vmscan.c 123.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/pagevec.h>
50
#include <linux/prefetch.h>
51
#include <linux/printk.h>
52
#include <linux/dax.h>
53
#include <linux/psi.h>
L
Linus Torvalds 已提交
54 55 56 57 58

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
59
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
60

61 62
#include "internal.h"

63 64 65
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
66
struct scan_control {
67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71 72 73 74
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
75

76 77 78 79 80
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
81

82 83 84 85 86 87 88
	/* Can active pages be deactivated as part of reclaim? */
#define DEACTIVATE_ANON 1
#define DEACTIVATE_FILE 2
	unsigned int may_deactivate:2;
	unsigned int force_deactivate:1;
	unsigned int skipped_deactivate:1;

89
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
90 91 92 93 94 95 96 97
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

98 99 100 101 102 103 104
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
105

106 107 108 109 110
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

111 112 113
	/* There is easily reclaimable cold cache in the current node */
	unsigned int cache_trim_mode:1;

114 115 116
	/* The file pages on the current node are dangerously low */
	unsigned int file_is_tiny:1;

G
Greg Thelen 已提交
117 118 119 120 121 122 123 124 125 126 127 128
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

129 130 131 132 133
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
134 135 136 137 138 139 140 141 142 143

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
144 145 146

	/* for recording the reclaimed slab by now */
	struct reclaim_state reclaim_state;
L
Linus Torvalds 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
};

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
167 168 169 170 171
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
172

173 174 175 176 177 178 179 180 181 182 183 184
static void set_task_reclaim_state(struct task_struct *task,
				   struct reclaim_state *rs)
{
	/* Check for an overwrite */
	WARN_ON_ONCE(rs && task->reclaim_state);

	/* Check for the nulling of an already-nulled member */
	WARN_ON_ONCE(!rs && !task->reclaim_state);

	task->reclaim_state = rs;
}

L
Linus Torvalds 已提交
185 186 187
static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

188
#ifdef CONFIG_MEMCG
189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

202 203 204 205 206 207 208 209 210
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
211
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
212 213 214
	if (id < 0)
		goto unlock;

215 216 217 218 219 220
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

221
		shrinker_nr_max = id + 1;
222
	}
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}

241
static bool cgroup_reclaim(struct scan_control *sc)
242
{
243
	return sc->target_mem_cgroup;
244
}
245 246

/**
247
 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
248 249 250 251 252 253 254 255 256 257 258
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
259
static bool writeback_throttling_sane(struct scan_control *sc)
260
{
261
	if (!cgroup_reclaim(sc))
262 263
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
264
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
265 266 267 268
		return true;
#endif
	return false;
}
269
#else
270 271 272 273 274 275 276 277 278
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}

279
static bool cgroup_reclaim(struct scan_control *sc)
280
{
281
	return false;
282
}
283

284
static bool writeback_throttling_sane(struct scan_control *sc)
285 286 287
{
	return true;
}
288 289
#endif

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

308 309 310 311 312 313 314
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
315
{
316
	unsigned long size = 0;
317 318
	int zid;

319
	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
320
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
321

322 323 324 325
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
326
			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
327
		else
328
			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
329
	}
330
	return size;
331 332
}

L
Linus Torvalds 已提交
333
/*
G
Glauber Costa 已提交
334
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
335
 */
336
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
337
{
338
	unsigned int size = sizeof(*shrinker->nr_deferred);
G
Glauber Costa 已提交
339 340 341 342 343 344 345

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
346 347 348 349 350 351

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

352
	return 0;
353 354 355 356 357

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
358 359 360 361
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
362 363 364 365 366 367
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

368 369 370
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
371

372 373
void register_shrinker_prepared(struct shrinker *shrinker)
{
374 375
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
376
#ifdef CONFIG_MEMCG
377 378
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
379
#endif
380
	up_write(&shrinker_rwsem);
381 382 383 384 385 386 387 388 389
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
390
	return 0;
L
Linus Torvalds 已提交
391
}
392
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
393 394 395 396

/*
 * Remove one
 */
397
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
398
{
399 400
	if (!shrinker->nr_deferred)
		return;
401 402
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
403 404 405
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
406
	kfree(shrinker->nr_deferred);
407
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
408
}
409
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
410 411

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
412

413
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
414
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
415 416 417 418
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
419
	long freeable;
G
Glauber Costa 已提交
420 421 422 423 424
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
425
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
426

427 428 429
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

430
	freeable = shrinker->count_objects(shrinker, shrinkctl);
431 432
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
433 434 435 436 437 438 439 440 441

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
442 443 444 445 446 447 448 449 450 451 452 453
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
454

G
Glauber Costa 已提交
455 456
	total_scan += delta;
	if (total_scan < 0) {
457
		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
458
		       shrinker->scan_objects, total_scan);
459
		total_scan = freeable;
460 461 462
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
463 464 465 466 467 468 469

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
470
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
471 472 473 474 475
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
476 477
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
478 479 480 481 482 483

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
484 485
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
486 487

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
488
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
489

490 491 492 493 494 495 496 497 498 499 500
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
501
	 * than the total number of objects on slab (freeable), we must be
502 503 504 505
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
506
	       total_scan >= freeable) {
D
Dave Chinner 已提交
507
		unsigned long ret;
508
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
509

510
		shrinkctl->nr_to_scan = nr_to_scan;
511
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
512 513 514 515
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
516

517 518 519
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
520 521 522 523

		cond_resched();
	}

524 525 526 527
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
528 529 530 531 532
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
533 534
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
535 536 537 538
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

539
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
540
	return freed;
541 542
}

543
#ifdef CONFIG_MEMCG
544 545 546 547
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
548 549
	unsigned long ret, freed = 0;
	int i;
550

551
	if (!mem_cgroup_online(memcg))
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
571 572 573
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
574 575 576
			continue;
		}

577 578 579 580 581
		/* Call non-slab shrinkers even though kmem is disabled */
		if (!memcg_kmem_enabled() &&
		    !(shrinker->flags & SHRINKER_NONSLAB))
			continue;

582
		ret = do_shrink_slab(&sc, shrinker, priority);
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
607 608 609 610 611 612 613 614 615 616 617
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
618
#else /* CONFIG_MEMCG */
619 620 621 622 623
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
624
#endif /* CONFIG_MEMCG */
625

626
/**
627
 * shrink_slab - shrink slab caches
628 629
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
630
 * @memcg: memory cgroup whose slab caches to target
631
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
632
 *
633
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
634
 *
635 636
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
637
 *
638 639
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
640
 *
641 642
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
643
 *
644
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
645
 */
646 647
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
648
				 int priority)
L
Linus Torvalds 已提交
649
{
650
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
651 652
	struct shrinker *shrinker;

653 654 655 656 657 658 659 660
	/*
	 * The root memcg might be allocated even though memcg is disabled
	 * via "cgroup_disable=memory" boot parameter.  This could make
	 * mem_cgroup_is_root() return false, then just run memcg slab
	 * shrink, but skip global shrink.  This may result in premature
	 * oom.
	 */
	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
661
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
662

663
	if (!down_read_trylock(&shrinker_rwsem))
664
		goto out;
L
Linus Torvalds 已提交
665 666

	list_for_each_entry(shrinker, &shrinker_list, list) {
667 668 669
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
670
			.memcg = memcg,
671
		};
672

673 674 675 676
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
677 678 679 680 681 682 683 684 685
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
686
	}
687

L
Linus Torvalds 已提交
688
	up_read(&shrinker_rwsem);
689 690
out:
	cond_resched();
D
Dave Chinner 已提交
691
	return freed;
L
Linus Torvalds 已提交
692 693
}

694 695 696 697 698 699 700 701
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
702
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
703
		do {
704
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
705 706 707 708 709 710 711 712 713 714 715 716
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
717 718
static inline int is_page_cache_freeable(struct page *page)
{
719 720
	/*
	 * A freeable page cache page is referenced only by the caller
721 722
	 * that isolated the page, the page cache and optional buffer
	 * heads at page->private.
723
	 */
724
	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
725
		HPAGE_PMD_NR : 1;
726
	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
L
Linus Torvalds 已提交
727 728
}

729
static int may_write_to_inode(struct inode *inode)
L
Linus Torvalds 已提交
730
{
731
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
732
		return 1;
733
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
734
		return 1;
735
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
755
	lock_page(page);
756 757
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
758 759 760
	unlock_page(page);
}

761 762 763 764 765 766 767 768 769 770 771 772
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
773
/*
A
Andrew Morton 已提交
774 775
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
776
 */
777
static pageout_t pageout(struct page *page, struct address_space *mapping)
L
Linus Torvalds 已提交
778 779 780 781 782 783 784 785
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
786
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
802
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
803 804
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
805
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
806 807 808 809 810 811 812
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
813
	if (!may_write_to_inode(mapping->host))
L
Linus Torvalds 已提交
814 815 816 817 818 819 820
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
821 822
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
823 824 825 826 827 828 829
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
830
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
831 832 833
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
834

