i915_gem.c 143.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
57 58 59
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

60 61 62 63 64 65
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108
	if (!i915_reset_in_progress(error))
109 110
		return 0;

111 112 113 114 115
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
116
	ret = wait_event_interruptible_timeout(error->reset_queue,
117
					       !i915_reset_in_progress(error),
118
					       10*HZ);
119 120 121 122
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
123
		return ret;
124 125
	} else {
		return 0;
126
	}
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = to_i915(dev);
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 163
		if (vma->pin_count)
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175 176 177 178 179
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204 205 206 207 208 209 210 211 212 213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218 219 220 221 222 223 224 225 226 227 228
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
229

230
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231
	if (WARN_ON(ret)) {
232 233 234 235 236 237 238 239 240 241
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
242
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
265
		obj->dirty = 0;
266 267
	}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
291
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 293 294 295 296 297 298
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
343
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(to_i915(dev));
372 373

out:
374
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375
	return ret;
376 377
}

378 379
void *i915_gem_object_alloc(struct drm_device *dev)
{
380
	struct drm_i915_private *dev_priv = to_i915(dev);
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
386
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_object_create(dev, size);
406 407
	if (IS_ERR(obj))
		return PTR_ERR(obj);
408

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432
}

/**
 * Creates a new mm object and returns a handle to it.
433 434 435
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
436 437 438 439 440 441
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
442

443
	return i915_gem_create(file, dev,
444
			       args->size, &args->handle);
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

473
static inline int
474 475
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

511
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

535 536 537
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
538
static int
539 540 541 542 543 544 545
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

546
	if (unlikely(page_do_bit17_swizzling))
547 548 549 550 551 552 553 554 555 556 557
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

558
	return ret ? -EFAULT : 0;
559 560
}

561 562 563 564
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
565
	if (unlikely(swizzled)) {
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

583 584 585 586 587 588 589 590 591 592 593 594
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
595 596 597
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
598 599 600 601 602 603 604 605 606 607 608

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

609
	return ret ? - EFAULT : 0;
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
639
	struct drm_i915_private *dev_priv = to_i915(dev);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

748
static int
749 750 751 752
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
753
{
754
	char __user *user_data;
755
	ssize_t remain;
756
	loff_t offset;
757
	int shmem_page_offset, page_length, ret = 0;
758
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759
	int prefaulted = 0;
760
	int needs_clflush = 0;
761
	struct sg_page_iter sg_iter;
762

763
	if (!i915_gem_object_has_struct_page(obj))
764 765
		return -ENODEV;

766
	user_data = u64_to_user_ptr(args->data_ptr);
767 768
	remain = args->size;

769
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770

771
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 773 774
	if (ret)
		return ret;

775
	offset = args->offset;
776

777 778
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
779
		struct page *page = sg_page_iter_page(&sg_iter);
780 781 782 783

		if (remain <= 0)
			break;

784 785 786 787 788
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
789
		shmem_page_offset = offset_in_page(offset);
790 791 792 793
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

794 795 796
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

797 798 799 800 801
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
802 803 804

		mutex_unlock(&dev->struct_mutex);

805
		if (likely(!i915.prefault_disable) && !prefaulted) {
806
			ret = fault_in_multipages_writeable(user_data, remain);
807 808 809 810 811 812 813
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
814

815 816 817
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
818

819
		mutex_lock(&dev->struct_mutex);
820 821

		if (ret)
822 823
			goto out;

824
next_page:
825
		remain -= page_length;
826
		user_data += page_length;
827 828 829
		offset += page_length;
	}

830
out:
831 832
	i915_gem_object_unpin_pages(obj);

833 834 835
	return ret;
}

836 837
/**
 * Reads data from the object referenced by handle.
838 839 840
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
841 842 843 844 845
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846
		     struct drm_file *file)
847 848
{
	struct drm_i915_gem_pread *args = data;
849
	struct drm_i915_gem_object *obj;
850
	int ret = 0;
851

852 853 854 855
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
856
		       u64_to_user_ptr(args->data_ptr),
857 858 859
		       args->size))
		return -EFAULT;

860
	ret = i915_mutex_lock_interruptible(dev);
861
	if (ret)
862
		return ret;
863

864
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865
	if (&obj->base == NULL) {
866 867
		ret = -ENOENT;
		goto unlock;
868
	}
869

870
	/* Bounds check source.  */
871 872
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
873
		ret = -EINVAL;
874
		goto out;
C
Chris Wilson 已提交
875 876
	}

C
Chris Wilson 已提交
877 878
	trace_i915_gem_object_pread(obj, args->offset, args->size);

879
	ret = i915_gem_shmem_pread(dev, obj, args, file);
880

881 882 883 884 885
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

886
out:
887
	drm_gem_object_unreference(&obj->base);
888
unlock:
889
	mutex_unlock(&dev->struct_mutex);
890
	return ret;
891 892
}

893 894
/* This is the fast write path which cannot handle
 * page faults in the source data
895
 */
896 897 898 899 900 901

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
902
{
903 904
	void __iomem *vaddr_atomic;
	void *vaddr;
905
	unsigned long unwritten;
906

P
Peter Zijlstra 已提交
907
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 909 910
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
911
						      user_data, length);
P
Peter Zijlstra 已提交
912
	io_mapping_unmap_atomic(vaddr_atomic);
913
	return unwritten;
914 915
}

916 917 918
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
919 920 921 922
 * @dev: drm device pointer
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
923
 */
924
static int
925
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926
			 struct drm_i915_gem_object *obj,
927
			 struct drm_i915_gem_pwrite *args,
928
			 struct drm_file *file)
929
{
930
	struct i915_ggtt *ggtt = &i915->ggtt;
931
	struct drm_device *dev = obj->base.dev;
932 933
	struct drm_mm_node node;
	uint64_t remain, offset;
934
	char __user *user_data;
935
	int ret;
936 937 938 939
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
940

941
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
957 958 959
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
960
	}
D
Daniel Vetter 已提交
961 962 963 964 965

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

966
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967
	obj->dirty = true;
968

969 970 971 972
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
973 974
		/* Operation in this page
		 *
975 976 977
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
978
		 */
979 980 981 982 983 984 985 986 987 988 989 990 991
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
992
		/* If we get a fault while copying data, then (presumably) our
993 994
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
995 996
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
997
		 */
998
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
999
				    page_offset, user_data, page_length)) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1012
		}
1013

1014 1015 1016
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1017 1018
	}

1019
out_flush:
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1033
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1034
out_unpin:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1045
out:
1046
	return ret;
1047 1048
}

1049 1050 1051 1052
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1053
static int
1054 1055 1056 1057 1058
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1059
{
1060
	char *vaddr;
1061
	int ret;
1062

1063
	if (unlikely(page_do_bit17_swizzling))
1064
		return -EINVAL;
1065

1066 1067 1068 1069
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1070 1071
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1072 1073 1074 1075
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1076

1077
	return ret ? -EFAULT : 0;
1078 1079
}

1080 1081
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1082
static int
1083 1084 1085 1086 1087
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1088
{
1089 1090
	char *vaddr;
	int ret;
1091

1092
	vaddr = kmap(page);
1093
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 1095 1096
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1097 1098
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 1100
						user_data,
						page_length);
1101 1102 1103 1104 1105
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1106 1107 1108
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1109
	kunmap(page);
1110

1111
	return ret ? -EFAULT : 0;
1112 1113 1114
}

static int
1115 1116 1117 1118
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1119 1120
{
	ssize_t remain;
1121 1122
	loff_t offset;
	char __user *user_data;
1123
	int shmem_page_offset, page_length, ret = 0;
1124
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125
	int hit_slowpath = 0;
1126 1127
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1128
	struct sg_page_iter sg_iter;
1129

1130
	user_data = u64_to_user_ptr(args->data_ptr);
1131 1132
	remain = args->size;

1133
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134

1135 1136 1137 1138 1139
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1140
		needs_clflush_after = cpu_write_needs_clflush(obj);
1141 1142 1143
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
1144
	}
1145 1146 1147 1148 1149
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1150

1151 1152 1153 1154
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1155
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156

1157 1158
	i915_gem_object_pin_pages(obj);

1159
	offset = args->offset;
1160
	obj->dirty = 1;
1161

1162 1163
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1164
		struct page *page = sg_page_iter_page(&sg_iter);
1165
		int partial_cacheline_write;
1166

1167 1168 1169
		if (remain <= 0)
			break;

1170 1171 1172 1173 1174
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1175
		shmem_page_offset = offset_in_page(offset);
1176 1177 1178 1179 1180

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1181 1182 1183 1184 1185 1186 1187
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1188 1189 1190
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1191 1192 1193 1194 1195 1196
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1197 1198 1199

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1200 1201 1202 1203
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1204

1205
		mutex_lock(&dev->struct_mutex);
1206 1207

		if (ret)
1208 1209
			goto out;

1210
next_page:
1211
		remain -= page_length;
1212
		user_data += page_length;
1213
		offset += page_length;
1214 1215
	}

1216
out:
1217 1218
	i915_gem_object_unpin_pages(obj);

1219
	if (hit_slowpath) {
1220 1221 1222 1223 1224 1225 1226
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227
			if (i915_gem_clflush_object(obj, obj->pin_display))
1228
				needs_clflush_after = true;
1229
		}
1230
	}
1231

1232
	if (needs_clflush_after)
1233
		i915_gem_chipset_flush(to_i915(dev));
1234 1235
	else
		obj->cache_dirty = true;
1236

