while (0)

A
Andrew Morton 已提交
239 240
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
241 242 243 244
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
245

246
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
L
Linus Torvalds 已提交
247
#define CFLGS_OFF_SLAB		(0x80000000UL)
248
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
249 250 251
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
252 253 254
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
255
 *
A
Adrian Bunk 已提交
256
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
257 258
 * which could lock up otherwise freeable slabs.
 */
259 260
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
261 262 263 264 265 266

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
267
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
268 269 270 271 272
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
273 274
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
275
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
276
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
277 278 279 280 281
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
282 283 284 285 286 287 288 289 290
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
291
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
292 293 294
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
295
#define	STATS_INC_NODEFREES(x)	do { } while (0)
296
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
297
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
298 299 300 301 302 303 304 305
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
306 307
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
308
 * 0		: objp
309
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
310 311
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
312
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
313
 * 		redzone word.
314
 * cachep->obj_offset: The real object.
315 316
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
317
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
318
 */
319
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
320
{
321
	return cachep->obj_offset;
L
Linus Torvalds 已提交
322 323
}

324
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
325 326
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
327 328
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
329 330
}

331
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
332 333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
335
		return (unsigned long long *)(objp + cachep->size -
336
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
337
					      REDZONE_ALIGN);
338
	return (unsigned long long *) (objp + cachep->size -
339
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
340 341
}

342
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
343 344
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
345
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
346 347 348 349
}

#else

350
#define obj_offset(x)			0
351 352
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
353 354 355 356
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

357 358
#ifdef CONFIG_DEBUG_SLAB_LEAK

359
static inline bool is_store_user_clean(struct kmem_cache *cachep)
360
{
361 362
	return atomic_read(&cachep->store_user_clean) == 1;
}
363

364 365 366 367
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
368

369 370 371 372
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
373 374 375
}

#else
376
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
377 378 379

#endif

L
Linus Torvalds 已提交
380
/*
381 382
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
383
 */
384 385 386
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
387
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
388

389 390
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
391
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
392
	return page->slab_cache;
393 394
}

395
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
396 397
				 unsigned int idx)
{
398
	return page->s_mem + cache->size * idx;
399 400
}

401
/*
402 403 404
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
405 406 407
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
408
					const struct page *page, void *obj)
409
{
410
	u32 offset = (obj - page->s_mem);
411
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
412 413
}

414
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
415
/* internal cache of cache description objs */
416
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
417 418 419
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
420
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
421
	.name = "kmem_cache",
L
Linus Torvalds 已提交
422 423
};

424 425
#define BAD_ALIEN_MAGIC 0x01020304ul

426
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
427

428
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
429
{
430
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
431 432
}

A
Andrew Morton 已提交
433 434 435
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
436 437
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
438
{
439
	unsigned int num;
440
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
441

442 443 444 445 446 447
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
448 449 450 451 452
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
453 454 455 456 457 458
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
459
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
460
		num = slab_size / buffer_size;
461
		*left_over = slab_size % buffer_size;
462
	} else {
463
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
464 465
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
466
	}
467 468

	return num;
L
Linus Torvalds 已提交
469 470
}

471
#if DEBUG
472
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
473

A
Andrew Morton 已提交
474 475
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
476 477
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
478
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
479
	dump_stack();
480
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
481
}
482
#endif
L
Linus Torvalds 已提交
483

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

500 501 502 503 504 505 506 507 508 509 510
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

511 512 513 514 515 516 517
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
518
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
519 520 521 522 523

static void init_reap_node(int cpu)
{
	int node;

524
	node = next_node(cpu_to_mem(cpu), node_online_map);
525
	if (node == MAX_NUMNODES)
526
		node = first_node(node_online_map);
527

528
	per_cpu(slab_reap_node, cpu) = node;
529 530 531 532
}

static void next_reap_node(void)
{
533
	int node = __this_cpu_read(slab_reap_node);
534 535 536 537

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
538
	__this_cpu_write(slab_reap_node, node);
539 540 541 542 543 544 545
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
546 547 548 549 550 551 552
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
553
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
554
{
555
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
556 557 558 559 560 561

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
562
	if (keventd_up() && reap_work->work.func == NULL) {
563
		init_reap_node(cpu);
564
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
565 566
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
567 568 569
	}
}

570
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
571
{
572 573
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
574
	 * However, when such objects are allocated or transferred to another
575 576 577 578
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
579 580 581 582 583 584
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
585
	}
586 587 588 589 590
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
591
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
592 593 594 595 596
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
597 598
}

599 600
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
601
{
602 603 604
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
605

606 607
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
608

609 610 611
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
612

613
	slabs_destroy(cachep, &list);
614 615
}

616 617 618 619 620 621 622 623 624 625
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
626
	int nr = min3(from->avail, max, to->limit - to->avail);
627 628 629 630 631 632 633 634 635 636 637 638

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

639 640 641
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
642
#define reap_alien(cachep, n) do { } while (0)
643

J
Joonsoo Kim 已提交
644 645
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
646
{
647
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
648 649
}

J
Joonsoo Kim 已提交
650
static inline void free_alien_cache(struct alien_cache **ac_ptr)
651 652 653 654 655 656 657 658 659 660 661 662 663 664
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

665
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
666 667 668 669 670
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
671 672 673 674 675
static inline gfp_t gfp_exact_node(gfp_t flags)
{
	return flags;
}

676 677
#else	/* CONFIG_NUMA */

678
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
679
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
680

J
Joonsoo Kim 已提交
681 682 683
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
684
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
685 686 687 688
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
689
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
690 691 692 693
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
694
{
J
Joonsoo Kim 已提交
695
	struct alien_cache **alc_ptr;
696
	size_t memsize = sizeof(void *) * nr_node_ids;
697 698 699 700
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
714 715
		}
	}
J
Joonsoo Kim 已提交
716
	return alc_ptr;
717 718
}

J
Joonsoo Kim 已提交
719
static void free_alien_cache(struct alien_cache **alc_ptr)
720 721 722
{
	int i;

J
Joonsoo Kim 已提交
723
	if (!alc_ptr)
724 725
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
726 727
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
728 729
}

730
static void __drain_alien_cache(struct kmem_cache *cachep,
731 732
				struct array_cache *ac, int node,
				struct list_head *list)
733
{
734
	struct kmem_cache_node *n = get_node(cachep, node);
735 736

	if (ac->avail) {
737
		spin_lock(&n->list_lock);
738 739 740 741 742
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
743 744
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
745

746
		free_block(cachep, ac->entry, ac->avail, node, list);
747
		ac->avail = 0;
748
		spin_unlock(&n->list_lock);
749 750 751
	}
}

752 753 754
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
755
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
756
{
757
	int node = __this_cpu_read(slab_reap_node);
758

759
	if (n->alien) {
J
Joonsoo Kim 已提交
760 761 762 763 764
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
765
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
766 767 768
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
769
				spin_unlock_irq(&alc->lock);
770
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
771
			}
772 773 774 775
		}
	}
}

A
Andrew Morton 已提交
776
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
777
				struct alien_cache **alien)
778
{
P
Pekka Enberg 已提交
779
	int i = 0;
J
Joonsoo Kim 已提交
780
	struct alien_cache *alc;
781 782 783 784
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
785 786
		alc = alien[i];
		if (alc) {
787 788
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
789
			ac = &alc->ac;
790
			spin_lock_irqsave(&alc->lock, flags);
791
			__drain_alien_cache(cachep, ac, i, &list);
792
			spin_unlock_irqrestore(&alc->lock, flags);
793
			slabs_destroy(cachep, &list);
794 795 796
		}
	}
}
797

798 799
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
800
{
801
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
802 803
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
804
	LIST_HEAD(list);
P
Pekka Enberg 已提交
805