L
Linus Torvalds 已提交
835 836 837 838
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
839
		trace_mm_vmscan_writepage(page);
840
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
841 842 843 844 845 846
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

847
/*
N
Nick Piggin 已提交
848 849
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
850
 */
851
static int __remove_mapping(struct address_space *mapping, struct page *page,
852
			    bool reclaimed, struct mem_cgroup *target_memcg)
853
{
854
	unsigned long flags;
855
	int refcount;
856

857 858
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
859

M
Matthew Wilcox 已提交
860
	xa_lock_irqsave(&mapping->i_pages, flags);
861
	/*
N
Nick Piggin 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
881
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
882 883
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
884
	 * and thus under the i_pages lock, then this ordering is not required.
885
	 */
886
	refcount = 1 + compound_nr(page);
887
	if (!page_ref_freeze(page, refcount))
888
		goto cannot_free;
889
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
890
	if (unlikely(PageDirty(page))) {
891
		page_ref_unfreeze(page, refcount);
892
		goto cannot_free;
N
Nick Piggin 已提交
893
	}
894 895 896

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
897
		mem_cgroup_swapout(page, swap);
898
		__delete_from_swap_cache(page, swap);
M
Matthew Wilcox 已提交
899
		xa_unlock_irqrestore(&mapping->i_pages, flags);
900
		put_swap_page(page, swap);
N
Nick Piggin 已提交
901
	} else {
902
		void (*freepage)(struct page *);
903
		void *shadow = NULL;
904 905

		freepage = mapping->a_ops->freepage;
906 907 908 909 910 911 912 913 914
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
915 916 917 918 919
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
920
		 * same address_space.
921 922
		 */
		if (reclaimed && page_is_file_cache(page) &&
923
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
924
			shadow = workingset_eviction(page, target_memcg);
J
Johannes Weiner 已提交
925
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
926
		xa_unlock_irqrestore(&mapping->i_pages, flags);
927 928 929

		if (freepage != NULL)
			freepage(page);
930 931 932 933 934
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
935
	xa_unlock_irqrestore(&mapping->i_pages, flags);
936 937 938
	return 0;
}

N
Nick Piggin 已提交
939 940 941 942 943 944 945 946
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
947
	if (__remove_mapping(mapping, page, false, NULL)) {
N
Nick Piggin 已提交
948 949 950 951 952
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
953
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
954 955 956 957 958
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
959 960 961 962 963 964 965 966 967 968 969
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
970
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
971 972 973
	put_page(page);		/* drop ref from isolate */
}

974 975 976
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
977
	PAGEREF_KEEP,
978 979 980 981 982 983
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
984
	int referenced_ptes, referenced_page;
985 986
	unsigned long vm_flags;

987 988
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
989
	referenced_page = TestClearPageReferenced(page);
990 991 992 993 994 995 996 997

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

998
	if (referenced_ptes) {
999
		if (PageSwapBacked(page))
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1017
		if (referenced_page || referenced_ptes > 1)
1018 1019
			return PAGEREF_ACTIVATE;

1020 1021 1022 1023 1024 1025
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1026 1027
		return PAGEREF_KEEP;
	}
1028 1029

	/* Reclaim if clean, defer dirty pages to writeback */
1030
	if (referenced_page && !PageSwapBacked(page))
1031 1032 1033
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1034 1035
}

1036 1037 1038 1039
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1040 1041
	struct address_space *mapping;

1042 1043 1044 1045
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1046 1047
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1048 1049 1050 1051 1052 1053 1054 1055
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1056 1057 1058 1059 1060 1061 1062 1063

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1064 1065
}

L
Linus Torvalds 已提交
1066
/*
A
Andrew Morton 已提交
1067
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1068
 */
A
Andrew Morton 已提交
1069
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1070
				      struct pglist_data *pgdat,
1071
				      struct scan_control *sc,
1072
				      enum ttu_flags ttu_flags,
1073
				      struct reclaim_stat *stat,
1074
				      bool ignore_references)
L
Linus Torvalds 已提交
1075 1076
{
	LIST_HEAD(ret_pages);
1077
	LIST_HEAD(free_pages);
1078
	unsigned nr_reclaimed = 0;
1079
	unsigned pgactivate = 0;
L
Linus Torvalds 已提交
1080

1081
	memset(stat, 0, sizeof(*stat));
L
Linus Torvalds 已提交
1082 1083 1084 1085 1086 1087
	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1088
		enum page_references references = PAGEREF_RECLAIM;
1089
		bool dirty, writeback;
1090
		unsigned int nr_pages;
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1097
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1098 1099
			goto keep;

1100
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1101

1102
		nr_pages = compound_nr(page);
1103 1104 1105

		/* Account the number of base pages even though THP */
		sc->nr_scanned += nr_pages;
1106

1107
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1108
			goto activate_locked;
L
Lee Schermerhorn 已提交
1109

1110
		if (!sc->may_unmap && page_mapped(page))
1111 1112
			goto keep_locked;

1113 1114 1115
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1116
		/*
1117
		 * The number of dirty pages determines if a node is marked
1118 1119 1120 1121 1122 1123
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
1124
			stat->nr_dirty++;
1125 1126

		if (dirty && !writeback)
1127
			stat->nr_unqueued_dirty++;
1128

1129 1130 1131 1132 1133 1134
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1135
		mapping = page_mapping(page);
1136
		if (((dirty || writeback) && mapping &&
1137
		     inode_write_congested(mapping->host)) ||
1138
		    (writeback && PageReclaim(page)))
1139
			stat->nr_congested++;
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1152 1153
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1154
		 *
1155
		 * 2) Global or new memcg reclaim encounters a page that is
1156 1157 1158
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1159
		 *    reclaim and continue scanning.
1160
		 *
1161 1162
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1163 1164 1165 1166 1167
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1168
		 * 3) Legacy memcg encounters a page that is already marked
1169 1170 1171 1172
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1173 1174 1175 1176 1177 1178 1179 1180 1181
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1182
		 */
1183
		if (PageWriteback(page)) {
1184 1185 1186
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1187
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1188
				stat->nr_immediate++;
1189
				goto activate_locked;
1190 1191

			/* Case 2 above */
1192
			} else if (writeback_throttling_sane(sc) ||
1193
			    !PageReclaim(page) || !may_enter_fs) {
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1206
				stat->nr_writeback++;
1207
				goto activate_locked;
1208 1209 1210

			/* Case 3 above */
			} else {
1211
				unlock_page(page);
1212
				wait_on_page_writeback(page);
1213 1214 1215
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1216
			}
1217
		}
L
Linus Torvalds 已提交
1218

1219
		if (!ignore_references)
1220 1221
			references = page_check_references(page, sc);

1222 1223
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1224
			goto activate_locked;
1225
		case PAGEREF_KEEP:
1226
			stat->nr_ref_keep += nr_pages;
1227
			goto keep_locked;
1228 1229 1230 1231
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1232 1233 1234 1235

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1236
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1237
		 */
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
1258
						goto activate_locked_split;
1259 1260 1261 1262
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1263 1264 1265
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1266
					if (!add_to_swap(page))
1267
						goto activate_locked_split;
1268
				}
1269

1270
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1271

1272 1273 1274
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1275 1276 1277 1278
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1279
		}
L
Linus Torvalds 已提交
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
		/*
		 * THP may get split above, need minus tail pages and update
		 * nr_pages to avoid accounting tail pages twice.
		 *
		 * The tail pages that are added into swap cache successfully
		 * reach here.
		 */
		if ((nr_pages > 1) && !PageTransHuge(page)) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}

L
Linus Torvalds 已提交
1293 1294 1295 1296
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1297
		if (page_mapped(page)) {
1298 1299 1300 1301 1302
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1303
				stat->nr_unmap_fail += nr_pages;
L
Linus Torvalds 已提交
1304 1305 1306 1307 1308
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1309
			/*
1310 1311 1312 1313 1314 1315 1316 1317
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1318
			 */
1319
			if (page_is_file_cache(page) &&
1320 1321
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1322 1323 1324 1325 1326 1327
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1328
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1329 1330
				SetPageReclaim(page);

1331
				goto activate_locked;
1332 1333
			}

1334
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1335
				goto keep_locked;
1336
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1337
				goto keep_locked;
1338
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1339 1340
				goto keep_locked;

1341 1342 1343 1344 1345 1346
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1347
			switch (pageout(page, mapping)) {
L
Linus Torvalds 已提交
1348 1349 1350 1351 1352
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1353
				if (PageWriteback(page))
1354
					goto keep;
1355
				if (PageDirty(page))
L
Linus Torvalds 已提交
1356
					goto keep;
1357