1237
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238
	return ret;
1239 1240 1241 1242
}

/**
 * Writes data to the object referenced by handle.
1243 1244 1245
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1246 1247 1248 1249 1250
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251
		      struct drm_file *file)
1252
{
1253
	struct drm_i915_private *dev_priv = to_i915(dev);
1254
	struct drm_i915_gem_pwrite *args = data;
1255
	struct drm_i915_gem_object *obj;
1256 1257 1258 1259 1260 1261
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1262
		       u64_to_user_ptr(args->data_ptr),
1263 1264 1265
		       args->size))
		return -EFAULT;

1266
	if (likely(!i915.prefault_disable)) {
1267
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 1269 1270 1271
						   args->size);
		if (ret)
			return -EFAULT;
	}
1272

1273 1274
	intel_runtime_pm_get(dev_priv);

1275
	ret = i915_mutex_lock_interruptible(dev);
1276
	if (ret)
1277
		goto put_rpm;
1278

1279
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280
	if (&obj->base == NULL) {
1281 1282
		ret = -ENOENT;
		goto unlock;
1283
	}
1284

1285
	/* Bounds check destination. */
1286 1287
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1288
		ret = -EINVAL;
1289
		goto out;
C
Chris Wilson 已提交
1290 1291
	}

C
Chris Wilson 已提交
1292 1293
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1294
	ret = -EFAULT;
1295 1296 1297 1298 1299 1300
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1301 1302
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1303
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1304 1305 1306
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1307
	}
1308

1309
	if (ret == -EFAULT) {
1310 1311
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1312
		else if (i915_gem_object_has_struct_page(obj))
1313
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314 1315
		else
			ret = -ENODEV;
1316
	}
1317

1318
out:
1319
	drm_gem_object_unreference(&obj->base);
1320
unlock:
1321
	mutex_unlock(&dev->struct_mutex);
1322 1323 1324
put_rpm:
	intel_runtime_pm_put(dev_priv);

1325 1326 1327
	return ret;
}

1328 1329
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330
{
1331 1332
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1333

1334
	if (__i915_reset_in_progress(reset_counter)) {
1335 1336 1337 1338 1339
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1340
		return -EAGAIN;
1341 1342 1343 1344 1345
	}

	return 0;
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1378 1379
bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
1380
{
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1392

1393
	timeout_us += local_clock_us(&cpu);
1394
	do {
1395
		if (i915_gem_request_completed(req))
1396
			return true;
1397

1398 1399 1400
		if (signal_pending_state(state, current))
			break;

1401
		if (busywait_stop(timeout_us, cpu))
1402
			break;
1403

1404
		cpu_relax_lowlatency();
1405
	} while (!need_resched());
1406

1407
	return false;
1408 1409
}

1410
/**
1411 1412
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1413 1414
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1415
 * @rps: RPS client
1416
 *
1417 1418 1419 1420 1421 1422 1423
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1424
 * Returns 0 if the request was found within the alloted time. Else returns the
1425 1426
 * errno with remaining time filled in timeout argument.
 */
1427
int __i915_wait_request(struct drm_i915_gem_request *req,
1428
			bool interruptible,
1429
			s64 *timeout,
1430
			struct intel_rps_client *rps)
1431
{
1432
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1433
	DEFINE_WAIT(reset);
1434 1435
	struct intel_wait wait;
	unsigned long timeout_remain;
1436
	s64 before = 0; /* Only to silence a compiler warning. */
1437
	int ret = 0;
1438

1439
	might_sleep();
1440

1441 1442 1443
	if (list_empty(&req->list))
		return 0;

1444
	if (i915_gem_request_completed(req))
1445 1446
		return 0;

1447
	timeout_remain = MAX_SCHEDULE_TIMEOUT;
1448 1449 1450 1451 1452 1453 1454
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

1455
		timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1456 1457 1458 1459 1460

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1461
	}
1462

1463
	trace_i915_gem_request_wait_begin(req);
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
1480 1481
	if (INTEL_INFO(req->i915)->gen >= 6)
		gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1482

1483
	/* Optimistic spin for the next ~jiffie before touching IRQs */
1484
	if (i915_spin_request(req, state, 5))
1485
		goto complete;
1486

1487 1488
	set_current_state(state);
	add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1489

1490 1491 1492 1493 1494
	intel_wait_init(&wait, req->seqno);
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
1495
		 */
1496
		goto wakeup;
1497

1498
	for (;;) {
1499
		if (signal_pending_state(state, current)) {
1500 1501 1502 1503
			ret = -ERESTARTSYS;
			break;
		}

1504 1505 1506 1507
		timeout_remain = io_schedule_timeout(timeout_remain);
		if (timeout_remain == 0) {
			ret = -ETIME;
			break;
1508 1509
		}

1510 1511
		if (intel_wait_complete(&wait))
			break;
1512

1513
		set_current_state(state);
1514

1515 1516 1517 1518 1519 1520 1521 1522
wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;
1523 1524 1525 1526

		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
1527 1528
	}
	remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1529

1530 1531 1532
	intel_engine_remove_wait(req->engine, &wait);
	__set_current_state(TASK_RUNNING);
complete:
1533 1534
	trace_i915_gem_request_wait_end(req);

1535
	if (timeout) {
1536
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1537 1538

		*timeout = tres < 0 ? 0 : tres;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1549 1550
	}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	if (rps && req->seqno == req->engine->last_submitted_seqno) {
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&req->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&req->i915->rps.client_lock);
	}

1567
	return ret;
1568 1569
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1607 1608 1609

	put_pid(request->pid);
	request->pid = NULL;
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1629
	if (request->previous_context) {
1630
		if (i915.enable_execlists)
1631 1632
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1633 1634
	}

1635
	i915_gem_context_unreference(request->ctx);
1636 1637 1638 1639 1640 1641
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1642
	struct intel_engine_cs *engine = req->engine;
1643 1644
	struct drm_i915_gem_request *tmp;

1645
	lockdep_assert_held(&engine->i915->drm.struct_mutex);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1660
/**
1661
 * Waits for a request to be signaled, and cleans up the
1662
 * request and object lists appropriately for that event.
1663
 * @req: request to wait on
1664 1665
 */
int
1666
i915_wait_request(struct drm_i915_gem_request *req)
1667
{
1668
	struct drm_i915_private *dev_priv = req->i915;
1669
	bool interruptible;
1670 1671
	int ret;

1672 1673
	interruptible = dev_priv->mm.interruptible;

1674
	BUG_ON(!mutex_is_locked(&dev_priv->drm.struct_mutex));
1675

1676
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1677 1678
	if (ret)
		return ret;
1679

1680
	/* If the GPU hung, we want to keep the requests to find the guilty. */
1681
	if (!i915_reset_in_progress(&dev_priv->gpu_error))
1682 1683
		__i915_gem_request_retire__upto(req);

1684 1685 1686
	return 0;
}

1687 1688 1689
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1690 1691
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1692
 */
1693
int
1694 1695 1696
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1697
	int ret, i;
1698

1699
	if (!obj->active)
1700 1701
		return 0;

1702 1703 1704 1705 1706
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1707

1708
			i = obj->last_write_req->engine->id;
1709 1710 1711 1712 1713 1714
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1715
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1716 1717 1718 1719 1720 1721 1722 1723 1724
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1725
		GEM_BUG_ON(obj->active);
1726 1727 1728 1729 1730 1731 1732 1733 1734
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1735
	int ring = req->engine->id;
1736 1737 1738 1739 1740 1741

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1742
	if (!i915_reset_in_progress(&req->i915->gpu_error))
1743
		__i915_gem_request_retire__upto(req);
1744 1745
}

1746 1747 1748 1749 1750
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1751
					    struct intel_rps_client *rps,
1752 1753 1754
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1755
	struct drm_i915_private *dev_priv = to_i915(dev);
1756
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1757
	int ret, i, n = 0;
1758 1759 1760 1761

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1762
	if (!obj->active)
1763 1764
		return 0;

1765 1766 1767 1768 1769 1770 1771 1772 1773
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1774
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1785
	mutex_unlock(&dev->struct_mutex);
1786
	ret = 0;
1787
	for (i = 0; ret == 0 && i < n; i++)
1788
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1789 1790
	mutex_lock(&dev->struct_mutex);

1791 1792 1793 1794 1795 1796 1797
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1798 1799
}

1800 1801 1802 1803 1804 1805
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1806 1807 1808 1809 1810 1811 1812
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1813
/**
1814 1815
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1816 1817 1818
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1819 1820 1821
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1822
			  struct drm_file *file)
1823 1824
{
	struct drm_i915_gem_set_domain *args = data;
1825
	struct drm_i915_gem_object *obj;
1826 1827
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1828 1829
	int ret;

1830
	/* Only handle setting domains to types used by the CPU. */
1831
	if (write_domain & I915_GEM_GPU_DOMAINS)
1832 1833
		return -EINVAL;

1834
	if (read_domains & I915_GEM_GPU_DOMAINS)
1835 1836 1837 1838 1839 1840 1841 1842
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1843
	ret = i915_mutex_lock_interruptible(dev);
1844
	if (ret)
1845
		return ret;
1846

1847
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1848
	if (&obj->base == NULL) {
1849 1850
		ret = -ENOENT;
		goto unlock;
1851
	}
1852

1853 1854 1855 1856
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1857
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1858
							  to_rps_client(file),
1859
							  !write_domain);
1860 1861 1862
	if (ret)
		goto unref;