806
	n = get_node(cachep, node);
807
	STATS_INC_NODEFREES(cachep);
808 809
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
810
		ac = &alien->ac;
811
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
812
		if (unlikely(ac->avail == ac->limit)) {
813
			STATS_INC_ACOVERFLOW(cachep);
814
			__drain_alien_cache(cachep, ac, page_node, &list);
815
		}
816
		ac->entry[ac->avail++] = objp;
817
		spin_unlock(&alien->lock);
818
		slabs_destroy(cachep, &list);
819
	} else {
820
		n = get_node(cachep, page_node);
821
		spin_lock(&n->list_lock);
822
		free_block(cachep, &objp, 1, page_node, &list);
823
		spin_unlock(&n->list_lock);
824
		slabs_destroy(cachep, &list);
825 826 827
	}
	return 1;
}
828 829 830 831 832 833 834 835 836 837 838 839 840 841

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
842 843

/*
844 845
 * Construct gfp mask to allocate from a specific node but do not direct reclaim
 * or warn about failures. kswapd may still wake to reclaim in the background.
D
David Rientjes 已提交
846 847 848
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
849
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
D
David Rientjes 已提交
850
}
851 852
#endif

853
/*
854
 * Allocates and initializes node for a node on each slab cache, used for
855
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
856
 * will be allocated off-node since memory is not yet online for the new node.
857
 * When hotplugging memory or a cpu, existing node are not replaced if
858 859
 * already in use.
 *
860
 * Must hold slab_mutex.
861
 */
862
static int init_cache_node_node(int node)
863 864
{
	struct kmem_cache *cachep;
865
	struct kmem_cache_node *n;
866
	const size_t memsize = sizeof(struct kmem_cache_node);
867

868
	list_for_each_entry(cachep, &slab_caches, list) {
869
		/*
870
		 * Set up the kmem_cache_node for cpu before we can
871 872 873
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
874 875
		n = get_node(cachep, node);
		if (!n) {
876 877
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
878
				return -ENOMEM;
879
			kmem_cache_node_init(n);
880 881
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
882 883

			/*
884 885
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
886 887
			 * protection here.
			 */
888
			cachep->node[node] = n;
889 890
		}

891 892
		spin_lock_irq(&n->list_lock);
		n->free_limit =
893 894
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
895
		spin_unlock_irq(&n->list_lock);
896 897 898 899
	}
	return 0;
}

900 901 902 903 904 905
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

906
static void cpuup_canceled(long cpu)
907 908
{
	struct kmem_cache *cachep;
909
	struct kmem_cache_node *n = NULL;
910
	int node = cpu_to_mem(cpu);
911
	const struct cpumask *mask = cpumask_of_node(node);
912

913
	list_for_each_entry(cachep, &slab_caches, list) {
914 915
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
916
		struct alien_cache **alien;
917
		LIST_HEAD(list);
918

919
		n = get_node(cachep, node);
920
		if (!n)
921
			continue;
922

923
		spin_lock_irq(&n->list_lock);
924

925 926
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
927 928 929 930

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
931
			free_block(cachep, nc->entry, nc->avail, node, &list);
932 933
			nc->avail = 0;
		}
934

935
		if (!cpumask_empty(mask)) {
936
			spin_unlock_irq(&n->list_lock);
937
			goto free_slab;
938 939
		}

940
		shared = n->shared;
941 942
		if (shared) {
			free_block(cachep, shared->entry,
943
				   shared->avail, node, &list);
944
			n->shared = NULL;
945 946
		}

947 948
		alien = n->alien;
		n->alien = NULL;
949

950
		spin_unlock_irq(&n->list_lock);
951 952 953 954 955 956

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
957 958

free_slab:
959
		slabs_destroy(cachep, &list);
960 961 962 963 964 965
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
966
	list_for_each_entry(cachep, &slab_caches, list) {
967
		n = get_node(cachep, node);
968
		if (!n)
969
			continue;
970
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
971 972 973
	}
}

974
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
975
{
976
	struct kmem_cache *cachep;
977
	struct kmem_cache_node *n = NULL;
978
	int node = cpu_to_mem(cpu);
979
	int err;
L
Linus Torvalds 已提交
980

981 982 983 984
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
985
	 * kmem_cache_node and not this cpu's kmem_cache_node
986
	 */
987
	err = init_cache_node_node(node);
988 989
	if (err < 0)
		goto bad;
990 991 992 993 994

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
995
	list_for_each_entry(cachep, &slab_caches, list) {
996
		struct array_cache *shared = NULL;
J
Joonsoo Kim 已提交
997
		struct alien_cache **alien = NULL;
998 999 1000 1001

		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1002
				0xbaadf00d, GFP_KERNEL);
1003
			if (!shared)
L
Linus Torvalds 已提交
1004
				goto bad;
1005 1006
		}
		if (use_alien_caches) {
1007
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1008 1009
			if (!alien) {
				kfree(shared);
1010
				goto bad;
1011
			}
1012
		}
1013
		n = get_node(cachep, node);
1014
		BUG_ON(!n);
1015

1016 1017
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1018 1019 1020 1021
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1022
			n->shared = shared;
1023 1024
			shared = NULL;
		}
1025
#ifdef CONFIG_NUMA
1026 1027
		if (!n->alien) {
			n->alien = alien;
1028
			alien = NULL;
L
Linus Torvalds 已提交
1029
		}
1030
#endif
1031
		spin_unlock_irq(&n->list_lock);
1032 1033 1034
		kfree(shared);
		free_alien_cache(alien);
	}
1035

1036 1037
	return 0;
bad:
1038
	cpuup_canceled(cpu);
1039 1040 1041
	return -ENOMEM;
}

1042
static int cpuup_callback(struct notifier_block *nfb,
1043 1044 1045 1046 1047 1048 1049 1050
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1051
		mutex_lock(&slab_mutex);
1052
		err = cpuup_prepare(cpu);
1053
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1054 1055
		break;
	case CPU_ONLINE:
1056
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1057 1058 1059
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1060
  	case CPU_DOWN_PREPARE:
1061
  	case CPU_DOWN_PREPARE_FROZEN:
1062
		/*
1063
		 * Shutdown cache reaper. Note that the slab_mutex is
1064 1065 1066 1067
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1068
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1069
		/* Now the cache_reaper is guaranteed to be not running. */
1070
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1071 1072
  		break;
  	case CPU_DOWN_FAILED:
1073
  	case CPU_DOWN_FAILED_FROZEN:
1074 1075
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1076
	case CPU_DEAD:
1077
	case CPU_DEAD_FROZEN:
1078 1079
		/*
		 * Even if all the cpus of a node are down, we don't free the
1080
		 * kmem_cache_node of any cache. This to avoid a race between
1081
		 * cpu_down, and a kmalloc allocation from another cpu for
1082
		 * memory from the node of the cpu going down.  The node
1083 1084 1085
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1086
		/* fall through */
1087
#endif
L
Linus Torvalds 已提交
1088
	case CPU_UP_CANCELED:
1089
	case CPU_UP_CANCELED_FROZEN:
1090
		mutex_lock(&slab_mutex);
1091
		cpuup_canceled(cpu);
1092
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1093 1094
		break;
	}
1095
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1096 1097
}

1098
static struct notifier_block cpucache_notifier = {
1099 1100
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1101

1102 1103 1104 1105 1106 1107
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1108
 * Must hold slab_mutex.
1109
 */
1110
static int __meminit drain_cache_node_node(int node)
1111 1112 1113 1114
{
	struct kmem_cache *cachep;
	int ret = 0;

1115
	list_for_each_entry(cachep, &slab_caches, list) {
1116
		struct kmem_cache_node *n;
1117

1118
		n = get_node(cachep, node);
1119
		if (!n)
1120 1121
			continue;

1122
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1123

1124 1125
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1146
		mutex_lock(&slab_mutex);
1147
		ret = init_cache_node_node(nid);
1148
		mutex_unlock(&slab_mutex);
1149 1150
		break;
	case MEM_GOING_OFFLINE:
1151
		mutex_lock(&slab_mutex);
1152
		ret = drain_cache_node_node(nid);
1153
		mutex_unlock(&slab_mutex);
1154 1155 1156 1157 1158 1159 1160 1161
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1162
	return notifier_from_errno(ret);
1163 1164 1165
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1166
/*
1167
 * swap the static kmem_cache_node with kmalloced memory
1168
 */
1169
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1170
				int nodeid)
1171
{
1172
	struct kmem_cache_node *ptr;
1173