L
Linus Torvalds 已提交
1358 1359 1360 1361
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1362
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1382
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1393
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1394 1395
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1412 1413
		}

S
Shaohua Li 已提交
1414 1415 1416 1417 1418 1419 1420 1421
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1422

S
Shaohua Li 已提交
1423
			count_vm_event(PGLAZYFREED);
1424
			count_memcg_page_event(page, PGLAZYFREED);
1425 1426
		} else if (!mapping || !__remove_mapping(mapping, page, true,
							 sc->target_mem_cgroup))
S
Shaohua Li 已提交
1427
			goto keep_locked;
1428 1429

		unlock_page(page);
N
Nick Piggin 已提交
1430
free_it:
1431 1432 1433 1434 1435
		/*
		 * THP may get swapped out in a whole, need account
		 * all base pages.
		 */
		nr_reclaimed += nr_pages;
1436 1437 1438 1439 1440

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1441
		if (unlikely(PageTransHuge(page)))
1442
			(*get_compound_page_dtor(page))(page);
1443
		else
1444
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1445 1446
		continue;

1447 1448 1449 1450 1451 1452 1453 1454 1455
activate_locked_split:
		/*
		 * The tail pages that are failed to add into swap cache
		 * reach here.  Fixup nr_scanned and nr_pages.
		 */
		if (nr_pages > 1) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}
L
Linus Torvalds 已提交
1456
activate_locked:
1457
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1458 1459
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1460
			try_to_free_swap(page);
1461
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1462
		if (!PageMlocked(page)) {
1463
			int type = page_is_file_cache(page);
M
Minchan Kim 已提交
1464
			SetPageActive(page);
1465
			stat->nr_activate[type] += nr_pages;
1466
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1467
		}
L
Linus Torvalds 已提交
1468 1469 1470 1471
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1472
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1473
	}
1474

1475 1476
	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];

1477
	mem_cgroup_uncharge_list(&free_pages);
1478
	try_to_unmap_flush();
1479
	free_unref_page_list(&free_pages);
1480

L
Linus Torvalds 已提交
1481
	list_splice(&ret_pages, page_list);
1482
	count_vm_events(PGACTIVATE, pgactivate);
1483

1484
	return nr_reclaimed;
L
Linus Torvalds 已提交
1485 1486
}

1487 1488 1489 1490 1491 1492 1493 1494
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1495
	struct reclaim_stat dummy_stat;
1496
	unsigned long ret;
1497 1498 1499 1500
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1501
		if (page_is_file_cache(page) && !PageDirty(page) &&
1502
		    !__PageMovable(page) && !PageUnevictable(page)) {
1503 1504 1505 1506 1507
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1508
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1509
			TTU_IGNORE_ACCESS, &dummy_stat, true);
1510
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1511
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1512 1513 1514
	return ret;
}

A
Andy Whitcroft 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1525
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1526 1527 1528 1529 1530 1531 1532
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1533 1534
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1535 1536
		return ret;

A
Andy Whitcroft 已提交
1537
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1538

1539 1540 1541 1542 1543 1544 1545 1546
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1547
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1548 1549 1550 1551 1552 1553
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1554
			bool migrate_dirty;
1555 1556 1557 1558

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1559 1560 1561 1562 1563
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1564
			 */
1565 1566 1567
			if (!trylock_page(page))
				return ret;

1568
			mapping = page_mapping(page);
1569
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1570 1571
			unlock_page(page);
			if (!migrate_dirty)
1572 1573 1574
				return ret;
		}
	}
1575

1576 1577 1578
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1592 1593 1594 1595 1596 1597

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1598
			enum lru_list lru, unsigned long *nr_zone_taken)
1599 1600 1601 1602 1603 1604 1605 1606 1607
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1608
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1609
#endif
1610 1611
	}

1612 1613
}

1614 1615
/**
 * pgdat->lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620 1621 1622 1623
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1624
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1625
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1626
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1627
 * @nr_scanned:	The number of pages that were scanned.
1628
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1629
 * @mode:	One of the LRU isolation modes
1630
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1631 1632 1633
 *
 * returns how many pages were moved onto *@dst.
 */
1634
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1635
		struct lruvec *lruvec, struct list_head *dst,
1636
		unsigned long *nr_scanned, struct scan_control *sc,
1637
		enum lru_list lru)
L
Linus Torvalds 已提交
1638
{
H
Hugh Dickins 已提交
1639
	struct list_head *src = &lruvec->lists[lru];
1640
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1641
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1642
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1643
	unsigned long skipped = 0;
1644
	unsigned long scan, total_scan, nr_pages;
1645
	LIST_HEAD(pages_skipped);
1646
	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
L
Linus Torvalds 已提交
1647

1648
	total_scan = 0;
1649
	scan = 0;
1650
	while (scan < nr_to_scan && !list_empty(src)) {
A
Andy Whitcroft 已提交
1651 1652
		struct page *page;

L
Linus Torvalds 已提交
1653 1654 1655
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1656
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1657

1658
		nr_pages = compound_nr(page);
1659 1660
		total_scan += nr_pages;

1661 1662
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1663
			nr_skipped[page_zonenum(page)] += nr_pages;
1664 1665 1666
			continue;
		}

1667 1668 1669 1670 1671
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
1672 1673 1674 1675
		 *
		 * Account all tail pages of THP.  This would not cause
		 * premature OOM since __isolate_lru_page() returns -EBUSY
		 * only when the page is being freed somewhere else.
1676
		 */
1677
		scan += nr_pages;
1678
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1679
		case 0:
M
Mel Gorman 已提交
1680 1681
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1682 1683 1684 1685 1686 1687 1688
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1689

A
Andy Whitcroft 已提交
1690 1691 1692
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1693 1694
	}

1695 1696 1697 1698 1699 1700 1701
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1702 1703 1704
	if (!list_empty(&pages_skipped)) {
		int zid;

1705
		list_splice(&pages_skipped, src);
1706 1707 1708 1709 1710
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1711
			skipped += nr_skipped[zid];
1712 1713
		}
	}
1714
	*nr_scanned = total_scan;
1715
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1716
				    total_scan, skipped, nr_taken, mode, lru);
1717
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1718 1719 1720
	return nr_taken;
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1732 1733 1734
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1735 1736 1737 1738 1739
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1740
 *
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1751
	VM_BUG_ON_PAGE(!page_count(page), page);
1752
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1753

1754
	if (PageLRU(page)) {
1755
		pg_data_t *pgdat = page_pgdat(page);
1756
		struct lruvec *lruvec;
1757

1758 1759
		spin_lock_irq(&pgdat->lru_lock);
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1760
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1761
			int lru = page_lru(page);
1762
			get_page(page);
1763
			ClearPageLRU(page);
1764 1765
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1766
		}
1767
		spin_unlock_irq(&pgdat->lru_lock);
1768 1769 1770 1771
	}
	return ret;
}

1772
/*
F
Fengguang Wu 已提交
1773
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
X
Xianting Tian 已提交
1774
 * then get rescheduled. When there are massive number of tasks doing page
F
Fengguang Wu 已提交
1775 1776 1777
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1778
 */
M
Mel Gorman 已提交
1779
static int too_many_isolated(struct pglist_data *pgdat, int file,
1780 1781 1782 1783 1784 1785 1786
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1787
	if (!writeback_throttling_sane(sc))
1788 1789 1790
		return 0;

	if (file) {
M
Mel Gorman 已提交
1791 1792
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1793
	} else {
M
Mel Gorman 已提交
1794 1795
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1796 1797
	}

1798 1799 1800 1801 1802
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1803
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1804 1805
		inactive >>= 3;

1806 1807 1808
	return isolated > inactive;
}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
/*
 * This moves pages from @list to corresponding LRU list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone_lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone_lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_refcount against each page.
 * But we had to alter page->flags anyway.
 *
 * Returns the number of pages moved to the given lruvec.
 */

static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
						     struct list_head *list)
1831
{
M
Mel Gorman 已提交
1832
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1833
	int nr_pages, nr_moved = 0;
1834
	LIST_HEAD(pages_to_free);
1835 1836
	struct page *page;
	enum lru_list lru;
1837

1838 1839
	while (!list_empty(list)) {
		page = lru_to_page(list);
1840
		VM_BUG_ON_PAGE(PageLRU(page), page);
1841
		if (unlikely(!page_evictable(page))) {
1842
			list_del(&page->lru);
M
Mel Gorman 已提交
1843
			spin_unlock_irq(&pgdat->lru_lock);
1844
			putback_lru_page(page);
M
Mel Gorman 已提交
1845
			spin_lock_irq(&pgdat->lru_lock);
1846 1847
			continue;
		}
M
Mel Gorman 已提交
1848
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1849

1850
		SetPageLRU(page);
1851
		lru = page_lru(page);
1852 1853 1854 1855

		nr_pages = hpage_nr_pages(page);
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
		list_move(&page->lru, &lruvec->lists[lru]);
1856