1863
	if (read_domains & I915_GEM_DOMAIN_GTT)
1864
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1865
	else
1866
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1867

1868
	if (write_domain != 0)
1869
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1870

1871
unref:
1872
	drm_gem_object_unreference(&obj->base);
1873
unlock:
1874 1875 1876 1877 1878 1879
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1880 1881 1882
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1883 1884 1885
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1886
			 struct drm_file *file)
1887 1888
{
	struct drm_i915_gem_sw_finish *args = data;
1889
	struct drm_i915_gem_object *obj;
1890 1891
	int ret = 0;

1892
	ret = i915_mutex_lock_interruptible(dev);
1893
	if (ret)
1894
		return ret;
1895

1896
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1897
	if (&obj->base == NULL) {
1898 1899
		ret = -ENOENT;
		goto unlock;
1900 1901 1902
	}

	/* Pinned buffers may be scanout, so flush the cache */
1903
	if (obj->pin_display)
1904
		i915_gem_object_flush_cpu_write_domain(obj);
1905

1906
	drm_gem_object_unreference(&obj->base);
1907
unlock:
1908 1909 1910 1911 1912
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1913 1914 1915 1916 1917
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1918 1919 1920
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1931 1932 1933
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1934
		    struct drm_file *file)
1935 1936 1937 1938 1939
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1940 1941 1942
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1943
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1944 1945
		return -ENODEV;

1946
	obj = drm_gem_object_lookup(file, args->handle);
1947
	if (obj == NULL)
1948
		return -ENOENT;
1949

1950 1951 1952 1953 1954 1955 1956 1957
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1958
	addr = vm_mmap(obj->filp, 0, args->size,
1959 1960
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1961 1962 1963 1964
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1965 1966 1967 1968
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1969 1970 1971 1972 1973 1974 1975
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1976 1977 1978

		/* This may race, but that's ok, it only gets set */
		WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1979
	}
1980
	drm_gem_object_unreference_unlocked(obj);
1981 1982 1983 1984 1985 1986 1987 1988
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1989 1990
/**
 * i915_gem_fault - fault a page into the GTT
1991 1992
 * @vma: VMA in question
 * @vmf: fault info
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
2007 2008
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
2009 2010
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2011
	struct i915_ggtt_view view = i915_ggtt_view_normal;
2012 2013 2014
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
2015
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2016

2017 2018
	intel_runtime_pm_get(dev_priv);

2019 2020 2021 2022
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

2023 2024 2025
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
2026

C
Chris Wilson 已提交
2027 2028
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2029 2030 2031 2032 2033 2034 2035 2036 2037
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

2038 2039
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2040
		ret = -EFAULT;
2041 2042 2043
		goto unlock;
	}

2044
	/* Use a partial view if the object is bigger than the aperture. */
2045
	if (obj->base.size >= ggtt->mappable_end &&
2046
	    obj->tiling_mode == I915_TILING_NONE) {
2047
		static const unsigned int chunk_size = 256; // 1 MiB
2048

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2061 2062
	if (ret)
		goto unlock;
2063

2064 2065 2066
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
2067

2068
	ret = i915_gem_object_get_fence(obj);
2069
	if (ret)
2070
		goto unpin;
2071

2072
	/* Finally, remap it using the new GTT offset */
2073
	pfn = ggtt->mappable_base +
2074
		i915_gem_obj_ggtt_offset_view(obj, &view);
2075
	pfn >>= PAGE_SHIFT;
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
2086

2087 2088
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2089 2090 2091 2092 2093
			if (ret)
				break;
		}

		obj->fault_mappable = true;
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
2115
unpin:
2116
	i915_gem_object_ggtt_unpin_view(obj, &view);
2117
unlock:
2118
	mutex_unlock(&dev->struct_mutex);
2119
out:
2120
	switch (ret) {
2121
	case -EIO:
2122 2123 2124 2125 2126 2127 2128
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2129 2130 2131
			ret = VM_FAULT_SIGBUS;
			break;
		}
2132
	case -EAGAIN:
D
Daniel Vetter 已提交
2133 2134 2135 2136
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2137
		 */
2138 2139
	case 0:
	case -ERESTARTSYS:
2140
	case -EINTR:
2141 2142 2143 2144 2145
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2146 2147
		ret = VM_FAULT_NOPAGE;
		break;
2148
	case -ENOMEM:
2149 2150
		ret = VM_FAULT_OOM;
		break;
2151
	case -ENOSPC:
2152
	case -EFAULT:
2153 2154
		ret = VM_FAULT_SIGBUS;
		break;
2155
	default:
2156
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2157 2158
		ret = VM_FAULT_SIGBUS;
		break;
2159
	}
2160 2161 2162

	intel_runtime_pm_put(dev_priv);
	return ret;
2163 2164
}

2165 2166 2167 2168
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2169
 * Preserve the reservation of the mmapping with the DRM core code, but
2170 2171 2172 2173 2174 2175 2176 2177 2178
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2179
void
2180
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2181
{
2182 2183 2184 2185 2186 2187
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2188 2189
	if (!obj->fault_mappable)
		return;
2190

2191 2192
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

2203
	obj->fault_mappable = false;
2204 2205
}

2206 2207 2208 2209 2210 2211 2212 2213 2214
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

2215
uint32_t
2216
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2217
{
2218
	uint32_t gtt_size;
2219 2220

	if (INTEL_INFO(dev)->gen >= 4 ||
2221 2222
	    tiling_mode == I915_TILING_NONE)
		return size;
2223 2224

	/* Previous chips need a power-of-two fence region when tiling */
2225
	if (IS_GEN3(dev))
2226
		gtt_size = 1024*1024;
2227
	else
2228
		gtt_size = 512*1024;
2229

2230 2231
	while (gtt_size < size)
		gtt_size <<= 1;
2232

2233
	return gtt_size;
2234 2235
}

2236 2237
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2238 2239 2240 2241
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
2242 2243
 *
 * Return the required GTT alignment for an object, taking into account
2244
 * potential fence register mapping.
2245
 */
2246 2247 2248
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2249 2250 2251 2252 2253
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2254
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2255
	    tiling_mode == I915_TILING_NONE)
2256 2257
		return 4096;

2258 2259 2260 2261
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2262
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2263 2264
}

2265 2266
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2267
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2268 2269
	int ret;

2270 2271
	dev_priv->mm.shrinker_no_lock_stealing = true;

2272 2273
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2274
		goto out;
2275 2276 2277 2278 2279 2280 2281 2282

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2283 2284 2285 2286 2287
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2288 2289
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2290
		goto out;
2291 2292

	i915_gem_shrink_all(dev_priv);
2293 2294 2295 2296 2297
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2298 2299 2300 2301 2302 2303 2304
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2305
int
2306 2307
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2308
		  uint32_t handle,
2309
		  uint64_t *offset)
2310
{
2311
	struct drm_i915_gem_object *obj;
2312 2313
	int ret;

2314
	ret = i915_mutex_lock_interruptible(dev);
2315
	if (ret)
2316
		return ret;
2317

2318
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2319
	if (&obj->base == NULL) {
2320 2321 2322
		ret = -ENOENT;
		goto unlock;
	}
2323

2324
	if (obj->madv != I915_MADV_WILLNEED) {
2325
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2326
		ret = -EFAULT;
2327
		goto out;
2328 2329
	}

2330 2331 2332
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2333

2334
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2335

2336
out:
2337
	drm_gem_object_unreference(&obj->base);
2338
unlock:
2339
	mutex_unlock(&dev->struct_mutex);
2340
	return ret;
2341 2342
}

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2364
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2365 2366
}

D
Daniel Vetter 已提交
2367 2368 2369
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2370
{
2371
	i915_gem_object_free_mmap_offset(obj);
2372

2373 2374
	if (obj->base.filp == NULL)
		return;
2375

D
Daniel Vetter 已提交
2376 2377 2378 2379 2380
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2381
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2382 2383
	obj->madv = __I915_MADV_PURGED;
}
2384

2385 2386 2387
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2388
{
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2403 2404
}

2405
static void
2406
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2407
{
2408 2409
	struct sgt_iter sgt_iter;
	struct page *page;
2410
	int ret;
2411

2412
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2413

C
Chris Wilson 已提交
2414
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2415
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2416 2417 2418
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2419
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2420 2421 2422
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2423 2424
	i915_gem_gtt_finish_object(obj);

2425
	if (i915_gem_object_needs_bit17_swizzle(obj))
2426 2427
		i915_gem_object_save_bit_17_swizzle(obj);

2428 2429
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2430

2431
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2432
		if (obj->dirty)
2433
			set_page_dirty(page);
2434

2435
		if (obj->madv == I915_MADV_WILLNEED)
2436
			mark_page_accessed(page);
2437

2438
		put_page(page);
2439
	}
2440
	obj->dirty = 0;
2441

2442 2443
	sg_free_table(obj->pages);
	kfree(obj->pages);
2444
}
C
Chris Wilson 已提交
2445

2446
int
2447 2448 2449 2450
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2451
	if (obj->pages == NULL)
2452 2453
		return 0;

2454 2455 2456
	if (obj->pages_pin_count)
		return -EBUSY;

2457
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2458

2459 2460 2461
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2462
	list_del(&obj->global_list);
2463

2464
	if (obj->mapping) {
2465 2466 2467 2468
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2469 2470 2471
		obj->mapping = NULL;
	}