1174
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1175 1176
	BUG_ON(!ptr);

1177
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1178 1179 1180 1181 1182
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1183
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1184
	cachep->node[nodeid] = ptr;
1185 1186
}

1187
/*
1188 1189
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1190
 */
1191
static void __init set_up_node(struct kmem_cache *cachep, int index)
1192 1193 1194 1195
{
	int node;

	for_each_online_node(node) {
1196
		cachep->node[node] = &init_kmem_cache_node[index + node];
1197
		cachep->node[node]->next_reap = jiffies +
1198 1199
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1200 1201 1202
	}
}

A
Andrew Morton 已提交
1203 1204 1205
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1206 1207 1208
 */
void __init kmem_cache_init(void)
{
1209 1210
	int i;

1211 1212
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1213 1214
	kmem_cache = &kmem_cache_boot;

1215
	if (num_possible_nodes() == 1)
1216 1217
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1218
	for (i = 0; i < NUM_INIT_LISTS; i++)
1219
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1220

L
Linus Torvalds 已提交
1221 1222
	/*
	 * Fragmentation resistance on low memory - only use bigger
1223 1224
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1225
	 */
1226
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1227
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1228 1229 1230

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1231 1232 1233
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1234
	 *    Initially an __init data area is used for the head array and the
1235
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1236
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1237
	 * 2) Create the first kmalloc cache.
1238
	 *    The struct kmem_cache for the new cache is allocated normally.
1239 1240 1241
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1242
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1243
	 *    kmalloc cache with kmalloc allocated arrays.
1244
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1245 1246
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1247 1248
	 */

1249
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1250

E
Eric Dumazet 已提交
1251
	/*
1252
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1253
	 */
1254
	create_boot_cache(kmem_cache, "kmem_cache",
1255
		offsetof(struct kmem_cache, node) +
1256
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1257 1258
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1259
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1260

A
Andrew Morton 已提交
1261
	/*
1262 1263
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1264
	 */
1265
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1266
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1267
	slab_state = PARTIAL_NODE;
1268
	setup_kmalloc_cache_index_table();
1269

1270 1271
	slab_early_init = 0;

1272
	/* 5) Replace the bootstrap kmem_cache_node */
1273
	{
P
Pekka Enberg 已提交
1274 1275
		int nid;

1276
		for_each_online_node(nid) {
1277
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1278

1279
			init_list(kmalloc_caches[INDEX_NODE],
1280
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1281 1282
		}
	}
L
Linus Torvalds 已提交
1283

1284
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1285 1286 1287 1288 1289 1290
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1291
	slab_state = UP;
P
Peter Zijlstra 已提交
1292

1293
	/* 6) resize the head arrays to their final sizes */
1294 1295
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1296 1297
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1298
	mutex_unlock(&slab_mutex);
1299

1300 1301 1302
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1303 1304 1305
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1306 1307 1308
	 */
	register_cpu_notifier(&cpucache_notifier);

1309 1310 1311
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1312
	 * node.
1313 1314 1315 1316
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1317 1318 1319
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1320 1321 1322 1323 1324 1325 1326
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1327 1328
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1329
	 */
1330
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1331
		start_cpu_timer(cpu);
1332 1333

	/* Done! */
1334
	slab_state = FULL;
L
Linus Torvalds 已提交
1335 1336 1337 1338
	return 0;
}
__initcall(cpucache_init);

1339 1340 1341
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1342
#if DEBUG
1343
	struct kmem_cache_node *n;
1344
	struct page *page;
1345 1346
	unsigned long flags;
	int node;
1347 1348 1349 1350 1351
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1352

1353 1354 1355
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1356
		cachep->name, cachep->size, cachep->gfporder);
1357

1358
	for_each_kmem_cache_node(cachep, node, n) {
1359 1360 1361
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1362
		spin_lock_irqsave(&n->list_lock, flags);
1363
		list_for_each_entry(page, &n->slabs_full, lru) {
1364 1365 1366
			active_objs += cachep->num;
			active_slabs++;
		}
1367 1368
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1369 1370
			active_slabs++;
		}
1371
		list_for_each_entry(page, &n->slabs_free, lru)
1372 1373
			num_slabs++;

1374 1375
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1376 1377 1378

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
1379
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1380 1381 1382
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1383
#endif
1384 1385
}

L
Linus Torvalds 已提交
1386
/*
W
Wang Sheng-Hui 已提交
1387 1388
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1389 1390 1391 1392 1393
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1394 1395
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1396 1397
{
	struct page *page;
1398
	int nr_pages;
1399

1400
	flags |= cachep->allocflags;
1401 1402
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1403

1404
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1405
	if (!page) {
1406
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1407
		return NULL;
1408
	}
L
Linus Torvalds 已提交
1409

1410 1411 1412 1413 1414
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1415
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1416
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1417 1418 1419 1420 1421
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1422

1423
	__SetPageSlab(page);
1424 1425
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1426
		SetPageSlabPfmemalloc(page);
1427

1428 1429 1430 1431 1432 1433 1434 1435
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1436

1437
	return page;
L
Linus Torvalds 已提交
1438 1439 1440 1441 1442
}

/*
 * Interface to system's page release.
 */
1443
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1444
{
1445
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1446

1447
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1448

1449 1450 1451 1452 1453 1454
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1455

1456
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1457
	__ClearPageSlabPfmemalloc(page);
1458
	__ClearPageSlab(page);
1459 1460
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1461

L
Linus Torvalds 已提交
1462 1463
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1464
	__free_kmem_pages(page, cachep->gfporder);
L
Linus Torvalds 已提交
1465 1466 1467 1468
}

static void kmem_rcu_free(struct rcu_head *head)
{
1469 1470
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1471

1472 1473 1474 1475
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1476 1477 1478
}

#if DEBUG
1479 1480 1481 1482 1483 1484 1485 1486
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1487 1488

#ifdef CONFIG_DEBUG_PAGEALLOC
1489
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1490
			    unsigned long caller)
L
Linus Torvalds 已提交
1491
{
1492
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1493

1494
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1495

P
Pekka Enberg 已提交
1496
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1497 1498
		return;

P
Pekka Enberg 已提交
1499 1500 1501 1502
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1503 1504 1505 1506 1507 1508 1509
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1510
				*addr++ = svalue;
L
Linus Torvalds 已提交
1511 1512 1513 1514 1515 1516 1517
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1518
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1519
}
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1537 1538
#endif

1539
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1540
{
1541
	int size = cachep->object_size;
1542
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1543 1544

	memset(addr, val, size);
P
Pekka Enberg 已提交
1545
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1546 1547 1548 1549 1550
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1551 1552 1553
	unsigned char error = 0;
	int bad_count = 0;

1554
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1555 1556 1557 1558 1559 1560
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1561 1562
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581
}
#endif

#if DEBUG

1582
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1583 1584 1585 1586 1587
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1588
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1589 1590
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1591 1592 1593
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1594 1595 1596
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1597
	}
1598
	realobj = (char *)objp + obj_offset(cachep);
1599
	size = cachep->object_size;
P
Pekka Enberg 已提交
1600
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1601 1602
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1603 1604
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1605 1606 1607 1608
		dump_line(realobj, i, limit);
	}
}

1609
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1610 1611 1612 1613 1614
{
	char *realobj;
	int size, i;
	int lines = 0;

1615 1616 1617
	if (is_debug_pagealloc_cache(cachep))
		return;

1618
	realobj = (char *)objp + obj_offset(cachep);
1619
	size = cachep->object_size;
L
Linus Torvalds 已提交
1620

