vmscan.c 124.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/pagevec.h>
50
#include <linux/prefetch.h>
51
#include <linux/printk.h>
52
#include <linux/dax.h>
53
#include <linux/psi.h>
L
Linus Torvalds 已提交
54 55 56 57 58

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
59
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
60

61 62
#include "internal.h"

63 64 65
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
66
struct scan_control {
67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71 72 73 74
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
75

76 77 78 79 80
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
81

82 83 84 85 86 87 88
	/* Can active pages be deactivated as part of reclaim? */
#define DEACTIVATE_ANON 1
#define DEACTIVATE_FILE 2
	unsigned int may_deactivate:2;
	unsigned int force_deactivate:1;
	unsigned int skipped_deactivate:1;

89
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
90 91 92 93 94 95 96 97
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

98 99 100 101 102 103 104
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
105

106 107 108 109 110
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

111 112 113
	/* There is easily reclaimable cold cache in the current node */
	unsigned int cache_trim_mode:1;

114 115 116
	/* The file pages on the current node are dangerously low */
	unsigned int file_is_tiny:1;

G
Greg Thelen 已提交
117 118 119 120 121 122 123 124 125 126 127 128
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

129 130 131 132 133
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
134 135 136 137 138 139 140 141 142 143

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
144 145 146

	/* for recording the reclaimed slab by now */
	struct reclaim_state reclaim_state;
L
Linus Torvalds 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
181 182 183 184 185
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
186

187 188 189 190 191 192 193 194 195 196 197 198
static void set_task_reclaim_state(struct task_struct *task,
				   struct reclaim_state *rs)
{
	/* Check for an overwrite */
	WARN_ON_ONCE(rs && task->reclaim_state);

	/* Check for the nulling of an already-nulled member */
	WARN_ON_ONCE(!rs && !task->reclaim_state);

	task->reclaim_state = rs;
}

L
Linus Torvalds 已提交
199 200 201
static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

202
#ifdef CONFIG_MEMCG
203 204 205 206 207 208 209 210 211 212 213 214 215
/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

216 217 218 219 220 221 222 223 224
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
225
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
226 227 228
	if (id < 0)
		goto unlock;

229 230 231 232 233 234
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

235
		shrinker_nr_max = id + 1;
236
	}
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}

255
static bool cgroup_reclaim(struct scan_control *sc)
256
{
257
	return sc->target_mem_cgroup;
258
}
259 260

/**
261
 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
262 263 264 265 266 267 268 269 270 271 272
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
273
static bool writeback_throttling_sane(struct scan_control *sc)
274
{
275
	if (!cgroup_reclaim(sc))
276 277
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
278
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
279 280 281 282
		return true;
#endif
	return false;
}
283
#else
284 285 286 287 288 289 290 291 292
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}

293
static bool cgroup_reclaim(struct scan_control *sc)
294
{
295
	return false;
296
}
297

298
static bool writeback_throttling_sane(struct scan_control *sc)
299 300 301
{
	return true;
}
302 303
#endif

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

322 323 324 325 326 327 328
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
329
{
330
	unsigned long size = 0;
331 332
	int zid;

333
	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
334
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
335

336 337 338 339
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
340
			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
341
		else
342
			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
343
	}
344
	return size;
345 346
}

L
Linus Torvalds 已提交
347
/*
G
Glauber Costa 已提交
348
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
349
 */
350
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
351
{
352
	unsigned int size = sizeof(*shrinker->nr_deferred);
G
Glauber Costa 已提交
353 354 355 356 357 358 359

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
360 361 362 363 364 365

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

366
	return 0;
367 368 369 370 371

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
372 373 374 375
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
376 377 378 379 380 381
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

382 383 384
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
385

386 387
void register_shrinker_prepared(struct shrinker *shrinker)
{
388 389
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
390
#ifdef CONFIG_MEMCG
391 392
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
393
#endif
394
	up_write(&shrinker_rwsem);
395 396 397 398 399 400 401 402 403
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
404
	return 0;
L
Linus Torvalds 已提交
405
}
406
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
407 408 409 410