2472
	ops->put_pages(obj);
2473
	obj->pages = NULL;
2474

2475
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2476 2477 2478 2479

	return 0;
}

2480
static int
C
Chris Wilson 已提交
2481
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2482
{
2483
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2484 2485
	int page_count, i;
	struct address_space *mapping;
2486 2487
	struct sg_table *st;
	struct scatterlist *sg;
2488
	struct sgt_iter sgt_iter;
2489
	struct page *page;
2490
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2491
	int ret;
C
Chris Wilson 已提交
2492
	gfp_t gfp;
2493

C
Chris Wilson 已提交
2494 2495 2496 2497 2498 2499 2500
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2501 2502 2503 2504
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2505
	page_count = obj->base.size / PAGE_SIZE;
2506 2507
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2508
		return -ENOMEM;
2509
	}
2510

2511 2512 2513 2514 2515
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2516
	mapping = file_inode(obj->base.filp)->i_mapping;
2517
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2518
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2519 2520 2521
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2522 2523
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2524 2525 2526 2527 2528
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2529 2530 2531 2532 2533 2534 2535 2536
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2537
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2538 2539
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2540
				goto err_pages;
I
Imre Deak 已提交
2541
			}
C
Chris Wilson 已提交
2542
		}
2543 2544 2545 2546 2547 2548 2549 2550
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2551 2552 2553 2554 2555 2556 2557 2558 2559
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2560 2561 2562

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2563
	}
2564 2565 2566 2567
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2568 2569
	obj->pages = st;

I
Imre Deak 已提交
2570 2571 2572 2573
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2574
	if (i915_gem_object_needs_bit17_swizzle(obj))
2575 2576
		i915_gem_object_do_bit_17_swizzle(obj);

2577 2578 2579 2580
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2581 2582 2583
	return 0;

err_pages:
2584
	sg_mark_end(sg);
2585 2586
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2587 2588
	sg_free_table(st);
	kfree(st);
2589 2590 2591 2592 2593 2594 2595 2596 2597

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2598 2599 2600 2601
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2602 2603
}

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2614
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2615 2616 2617
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2618
	if (obj->pages)
2619 2620
		return 0;

2621
	if (obj->madv != I915_MADV_WILLNEED) {
2622
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2623
		return -EFAULT;
2624 2625
	}

2626 2627
	BUG_ON(obj->pages_pin_count);

2628 2629 2630 2631
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2632
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2633 2634 2635 2636

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2637
	return 0;
2638 2639
}

2640 2641 2642 2643 2644
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2645 2646
	struct sgt_iter sgt_iter;
	struct page *page;
2647 2648
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2649 2650 2651 2652 2653 2654 2655
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2656 2657 2658 2659 2660 2661
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2662

2663 2664
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2665 2666 2667 2668 2669 2670

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2671 2672
	if (pages != stack_pages)
		drm_free_large(pages);
2673 2674 2675 2676 2677

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2690 2691 2692
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2693 2694 2695 2696 2697 2698 2699 2700
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2701
void i915_vma_move_to_active(struct i915_vma *vma,
2702
			     struct drm_i915_gem_request *req)
2703
{
2704
	struct drm_i915_gem_object *obj = vma->obj;
2705
	struct intel_engine_cs *engine;
2706

2707
	engine = i915_gem_request_get_engine(req);
2708 2709

	/* Add a reference if we're newly entering the active list. */
2710
	if (obj->active == 0)
2711
		drm_gem_object_reference(&obj->base);
2712
	obj->active |= intel_engine_flag(engine);
2713

2714
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2715
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2716

2717
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2718 2719
}

2720 2721
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2722
{
2723 2724
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2725 2726

	i915_gem_request_assign(&obj->last_write_req, NULL);
2727
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2728 2729
}

2730
static void
2731
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2732
{
2733
	struct i915_vma *vma;
2734

2735 2736
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2737

2738
	list_del_init(&obj->engine_list[ring]);
2739 2740
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2741
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2742 2743 2744 2745 2746
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2747

2748 2749 2750 2751 2752 2753 2754
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2755 2756 2757
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2758
	}
2759

2760
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2761
	drm_gem_object_unreference(&obj->base);
2762 2763
}

2764
static int
2765
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2766
{
2767
	struct intel_engine_cs *engine;
2768
	int ret;
2769

2770
	/* Carefully retire all requests without writing to the rings */
2771
	for_each_engine(engine, dev_priv) {
2772
		ret = intel_engine_idle(engine);
2773 2774
		if (ret)
			return ret;
2775
	}
2776
	i915_gem_retire_requests(dev_priv);
2777

2778 2779
	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2780 2781
		while (intel_kick_waiters(dev_priv) ||
		       intel_kick_signalers(dev_priv))
2782 2783 2784
			yield();
	}

2785
	/* Finally reset hw state */
2786
	for_each_engine(engine, dev_priv)
2787
		intel_ring_init_seqno(engine, seqno);
2788

2789
	return 0;
2790 2791
}

2792 2793
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
2794
	struct drm_i915_private *dev_priv = to_i915(dev);
2795 2796 2797 2798 2799 2800 2801 2802
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2803
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2818
int
2819
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2820
{
2821 2822
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2823
		int ret = i915_gem_init_seqno(dev_priv, 0);
2824 2825
		if (ret)
			return ret;
2826

2827 2828
		dev_priv->next_seqno = 1;
	}
2829

2830
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2831
	return 0;
2832 2833
}

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	dev_priv->gt.active_engines |= intel_engine_flag(engine);
	if (dev_priv->gt.awake)
		return;

	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

2854 2855 2856 2857 2858
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2859
void __i915_add_request(struct drm_i915_gem_request *request,
2860 2861
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2862
{
2863
	struct intel_engine_cs *engine;
2864
	struct intel_ringbuffer *ringbuf;
2865
	u32 request_start;
2866
	u32 reserved_tail;
2867 2868
	int ret;

2869
	if (WARN_ON(request == NULL))
2870
		return;
2871

2872
	engine = request->engine;
2873 2874
	ringbuf = request->ringbuf;

2875 2876 2877 2878 2879
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2880
	request_start = intel_ring_get_tail(ringbuf);
2881 2882 2883
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2884 2885 2886 2887 2888 2889 2890
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2891 2892
	if (flush_caches) {
		if (i915.enable_execlists)
2893
			ret = logical_ring_flush_all_caches(request);
2894
		else
2895
			ret = intel_ring_flush_all_caches(request);
2896 2897 2898
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2899

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2922 2923 2924 2925 2926
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2927
	request->postfix = intel_ring_get_tail(ringbuf);
2928

2929
	if (i915.enable_execlists)
2930
		ret = engine->emit_request(request);
2931
	else {
2932
		ret = engine->add_request(request);
2933 2934

		request->tail = intel_ring_get_tail(ringbuf);
2935
	}
2936 2937
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2938
	/* Sanity check that the reserved size was large enough. */
2939 2940 2941 2942 2943 2944 2945
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2946 2947

	i915_gem_mark_busy(engine);
2948 2949
}

2950
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2951
{
2952
	unsigned long elapsed;
2953

2954
	if (ctx->hang_stats.banned)
2955 2956
		return true;

2957
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2958 2959
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2960 2961
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2962 2963 2964 2965 2966
	}

	return false;
}

2967
static void i915_set_reset_status(struct i915_gem_context *ctx,
2968
				  const bool guilty)
2969
{
2970
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2971 2972

	if (guilty) {
2973
		hs->banned = i915_context_is_banned(ctx);
2974 2975 2976 2977
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2978 2979 2980
	}
}

2981 2982 2983 2984
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2985
	kmem_cache_free(req->i915->requests, req);
2986 2987
}

2988
static inline int
2989
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2990
			 struct i915_gem_context *ctx,
2991
			 struct drm_i915_gem_request **req_out)
2992
{
2993
	struct drm_i915_private *dev_priv = engine->i915;
2994
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2995
	struct drm_i915_gem_request *req;
2996 2997
	int ret;

2998 2999 3000
	if (!req_out)
		return -EINVAL;

3001
	*req_out = NULL;
3002

3003 3004 3005 3006 3007
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3008 3009 3010
	if (ret)
		return ret;

D
Daniel Vetter 已提交
3011 3012
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
3013 3014
		return -ENOMEM;

3015
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3016 3017
	if (ret)
		goto err;
3018

3019 3020
	kref_init(&req->ref);
	req->i915 = dev_priv;
3021
	req->engine = engine;
3022 3023
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
3024

3025 3026 3027 3028 3029 3030 3031
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
3032
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3033 3034 3035 3036 3037 3038 3039

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
3040

3041
	*req_out = req;
3042
	return 0;
3043

3044 3045
err_ctx:
	i915_gem_context_unreference(ctx);
3046 3047 3048
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
3049 3050
}

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
3065
		       struct i915_gem_context *ctx)
3066 3067 3068 3069 3070
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
3071
		ctx = engine->i915->kernel_context;
3072 3073 3074 3075
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

3076
struct drm_i915_gem_request *
3077
i915_gem_find_active_request(struct intel_engine_cs *engine)
3078
{
3079 3080
	struct drm_i915_gem_request *request;

3081 3082 3083 3084 3085 3086 3087 3088
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
3089
	list_for_each_entry(request, &engine->request_list, list) {
3090
		if (i915_gem_request_completed(request))
3091
			continue;
3092

3093
		return request;
3094
	}
3095 3096 3097 3098

	return NULL;
}

3099
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
3100 3101 3102 3103
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

3104
	request = i915_gem_find_active_request(engine);
3105 3106 3107
	if (request == NULL)
		return;