P
Pekka Enberg 已提交
1621
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1622
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1623
		if (i == size - 1)
L
Linus Torvalds 已提交
1624 1625 1626 1627 1628 1629
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1630
				printk(KERN_ERR
1631 1632
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1633 1634 1635
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1636
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1637
			limit = 16;
P
Pekka Enberg 已提交
1638 1639
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1652
		struct page *page = virt_to_head_page(objp);
1653
		unsigned int objnr;
L
Linus Torvalds 已提交
1654

1655
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1656
		if (objnr) {
1657
			objp = index_to_obj(cachep, page, objnr - 1);
1658
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1659
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1660
			       realobj, size);
L
Linus Torvalds 已提交
1661 1662
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1663
		if (objnr + 1 < cachep->num) {
1664
			objp = index_to_obj(cachep, page, objnr + 1);
1665
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1666
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1667
			       realobj, size);
L
Linus Torvalds 已提交
1668 1669 1670 1671 1672 1673
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1674
#if DEBUG
1675 1676
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1677 1678
{
	int i;
1679 1680 1681 1682 1683 1684

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1685
	for (i = 0; i < cachep->num; i++) {
1686
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1687 1688 1689

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1690
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1691 1692 1693 1694
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1695
					   "was overwritten");
L
Linus Torvalds 已提交
1696 1697
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1698
					   "was overwritten");
L
Linus Torvalds 已提交
1699 1700
		}
	}
1701
}
L
Linus Torvalds 已提交
1702
#else
1703 1704
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1705 1706
{
}
L
Linus Torvalds 已提交
1707 1708
#endif

1709 1710 1711
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1712
 * @page: page pointer being destroyed
1713
 *
W
Wang Sheng-Hui 已提交
1714 1715 1716
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1717
 */
1718
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1719
{
1720
	void *freelist;
1721

1722 1723
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1724 1725 1726
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1727
		kmem_freepages(cachep, page);
1728 1729

	/*
1730
	 * From now on, we don't use freelist
1731 1732 1733
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1734
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1735 1736
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1747
/**
1748 1749 1750 1751 1752 1753
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1754 1755 1756 1757 1758
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1759
static size_t calculate_slab_order(struct kmem_cache *cachep,
1760
				size_t size, unsigned long flags)
1761 1762
{
	size_t left_over = 0;
1763
	int gfporder;
1764

1765
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1766 1767 1768
		unsigned int num;
		size_t remainder;

1769
		num = cache_estimate(gfporder, size, flags, &remainder);
1770 1771
		if (!num)
			continue;
1772

1773 1774 1775 1776
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1777
		if (flags & CFLGS_OFF_SLAB) {
1778 1779 1780 1781 1782 1783 1784 1785
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1786
			/*
1787 1788
			 * Needed to avoid possible looping condition
			 * in cache_grow()
1789
			 */
1790 1791
			if (OFF_SLAB(freelist_cache))
				continue;
1792

1793 1794 1795
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1796
		}
1797

1798
		/* Found something acceptable - save it away */
1799
		cachep->num = num;
1800
		cachep->gfporder = gfporder;
1801 1802
		left_over = remainder;

1803 1804 1805 1806 1807 1808 1809 1810
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1811 1812 1813 1814
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1815
		if (gfporder >= slab_max_order)
1816 1817
			break;

1818 1819 1820
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1821
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1822 1823 1824 1825 1826
			break;
	}
	return left_over;
}

1827 1828 1829 1830 1831 1832 1833 1834
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1835
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1848
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1849
{
1850
	if (slab_state >= FULL)
1851
		return enable_cpucache(cachep, gfp);
1852

1853 1854 1855 1856
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1857
	if (slab_state == DOWN) {
1858 1859
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1860
	} else if (slab_state == PARTIAL) {
1861 1862
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1863
	} else {
1864
		int node;
1865

1866 1867 1868 1869 1870
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1871 1872
		}
	}
1873

1874
	cachep->node[numa_mem_id()]->next_reap =
1875 1876
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1877 1878 1879 1880 1881 1882 1883

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1884
	return 0;
1885 1886
}

J
Joonsoo Kim 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1936 1937 1938 1939 1940 1941 1942 1943
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
1944 1945
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1986
/**
1987
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1988
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1989 1990 1991 1992
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1993
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2007
int
2008
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2009
{
2010
	size_t ralign = BYTES_PER_WORD;
2011
	gfp_t gfp;
2012
	int err;
2013
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2023 2024
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2025
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2026 2027 2028 2029 2030
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2031 2032
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2033 2034 2035
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2036 2037 2038
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2039 2040
	}

D
David Woodhouse 已提交
2041 2042 2043 2044 2045 2046 2047
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2048

2049
	/* 3) caller mandated alignment */
2050 2051
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2052
	}
2053 2054
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2055
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2056
	/*
2057
	 * 4) Store it.
L
Linus Torvalds 已提交
2058
	 */
2059
	cachep->align = ralign;
2060 2061 2062 2063
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2064

2065 2066 2067 2068 2069
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2070 2071
#if DEBUG

2072 2073 2074 2075
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2076 2077
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2078 2079
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2080 2081
	}
	if (flags & SLAB_STORE_USER) {
2082
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2083 2084
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2085
		 */
D
David Woodhouse 已提交
2086 2087 2088 2089
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2090
	}
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
#endif

	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2102 2103 2104 2105 2106 2107 2108
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2109
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2121 2122 2123
	}
#endif

2124 2125 2126 2127 2128
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2129
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2130
		flags |= CFLGS_OFF_SLAB;
2131
		goto done;
2132
	}
L
Linus Torvalds 已提交
2133

2134 2135
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2136

2137
	return -E2BIG;
L
Linus Torvalds 已提交
2138

2139 2140
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2141
	cachep->flags = flags;
2142
	cachep->allocflags = __GFP_COMP;
2143
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2144
		cachep->allocflags |= GFP_DMA;
2145
	cachep->size = size;
2146
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2147

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2161 2162
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2163
	}
L
Linus Torvalds 已提交
2164

2165 2166
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2167
		__kmem_cache_release(cachep);
2168
		return err;
2169
	}
L
Linus Torvalds 已提交
2170

2171
	return 0;
L
Linus Torvalds 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2185
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2186 2187 2188
{
#ifdef CONFIG_SMP
	check_irq_off();
2189
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2190 2191
#endif
}
2192

2193
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2194 2195 2196
{
#ifdef CONFIG_SMP
	check_irq_off();
2197
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2198 2199 2200
#endif
}

L
Linus Torvalds 已提交
2201 2202 2203 2204
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2205
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2206 2207
#endif

2208
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2209 2210 2211
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2212 2213
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2214
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2215
	struct array_cache *ac;
2216
	int node = numa_mem_id();
2217
	struct kmem_cache_node *n;
2218
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2219 2220

	check_irq_off();
2221
	ac = cpu_cache_get(cachep);
2222 2223
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2224
	free_block(cachep, ac->entry, ac->avail, node, &list);
2225
	spin_unlock(&n->list_lock);
2226
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2227 2228 2229
	ac->avail = 0;
}

2230
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2231
{
2232
	struct kmem_cache_node *n;
2233 2234
	int node;

2235
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2236
	check_irq_on();
2237 2238
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2239
			drain_alien_cache(cachep, n->alien);
2240

2241 2242
	for_each_kmem_cache_node(cachep, node, n)
		drain_array(cachep, n, n->shared, 1, node);
L
Linus Torvalds 已提交
2243 2244
}

2245 2246 2247 2248 2249 2250 2251
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2252
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2253
{
2254 2255
	struct list_head *p;
	int nr_freed;
2256
	struct page *page;
L
Linus Torvalds 已提交
2257

2258
	nr_freed = 0;
2259
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2260

2261 2262 2263 2264
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2265 2266
			goto out;
		}
L
Linus Torvalds 已提交
2267

2268 2269
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2270 2271 2272 2273
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2274 2275
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2276
		slab_destroy(cache, page);
2277
		nr_freed++;
L
Linus Torvalds 已提交
2278
	}
2279 2280
out:
	return nr_freed;
L
Linus Torvalds 已提交
2281 2282
}