1857 1858 1859
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1860
			del_page_from_lru_list(page, lruvec, lru);
1861 1862

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1863
				spin_unlock_irq(&pgdat->lru_lock);
1864
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1865
				spin_lock_irq(&pgdat->lru_lock);
1866 1867
			} else
				list_add(&page->lru, &pages_to_free);
1868 1869
		} else {
			nr_moved += nr_pages;
1870 1871 1872
		}
	}

1873 1874 1875
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
1876 1877 1878
	list_splice(&pages_to_free, list);

	return nr_moved;
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1894
/*
1895
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1896
 * of reclaimed pages
L
Linus Torvalds 已提交
1897
 */
1898
static noinline_for_stack unsigned long
1899
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1900
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1901 1902
{
	LIST_HEAD(page_list);
1903
	unsigned long nr_scanned;
1904
	unsigned long nr_reclaimed = 0;
1905
	unsigned long nr_taken;
1906
	struct reclaim_stat stat;
1907
	int file = is_file_lru(lru);
1908
	enum vm_event_item item;
M
Mel Gorman 已提交
1909
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1910
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1911
	bool stalled = false;
1912

M
Mel Gorman 已提交
1913
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1914 1915 1916 1917 1918 1919
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1920 1921 1922 1923 1924 1925

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1926
	lru_add_drain();
1927

M
Mel Gorman 已提交
1928
	spin_lock_irq(&pgdat->lru_lock);
1929

1930
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1931
				     &nr_scanned, sc, lru);
1932

M
Mel Gorman 已提交
1933
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1934
	reclaim_stat->recent_scanned[file] += nr_taken;
1935

1936
	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1937
	if (!cgroup_reclaim(sc))
1938 1939
		__count_vm_events(item, nr_scanned);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
M
Mel Gorman 已提交
1940
	spin_unlock_irq(&pgdat->lru_lock);
1941

1942
	if (nr_taken == 0)
1943
		return 0;
A
Andy Whitcroft 已提交
1944

S
Shaohua Li 已提交
1945
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1946
				&stat, false);
1947

M
Mel Gorman 已提交
1948
	spin_lock_irq(&pgdat->lru_lock);
1949

1950
	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1951
	if (!cgroup_reclaim(sc))
1952 1953
		__count_vm_events(item, nr_reclaimed);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1954 1955
	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
N
Nick Piggin 已提交
1956

1957
	move_pages_to_lru(lruvec, &page_list);
1958

M
Mel Gorman 已提交
1959
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1960

M
Mel Gorman 已提交
1961
	spin_unlock_irq(&pgdat->lru_lock);
1962

1963
	mem_cgroup_uncharge_list(&page_list);
1964
	free_unref_page_list(&page_list);
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1980 1981 1982 1983 1984 1985 1986 1987
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
1988

M
Mel Gorman 已提交
1989
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1990
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1991
	return nr_reclaimed;
L
Linus Torvalds 已提交
1992 1993
}

H
Hugh Dickins 已提交
1994
static void shrink_active_list(unsigned long nr_to_scan,
1995
			       struct lruvec *lruvec,
1996
			       struct scan_control *sc,
1997
			       enum lru_list lru)
L
Linus Torvalds 已提交
1998
{
1999
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2000
	unsigned long nr_scanned;
2001
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2002
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2003
	LIST_HEAD(l_active);
2004
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2005
	struct page *page;
2006
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2007 2008
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2009
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2010
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2011 2012

	lru_add_drain();
2013

M
Mel Gorman 已提交
2014
	spin_lock_irq(&pgdat->lru_lock);
2015

2016
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2017
				     &nr_scanned, sc, lru);
2018

M
Mel Gorman 已提交
2019
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2020
	reclaim_stat->recent_scanned[file] += nr_taken;
2021

M
Mel Gorman 已提交
2022
	__count_vm_events(PGREFILL, nr_scanned);
2023
	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2024

M
Mel Gorman 已提交
2025
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2026 2027 2028 2029 2030

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2031

2032
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2033 2034 2035 2036
			putback_lru_page(page);
			continue;
		}

2037 2038 2039 2040 2041 2042 2043 2044
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2045 2046
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2047
			nr_rotated += hpage_nr_pages(page);
2048 2049 2050 2051 2052 2053 2054 2055 2056
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2057
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2058 2059 2060 2061
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2062

2063
		ClearPageActive(page);	/* we are de-activating */
2064
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2065 2066 2067
		list_add(&page->lru, &l_inactive);
	}

2068
	/*
2069
	 * Move pages back to the lru list.
2070
	 */
M
Mel Gorman 已提交
2071
	spin_lock_irq(&pgdat->lru_lock);
2072
	/*
2073 2074 2075
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2076
	 * get_scan_count.
2077
	 */
2078
	reclaim_stat->recent_rotated[file] += nr_rotated;
2079

2080 2081
	nr_activate = move_pages_to_lru(lruvec, &l_active);
	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2082 2083
	/* Keep all free pages in l_active list */
	list_splice(&l_inactive, &l_active);
2084 2085 2086 2087

	__count_vm_events(PGDEACTIVATE, nr_deactivate);
	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);

M
Mel Gorman 已提交
2088 2089
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2090

2091 2092
	mem_cgroup_uncharge_list(&l_active);
	free_unref_page_list(&l_active);
2093 2094
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2095 2096
}

M
Minchan Kim 已提交
2097 2098
unsigned long reclaim_pages(struct list_head *page_list)
{
2099
	int nid = NUMA_NO_NODE;
M
Minchan Kim 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	unsigned long nr_reclaimed = 0;
	LIST_HEAD(node_page_list);
	struct reclaim_stat dummy_stat;
	struct page *page;
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_writepage = 1,
		.may_unmap = 1,
		.may_swap = 1,
	};

	while (!list_empty(page_list)) {
		page = lru_to_page(page_list);
2114
		if (nid == NUMA_NO_NODE) {
M
Minchan Kim 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
			nid = page_to_nid(page);
			INIT_LIST_HEAD(&node_page_list);
		}

		if (nid == page_to_nid(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &node_page_list);
			continue;
		}

		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}

2135
		nid = NUMA_NO_NODE;
M
Minchan Kim 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	}

	if (!list_empty(&node_page_list)) {
		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}
	}

	return nr_reclaimed;
}

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
				 struct lruvec *lruvec, struct scan_control *sc)
{
	if (is_active_lru(lru)) {
		if (sc->may_deactivate & (1 << is_file_lru(lru)))
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
		else
			sc->skipped_deactivate = 1;
		return 0;
	}

	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
}

2167 2168 2169
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2170
 *
2171 2172 2173
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2174
 *
2175 2176
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2177
 *
2178 2179
 * If that fails and refaulting is observed, the inactive list grows.
 *
2180
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2181
 * on this LRU, maintained by the pageout code. An inactive_ratio
2182
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2183
 *
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2194
 */
2195
static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2196
{
2197
	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2198 2199
	unsigned long inactive, active;
	unsigned long inactive_ratio;
2200
	unsigned long gb;
2201

2202 2203
	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2204

2205 2206 2207 2208 2209
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;
2210

2211
	return inactive * inactive_ratio < active;
2212 2213
}

2214 2215 2216 2217 2218 2219 2220
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2221 2222 2223 2224 2225 2226
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2227 2228
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2229
 */
2230 2231
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
			   unsigned long *nr)
2232
{
2233
	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2234
	int swappiness = mem_cgroup_swappiness(memcg);
2235 2236 2237
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2238
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2239
	unsigned long anon_prio, file_prio;
2240
	enum scan_balance scan_balance;
2241
	unsigned long anon, file;
2242
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2243
	enum lru_list lru;
2244 2245

	/* If we have no swap space, do not bother scanning anon pages. */
2246
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2247
		scan_balance = SCAN_FILE;
2248 2249
		goto out;
	}
2250

2251 2252 2253 2254 2255 2256 2257
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2258
	if (cgroup_reclaim(sc) && !swappiness) {
2259
		scan_balance = SCAN_FILE;
2260 2261 2262 2263 2264 2265 2266 2267
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2268
	if (!sc->priority && swappiness) {
2269
		scan_balance = SCAN_EQUAL;
2270 2271 2272
		goto out;
	}

2273
	/*
2274
	 * If the system is almost out of file pages, force-scan anon.
2275
	 */
2276
	if (sc->file_is_tiny) {
2277 2278
		scan_balance = SCAN_ANON;
		goto out;
2279 2280
	}

2281
	/*
2282 2283
	 * If there is enough inactive page cache, we do not reclaim
	 * anything from the anonymous working right now.
2284
	 */
2285
	if (sc->cache_trim_mode) {
2286
		scan_balance = SCAN_FILE;
2287 2288 2289
		goto out;
	}