3108
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3109

3110
	i915_set_reset_status(request->ctx, ring_hung);
3111
	list_for_each_entry_continue(request, &engine->request_list, list)
3112
		i915_set_reset_status(request->ctx, false);
3113
}
3114

3115
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
3116
{
3117 3118
	struct intel_ringbuffer *buffer;

3119
	while (!list_empty(&engine->active_list)) {
3120
		struct drm_i915_gem_object *obj;
3121

3122
		obj = list_first_entry(&engine->active_list,
3123
				       struct drm_i915_gem_object,
3124
				       engine_list[engine->id]);
3125

3126
		i915_gem_object_retire__read(obj, engine->id);
3127
	}
3128

3129 3130 3131 3132 3133 3134
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3135
	if (i915.enable_execlists) {
3136 3137
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
3138

3139
		intel_execlists_cancel_requests(engine);
3140 3141
	}

3142 3143 3144 3145 3146 3147 3148
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
3149
	while (!list_empty(&engine->request_list)) {
3150 3151
		struct drm_i915_gem_request *request;

3152
		request = list_first_entry(&engine->request_list,
3153 3154 3155
					   struct drm_i915_gem_request,
					   list);

3156
		i915_gem_request_retire(request);
3157
	}
3158 3159 3160 3161 3162 3163 3164 3165

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
3166
	list_for_each_entry(buffer, &engine->buffers, link) {
3167 3168 3169
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
3170 3171

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3172 3173

	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
3174 3175
}

3176
void i915_gem_reset(struct drm_device *dev)
3177
{
3178
	struct drm_i915_private *dev_priv = to_i915(dev);
3179
	struct intel_engine_cs *engine;
3180

3181 3182 3183 3184 3185
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
3186
	for_each_engine(engine, dev_priv)
3187
		i915_gem_reset_engine_status(engine);
3188

3189
	for_each_engine(engine, dev_priv)
3190
		i915_gem_reset_engine_cleanup(engine);
3191
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3192

3193 3194
	i915_gem_context_reset(dev);

3195
	i915_gem_restore_fences(dev);
3196 3197

	WARN_ON(i915_verify_lists(dev));
3198 3199 3200 3201
}

/**
 * This function clears the request list as sequence numbers are passed.
3202
 * @engine: engine to retire requests on
3203
 */
3204
void
3205
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3206
{
3207
	WARN_ON(i915_verify_lists(engine->dev));
3208

3209 3210 3211 3212
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
3213
	 */
3214
	while (!list_empty(&engine->request_list)) {
3215 3216
		struct drm_i915_gem_request *request;

3217
		request = list_first_entry(&engine->request_list,
3218 3219 3220
					   struct drm_i915_gem_request,
					   list);

3221
		if (!i915_gem_request_completed(request))
3222 3223
			break;

3224
		i915_gem_request_retire(request);
3225
	}
3226

3227 3228 3229 3230
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
3231
	while (!list_empty(&engine->active_list)) {
3232 3233
		struct drm_i915_gem_object *obj;

3234 3235
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
3236
				       engine_list[engine->id]);
3237

3238
		if (!list_empty(&obj->last_read_req[engine->id]->list))
3239 3240
			break;

3241
		i915_gem_object_retire__read(obj, engine->id);
3242 3243
	}

3244
	WARN_ON(i915_verify_lists(engine->dev));
3245 3246
}

3247
void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3248
{
3249
	struct intel_engine_cs *engine;
3250

3251
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3252 3253 3254 3255 3256

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);
3257

3258
	for_each_engine(engine, dev_priv) {
3259
		i915_gem_retire_requests_ring(engine);
3260 3261
		if (list_empty(&engine->request_list))
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
3262 3263
	}

3264
	if (dev_priv->gt.active_engines == 0)
3265 3266 3267
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
3268 3269
}

3270
static void
3271 3272
i915_gem_retire_work_handler(struct work_struct *work)
{
3273
	struct drm_i915_private *dev_priv =
3274
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3275
	struct drm_device *dev = &dev_priv->drm;
3276

3277
	/* Come back later if the device is busy... */
3278
	if (mutex_trylock(&dev->struct_mutex)) {
3279
		i915_gem_retire_requests(dev_priv);
3280
		mutex_unlock(&dev->struct_mutex);
3281
	}
3282 3283 3284 3285 3286

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3287 3288
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3289 3290
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3291
				   round_jiffies_up_relative(HZ));
3292
	}
3293
}
3294

3295 3296 3297 3298
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3299
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3300
	struct drm_device *dev = &dev_priv->drm;
3301
	struct intel_engine_cs *engine;
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
3324

3325
	for_each_engine(engine, dev_priv)
3326
		i915_gem_batch_pool_fini(&engine->batch_pool);
3327

3328 3329 3330
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3331

3332 3333 3334 3335 3336
	stuck_engines = intel_kick_waiters(dev_priv);
	if (unlikely(stuck_engines)) {
		DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
		dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
	}
3337

3338 3339 3340 3341 3342
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3343

3344 3345 3346 3347
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3348
	}
3349 3350
}

3351 3352 3353 3354
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
3355
 * @obj: object to flush
3356 3357 3358 3359
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3360
	int i;
3361 3362 3363

	if (!obj->active)
		return 0;
3364

3365
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3366
		struct drm_i915_gem_request *req;
3367

3368 3369 3370 3371
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3372
		if (i915_gem_request_completed(req))
3373
			i915_gem_object_retire__read(obj, i);
3374 3375 3376 3377 3378
	}

	return 0;
}

3379 3380
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3381 3382 3383
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3408
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3409 3410
	int i, n = 0;
	int ret;
3411

3412 3413 3414
	if (args->flags != 0)
		return -EINVAL;

3415 3416 3417 3418
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3419
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3420 3421 3422 3423 3424
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3425 3426
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3427 3428 3429
	if (ret)
		goto out;

3430
	if (!obj->active)
3431
		goto out;
3432 3433

	/* Do this after OLR check to make sure we make forward progress polling
3434
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3435
	 */
3436
	if (args->timeout_ns == 0) {
3437 3438 3439 3440 3441
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3442

3443
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3444 3445 3446 3447 3448 3449
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3450 3451
	mutex_unlock(&dev->struct_mutex);

3452 3453
	for (i = 0; i < n; i++) {
		if (ret == 0)
3454
			ret = __i915_wait_request(req[i], true,
3455
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3456
						  to_rps_client(file));
3457
		i915_gem_request_unreference(req[i]);
3458
	}
3459
	return ret;
3460 3461 3462 3463 3464 3465 3466

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3467 3468 3469
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3470 3471
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3472 3473 3474 3475
{
	struct intel_engine_cs *from;
	int ret;

3476
	from = i915_gem_request_get_engine(from_req);
3477 3478 3479
	if (to == from)
		return 0;

3480
	if (i915_gem_request_completed(from_req))
3481 3482
		return 0;

3483
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3484
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3485
		ret = __i915_wait_request(from_req,
3486 3487 3488
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3489 3490 3491
		if (ret)
			return ret;

3492
		i915_gem_object_retire_request(obj, from_req);
3493 3494
	} else {
		int idx = intel_ring_sync_index(from, to);
3495 3496 3497
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3498 3499 3500 3501

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3502
		if (*to_req == NULL) {
3503 3504 3505 3506 3507 3508 3509
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3510 3511
		}

3512 3513
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3528 3529 3530 3531 3532
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3533 3534 3535
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3536 3537 3538
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3539
 * rather than a particular GPU ring. Conceptually we serialise writes
3540
 * between engines inside the GPU. We only allow one engine to write
3541 3542 3543 3544 3545 3546 3547 3548 3549
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3550
 *
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3561 3562
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3563 3564
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3565 3566
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3567
{
3568
	const bool readonly = obj->base.pending_write_domain == 0;
3569
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3570
	int ret, i, n;
3571

3572
	if (!obj->active)
3573 3574
		return 0;

3575 3576
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3577

3578 3579 3580 3581 3582
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3583
		for (i = 0; i < I915_NUM_ENGINES; i++)
3584 3585 3586 3587
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3588
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3589 3590 3591
		if (ret)
			return ret;
	}
3592

3593
	return 0;
3594 3595
}

3596 3597 3598 3599 3600 3601 3602
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3603 3604 3605
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3628
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3629
{
3630
	struct drm_i915_gem_object *obj = vma->obj;
3631
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3632
	int ret;
3633

3634
	if (list_empty(&vma->obj_link))
3635 3636
		return 0;

3637 3638 3639 3640
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3641

B
Ben Widawsky 已提交
3642
	if (vma->pin_count)
3643
		return -EBUSY;
3644

3645 3646
	BUG_ON(obj->pages == NULL);

3647 3648 3649 3650 3651
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3652

3653
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3654
		i915_gem_object_finish_gtt(obj);
3655

3656 3657 3658 3659
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3660 3661

		__i915_vma_iounmap(vma);
3662
	}
3663

3664
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3665

3666
	vma->vm->unbind_vma(vma);
3667
	vma->bound = 0;
3668

3669
	list_del_init(&vma->vm_link);
3670
	if (vma->is_ggtt) {
3671 3672 3673 3674 3675 3676
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3677
		vma->ggtt_view.pages = NULL;
3678
	}
3679

B
Ben Widawsky 已提交
3680 3681 3682 3683
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3684
	 * no more VMAs exist. */
I
Imre Deak 已提交
3685
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3686
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3687

3688 3689 3690 3691 3692 3693
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3694
	return 0;
3695 3696
}