2283
int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2284
{
2285 2286
	int ret = 0;
	int node;
2287
	struct kmem_cache_node *n;
2288 2289 2290 2291

	drain_cpu_caches(cachep);

	check_irq_on();
2292
	for_each_kmem_cache_node(cachep, node, n) {
2293
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2294

2295 2296
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2297 2298 2299 2300
	}
	return (ret ? 1 : 0);
}

2301
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2302 2303 2304 2305 2306
{
	return __kmem_cache_shrink(cachep, false);
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2307
{
2308
	int i;
2309
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2310

2311
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2312

2313
	/* NUMA: free the node structures */
2314 2315 2316 2317 2318
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2319
	}
L
Linus Torvalds 已提交
2320 2321
}

2322 2323
/*
 * Get the memory for a slab management obj.
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2335
 */
2336
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2337 2338
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2339
{
2340
	void *freelist;
2341
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2342

2343 2344 2345
	page->s_mem = addr + colour_off;
	page->active = 0;

2346 2347 2348
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2349
		/* Slab management obj is off-slab. */
2350
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2351
					      local_flags, nodeid);
2352
		if (!freelist)
L
Linus Torvalds 已提交
2353 2354
			return NULL;
	} else {
2355 2356 2357
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2358
	}
2359

2360
	return freelist;
L
Linus Torvalds 已提交
2361 2362
}

2363
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2364
{
2365
	return ((freelist_idx_t *)page->freelist)[idx];
2366 2367 2368
}

static inline void set_free_obj(struct page *page,
2369
					unsigned int idx, freelist_idx_t val)
2370
{
2371
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2372 2373
}

2374
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2375
{
2376
#if DEBUG
L
Linus Torvalds 已提交
2377 2378 2379
	int i;

	for (i = 0; i < cachep->num; i++) {
2380
		void *objp = index_to_obj(cachep, page, i);
2381

L
Linus Torvalds 已提交
2382 2383 2384 2385 2386 2387 2388 2389
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2390 2391 2392
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2393 2394
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2395
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2396 2397 2398 2399

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2400
					   " end of an object");
L
Linus Torvalds 已提交
2401 2402
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2403
					   " start of an object");
L
Linus Torvalds 已提交
2404
		}
2405 2406 2407 2408 2409
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2410
	}
L
Linus Torvalds 已提交
2411
#endif
2412 2413 2414 2415 2416 2417 2418 2419 2420
}

static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;

	cache_init_objs_debug(cachep, page);

2421 2422 2423 2424 2425
	if (OBJFREELIST_SLAB(cachep)) {
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2426 2427 2428 2429 2430
	for (i = 0; i < cachep->num; i++) {
		/* constructor could break poison info */
		if (DEBUG == 0 && cachep->ctor)
			cachep->ctor(index_to_obj(cachep, page, i));

2431
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2432 2433 2434
	}
}

2435
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2436
{
2437 2438
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2439
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2440
		else
2441
			BUG_ON(cachep->allocflags & GFP_DMA);
2442
	}
L
Linus Torvalds 已提交
2443 2444
}

2445
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2446
{
2447
	void *objp;
2448

2449
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2450
	page->active++;
2451

2452 2453 2454 2455 2456
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2457 2458 2459
	return objp;
}

2460 2461
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2462
{
2463
	unsigned int objnr = obj_to_index(cachep, page, objp);
2464
#if DEBUG
J
Joonsoo Kim 已提交
2465
	unsigned int i;
2466 2467

	/* Verify double free bug */
2468
	for (i = page->active; i < cachep->num; i++) {
2469
		if (get_free_obj(page, i) == objnr) {
2470 2471 2472 2473
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2474 2475
	}
#endif
2476
	page->active--;
2477 2478 2479
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2480
	set_free_obj(page, page->active, objnr);
2481 2482
}

2483 2484 2485
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2486
 * virtual address for kfree, ksize, and slab debugging.
2487
 */
2488
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2489
			   void *freelist)
L
Linus Torvalds 已提交
2490
{
2491
	page->slab_cache = cache;
2492
	page->freelist = freelist;
L
Linus Torvalds 已提交
2493 2494 2495 2496 2497 2498
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2499
static int cache_grow(struct kmem_cache *cachep,
2500
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2501
{
2502
	void *freelist;
P
Pekka Enberg 已提交
2503 2504
	size_t offset;
	gfp_t local_flags;
2505
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2506

A
Andrew Morton 已提交
2507 2508 2509
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2510
	 */
2511 2512 2513 2514
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
2515
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2516

2517
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2518
	check_irq_off();
2519
	n = get_node(cachep, nodeid);
2520
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2521 2522

	/* Get colour for the slab, and cal the next value. */
2523 2524 2525 2526 2527
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2528

2529
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2530

2531
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2542 2543 2544
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2545
	 */
2546 2547 2548
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2549 2550 2551
		goto failed;

	/* Get slab management. */
2552
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2553
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2554
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2555 2556
		goto opps1;

2557
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2558

2559
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2560

2561
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2562 2563
		local_irq_disable();
	check_irq_off();
2564
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2565 2566

	/* Make slab active. */
2567
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2568
	STATS_INC_GROWN(cachep);
2569 2570
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2571
	return 1;
A
Andrew Morton 已提交
2572
opps1:
2573
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2574
failed:
2575
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2591 2592
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2593 2594 2595
	}
}

2596 2597
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2598
	unsigned long long redzone1, redzone2;
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2614
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2615 2616 2617
			obj, redzone1, redzone2);
}

2618
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2619
				   unsigned long caller)
L
Linus Torvalds 已提交
2620 2621
{
	unsigned int objnr;
2622
	struct page *page;
L
Linus Torvalds 已提交
2623

2624 2625
	BUG_ON(virt_to_cache(objp) != cachep);

2626
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2627
	kfree_debugcheck(objp);
2628
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2629 2630

	if (cachep->flags & SLAB_RED_ZONE) {
2631
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2632 2633 2634
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2635 2636
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2637
		*dbg_userword(cachep, objp) = (void *)caller;
2638
	}
L
Linus Torvalds 已提交
2639

2640
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2641 2642

	BUG_ON(objnr >= cachep->num);
2643
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2644 2645 2646

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2647
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2672
static inline void fixup_slab_list(struct kmem_cache *cachep,
2673 2674
				struct kmem_cache_node *n, struct page *page,
				void **list)
2675 2676 2677
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2678
	if (page->active == cachep->num) {
2679
		list_add(&page->lru, &n->slabs_full);
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2693 2694 2695
		list_add(&page->lru, &n->slabs_partial);
}

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
					struct page *page, bool pfmemalloc)
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
	if (!page->active)
		list_add_tail(&page->lru, &n->slabs_free);
	else
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	list_for_each_entry(page, &n->slabs_free, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
{
	struct page *page;

	page = list_first_entry_or_null(&n->slabs_partial,
			struct page, lru);
	if (!page) {
		n->free_touched = 1;
		page = list_first_entry_or_null(&n->slabs_free,
				struct page, lru);
	}

2747 2748 2749
	if (sk_memalloc_socks())
		return get_valid_first_slab(n, page, pfmemalloc);

2750 2751 2752
	return page;
}

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2782 2783
{
	int batchcount;
2784
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2785
	struct array_cache *ac;
P
Pekka Enberg 已提交
2786
	int node;
2787
	void *list = NULL;
P
Pekka Enberg 已提交
2788

L
Linus Torvalds 已提交
2789
	check_irq_off();
2790
	node = numa_mem_id();
2791

2792
retry:
2793
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2794 2795
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2796 2797 2798 2799
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2800 2801 2802
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2803
	n = get_node(cachep, node);
2804

2805 2806
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2807

2808
	/* See if we can refill from the shared array */
2809 2810
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2811
		goto alloc_done;
2812
	}
2813