2290 2291
	scan_balance = SCAN_FRACT;

2292 2293 2294 2295
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2296
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2297
	file_prio = 200 - anon_prio;
2298

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2310

2311 2312 2313 2314
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2315

M
Mel Gorman 已提交
2316
	spin_lock_irq(&pgdat->lru_lock);
2317 2318 2319
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2320 2321
	}

2322 2323 2324
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2325 2326 2327
	}

	/*
2328 2329 2330
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2331
	 */
2332
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2333
	ap /= reclaim_stat->recent_rotated[0] + 1;
2334

2335
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2336
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2337
	spin_unlock_irq(&pgdat->lru_lock);
2338

2339 2340 2341 2342
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2343 2344
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
2345
		unsigned long lruvec_size;
2346
		unsigned long scan;
2347
		unsigned long protection;
2348 2349

		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2350 2351
		protection = mem_cgroup_protection(memcg,
						   sc->memcg_low_reclaim);
2352

2353
		if (protection) {
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
			/*
			 * Scale a cgroup's reclaim pressure by proportioning
			 * its current usage to its memory.low or memory.min
			 * setting.
			 *
			 * This is important, as otherwise scanning aggression
			 * becomes extremely binary -- from nothing as we
			 * approach the memory protection threshold, to totally
			 * nominal as we exceed it.  This results in requiring
			 * setting extremely liberal protection thresholds. It
			 * also means we simply get no protection at all if we
			 * set it too low, which is not ideal.
2366 2367 2368 2369
			 *
			 * If there is any protection in place, we reduce scan
			 * pressure by how much of the total memory used is
			 * within protection thresholds.
2370
			 *
2371 2372 2373 2374 2375 2376 2377 2378
			 * There is one special case: in the first reclaim pass,
			 * we skip over all groups that are within their low
			 * protection. If that fails to reclaim enough pages to
			 * satisfy the reclaim goal, we come back and override
			 * the best-effort low protection. However, we still
			 * ideally want to honor how well-behaved groups are in
			 * that case instead of simply punishing them all
			 * equally. As such, we reclaim them based on how much
2379 2380 2381
			 * memory they are using, reducing the scan pressure
			 * again by how much of the total memory used is under
			 * hard protection.
2382
			 */
2383 2384 2385 2386 2387 2388 2389
			unsigned long cgroup_size = mem_cgroup_size(memcg);

			/* Avoid TOCTOU with earlier protection check */
			cgroup_size = max(cgroup_size, protection);

			scan = lruvec_size - lruvec_size * protection /
				cgroup_size;
2390 2391

			/*
2392
			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2393 2394
			 * reclaim moving forwards, avoiding decremeting
			 * sc->priority further than desirable.
2395
			 */
2396
			scan = max(scan, SWAP_CLUSTER_MAX);
2397 2398 2399 2400 2401
		} else {
			scan = lruvec_size;
		}

		scan >>= sc->priority;
2402

2403 2404 2405 2406 2407
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
2408
			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2409

2410 2411 2412 2413 2414
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2415
			/*
2416 2417
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2418 2419 2420
			 * Make sure we don't miss the last page on
			 * the offlined memory cgroups because of a
			 * round-off error.
2421
			 */
2422 2423 2424
			scan = mem_cgroup_online(memcg) ?
			       div64_u64(scan * fraction[file], denominator) :
			       DIV64_U64_ROUND_UP(scan * fraction[file],
2425
						  denominator);
2426 2427 2428 2429 2430
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
2431
				lruvec_size = 0;
2432 2433 2434 2435 2436 2437
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2438
		}
2439 2440

		nr[lru] = scan;
2441
	}
2442
}
2443

2444
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2445 2446
{
	unsigned long nr[NR_LRU_LISTS];
2447
	unsigned long targets[NR_LRU_LISTS];
2448 2449 2450 2451 2452
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2453
	bool scan_adjusted;
2454

2455
	get_scan_count(lruvec, sc, nr);
2456

2457 2458 2459
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
2471
	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2472 2473
			 sc->priority == DEF_PRIORITY);

2474 2475 2476
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2477 2478 2479
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2480 2481 2482 2483 2484 2485
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2486
							    lruvec, sc);
2487 2488
			}
		}
2489

2490 2491
		cond_resched();

2492 2493 2494 2495 2496
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2497
		 * requested. Ensure that the anon and file LRUs are scanned
2498 2499 2500 2501 2502 2503 2504
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2505 2506 2507 2508 2509 2510 2511 2512 2513
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2545 2546 2547 2548 2549 2550 2551 2552
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2553
	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2554 2555 2556 2557
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2558
/* Use reclaim/compaction for costly allocs or under memory pressure */
2559
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2560
{
2561
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2562
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2563
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2564 2565 2566 2567 2568
		return true;

	return false;
}

2569
/*
M
Mel Gorman 已提交
2570 2571 2572 2573 2574
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2575
 */
2576
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2577 2578 2579 2580 2581
					unsigned long nr_reclaimed,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2582
	int z;
2583 2584

	/* If not in reclaim/compaction mode, stop */
2585
	if (!in_reclaim_compaction(sc))
2586 2587
		return false;

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	/*
	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
	 * number of pages that were scanned. This will return to the caller
	 * with the risk reclaim/compaction and the resulting allocation attempt
	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
	 * allocations through requiring that the full LRU list has been scanned
	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
	 * scan, but that approximation was wrong, and there were corner cases
	 * where always a non-zero amount of pages were scanned.
	 */
	if (!nr_reclaimed)
		return false;
2600 2601

	/* If compaction would go ahead or the allocation would succeed, stop */
2602 2603
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2604
		if (!managed_zone(zone))
2605 2606 2607
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2608
		case COMPACT_SUCCESS:
2609 2610 2611 2612 2613 2614
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2615
	}
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = compact_gap(sc->order);
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);

2626
	return inactive_lru_pages > pages_for_compaction;
2627 2628
}

2629
static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2630
{
2631
	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2632
	struct mem_cgroup *memcg;
L
Linus Torvalds 已提交
2633

2634
	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2635
	do {
2636
		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2637 2638
		unsigned long reclaimed;
		unsigned long scanned;
2639

2640
		switch (mem_cgroup_protected(target_memcg, memcg)) {
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
		case MEMCG_PROT_MIN:
			/*
			 * Hard protection.
			 * If there is no reclaimable memory, OOM.
			 */
			continue;
		case MEMCG_PROT_LOW:
			/*
			 * Soft protection.
			 * Respect the protection only as long as
			 * there is an unprotected supply
			 * of reclaimable memory from other cgroups.
			 */
			if (!sc->memcg_low_reclaim) {
				sc->memcg_low_skipped = 1;
R
Roman Gushchin 已提交
2656
				continue;
2657
			}
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
			memcg_memory_event(memcg, MEMCG_LOW);
			break;
		case MEMCG_PROT_NONE:
			/*
			 * All protection thresholds breached. We may
			 * still choose to vary the scan pressure
			 * applied based on by how much the cgroup in
			 * question has exceeded its protection
			 * thresholds (see get_scan_count).
			 */
			break;
		}
2670

2671 2672
		reclaimed = sc->nr_reclaimed;
		scanned = sc->nr_scanned;
2673 2674

		shrink_lruvec(lruvec, sc);
2675

2676 2677
		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
			    sc->priority);
2678

2679 2680 2681 2682
		/* Record the group's reclaim efficiency */
		vmpressure(sc->gfp_mask, memcg, false,
			   sc->nr_scanned - scanned,
			   sc->nr_reclaimed - reclaimed);
2683

2684 2685 2686
	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
}

2687
static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2688 2689 2690
{
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long nr_reclaimed, nr_scanned;
2691
	struct lruvec *target_lruvec;
2692
	bool reclaimable = false;
2693
	unsigned long file;
2694

2695 2696
	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);

2697 2698 2699 2700 2701 2702
again:
	memset(&sc->nr, 0, sizeof(sc->nr));

	nr_reclaimed = sc->nr_reclaimed;
	nr_scanned = sc->nr_scanned;

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	/*
	 * Target desirable inactive:active list ratios for the anon
	 * and file LRU lists.
	 */
	if (!sc->force_deactivate) {
		unsigned long refaults;

		if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
			sc->may_deactivate |= DEACTIVATE_ANON;
		else
			sc->may_deactivate &= ~DEACTIVATE_ANON;

		/*
		 * When refaults are being observed, it means a new
		 * workingset is being established. Deactivate to get
		 * rid of any stale active pages quickly.
		 */
		refaults = lruvec_page_state(target_lruvec,
					     WORKINGSET_ACTIVATE);
		if (refaults != target_lruvec->refaults ||
		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
			sc->may_deactivate |= DEACTIVATE_FILE;
		else
			sc->may_deactivate &= ~DEACTIVATE_FILE;
	} else
		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;