/*
 * Remove one
 */
411
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
412
{
413 414
	if (!shrinker->nr_deferred)
		return;
415 416
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
417 418 419
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
420
	kfree(shrinker->nr_deferred);
421
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
422
}
423
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
424 425

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
426

427
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
428
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
429 430 431 432
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
433
	long freeable;
G
Glauber Costa 已提交
434 435 436 437 438
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
439
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
440

441 442 443
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

444
	freeable = shrinker->count_objects(shrinker, shrinkctl);
445 446
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
447 448 449 450 451 452 453 454 455

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
456 457 458 459 460 461 462 463 464 465 466 467
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
468

G
Glauber Costa 已提交
469 470
	total_scan += delta;
	if (total_scan < 0) {
471
		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
472
		       shrinker->scan_objects, total_scan);
473
		total_scan = freeable;
474 475 476
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
477 478 479 480 481 482 483

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
484
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
485 486 487 488 489
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
490 491
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
492 493 494 495 496 497

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
498 499
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
500 501

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
502
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
503

504 505 506 507 508 509 510 511 512 513 514
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
515
	 * than the total number of objects on slab (freeable), we must be
516 517 518 519
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
520
	       total_scan >= freeable) {
D
Dave Chinner 已提交
521
		unsigned long ret;
522
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
523

524
		shrinkctl->nr_to_scan = nr_to_scan;
525
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
526 527 528 529
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
530

531 532 533
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
534 535 536 537

		cond_resched();
	}

538 539 540 541
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
542 543 544 545 546
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
547 548
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
549 550 551 552
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

553
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
554
	return freed;
555 556
}

557
#ifdef CONFIG_MEMCG
558 559 560 561
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
562 563
	unsigned long ret, freed = 0;
	int i;
564

565
	if (!mem_cgroup_online(memcg))
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
585 586 587
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
588 589 590
			continue;
		}

591 592 593 594 595
		/* Call non-slab shrinkers even though kmem is disabled */
		if (!memcg_kmem_enabled() &&
		    !(shrinker->flags & SHRINKER_NONSLAB))
			continue;

596
		ret = do_shrink_slab(&sc, shrinker, priority);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
621 622 623 624 625 626 627 628 629 630 631
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
632
#else /* CONFIG_MEMCG */
633 634 635 636 637
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
638
#endif /* CONFIG_MEMCG */
639

640
/**
641
 * shrink_slab - shrink slab caches
642 643
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
644
 * @memcg: memory cgroup whose slab caches to target
645
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
646
 *
647
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
648
 *
649 650
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
651
 *
652 653
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
654
 *
655 656
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
657
 *
658
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
659
 */
660 661
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
662
				 int priority)
L
Linus Torvalds 已提交
663
{
664
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
665 666
	struct shrinker *shrinker;

667 668 669 670 671 672 673 674
	/*
	 * The root memcg might be allocated even though memcg is disabled
	 * via "cgroup_disable=memory" boot parameter.  This could make
	 * mem_cgroup_is_root() return false, then just run memcg slab
	 * shrink, but skip global shrink.  This may result in premature
	 * oom.
	 */
	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
675
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
676

677
	if (!down_read_trylock(&shrinker_rwsem))
678
		goto out;
L
Linus Torvalds 已提交
679 680

	list_for_each_entry(shrinker, &shrinker_list, list) {
681 682 683
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
684
			.memcg = memcg,
685
		};
686

687 688 689 690
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
691 692 693 694 695 696 697 698 699
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
700
	}
701

L
Linus Torvalds 已提交
702
	up_read(&shrinker_rwsem);
703 704
out:
	cond_resched();
D
Dave Chinner 已提交
705
	return freed;
L
Linus Torvalds 已提交
706 707
}