L
Linus Torvalds 已提交
2814
	while (batchcount > 0) {
2815
		struct page *page;
L
Linus Torvalds 已提交
2816
		/* Get slab alloc is to come from. */
2817
		page = get_first_slab(n, false);
2818 2819
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
2820 2821

		check_spinlock_acquired(cachep);
2822 2823 2824 2825 2826 2827

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2828
		BUG_ON(page->active >= cachep->num);
2829

2830
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2831 2832 2833 2834
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2835
			ac->entry[ac->avail++] = slab_get_obj(cachep, page);
L
Linus Torvalds 已提交
2836 2837
		}

2838
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
2839 2840
	}

A
Andrew Morton 已提交
2841
must_grow:
2842
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2843
alloc_done:
2844
	spin_unlock(&n->list_lock);
2845
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2846 2847 2848

	if (unlikely(!ac->avail)) {
		int x;
2849 2850 2851 2852 2853 2854 2855 2856 2857

		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

D
David Rientjes 已提交
2858
		x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2859

A
Andrew Morton 已提交
2860
		/* cache_grow can reenable interrupts, then ac could change. */
2861
		ac = cpu_cache_get(cachep);
2862
		node = numa_mem_id();
2863 2864

		/* no objects in sight? abort */
2865
		if (!x && ac->avail == 0)
L
Linus Torvalds 已提交
2866 2867
			return NULL;

A
Andrew Morton 已提交
2868
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2869 2870 2871
			goto retry;
	}
	ac->touched = 1;
2872

2873
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2874 2875
}

A
Andrew Morton 已提交
2876 2877
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2878
{
2879
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
2880 2881 2882 2883 2884 2885
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2886
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2887
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2888
{
P
Pekka Enberg 已提交
2889
	if (!objp)
L
Linus Torvalds 已提交
2890
		return objp;
P
Pekka Enberg 已提交
2891
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2892
		check_poison_obj(cachep, objp);
2893
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
2894 2895 2896
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2897
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2898 2899

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2900 2901 2902 2903
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2904
			printk(KERN_ERR
2905
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
2906 2907
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2908 2909 2910 2911
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2912

2913
	objp += obj_offset(cachep);
2914
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2915
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2916 2917
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2918
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
2919
		       objp, (int)ARCH_SLAB_MINALIGN);
2920
	}
L
Linus Torvalds 已提交
2921 2922 2923 2924 2925 2926
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2927
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2928
{
P
Pekka Enberg 已提交
2929
	void *objp;
L
Linus Torvalds 已提交
2930 2931
	struct array_cache *ac;

2932
	check_irq_off();
2933

2934
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2935 2936
	if (likely(ac->avail)) {
		ac->touched = 1;
2937
		objp = ac->entry[--ac->avail];
2938

2939 2940
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
2941
	}
2942 2943

	STATS_INC_ALLOCMISS(cachep);
2944
	objp = cache_alloc_refill(cachep, flags);
2945 2946 2947 2948 2949 2950 2951
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
2952 2953 2954 2955 2956
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
2957 2958
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
2959 2960 2961
	return objp;
}

2962
#ifdef CONFIG_NUMA
2963
/*
2964
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2965 2966 2967 2968 2969 2970 2971 2972
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

2973
	if (in_interrupt() || (flags & __GFP_THISNODE))
2974
		return NULL;
2975
	nid_alloc = nid_here = numa_mem_id();
2976
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2977
		nid_alloc = cpuset_slab_spread_node();
2978
	else if (current->mempolicy)
2979
		nid_alloc = mempolicy_slab_node();
2980
	if (nid_alloc != nid_here)
2981
		return ____cache_alloc_node(cachep, flags, nid_alloc);
2982 2983 2984
	return NULL;
}

2985 2986
/*
 * Fallback function if there was no memory available and no objects on a
2987
 * certain node and fall back is permitted. First we scan all the
2988
 * available node for available objects. If that fails then we
2989 2990 2991
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
2992
 */
2993
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2994
{
2995 2996
	struct zonelist *zonelist;
	gfp_t local_flags;
2997
	struct zoneref *z;
2998 2999
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3000
	void *obj = NULL;
3001
	int nid;
3002
	unsigned int cpuset_mems_cookie;
3003 3004 3005 3006

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3007
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3008

3009
retry_cpuset:
3010
	cpuset_mems_cookie = read_mems_allowed_begin();
3011
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3012

3013 3014 3015 3016 3017
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3018 3019
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3020

3021
		if (cpuset_zone_allowed(zone, flags) &&
3022 3023
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3024
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3025
					gfp_exact_node(flags), nid);
3026 3027 3028
				if (obj)
					break;
		}
3029 3030
	}

3031
	if (!obj) {
3032 3033 3034 3035 3036 3037
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3038 3039
		struct page *page;

3040
		if (gfpflags_allow_blocking(local_flags))
3041 3042
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3043
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3044
		if (gfpflags_allow_blocking(local_flags))
3045
			local_irq_disable();
3046
		if (page) {
3047 3048 3049
			/*
			 * Insert into the appropriate per node queues
			 */
3050 3051
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3052
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3053
					gfp_exact_node(flags), nid);
3054 3055 3056 3057 3058 3059 3060 3061
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3062
				/* cache_grow already freed obj */
3063 3064 3065
				obj = NULL;
			}
		}
3066
	}
3067

3068
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3069
		goto retry_cpuset;
3070 3071 3072
	return obj;
}

3073 3074
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3075
 */
3076
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3077
				int nodeid)
3078
{
3079
	struct page *page;
3080
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3081
	void *obj;
3082
	void *list = NULL;
P
Pekka Enberg 已提交
3083 3084
	int x;

3085
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3086
	n = get_node(cachep, nodeid);
3087
	BUG_ON(!n);
P
Pekka Enberg 已提交
3088

A
Andrew Morton 已提交
3089
retry:
3090
	check_irq_off();
3091
	spin_lock(&n->list_lock);
3092
	page = get_first_slab(n, false);
3093 3094
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3095 3096 3097 3098 3099 3100 3101

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3102
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3103

3104
	obj = slab_get_obj(cachep, page);
3105
	n->free_objects--;
P
Pekka Enberg 已提交
3106

3107
	fixup_slab_list(cachep, n, page, &list);
3108

3109
	spin_unlock(&n->list_lock);
3110
	fixup_objfreelist_debug(cachep, &list);
P
Pekka Enberg 已提交
3111
	goto done;
3112

A
Andrew Morton 已提交
3113
must_grow:
3114
	spin_unlock(&n->list_lock);
D
David Rientjes 已提交
3115
	x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3116 3117
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3118

3119
	return fallback_alloc(cachep, flags);
3120

A
Andrew Morton 已提交
3121
done:
P
Pekka Enberg 已提交
3122
	return obj;
3123
}
3124 3125

static __always_inline void *
3126
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3127
		   unsigned long caller)
3128 3129 3130
{
	unsigned long save_flags;
	void *ptr;
3131
	int slab_node = numa_mem_id();
3132

3133
	flags &= gfp_allowed_mask;
3134 3135
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3136 3137
		return NULL;

3138 3139 3140
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3141
	if (nodeid == NUMA_NO_NODE)
3142
		nodeid = slab_node;
3143

3144
	if (unlikely(!get_node(cachep, nodeid))) {
3145 3146 3147 3148 3149
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3150
	if (nodeid == slab_node) {
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3167 3168
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3169

3170
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3171 3172 3173 3174 3175 3176 3177 3178
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3179
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3190 3191
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3207
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3208 3209 3210 3211
{
	unsigned long save_flags;
	void *objp;

3212
	flags &= gfp_allowed_mask;
3213 3214
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3215 3216
		return NULL;

3217 3218 3219 3220 3221 3222 3223
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3224 3225
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3226

3227
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3228 3229
	return objp;
}
3230 3231

/*
3232
 * Caller needs to acquire correct kmem_cache_node's list_lock
3233
 * @list: List of detached free slabs should be freed by caller
3234
 */
3235 3236
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3237 3238
{
	int i;
3239
	struct kmem_cache_node *n = get_node(cachep, node);
L
Linus Torvalds 已提交
3240 3241

	for (i = 0; i < nr_objects; i++) {
3242
		void *objp;
3243
		struct page *page;
L
Linus Torvalds 已提交
3244