	/*
	 * If we have plenty of inactive file pages that aren't
	 * thrashing, try to reclaim those first before touching
	 * anonymous pages.
	 */
	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
		sc->cache_trim_mode = 1;
	else
		sc->cache_trim_mode = 0;

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (!cgroup_reclaim(sc)) {
		unsigned long total_high_wmark = 0;
2752 2753
		unsigned long free, anon;
		int z;
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766

		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
			if (!managed_zone(zone))
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
		/*
		 * Consider anon: if that's low too, this isn't a
		 * runaway file reclaim problem, but rather just
		 * extreme pressure. Reclaim as per usual then.
		 */
		anon = node_page_state(pgdat, NR_INACTIVE_ANON);

		sc->file_is_tiny =
			file + free <= total_high_wmark &&
			!(sc->may_deactivate & DEACTIVATE_ANON) &&
			anon >> sc->priority;
2778 2779
	}

2780
	shrink_node_memcgs(pgdat, sc);
2781

2782 2783 2784 2785
	if (reclaim_state) {
		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
		reclaim_state->reclaimed_slab = 0;
	}
2786

2787
	/* Record the subtree's reclaim efficiency */
2788
	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2789 2790
		   sc->nr_scanned - nr_scanned,
		   sc->nr_reclaimed - nr_reclaimed);
2791

2792 2793
	if (sc->nr_reclaimed - nr_reclaimed)
		reclaimable = true;
2794

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	if (current_is_kswapd()) {
		/*
		 * If reclaim is isolating dirty pages under writeback,
		 * it implies that the long-lived page allocation rate
		 * is exceeding the page laundering rate. Either the
		 * global limits are not being effective at throttling
		 * processes due to the page distribution throughout
		 * zones or there is heavy usage of a slow backing
		 * device. The only option is to throttle from reclaim
		 * context which is not ideal as there is no guarantee
		 * the dirtying process is throttled in the same way
		 * balance_dirty_pages() manages.
		 *
		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
		 * count the number of pages under pages flagged for
		 * immediate reclaim and stall if any are encountered
		 * in the nr_immediate check below.
		 */
		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2815

2816 2817 2818
		/* Allow kswapd to start writing pages during reclaim.*/
		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
			set_bit(PGDAT_DIRTY, &pgdat->flags);
2819

2820
		/*
2821 2822 2823 2824
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU
		 * faster than they are written so also forcibly stall.
2825
		 */
2826 2827 2828 2829 2830
		if (sc->nr.immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
	}

	/*
2831 2832 2833 2834
	 * Tag a node/memcg as congested if all the dirty pages
	 * scanned were backed by a congested BDI and
	 * wait_iff_congested will stall.
	 *
2835 2836 2837
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling in wait_iff_congested().
	 */
2838 2839
	if ((current_is_kswapd() ||
	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2840
	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2841
		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2842 2843 2844 2845 2846 2847 2848

	/*
	 * Stall direct reclaim for IO completions if underlying BDIs
	 * and node is congested. Allow kswapd to continue until it
	 * starts encountering unqueued dirty pages or cycling through
	 * the LRU too quickly.
	 */
2849 2850 2851
	if (!current_is_kswapd() && current_may_throttle() &&
	    !sc->hibernation_mode &&
	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2852
		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2853

2854 2855 2856
	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
				    sc))
		goto again;
2857

2858 2859 2860 2861 2862 2863 2864 2865
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;
2866 2867
}

2868
/*
2869 2870 2871
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2872
 */
2873
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2874
{
M
Mel Gorman 已提交
2875
	unsigned long watermark;
2876
	enum compact_result suitable;
2877

2878 2879 2880 2881 2882 2883 2884
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2885

2886
	/*
2887 2888 2889 2890 2891 2892 2893
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2894
	 */
2895
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2896

2897
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2898 2899
}

L
Linus Torvalds 已提交
2900 2901 2902 2903 2904 2905 2906 2907
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2908
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2909
{
2910
	struct zoneref *z;
2911
	struct zone *zone;
2912 2913
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2914
	gfp_t orig_mask;
2915
	pg_data_t *last_pgdat = NULL;
2916

2917 2918 2919 2920 2921
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2922
	orig_mask = sc->gfp_mask;
2923
	if (buffer_heads_over_limit) {
2924
		sc->gfp_mask |= __GFP_HIGHMEM;
2925
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2926
	}
2927

2928
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2929
					sc->reclaim_idx, sc->nodemask) {
2930 2931 2932 2933
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2934
		if (!cgroup_reclaim(sc)) {
2935 2936
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2937
				continue;
2938

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2950
			    compaction_ready(zone, sc)) {
2951 2952
				sc->compaction_ready = true;
				continue;
2953
			}
2954

2955 2956 2957 2958 2959 2960 2961 2962 2963
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2964 2965 2966 2967 2968 2969 2970
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2971
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2972 2973 2974 2975
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2976
			/* need some check for avoid more shrink_zone() */
2977
		}
2978

2979 2980 2981 2982
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2983
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2984
	}
2985

2986 2987 2988 2989 2990
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2991
}
2992

2993
static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2994
{
2995 2996
	struct lruvec *target_lruvec;
	unsigned long refaults;
2997

2998 2999 3000
	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
	target_lruvec->refaults = refaults;
3001 3002
}

L
Linus Torvalds 已提交
3003 3004 3005 3006 3007 3008 3009 3010
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3011 3012 3013 3014
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3015 3016 3017
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3018
 */
3019
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3020
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3021
{
3022
	int initial_priority = sc->priority;
3023 3024 3025
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3026
retry:
3027 3028
	delayacct_freepages_start();

3029
	if (!cgroup_reclaim(sc))
3030
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3031

3032
	do {
3033 3034
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3035
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3036
		shrink_zones(zonelist, sc);
3037

3038
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3039 3040 3041 3042
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3043

3044 3045 3046 3047 3048 3049
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3050
	} while (--sc->priority >= 0);
3051

3052 3053 3054 3055 3056 3057
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
3058

3059
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3060 3061 3062 3063 3064 3065 3066 3067

		if (cgroup_reclaim(sc)) {
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
						   zone->zone_pgdat);
			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
		}
3068 3069
	}

3070 3071
	delayacct_freepages_end();

3072 3073 3074
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3075
	/* Aborted reclaim to try compaction? don't OOM, then */
3076
	if (sc->compaction_ready)
3077 3078
		return 1;

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	/*
	 * We make inactive:active ratio decisions based on the node's
	 * composition of memory, but a restrictive reclaim_idx or a
	 * memory.low cgroup setting can exempt large amounts of
	 * memory from reclaim. Neither of which are very common, so
	 * instead of doing costly eligibility calculations of the
	 * entire cgroup subtree up front, we assume the estimates are
	 * good, and retry with forcible deactivation if that fails.
	 */
	if (sc->skipped_deactivate) {
		sc->priority = initial_priority;
		sc->force_deactivate = 1;
		sc->skipped_deactivate = 0;
		goto retry;
	}

3095
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3096
	if (sc->memcg_low_skipped) {
3097
		sc->priority = initial_priority;
3098 3099
		sc->force_deactivate = 0;
		sc->skipped_deactivate = 0;
3100 3101
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3102 3103 3104
		goto retry;
	}

3105
	return 0;
L
Linus Torvalds 已提交
3106 3107
}

3108
static bool allow_direct_reclaim(pg_data_t *pgdat)
3109 3110 3111 3112 3113 3114 3115
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3116 3117 3118
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3119 3120
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3121 3122 3123 3124
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3125 3126
			continue;

3127 3128 3129 3130
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3131 3132 3133 3134
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3135 3136 3137 3138
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3139 3140 3141
		if (READ_ONCE(pgdat->kswapd_classzone_idx) > ZONE_NORMAL)
			WRITE_ONCE(pgdat->kswapd_classzone_idx, ZONE_NORMAL);

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3152 3153 3154 3155
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3156
 */
3157
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3158 3159
					nodemask_t *nodemask)
{
3160
	struct zoneref *z;
3161
	struct zone *zone;
3162
	pg_data_t *pgdat = NULL;
3163 3164 3165 3166 3167 3168 3169 3170 3171

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3172 3173 3174 3175 3176 3177 3178 3179
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3180

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3196
					gfp_zone(gfp_mask), nodemask) {
3197 3198 3199 3200 3201
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3202
		if (allow_direct_reclaim(pgdat))
3203 3204 3205 3206 3207 3208
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3209
		goto out;
3210

3211 3212 3213
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3224
			allow_direct_reclaim(pgdat), HZ);
3225 3226

		goto check_pending;
3227 3228 3229 3230
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3231
		allow_direct_reclaim(pgdat));
3232 3233 3234 3235 3236 3237 3238