708 709 710 711 712 713 714 715
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
716
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
717
		do {
718
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
719 720 721 722 723 724 725 726 727 728 729 730
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
731 732
static inline int is_page_cache_freeable(struct page *page)
{
733 734
	/*
	 * A freeable page cache page is referenced only by the caller
735 736
	 * that isolated the page, the page cache and optional buffer
	 * heads at page->private.
737
	 */
738
	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
739
		HPAGE_PMD_NR : 1;
740
	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
L
Linus Torvalds 已提交
741 742
}

743
static int may_write_to_inode(struct inode *inode)
L
Linus Torvalds 已提交
744
{
745
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
746
		return 1;
747
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
748
		return 1;
749
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
769
	lock_page(page);
770 771
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
772 773 774
	unlock_page(page);
}

775 776 777 778 779 780 781 782 783 784 785 786
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
787
/*
A
Andrew Morton 已提交
788 789
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
790
 */
791
static pageout_t pageout(struct page *page, struct address_space *mapping)
L
Linus Torvalds 已提交
792 793 794 795 796 797 798 799
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
800
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
816
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
817 818
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
819
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
820 821 822 823 824 825 826
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
827
	if (!may_write_to_inode(mapping->host))
L
Linus Torvalds 已提交
828 829 830 831 832 833 834
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
835 836
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
837 838 839 840 841 842 843
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
844
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
845 846 847
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
848

L
Linus Torvalds 已提交
849 850 851 852
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
853
		trace_mm_vmscan_writepage(page);
854
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
855 856 857 858 859 860
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

861
/*
N
Nick Piggin 已提交
862 863
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
864
 */
865
static int __remove_mapping(struct address_space *mapping, struct page *page,
866
			    bool reclaimed, struct mem_cgroup *target_memcg)
867
{
868
	unsigned long flags;
869
	int refcount;
870

871 872
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
873

M
Matthew Wilcox 已提交
874
	xa_lock_irqsave(&mapping->i_pages, flags);
875
	/*
N
Nick Piggin 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
895
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
896 897
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
898
	 * and thus under the i_pages lock, then this ordering is not required.
899
	 */
900
	refcount = 1 + compound_nr(page);
901
	if (!page_ref_freeze(page, refcount))
902
		goto cannot_free;
903
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
904
	if (unlikely(PageDirty(page))) {
905
		page_ref_unfreeze(page, refcount);
906
		goto cannot_free;
N
Nick Piggin 已提交
907
	}
908 909 910

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
911
		mem_cgroup_swapout(page, swap);
912
		__delete_from_swap_cache(page, swap);
M
Matthew Wilcox 已提交
913
		xa_unlock_irqrestore(&mapping->i_pages, flags);
914
		put_swap_page(page, swap);
N
Nick Piggin 已提交
915
	} else {
916
		void (*freepage)(struct page *);
917
		void *shadow = NULL;
918 919

		freepage = mapping->a_ops->freepage;
920 921 922 923 924 925 926 927 928
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
929 930 931 932 933
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
934
		 * same address_space.
935 936
		 */
		if (reclaimed && page_is_file_cache(page) &&
937
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
938
			shadow = workingset_eviction(page, target_memcg);
J
Johannes Weiner 已提交
939
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
940
		xa_unlock_irqrestore(&mapping->i_pages, flags);
941 942 943

		if (freepage != NULL)
			freepage(page);
944 945 946 947 948
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
949
	xa_unlock_irqrestore(&mapping->i_pages, flags);
950 951 952
	return 0;
}

N
Nick Piggin 已提交
953 954 955 956 957 958 959 960
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
961
	if (__remove_mapping(mapping, page, false, NULL)) {
N
Nick Piggin 已提交
962 963 964 965 966
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
967
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
968 969 970 971 972
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
973 974 975 976 977 978 979 980 981 982 983
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
984
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
985 986 987
	put_page(page);		/* drop ref from isolate */
}

988 989 990
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
991
	PAGEREF_KEEP,
992 993 994 995 996 997
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
998
	int referenced_ptes, referenced_page;
999 1000
	unsigned long vm_flags;