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3707
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3708
{
3709
	struct intel_engine_cs *engine;
3710
	int ret;
3711

3712
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3713

3714
	for_each_engine(engine, dev_priv) {
3715 3716 3717
		if (engine->last_context == NULL)
			continue;

3718
		ret = intel_engine_idle(engine);
3719 3720 3721
		if (ret)
			return ret;
	}
3722

3723
	WARN_ON(i915_verify_lists(dev));
3724
	return 0;
3725 3726
}

3727
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3728 3729
				     unsigned long cache_level)
{
3730
	struct drm_mm_node *gtt_space = &vma->node;
3731 3732
	struct drm_mm_node *other;

3733 3734 3735 3736 3737 3738
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3739
	 */
3740
	if (vma->vm->mm.color_adjust == NULL)
3741 3742
		return true;

3743
	if (!drm_mm_node_allocated(gtt_space))
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3760
/**
3761 3762
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3763 3764 3765 3766 3767
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3768
 */
3769
static struct i915_vma *
3770 3771
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3772
			   const struct i915_ggtt_view *ggtt_view,
3773
			   unsigned alignment,
3774
			   uint64_t flags)
3775
{
3776
	struct drm_device *dev = obj->base.dev;
3777 3778
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3779
	u32 fence_alignment, unfenced_alignment;
3780 3781
	u32 search_flag, alloc_flag;
	u64 start, end;
3782
	u64 size, fence_size;
B
Ben Widawsky 已提交
3783
	struct i915_vma *vma;
3784
	int ret;
3785

3786 3787 3788 3789 3790
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3791

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3821

3822 3823 3824
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3825
		end = min_t(u64, end, ggtt->mappable_end);
3826
	if (flags & PIN_ZONE_4G)
3827
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3828

3829
	if (alignment == 0)
3830
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3831
						unfenced_alignment;
3832
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3833 3834 3835
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3836
		return ERR_PTR(-EINVAL);
3837 3838
	}

3839 3840 3841
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3842
	 */
3843
	if (size > end) {
3844
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3845 3846
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3847
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3848
			  end);
3849
		return ERR_PTR(-E2BIG);
3850 3851
	}

3852
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3853
	if (ret)
3854
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3855

3856 3857
	i915_gem_object_pin_pages(obj);

3858 3859 3860
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3861
	if (IS_ERR(vma))
3862
		goto err_unpin;
B
Ben Widawsky 已提交
3863

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3882
	} else {
3883 3884 3885 3886 3887 3888 3889
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3890

3891
search_free:
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3905

3906 3907
			goto err_free_vma;
		}
3908
	}
3909
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3910
		ret = -EINVAL;
3911
		goto err_remove_node;
3912 3913
	}

3914
	trace_i915_vma_bind(vma, flags);
3915
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3916
	if (ret)
I
Imre Deak 已提交
3917
		goto err_remove_node;
3918

3919
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3920
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3921

3922
	return vma;
B
Ben Widawsky 已提交
3923

3924
err_remove_node:
3925
	drm_mm_remove_node(&vma->node);
3926
err_free_vma:
B
Ben Widawsky 已提交
3927
	i915_gem_vma_destroy(vma);
3928
	vma = ERR_PTR(ret);
3929
err_unpin:
B
Ben Widawsky 已提交
3930
	i915_gem_object_unpin_pages(obj);
3931
	return vma;
3932 3933
}

3934
bool
3935 3936
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3937 3938 3939 3940 3941
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3942
	if (obj->pages == NULL)
3943
		return false;
3944

3945 3946 3947 3948
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3949
	if (obj->stolen || obj->phys_handle)
3950
		return false;
3951

3952 3953 3954 3955 3956 3957 3958 3959
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3960 3961
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3962
		return false;
3963
	}
3964

C
Chris Wilson 已提交
3965
	trace_i915_gem_object_clflush(obj);
3966
	drm_clflush_sg(obj->pages);
3967
	obj->cache_dirty = false;
3968 3969

	return true;
3970 3971 3972 3973
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3974
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3975
{
C
Chris Wilson 已提交
3976 3977
	uint32_t old_write_domain;

3978
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3979 3980
		return;

3981
	/* No actual flushing is required for the GTT write domain.  Writes
3982 3983
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3984 3985 3986 3987
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3988
	 */
3989 3990
	wmb();

3991 3992
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3993

3994
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3995

C
Chris Wilson 已提交
3996
	trace_i915_gem_object_change_domain(obj,
3997
					    obj->base.read_domains,
C
Chris Wilson 已提交
3998
					    old_write_domain);
3999 4000 4001 4002
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
4003
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
4004
{
C
Chris Wilson 已提交
4005
	uint32_t old_write_domain;
4006

4007
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4008 4009
		return;

4010
	if (i915_gem_clflush_object(obj, obj->pin_display))
4011
		i915_gem_chipset_flush(to_i915(obj->base.dev));
4012

4013 4014
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
4015

4016
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4017

C
Chris Wilson 已提交
4018
	trace_i915_gem_object_change_domain(obj,
4019
					    obj->base.read_domains,
C
Chris Wilson 已提交
4020
					    old_write_domain);
4021 4022
}

4023 4024
/**
 * Moves a single object to the GTT read, and possibly write domain.
4025 4026
 * @obj: object to act on
 * @write: ask for write access or read only
4027 4028 4029 4030
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
4031
int
4032
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4033
{
4034 4035 4036
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
4037
	uint32_t old_write_domain, old_read_domains;
4038
	struct i915_vma *vma;
4039
	int ret;
4040

4041 4042 4043
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

4044
	ret = i915_gem_object_wait_rendering(obj, !write);
4045 4046 4047
	if (ret)
		return ret;

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

4060
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
4061

4062 4063 4064 4065 4066 4067 4068
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

4069 4070
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4071

4072 4073 4074
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4075 4076
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4077
	if (write) {
4078 4079 4080
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
4081 4082
	}

C
Chris Wilson 已提交
4083 4084 4085 4086
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4087
	/* And bump the LRU for this access */
4088 4089
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4090
		list_move_tail(&vma->vm_link,
4091
			       &ggtt->base.inactive_list);
4092

4093 4094 4095
	return 0;
}

4096 4097
/**
 * Changes the cache-level of an object across all VMA.
4098 4099
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4111 4112 4113
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4114
	struct drm_device *dev = obj->base.dev;
4115
	struct i915_vma *vma, *next;
4116
	bool bound = false;
4117
	int ret = 0;
4118 4119

	if (obj->cache_level == cache_level)
4120
		goto out;
4121

4122 4123 4124 4125 4126
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4127
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4128 4129 4130 4131 4132 4133 4134 4135
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4136
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4137
			ret = i915_vma_unbind(vma);
4138 4139
			if (ret)
				return ret;
4140 4141
		} else
			bound = true;
4142 4143
	}

4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4156
		ret = i915_gem_object_wait_rendering(obj, false);
4157 4158 4159
		if (ret)
			return ret;

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4177 4178 4179
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
4180 4181 4182 4183 4184 4185 4186 4187
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4188 4189
		}

4190
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4191 4192 4193 4194 4195 4196 4197
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4198 4199
	}

4200
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4201 4202 4203
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4204
out:
4205 4206 4207 4208
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
4209
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4210
		if (i915_gem_clflush_object(obj, true))
4211
			i915_gem_chipset_flush(to_i915(obj->base.dev));
4212 4213 4214 4215 4216
	}

	return 0;
}

B
Ben Widawsky 已提交
4217 4218
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4219
{
B
Ben Widawsky 已提交
4220
	struct drm_i915_gem_caching *args = data;
4221 4222
	struct drm_i915_gem_object *obj;

4223
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4224 4225
	if (&obj->base == NULL)
		return -ENOENT;
4226

4227 4228 4229 4230 4231 4232
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4233 4234 4235 4236
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4237 4238 4239 4240
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4241

4242 4243
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4244 4245
}

B
Ben Widawsky 已提交
4246 4247
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4248
{
4249
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
4250
	struct drm_i915_gem_caching *args = data;
4251 4252 4253 4254
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4255 4256
	switch (args->caching) {
	case I915_CACHING_NONE:
4257 4258
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4259
	case I915_CACHING_CACHED:
4260 4261 4262 4263 4264 4265
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4266
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4267 4268
			return -ENODEV;

4269 4270
		level = I915_CACHE_LLC;
		break;
4271 4272 4273
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4274 4275 4276 4277
	default:
		return -EINVAL;
	}

4278 4279
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4280 4281
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4282
		goto rpm_put;
B
Ben Widawsky 已提交
4283

4284
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4295 4296 4297
rpm_put:
	intel_runtime_pm_put(dev_priv);

4298 4299 4300
	return ret;
}

4301
/*
4302 4303 4304
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4305 4306
 */
int
4307 4308
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4309
				     const struct i915_ggtt_view *view)
4310
{
4311
	u32 old_read_domains, old_write_domain;
4312 4313
	int ret;

4314 4315 4316
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4317
	obj->pin_display++;
4318

4319 4320 4321 4322 4323 4324 4325 4326 4327
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4328 4329
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4330
	if (ret)
4331
		goto err_unpin_display;
4332

4333 4334 4335 4336
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4337 4338 4339
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4340
	if (ret)
4341
		goto err_unpin_display;
4342

4343
	i915_gem_object_flush_cpu_write_domain(obj);
4344

4345
	old_write_domain = obj->base.write_domain;
4346
	old_read_domains = obj->base.read_domains;
4347 4348 4349 4350