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3239 3240
}

3241
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3242
				gfp_t gfp_mask, nodemask_t *nodemask)
3243
{
3244
	unsigned long nr_reclaimed;
3245
	struct scan_control sc = {
3246
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3247
		.gfp_mask = current_gfp_context(gfp_mask),
3248
		.reclaim_idx = gfp_zone(gfp_mask),
3249 3250 3251
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3252
		.may_writepage = !laptop_mode,
3253
		.may_unmap = 1,
3254
		.may_swap = 1,
3255 3256
	};

G
Greg Thelen 已提交
3257 3258 3259 3260 3261 3262 3263 3264
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3265
	/*
3266 3267 3268
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3269
	 */
3270
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3271 3272
		return 1;

3273
	set_task_reclaim_state(current, &sc.reclaim_state);
3274
	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3275

3276
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3277 3278

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3279
	set_task_reclaim_state(current, NULL);
3280 3281

	return nr_reclaimed;
3282 3283
}

A
Andrew Morton 已提交
3284
#ifdef CONFIG_MEMCG
3285

3286
/* Only used by soft limit reclaim. Do not reuse for anything else. */
3287
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3288
						gfp_t gfp_mask, bool noswap,
3289
						pg_data_t *pgdat,
3290
						unsigned long *nr_scanned)
3291
{
3292
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3293
	struct scan_control sc = {
3294
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3295
		.target_mem_cgroup = memcg,
3296 3297
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3298
		.reclaim_idx = MAX_NR_ZONES - 1,
3299 3300
		.may_swap = !noswap,
	};
3301

3302 3303
	WARN_ON_ONCE(!current->reclaim_state);

3304 3305
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3306

3307
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3308
						      sc.gfp_mask);
3309

3310 3311 3312
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3313
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3314 3315 3316
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3317
	shrink_lruvec(lruvec, &sc);
3318 3319 3320

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3321
	*nr_scanned = sc.nr_scanned;
3322

3323 3324 3325
	return sc.nr_reclaimed;
}

3326
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3327
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3328
					   gfp_t gfp_mask,
3329
					   bool may_swap)
3330
{
3331
	unsigned long nr_reclaimed;
3332
	unsigned long pflags;
3333
	unsigned int noreclaim_flag;
3334
	struct scan_control sc = {
3335
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3336
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3337
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3338
		.reclaim_idx = MAX_NR_ZONES - 1,
3339 3340 3341 3342
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3343
		.may_swap = may_swap,
3344
	};
3345
	/*
3346 3347 3348
	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
	 * equal pressure on all the nodes. This is based on the assumption that
	 * the reclaim does not bail out early.
3349
	 */
3350
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3351

3352
	set_task_reclaim_state(current, &sc.reclaim_state);
3353

3354
	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3355

3356
	psi_memstall_enter(&pflags);
3357
	noreclaim_flag = memalloc_noreclaim_save();
3358

3359
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3360

3361
	memalloc_noreclaim_restore(noreclaim_flag);
3362
	psi_memstall_leave(&pflags);
3363 3364

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3365
	set_task_reclaim_state(current, NULL);
3366 3367

	return nr_reclaimed;
3368 3369 3370
}
#endif

3371
static void age_active_anon(struct pglist_data *pgdat,
3372
				struct scan_control *sc)
3373
{
3374
	struct mem_cgroup *memcg;
3375
	struct lruvec *lruvec;
3376

3377 3378 3379
	if (!total_swap_pages)
		return;

3380 3381 3382 3383
	lruvec = mem_cgroup_lruvec(NULL, pgdat);
	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
		return;

3384 3385
	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3386 3387 3388
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
3389 3390
		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3391 3392
}

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
	 * should not be checked at the time time as reclaim would
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
	for (i = classzone_idx; i >= 0; i--) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3417 3418 3419 3420 3421
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3422
{
3423 3424 3425
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3426

3427 3428 3429 3430
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3431 3432
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3433

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3451 3452
}

3453 3454 3455
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
3456 3457 3458
	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);

	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3459 3460 3461 3462
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3463 3464 3465 3466 3467 3468
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3469
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3470
{
3471
	/*
3472
	 * The throttled processes are normally woken up in balance_pgdat() as
3473
	 * soon as allow_direct_reclaim() is true. But there is a potential
3474 3475 3476 3477 3478 3479 3480 3481 3482
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3483
	 */
3484 3485
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3486

3487 3488 3489 3490
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3491 3492 3493
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3494 3495
	}

3496
	return false;
3497 3498
}

3499
/*
3500 3501
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3502 3503
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3504 3505
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3506
 */
3507
static bool kswapd_shrink_node(pg_data_t *pgdat,
3508
			       struct scan_control *sc)
3509
{
3510 3511
	struct zone *zone;
	int z;
3512

3513 3514
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3515
	for (z = 0; z <= sc->reclaim_idx; z++) {
3516
		zone = pgdat->node_zones + z;
3517
		if (!managed_zone(zone))
3518
			continue;
3519

3520 3521
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3522 3523

	/*
3524 3525
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3526
	 */
3527
	shrink_node(pgdat, sc);
3528

3529
	/*
3530 3531 3532 3533 3534
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3535
	 */
3536
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3537
		sc->order = 0;
3538

3539
	return sc->nr_scanned >= sc->nr_to_reclaim;
3540 3541
}

L
Linus Torvalds 已提交
3542
/*
3543 3544 3545
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3546
 *
3547
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3548 3549
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3550
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
W
Wei Yang 已提交
3551
 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3552 3553
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3554
 */
3555
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3556 3557
{
	int i;
3558 3559
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3560
	unsigned long pflags;
3561 3562 3563
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3564
	struct zone *zone;
3565 3566
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3567
		.order = order,
3568
		.may_unmap = 1,
3569
	};
3570

3571
	set_task_reclaim_state(current, &sc.reclaim_state);
3572
	psi_memstall_enter(&pflags);
3573 3574
	__fs_reclaim_acquire();

3575
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3576

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3595
	do {
3596
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3597
		bool raise_priority = true;
3598
		bool balanced;
3599
		bool ret;
3600

3601
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3602

3603
		/*
3604 3605 3606 3607 3608 3609 3610 3611
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3612 3613 3614 3615
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3616
				if (!managed_zone(zone))
3617
					continue;
3618

3619
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3620
				break;
L
Linus Torvalds 已提交
3621 3622
			}
		}
3623

3624
		/*
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3641
		 */
3642
		if (!nr_boost_reclaim && balanced)
3643
			goto out;
A
Andrew Morton 已提交
3644

3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;

3658 3659 3660 3661 3662 3663
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3664
		age_active_anon(pgdat, &sc);
3665

3666 3667 3668 3669
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3670
		if (sc.priority < DEF_PRIORITY - 2)
3671 3672
			sc.may_writepage = 1;

3673 3674 3675
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3676
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3677 3678 3679
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3680
		/*
3681 3682 3683
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3684
		 */
3685
		if (kswapd_shrink_node(pgdat, &sc))
3686
			raise_priority = false;
3687 3688 3689 3690 3691 3692 3693

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3694
				allow_direct_reclaim(pgdat))
3695
			wake_up_all(&pgdat->pfmemalloc_wait);
3696

3697
		/* Check if kswapd should be suspending */
3698 3699 3700 3701
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3702
			break;
3703

3704
		/*
3705 3706
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3707
		 */
3708
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3719
		if (raise_priority || !nr_reclaimed)
3720
			sc.priority--;
3721
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3722

3723 3724 3725
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3726
out:
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

		for (i = 0; i <= classzone_idx; i++) {
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
	}

3749
	snapshot_refaults(NULL, pgdat);
3750
	__fs_reclaim_release();
3751
	psi_memstall_leave(&pflags);
3752
	set_task_reclaim_state(current, NULL);
3753

3754
	/*
3755 3756 3757 3758
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3759
	 */
3760
	return sc.order;
L
Linus Torvalds 已提交
3761 3762
}

3763
/*
3764 3765 3766 3767 3768
 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
 * after previous reclaim attempt (node is still unbalanced). In that case
 * return the zone index of the previous kswapd reclaim cycle.
3769 3770
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3771
					   enum zone_type prev_classzone_idx)
3772
{
3773 3774 3775
	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);

	return curr_idx == MAX_NR_ZONES ? prev_classzone_idx : curr_idx;
3776 3777
}

3778 3779
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3780 3781 3782 3783 3784 3785 3786 3787 3788
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3789 3790 3791 3792 3793 3794 3795
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3796
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3809
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3810

3811
		remaining = schedule_timeout(HZ/10);
3812 3813 3814 3815 3816 3817 3818

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3819 3820 3821 3822 3823
			WRITE_ONCE(pgdat->kswapd_classzone_idx,
				   kswapd_classzone_idx(pgdat, classzone_idx));

			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3824 3825
		}

3826 3827 3828 3829 3830 3831 3832 3833
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3834 3835
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3847 3848 3849 3850

		if (!kthread_should_stop())
			schedule();