3245 3246
		objp = objpp[i];

3247 3248
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3249
		check_spinlock_acquired_node(cachep, node);
3250
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3251
		STATS_DEC_ACTIVE(cachep);
3252
		n->free_objects++;
L
Linus Torvalds 已提交
3253 3254

		/* fixup slab chains */
3255
		if (page->active == 0) {
3256 3257
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3258
				list_add_tail(&page->lru, list);
L
Linus Torvalds 已提交
3259
			} else {
3260
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3261 3262 3263 3264 3265 3266
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3267
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3268 3269 3270 3271
		}
	}
}

3272
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3273 3274
{
	int batchcount;
3275
	struct kmem_cache_node *n;
3276
	int node = numa_mem_id();
3277
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3278 3279

	batchcount = ac->batchcount;
3280

L
Linus Torvalds 已提交
3281
	check_irq_off();
3282
	n = get_node(cachep, node);
3283 3284 3285
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3286
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3287 3288 3289
		if (max) {
			if (batchcount > max)
				batchcount = max;
3290
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3291
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3292 3293 3294 3295 3296
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3297
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3298
free_done:
L
Linus Torvalds 已提交
3299 3300 3301
#if STATS
	{
		int i = 0;
3302
		struct page *page;
L
Linus Torvalds 已提交
3303

3304
		list_for_each_entry(page, &n->slabs_free, lru) {
3305
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3306 3307 3308 3309 3310 3311

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3312
	spin_unlock(&n->list_lock);
3313
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3314
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3315
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3316 3317 3318
}

/*
A
Andrew Morton 已提交
3319 3320
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3321
 */
3322
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3323
				unsigned long caller)
L
Linus Torvalds 已提交
3324
{
3325
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3326 3327

	check_irq_off();
3328
	kmemleak_free_recursive(objp, cachep->flags);
3329
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3330

3331
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3332

3333 3334 3335 3336 3337 3338 3339
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3340
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3341 3342
		return;

3343
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3344 3345 3346 3347 3348
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3349

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3370
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3371
{
3372
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3373

3374
	trace_kmem_cache_alloc(_RET_IP_, ret,
3375
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3376 3377

	return ret;
L
Linus Torvalds 已提交
3378 3379 3380
}
EXPORT_SYMBOL(kmem_cache_alloc);

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3391
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3392
			  void **p)
3393
{
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3412 3413
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3424
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3425 3426 3427
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3428 3429 3430
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3431
#ifdef CONFIG_TRACING
3432
void *
3433
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3434
{
3435 3436
	void *ret;

3437
	ret = slab_alloc(cachep, flags, _RET_IP_);
3438 3439

	trace_kmalloc(_RET_IP_, ret,
3440
		      size, cachep->size, flags);
3441
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3442
}
3443
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3444 3445
#endif

L
Linus Torvalds 已提交
3446
#ifdef CONFIG_NUMA
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3458 3459
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3460
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3461

3462
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3463
				    cachep->object_size, cachep->size,
3464
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3465 3466

	return ret;
3467
}
L
Linus Torvalds 已提交
3468 3469
EXPORT_SYMBOL(kmem_cache_alloc_node);

3470
#ifdef CONFIG_TRACING
3471
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3472
				  gfp_t flags,
3473 3474
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3475
{
3476 3477
	void *ret;

3478
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3479

3480
	trace_kmalloc_node(_RET_IP_, ret,
3481
			   size, cachep->size,
3482 3483
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3484
}
3485
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3486 3487
#endif

3488
static __always_inline void *
3489
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3490
{
3491
	struct kmem_cache *cachep;
3492

3493
	cachep = kmalloc_slab(size, flags);
3494 3495
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3496
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3497
}
3498 3499 3500

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3501
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3502
}
3503
EXPORT_SYMBOL(__kmalloc_node);
3504 3505

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3506
		int node, unsigned long caller)
3507
{
3508
	return __do_kmalloc_node(size, flags, node, caller);
3509 3510 3511
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3512 3513

/**
3514
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3515
 * @size: how many bytes of memory are required.
3516
 * @flags: the type of memory to allocate (see kmalloc).
3517
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3518
 */
3519
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3520
					  unsigned long caller)
L
Linus Torvalds 已提交
3521
{
3522
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3523
	void *ret;
L
Linus Torvalds 已提交
3524

3525
	cachep = kmalloc_slab(size, flags);
3526 3527
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3528
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3529

3530
	trace_kmalloc(caller, ret,
3531
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3532 3533

	return ret;
3534 3535 3536 3537
}

void *__kmalloc(size_t size, gfp_t flags)
{
3538
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3539 3540 3541
}
EXPORT_SYMBOL(__kmalloc);

3542
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3543
{
3544
	return __do_kmalloc(size, flags, caller);
3545 3546
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3547

L
Linus Torvalds 已提交
3548 3549 3550 3551 3552 3553 3554 3555
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3556
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3557 3558
{
	unsigned long flags;
3559 3560 3561
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3562 3563

	local_irq_save(flags);
3564
	debug_check_no_locks_freed(objp, cachep->object_size);
3565
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3566
		debug_check_no_obj_freed(objp, cachep->object_size);
3567
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3568
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3569

3570
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3571 3572 3573
}
EXPORT_SYMBOL(kmem_cache_free);

3574 3575 3576 3577 3578 3579 3580 3581 3582
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3583 3584 3585 3586
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3600 3601 3602 3603
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3604 3605
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3606 3607 3608 3609 3610
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3611
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3612 3613
	unsigned long flags;

3614 3615
	trace_kfree(_RET_IP_, objp);

3616
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3617 3618 3619
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3620
	c = virt_to_cache(objp);
3621 3622 3623
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3624
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3625 3626 3627 3628
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3629
/*
3630
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3631
 */
3632
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3633 3634
{
	int node;
3635
	struct kmem_cache_node *n;
3636
	struct array_cache *new_shared;
J
Joonsoo Kim 已提交
3637
	struct alien_cache **new_alien = NULL;
3638

3639
	for_each_online_node(node) {
3640

3641 3642 3643 3644 3645
		if (use_alien_caches) {
			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
			if (!new_alien)
				goto fail;
		}
3646

3647 3648 3649
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3650
				cachep->shared*cachep->batchcount,
3651
					0xbaadf00d, gfp);
3652 3653 3654 3655
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3656
		}
3657

3658
		n = get_node(cachep, node);
3659 3660
		if (n) {
			struct array_cache *shared = n->shared;
3661
			LIST_HEAD(list);
3662

3663
			spin_lock_irq(&n->list_lock);
3664

3665
			if (shared)
3666
				free_block(cachep, shared->entry,
3667
						shared->avail, node, &list);
3668

3669 3670 3671
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3672 3673
				new_alien = NULL;
			}
3674
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3675
					cachep->batchcount + cachep->num;
3676
			spin_unlock_irq(&n->list_lock);
3677
			slabs_destroy(cachep, &list);
3678
			kfree(shared);
3679 3680 3681
			free_alien_cache(new_alien);
			continue;
		}
3682 3683
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3684 3685
			free_alien_cache(new_alien);
			kfree(new_shared);
3686
			goto fail;
3687
		}
3688

3689
		kmem_cache_node_init(n);
3690 3691
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3692 3693 3694
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3695
					cachep->batchcount + cachep->num;
3696
		cachep->node[node] = n;
3697
	}
3698
	return 0;
3699

A
Andrew Morton 已提交
3700
fail:
3701
	if (!cachep->list.next) {
3702 3703 3704
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3705 3706
			n = get_node(cachep, node);
			if (n) {
3707 3708 3709
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3710
				cachep->node[node] = NULL;
3711 3712 3713 3714
			}
			node--;
		}
	}
3715
	return -ENOMEM;
3716 3717
}

3718
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3719
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3720
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3721
{
3722 3723
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3724