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4351
	obj->base.write_domain = 0;
4352
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4353 4354 4355

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4356
					    old_write_domain);
4357 4358

	return 0;
4359 4360

err_unpin_display:
4361
	obj->pin_display--;
4362 4363 4364 4365
	return ret;
}

void
4366 4367
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4368
{
4369 4370 4371
	if (WARN_ON(obj->pin_display == 0))
		return;

4372 4373
	i915_gem_object_ggtt_unpin_view(obj, view);

4374
	obj->pin_display--;
4375 4376
}

4377 4378
/**
 * Moves a single object to the CPU read, and possibly write domain.
4379 4380
 * @obj: object to act on
 * @write: requesting write or read-only access
4381 4382 4383 4384
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4385
int
4386
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4387
{
C
Chris Wilson 已提交
4388
	uint32_t old_write_domain, old_read_domains;
4389 4390
	int ret;

4391 4392 4393
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4394
	ret = i915_gem_object_wait_rendering(obj, !write);
4395 4396 4397
	if (ret)
		return ret;

4398
	i915_gem_object_flush_gtt_write_domain(obj);
4399

4400 4401
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4402

4403
	/* Flush the CPU cache if it's still invalid. */
4404
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4405
		i915_gem_clflush_object(obj, false);
4406

4407
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4408 4409 4410 4411 4412
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4413
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4414 4415 4416 4417 4418

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4419 4420
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4421
	}
4422

C
Chris Wilson 已提交
4423 4424 4425 4426
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4427 4428 4429
	return 0;
}

4430 4431 4432
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4433 4434 4435 4436
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4437 4438 4439
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4440
static int
4441
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4442
{
4443
	struct drm_i915_private *dev_priv = to_i915(dev);
4444
	struct drm_i915_file_private *file_priv = file->driver_priv;
4445
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4446
	struct drm_i915_gem_request *request, *target = NULL;
4447
	int ret;
4448

4449 4450 4451 4452
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4453 4454 4455
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4456

4457
	spin_lock(&file_priv->mm.lock);
4458
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4459 4460
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4461

4462 4463 4464 4465 4466 4467 4468
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4469
		target = request;
4470
	}
4471 4472
	if (target)
		i915_gem_request_reference(target);
4473
	spin_unlock(&file_priv->mm.lock);
4474

4475
	if (target == NULL)
4476
		return 0;
4477

4478
	ret = __i915_wait_request(target, true, NULL, NULL);
4479
	i915_gem_request_unreference(target);
4480

4481 4482 4483
	return ret;
}

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4500 4501 4502 4503
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4504 4505 4506
	return false;
}

4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4525
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4526 4527 4528 4529

	obj->map_and_fenceable = mappable && fenceable;
}

4530 4531 4532 4533 4534 4535
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4536
{
4537
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4538
	struct i915_vma *vma;
4539
	unsigned bound;
4540 4541
	int ret;

4542 4543 4544
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4545
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4546
		return -EINVAL;
4547

4548 4549 4550
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4551 4552 4553 4554 4555 4556
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4557
	if (vma) {
B
Ben Widawsky 已提交
4558 4559 4560
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4561
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4562
			WARN(vma->pin_count,
4563
			     "bo is already pinned in %s with incorrect alignment:"
4564
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4565
			     " obj->map_and_fenceable=%d\n",
4566
			     ggtt_view ? "ggtt" : "ppgtt",
4567 4568
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4569
			     alignment,
4570
			     !!(flags & PIN_MAPPABLE),
4571
			     obj->map_and_fenceable);
4572
			ret = i915_vma_unbind(vma);
4573 4574
			if (ret)
				return ret;
4575 4576

			vma = NULL;
4577 4578 4579
		}
	}

4580
	bound = vma ? vma->bound : 0;
4581
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4582 4583
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4584 4585
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4586 4587
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4588 4589 4590
		if (ret)
			return ret;
	}
4591

4592 4593
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4594
		__i915_vma_set_map_and_fenceable(vma);
4595 4596
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4597

4598
	vma->pin_count++;
4599 4600 4601
	return 0;
}

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4619 4620 4621 4622
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4623
	BUG_ON(!view);
4624

4625
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4626
				      alignment, flags | PIN_GLOBAL);
4627 4628
}

4629
void
4630 4631
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4632
{
4633
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4634

4635
	WARN_ON(vma->pin_count == 0);
4636
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4637

4638
	--vma->pin_count;
4639 4640 4641 4642
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4643
		    struct drm_file *file)
4644 4645
{
	struct drm_i915_gem_busy *args = data;
4646
	struct drm_i915_gem_object *obj;
4647 4648
	int ret;

4649
	ret = i915_mutex_lock_interruptible(dev);
4650
	if (ret)
4651
		return ret;
4652

4653
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4654
	if (&obj->base == NULL) {
4655 4656
		ret = -ENOENT;
		goto unlock;
4657
	}
4658

4659 4660 4661 4662
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4663
	 */
4664
	ret = i915_gem_object_flush_active(obj);
4665 4666
	if (ret)
		goto unref;
4667

4668 4669 4670 4671
	args->busy = 0;
	if (obj->active) {
		int i;

4672
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4673 4674 4675 4676
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4677
				args->busy |= 1 << (16 + req->engine->exec_id);
4678 4679
		}
		if (obj->last_write_req)
4680
			args->busy |= obj->last_write_req->engine->exec_id;
4681
	}
4682

4683
unref:
4684
	drm_gem_object_unreference(&obj->base);
4685
unlock:
4686
	mutex_unlock(&dev->struct_mutex);
4687
	return ret;
4688 4689 4690 4691 4692 4693
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4694
	return i915_gem_ring_throttle(dev, file_priv);
4695 4696
}

4697 4698 4699 4700
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4701
	struct drm_i915_private *dev_priv = to_i915(dev);
4702
	struct drm_i915_gem_madvise *args = data;
4703
	struct drm_i915_gem_object *obj;
4704
	int ret;
4705 4706 4707 4708 4709 4710 4711 4712 4713

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4714 4715 4716 4717
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4718
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4719
	if (&obj->base == NULL) {
4720 4721
		ret = -ENOENT;
		goto unlock;
4722 4723
	}

B
Ben Widawsky 已提交
4724
	if (i915_gem_obj_is_pinned(obj)) {
4725 4726
		ret = -EINVAL;
		goto out;
4727 4728
	}

4729 4730 4731 4732 4733 4734 4735 4736 4737
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4738 4739
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4740

C
Chris Wilson 已提交
4741
	/* if the object is no longer attached, discard its backing storage */
4742
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4743 4744
		i915_gem_object_truncate(obj);

4745
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4746

4747
out:
4748
	drm_gem_object_unreference(&obj->base);
4749
unlock:
4750
	mutex_unlock(&dev->struct_mutex);
4751
	return ret;
4752 4753
}

4754 4755
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4756
{
4757 4758
	int i;

4759
	INIT_LIST_HEAD(&obj->global_list);
4760
	for (i = 0; i < I915_NUM_ENGINES; i++)
4761
		INIT_LIST_HEAD(&obj->engine_list[i]);
4762
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4763
	INIT_LIST_HEAD(&obj->vma_list);
4764
	INIT_LIST_HEAD(&obj->batch_pool_link);
4765

4766 4767
	obj->ops = ops;

4768 4769 4770
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4771
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4772 4773
}

4774
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4775
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4776 4777 4778 4779
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4780
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4781
						  size_t size)
4782
{
4783
	struct drm_i915_gem_object *obj;
4784
	struct address_space *mapping;
D
Daniel Vetter 已提交
4785
	gfp_t mask;
4786
	int ret;
4787

4788
	obj = i915_gem_object_alloc(dev);
4789
	if (obj == NULL)
4790
		return ERR_PTR(-ENOMEM);
4791

4792 4793 4794
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4795

4796 4797 4798 4799 4800 4801 4802
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4803
	mapping = file_inode(obj->base.filp)->i_mapping;
4804
	mapping_set_gfp_mask(mapping, mask);
4805

4806
	i915_gem_object_init(obj, &i915_gem_object_ops);
4807

4808 4809
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4810

4811 4812
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4828 4829
	trace_i915_gem_object_create(obj);

4830
	return obj;
4831 4832 4833 4834 4835

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4836 4837
}

4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4862
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4863
{
4864
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4865
	struct drm_device *dev = obj->base.dev;
4866
	struct drm_i915_private *dev_priv = to_i915(dev);
4867
	struct i915_vma *vma, *next;
4868

4869 4870
	intel_runtime_pm_get(dev_priv);

4871 4872
	trace_i915_gem_object_destroy(obj);

4873
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4874 4875 4876 4877
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4878 4879
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4880

4881 4882
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4883

4884
			WARN_ON(i915_vma_unbind(vma));
4885

4886 4887
			dev_priv->mm.interruptible = was_interruptible;
		}
4888 4889
	}

B
Ben Widawsky 已提交
4890 4891 4892 4893 4894
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4895 4896
	WARN_ON(obj->frontbuffer_bits);

4897 4898 4899 4900 4901
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4902 4903
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4904
	if (discard_backing_storage(obj))
4905
		obj->madv = I915_MADV_DONTNEED;
4906
	i915_gem_object_put_pages(obj);
4907

4908 4909
	BUG_ON(obj->pages);

4910 4911
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4912

4913 4914 4915
	if (obj->ops->release)
		obj->ops->release(obj);