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3861 3862
/*
 * The background pageout daemon, started as a kernel thread
3863
 * from the init process.
L
Linus Torvalds 已提交
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3876 3877
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3878 3879
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3880
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3881

R
Rusty Russell 已提交
3882
	if (!cpumask_empty(cpumask))
3883
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3897
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3898
	set_freezable();
L
Linus Torvalds 已提交
3899

3900 3901
	WRITE_ONCE(pgdat->kswapd_order, 0);
	WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
L
Linus Torvalds 已提交
3902
	for ( ; ; ) {
3903
		bool ret;
3904

3905
		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3906 3907
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3908 3909 3910
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3911

3912
		/* Read the new order and classzone_idx */
3913
		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3914
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3915 3916
		WRITE_ONCE(pgdat->kswapd_order, 0);
		WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
L
Linus Torvalds 已提交
3917

3918 3919 3920 3921 3922 3923 3924 3925
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3937 3938
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3939 3940 3941
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3942
	}
3943

3944 3945
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);

L
Linus Torvalds 已提交
3946 3947 3948 3949
	return 0;
}

/*
3950 3951 3952 3953 3954
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3955
 */
3956 3957
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3958 3959
{
	pg_data_t *pgdat;
3960
	enum zone_type curr_idx;
L
Linus Torvalds 已提交
3961

3962
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3963 3964
		return;

3965
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3966
		return;
3967

3968
	pgdat = zone->zone_pgdat;
3969 3970 3971 3972 3973 3974 3975
	curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);

	if (curr_idx == MAX_NR_ZONES || curr_idx < classzone_idx)
		WRITE_ONCE(pgdat->kswapd_classzone_idx, classzone_idx);

	if (READ_ONCE(pgdat->kswapd_order) < order)
		WRITE_ONCE(pgdat->kswapd_order, order);
3976

3977
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3978
		return;
3979

3980 3981
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3982 3983
	    (pgdat_balanced(pgdat, order, classzone_idx) &&
	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3984 3985 3986 3987 3988 3989 3990 3991 3992
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3993
		return;
3994
	}
3995

3996 3997
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3998
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3999 4000
}

4001
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
4002
/*
4003
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4004 4005 4006 4007 4008
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
4009
 */
4010
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
4011
{
4012
	struct scan_control sc = {
4013
		.nr_to_reclaim = nr_to_reclaim,
4014
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4015
		.reclaim_idx = MAX_NR_ZONES - 1,
4016
		.priority = DEF_PRIORITY,
4017
		.may_writepage = 1,
4018 4019
		.may_unmap = 1,
		.may_swap = 1,
4020
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
4021
	};
4022
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4023
	unsigned long nr_reclaimed;
4024
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
4025

4026
	fs_reclaim_acquire(sc.gfp_mask);
4027
	noreclaim_flag = memalloc_noreclaim_save();
4028
	set_task_reclaim_state(current, &sc.reclaim_state);
4029

4030
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4031

4032
	set_task_reclaim_state(current, NULL);
4033
	memalloc_noreclaim_restore(noreclaim_flag);
4034
	fs_reclaim_release(sc.gfp_mask);
4035

4036
	return nr_reclaimed;
L
Linus Torvalds 已提交
4037
}
4038
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
4039

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
4055
		BUG_ON(system_state < SYSTEM_RUNNING);
4056 4057
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
4058
		pgdat->kswapd = NULL;
4059 4060 4061 4062
	}
	return ret;
}

4063
/*
4064
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4065
 * hold mem_hotplug_begin/end().
4066 4067 4068 4069 4070
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

4071
	if (kswapd) {
4072
		kthread_stop(kswapd);
4073 4074
		NODE_DATA(nid)->kswapd = NULL;
	}
4075 4076
}

L
Linus Torvalds 已提交
4077 4078
static int __init kswapd_init(void)
{
4079
	int nid;
4080

L
Linus Torvalds 已提交
4081
	swap_setup();
4082
	for_each_node_state(nid, N_MEMORY)
4083
 		kswapd_run(nid);
L
Linus Torvalds 已提交
4084 4085 4086 4087
	return 0;
}

module_init(kswapd_init)
4088 4089 4090

#ifdef CONFIG_NUMA
/*
4091
 * Node reclaim mode
4092
 *
4093
 * If non-zero call node_reclaim when the number of free pages falls below
4094 4095
 * the watermarks.
 */
4096
int node_reclaim_mode __read_mostly;
4097

4098 4099
#define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
#define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
4100

4101
/*
4102
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4103 4104 4105
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4106
#define NODE_RECLAIM_PRIORITY 4
4107

4108
/*
4109
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4110 4111 4112 4113
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4114 4115 4116 4117 4118 4119
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4120
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4121
{
4122 4123 4124
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4135
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4136
{
4137 4138
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4139 4140

	/*
4141
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4142
	 * potentially reclaimable. Otherwise, we have to worry about
4143
	 * pages like swapcache and node_unmapped_file_pages() provides
4144 4145
	 * a better estimate
	 */
4146 4147
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4148
	else
4149
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4150 4151

	/* If we can't clean pages, remove dirty pages from consideration */
4152 4153
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4154 4155 4156 4157 4158 4159 4160 4161

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4162
/*
4163
 * Try to free up some pages from this node through reclaim.
4164
 */
4165
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4166
{
4167
	/* Minimum pages needed in order to stay on node */
4168
	const unsigned long nr_pages = 1 << order;
4169
	struct task_struct *p = current;
4170
	unsigned int noreclaim_flag;
4171
	struct scan_control sc = {
4172
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4173
		.gfp_mask = current_gfp_context(gfp_mask),
4174
		.order = order,
4175 4176 4177
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4178
		.may_swap = 1,
4179
		.reclaim_idx = gfp_zone(gfp_mask),
4180
	};
4181

4182 4183 4184
	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
					   sc.gfp_mask);

4185
	cond_resched();
4186
	fs_reclaim_acquire(sc.gfp_mask);
4187
	/*
4188
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4189
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4190
	 * and RECLAIM_UNMAP.
4191
	 */
4192 4193
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4194
	set_task_reclaim_state(p, &sc.reclaim_state);
4195

4196
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4197
		/*
4198
		 * Free memory by calling shrink node with increasing
4199 4200 4201
		 * priorities until we have enough memory freed.
		 */
		do {
4202
			shrink_node(pgdat, &sc);
4203
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4204
	}
4205

4206
	set_task_reclaim_state(p, NULL);
4207 4208
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4209
	fs_reclaim_release(sc.gfp_mask);
4210 4211 4212

	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);

4213
	return sc.nr_reclaimed >= nr_pages;
4214
}
4215

4216
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4217
{
4218
	int ret;
4219 4220

	/*
4221
	 * Node reclaim reclaims unmapped file backed pages and
4222
	 * slab pages if we are over the defined limits.
4223
	 *
4224 4225
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4226 4227
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4228
	 * unmapped file backed pages.
4229
	 */
4230
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4231
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4232
		return NODE_RECLAIM_FULL;
4233 4234

	/*
4235
	 * Do not scan if the allocation should not be delayed.
4236
	 */
4237
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4238
		return NODE_RECLAIM_NOSCAN;
4239 4240

	/*
4241
	 * Only run node reclaim on the local node or on nodes that do not
4242 4243 4244 4245
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4246 4247
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4248

4249 4250
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4251

4252 4253
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4254

4255 4256 4257
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4258
	return ret;
4259
}
4260
#endif
L
Lee Schermerhorn 已提交
4261

4262
/**
4263 4264 4265
 * check_move_unevictable_pages - check pages for evictability and move to
 * appropriate zone lru list
 * @pvec: pagevec with lru pages to check
4266
 *
4267 4268 4269
 * Checks pages for evictability, if an evictable page is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru pages.
4270
 */
4271
void check_move_unevictable_pages(struct pagevec *pvec)
4272
{
4273
	struct lruvec *lruvec;
4274
	struct pglist_data *pgdat = NULL;
4275 4276 4277
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4278

4279 4280
	for (i = 0; i < pvec->nr; i++) {
		struct page *page = pvec->pages[i];
4281
		struct pglist_data *pagepgdat = page_pgdat(page);
4282

4283
		pgscanned++;
4284 4285 4286 4287 4288
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4289
		}
4290
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4291

4292 4293
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4294

4295
		if (page_evictable(page)) {
4296 4297
			enum lru_list lru = page_lru_base_type(page);

4298
			VM_BUG_ON_PAGE(PageActive(page), page);
4299
			ClearPageUnevictable(page);
4300 4301
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4302
			pgrescued++;
4303
		}
4304
	}
4305

4306
	if (pgdat) {
4307 4308
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4309
		spin_unlock_irq(&pgdat->lru_lock);
4310 4311
	}
}
4312
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);