3725 3726
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3727 3728
		return -ENOMEM;

3729 3730 3731
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3732

L
Linus Torvalds 已提交
3733 3734 3735
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3736
	cachep->shared = shared;
L
Linus Torvalds 已提交
3737

3738 3739 3740 3741
	if (!prev)
		goto alloc_node;

	for_each_online_cpu(cpu) {
3742
		LIST_HEAD(list);
3743 3744
		int node;
		struct kmem_cache_node *n;
3745
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3746

3747
		node = cpu_to_mem(cpu);
3748 3749
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3750
		free_block(cachep, ac->entry, ac->avail, node, &list);
3751
		spin_unlock_irq(&n->list_lock);
3752
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3753
	}
3754 3755 3756
	free_percpu(prev);

alloc_node:
3757
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3758 3759
}

G
Glauber Costa 已提交
3760 3761 3762 3763
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3764
	struct kmem_cache *c;
G
Glauber Costa 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3774 3775 3776 3777
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3778 3779 3780 3781 3782
	}

	return ret;
}

3783
/* Called with slab_mutex held always */
3784
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3785 3786
{
	int err;
G
Glauber Costa 已提交
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3797

G
Glauber Costa 已提交
3798 3799
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3800 3801
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3802 3803
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3804
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3805 3806 3807 3808
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3809
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3810
		limit = 1;
3811
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3812
		limit = 8;
3813
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3814
		limit = 24;
3815
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3816 3817 3818 3819
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3820 3821
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3822 3823 3824 3825 3826 3827 3828 3829
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3830
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3831 3832 3833
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3834 3835 3836
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3837 3838 3839 3840
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3841 3842 3843
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3844 3845
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3846
		       cachep->name, -err);
3847
	return err;
L
Linus Torvalds 已提交
3848 3849
}

3850
/*
3851 3852
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3853
 * if drain_array() is used on the shared array.
3854
 */
3855
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3856
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3857
{
3858
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3859 3860
	int tofree;

3861 3862
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3863 3864
	if (ac->touched && !force) {
		ac->touched = 0;
3865
	} else {
3866
		spin_lock_irq(&n->list_lock);
3867 3868 3869 3870
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
3871
			free_block(cachep, ac->entry, tofree, node, &list);
3872 3873 3874 3875
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3876
		spin_unlock_irq(&n->list_lock);
3877
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3878 3879 3880 3881 3882
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3883
 * @w: work descriptor
L
Linus Torvalds 已提交
3884 3885 3886 3887 3888 3889
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3890 3891
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3892
 */
3893
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3894
{
3895
	struct kmem_cache *searchp;
3896
	struct kmem_cache_node *n;
3897
	int node = numa_mem_id();
3898
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3899

3900
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3901
		/* Give up. Setup the next iteration. */
3902
		goto out;
L
Linus Torvalds 已提交
3903

3904
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3905 3906
		check_irq_on();

3907
		/*
3908
		 * We only take the node lock if absolutely necessary and we
3909 3910 3911
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3912
		n = get_node(searchp, node);
3913

3914
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3915

3916
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3917

3918 3919 3920 3921
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3922
		if (time_after(n->next_reap, jiffies))
3923
			goto next;
L
Linus Torvalds 已提交
3924

3925
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
3926

3927
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
3928

3929 3930
		if (n->free_touched)
			n->free_touched = 0;
3931 3932
		else {
			int freed;
L
Linus Torvalds 已提交
3933

3934
			freed = drain_freelist(searchp, n, (n->free_limit +
3935 3936 3937
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3938
next:
L
Linus Torvalds 已提交
3939 3940 3941
		cond_resched();
	}
	check_irq_on();
3942
	mutex_unlock(&slab_mutex);
3943
	next_reap_node();
3944
out:
A
Andrew Morton 已提交
3945
	/* Set up the next iteration */
3946
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
3947 3948
}

3949
#ifdef CONFIG_SLABINFO
3950
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
3951
{
3952
	struct page *page;
P
Pekka Enberg 已提交
3953 3954 3955 3956
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3957
	const char *name;
L
Linus Torvalds 已提交
3958
	char *error = NULL;
3959
	int node;
3960
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3961 3962 3963

	active_objs = 0;
	num_slabs = 0;
3964
	for_each_kmem_cache_node(cachep, node, n) {
3965

3966
		check_irq_on();
3967
		spin_lock_irq(&n->list_lock);
3968

3969 3970
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
3971 3972 3973 3974
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3975 3976
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
3977
				error = "slabs_partial accounting error";
3978
			if (!page->active && !error)
3979
				error = "slabs_partial accounting error";
3980
			active_objs += page->active;
3981 3982
			active_slabs++;
		}
3983 3984
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
3985
				error = "slabs_free accounting error";
3986 3987
			num_slabs++;
		}
3988 3989 3990
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
3991

3992
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3993
	}
P
Pekka Enberg 已提交
3994 3995
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3996
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3997 3998
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3999
	name = cachep->name;
L
Linus Torvalds 已提交
4000 4001 4002
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4017
#if STATS
4018
	{			/* node stats */
L
Linus Torvalds 已提交
4019 4020 4021 4022 4023 4024 4025
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4026
		unsigned long node_frees = cachep->node_frees;
4027
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4028

J
Joe Perches 已提交
4029 4030 4031 4032 4033
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4043
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4056
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4057
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4058
{
P
Pekka Enberg 已提交
4059
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4060
	int limit, batchcount, shared, res;
4061
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4062

L
Linus Torvalds 已提交
4063 4064 4065 4066
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4067
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4078
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4079
	res = -EINVAL;
4080
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4081
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4082 4083
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4084
				res = 0;
L
Linus Torvalds 已提交
4085
			} else {
4086
				res = do_tune_cpucache(cachep, limit,
4087 4088
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4089 4090 4091 4092
			}
			break;
		}
	}
4093
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4094 4095 4096 4097
	if (res >= 0)
		res = count;
	return res;
}
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4131 4132
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4133 4134
{
	void *p;
4135 4136
	int i, j;
	unsigned long v;
4137

4138 4139
	if (n[0] == n[1])
		return;
4140
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4151
			continue;
4152

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4163 4164 4165 4166 4167 4168 4169 4170
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4171
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4172

4173
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4174
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4175
		if (modname[0])
4176 4177 4178 4179 4180 4181 4182 4183 4184
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4185
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4186
	struct page *page;
4187
	struct kmem_cache_node *n;
4188
	const char *name;
4189
	unsigned long *x = m->private;
4190 4191 4192 4193 4194 4195 4196 4197
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4209

4210
		for_each_kmem_cache_node(cachep, node, n) {
4211

4212 4213
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4214

4215 4216 4217 4218 4219 4220 4221
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4222 4223

	name = cachep->name;
4224
	if (x[0] == x[1]) {
4225
		/* Increase the buffer size */
4226
		mutex_unlock(&slab_mutex);
4227
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4228 4229
		if (!m->private) {
			/* Too bad, we are really out */
4230
			m->private = x;
4231
			mutex_lock(&slab_mutex);
4232 4233
			return -ENOMEM;
		}
4234 4235
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4236
		mutex_lock(&slab_mutex);
4237 4238 4239 4240
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4241 4242 4243
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4244 4245
		seq_putc(m, '\n');
	}
4246

4247 4248 4249
	return 0;
}

4250
static const struct seq_operations slabstats_op = {
4251
	.start = slab_start,
4252 4253
	.next = slab_next,
	.stop = slab_stop,
4254 4255
	.show = leaks_show,
};
4256 4257 4258

static int slabstats_open(struct inode *inode, struct file *file)
{
4259 4260 4261 4262 4263 4264 4265 4266 4267
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4282
#endif
4283 4284 4285
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4286 4287
#endif

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4300
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4301
{
4302 4303
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4304
		return 0;
L
Linus Torvalds 已提交
4305

4306
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4307
}
K
Kirill A. Shutemov 已提交
4308
EXPORT_SYMBOL(ksize);