4916 4917
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4918

4919
	kfree(obj->bit_17);
4920
	i915_gem_object_free(obj);
4921 4922

	intel_runtime_pm_put(dev_priv);
4923 4924
}

4925 4926
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4927 4928
{
	struct i915_vma *vma;
4929
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4930 4931
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4932
			return vma;
4933 4934 4935 4936 4937 4938 4939 4940
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4941

4942
	GEM_BUG_ON(!view);
4943

4944
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4945
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4946
			return vma;
4947 4948 4949
	return NULL;
}

B
Ben Widawsky 已提交
4950 4951 4952
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4953 4954 4955 4956 4957

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4958 4959
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4960

4961
	list_del(&vma->obj_link);
4962

4963
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4964 4965
}

4966
static void
4967
i915_gem_stop_engines(struct drm_device *dev)
4968
{
4969
	struct drm_i915_private *dev_priv = to_i915(dev);
4970
	struct intel_engine_cs *engine;
4971

4972
	for_each_engine(engine, dev_priv)
4973
		dev_priv->gt.stop_engine(engine);
4974 4975
}

4976
int
4977
i915_gem_suspend(struct drm_device *dev)
4978
{
4979
	struct drm_i915_private *dev_priv = to_i915(dev);
4980
	int ret = 0;
4981

4982
	mutex_lock(&dev->struct_mutex);
4983
	ret = i915_gem_wait_for_idle(dev_priv);
4984
	if (ret)
4985
		goto err;
4986

4987
	i915_gem_retire_requests(dev_priv);
4988

4989
	i915_gem_stop_engines(dev);
4990
	i915_gem_context_lost(dev_priv);
4991 4992
	mutex_unlock(&dev->struct_mutex);

4993
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4994 4995
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4996

4997 4998 4999
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
5000
	WARN_ON(dev_priv->gt.awake);
5001

5002
	return 0;
5003 5004 5005 5006

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
5007 5008
}

5009 5010
void i915_gem_init_swizzling(struct drm_device *dev)
{
5011
	struct drm_i915_private *dev_priv = to_i915(dev);
5012

5013
	if (INTEL_INFO(dev)->gen < 5 ||
5014 5015 5016 5017 5018 5019
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5020 5021 5022
	if (IS_GEN5(dev))
		return;

5023 5024
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
5025
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5026
	else if (IS_GEN7(dev))
5027
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
5028 5029
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5030 5031
	else
		BUG();
5032
}
D
Daniel Vetter 已提交
5033

5034 5035
static void init_unused_ring(struct drm_device *dev, u32 base)
{
5036
	struct drm_i915_private *dev_priv = to_i915(dev);
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

5061 5062 5063
int
i915_gem_init_hw(struct drm_device *dev)
{
5064
	struct drm_i915_private *dev_priv = to_i915(dev);
5065
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
5066
	int ret;
5067

5068 5069 5070
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5071
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5072
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5073

5074 5075 5076
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5077

5078
	if (HAS_PCH_NOP(dev)) {
5079 5080 5081 5082 5083 5084 5085 5086 5087
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5088 5089
	}

5090 5091
	i915_gem_init_swizzling(dev);

5092 5093 5094 5095 5096 5097 5098 5099
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

5100
	BUG_ON(!dev_priv->kernel_context);
5101

5102 5103 5104 5105 5106 5107 5108
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
5109
	for_each_engine(engine, dev_priv) {
5110
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
5111
		if (ret)
5112
			goto out;
D
Daniel Vetter 已提交
5113
	}
5114

5115 5116
	intel_mocs_init_l3cc_table(dev);

5117
	/* We can't enable contexts until all firmware is loaded */
5118 5119 5120
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
5121

5122 5123
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5124
	return ret;
5125 5126
}

5127 5128
int i915_gem_init(struct drm_device *dev)
{
5129
	struct drm_i915_private *dev_priv = to_i915(dev);
5130 5131 5132
	int ret;

	mutex_lock(&dev->struct_mutex);
5133

5134
	if (!i915.enable_execlists) {
5135
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5136 5137
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
5138
	} else {
5139
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5140 5141
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5142 5143
	}

5144 5145 5146 5147 5148 5149 5150 5151
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5152
	i915_gem_init_userptr(dev_priv);
5153
	i915_gem_init_ggtt(dev);
5154

5155
	ret = i915_gem_context_init(dev);
5156 5157
	if (ret)
		goto out_unlock;
5158

5159
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
5160
	if (ret)
5161
		goto out_unlock;
5162

5163
	ret = i915_gem_init_hw(dev);
5164 5165 5166 5167 5168 5169
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5170
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5171
		ret = 0;
5172
	}
5173 5174

out_unlock:
5175
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5176
	mutex_unlock(&dev->struct_mutex);
5177

5178
	return ret;
5179 5180
}

5181
void
5182
i915_gem_cleanup_engines(struct drm_device *dev)
5183
{
5184
	struct drm_i915_private *dev_priv = to_i915(dev);
5185
	struct intel_engine_cs *engine;
5186

5187
	for_each_engine(engine, dev_priv)
5188
		dev_priv->gt.cleanup_engine(engine);
5189 5190
}

5191
static void
5192
init_engine_lists(struct intel_engine_cs *engine)
5193
{
5194 5195
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5196 5197
}

5198 5199 5200
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5201
	struct drm_device *dev = &dev_priv->drm;
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5212
	if (intel_vgpu_active(dev_priv))
5213 5214 5215 5216 5217 5218 5219 5220 5221
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5222
void
5223
i915_gem_load_init(struct drm_device *dev)
5224
{
5225
	struct drm_i915_private *dev_priv = to_i915(dev);
5226 5227
	int i;

5228
	dev_priv->objects =
5229 5230 5231 5232
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5233 5234 5235 5236 5237
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5238 5239 5240 5241 5242
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5243

B
Ben Widawsky 已提交
5244
	INIT_LIST_HEAD(&dev_priv->vm_list);
5245
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5246 5247
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5248
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5249 5250
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5251
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5252
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5253
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5254
			  i915_gem_retire_work_handler);
5255
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5256
			  i915_gem_idle_work_handler);
5257
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5258
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5259

5260 5261
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5262
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5263

5264
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5265

5266 5267
	dev_priv->mm.interruptible = true;

5268
	mutex_init(&dev_priv->fb_tracking.lock);
5269
}
5270

5271 5272 5273 5274 5275 5276 5277 5278 5279
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

5308
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5309
{
5310
	struct drm_i915_file_private *file_priv = file->driver_priv;
5311 5312 5313 5314 5315

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5316
	spin_lock(&file_priv->mm.lock);
5317 5318 5319 5320 5321 5322 5323 5324 5325
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5326
	spin_unlock(&file_priv->mm.lock);
5327

5328
	if (!list_empty(&file_priv->rps.link)) {
5329
		spin_lock(&to_i915(dev)->rps.client_lock);
5330
		list_del(&file_priv->rps.link);
5331
		spin_unlock(&to_i915(dev)->rps.client_lock);
5332
	}
5333 5334 5335 5336 5337
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5338
	int ret;
5339 5340 5341 5342 5343 5344 5345 5346

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5347
	file_priv->dev_priv = to_i915(dev);
5348
	file_priv->file = file;
5349
	INIT_LIST_HEAD(&file_priv->rps.link);
5350 5351 5352 5353

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5354 5355
	file_priv->bsd_ring = -1;

5356 5357 5358
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5359

5360
	return ret;
5361 5362
}

5363 5364
/**
 * i915_gem_track_fb - update frontbuffer tracking
5365 5366 5367
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5368 5369 5370 5371
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5389
/* All the new VM stuff */
5390 5391
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5392
{
5393
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5394 5395
	struct i915_vma *vma;

5396
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5397

5398
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5399
		if (vma->is_ggtt &&
5400 5401 5402
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5403 5404
			return vma->node.start;
	}
5405

5406 5407
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5408 5409 5410
	return -1;
}

5411 5412
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5413 5414 5415
{
	struct i915_vma *vma;

5416
	list_for_each_entry(vma, &o->vma_list, obj_link)
5417
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5418 5419
			return vma->node.start;

5420
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5421 5422 5423 5424 5425 5426 5427 5428
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5429
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5430
		if (vma->is_ggtt &&
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5441
				  const struct i915_ggtt_view *view)
5442 5443 5444
{
	struct i915_vma *vma;

5445
	list_for_each_entry(vma, &o->vma_list, obj_link)
5446
		if (vma->is_ggtt &&
5447
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5448
		    drm_mm_node_allocated(&vma->node))
5449 5450 5451 5452 5453 5454 5455
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5456
	struct i915_vma *vma;
5457

5458
	list_for_each_entry(vma, &o->vma_list, obj_link)
5459
		if (drm_mm_node_allocated(&vma->node))
5460 5461 5462 5463 5464
			return true;

	return false;
}

5465
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5466 5467 5468
{
	struct i915_vma *vma;

5469
	GEM_BUG_ON(list_empty(&o->vma_list));
5470

5471
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5472
		if (vma->is_ggtt &&
5473
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5474
			return vma->node.size;
5475
	}
5476

5477 5478 5479
	return 0;
}

5480
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5481 5482
{
	struct i915_vma *vma;
5483
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5484 5485
		if (vma->pin_count > 0)
			return true;
5486

5487
	return false;
5488
}
5489

5490 5491 5492 5493 5494 5495 5496
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5497
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5498 5499 5500 5501 5502 5503 5504
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5515
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5516
	if (IS_ERR(obj))
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5530
	obj->dirty = 1;		/* Backing store is now out of date */
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}