1001 1002
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1003
	referenced_page = TestClearPageReferenced(page);
1004 1005 1006 1007 1008 1009 1010 1011

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1012
	if (referenced_ptes) {
1013
		if (PageSwapBacked(page))
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1031
		if (referenced_page || referenced_ptes > 1)
1032 1033
			return PAGEREF_ACTIVATE;

1034 1035 1036 1037 1038 1039
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1040 1041
		return PAGEREF_KEEP;
	}
1042 1043

	/* Reclaim if clean, defer dirty pages to writeback */
1044
	if (referenced_page && !PageSwapBacked(page))
1045 1046 1047
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1048 1049
}

1050 1051 1052 1053
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1054 1055
	struct address_space *mapping;

1056 1057 1058 1059
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1060 1061
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1062 1063 1064 1065 1066 1067 1068 1069
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1070 1071 1072 1073 1074 1075 1076 1077

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1078 1079
}

L
Linus Torvalds 已提交
1080
/*
A
Andrew Morton 已提交
1081
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1082
 */
A
Andrew Morton 已提交
1083
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1084
				      struct pglist_data *pgdat,
1085
				      struct scan_control *sc,
1086
				      enum ttu_flags ttu_flags,
1087
				      struct reclaim_stat *stat,
1088
				      bool ignore_references)
L
Linus Torvalds 已提交
1089 1090
{
	LIST_HEAD(ret_pages);
1091
	LIST_HEAD(free_pages);
1092
	unsigned nr_reclaimed = 0;
1093
	unsigned pgactivate = 0;
L
Linus Torvalds 已提交
1094

1095
	memset(stat, 0, sizeof(*stat));
L
Linus Torvalds 已提交
1096 1097 1098 1099 1100 1101
	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1102
		enum page_references references = PAGEREF_RECLAIM;
1103
		bool dirty, writeback;
1104
		unsigned int nr_pages;
L
Linus Torvalds 已提交
1105 1106 1107 1108 1109 1110

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1111
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1112 1113
			goto keep;

1114
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1115

1116
		nr_pages = compound_nr(page);
1117 1118 1119

		/* Account the number of base pages even though THP */
		sc->nr_scanned += nr_pages;
1120

1121
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1122
			goto activate_locked;
L
Lee Schermerhorn 已提交
1123

1124
		if (!sc->may_unmap && page_mapped(page))
1125 1126
			goto keep_locked;

1127 1128 1129
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1130
		/*
1131
		 * The number of dirty pages determines if a node is marked
1132 1133 1134 1135 1136 1137
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
1138
			stat->nr_dirty++;
1139 1140

		if (dirty && !writeback)
1141
			stat->nr_unqueued_dirty++;
1142

1143 1144 1145 1146 1147 1148
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1149
		mapping = page_mapping(page);
1150
		if (((dirty || writeback) && mapping &&
1151
		     inode_write_congested(mapping->host)) ||
1152
		    (writeback && PageReclaim(page)))
1153
			stat->nr_congested++;
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1166 1167
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1168
		 *
1169
		 * 2) Global or new memcg reclaim encounters a page that is
1170 1171 1172
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1173
		 *    reclaim and continue scanning.
1174
		 *
1175 1176
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1177 1178 1179 1180 1181
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1182
		 * 3) Legacy memcg encounters a page that is already marked
1183 1184 1185 1186
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1187 1188 1189 1190 1191 1192 1193 1194 1195
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1196
		 */
1197
		if (PageWriteback(page)) {
1198 1199 1200
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1201
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1202
				stat->nr_immediate++;
1203
				goto activate_locked;
1204 1205

			/* Case 2 above */
1206
			} else if (writeback_throttling_sane(sc) ||
1207
			    !PageReclaim(page) || !may_enter_fs) {
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1220
				stat->nr_writeback++;
1221
				goto activate_locked;
1222 1223 1224

			/* Case 3 above */
			} else {
1225
				unlock_page(page);
1226
				wait_on_page_writeback(page);
1227 1228 1229
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1230
			}
1231
		}
L
Linus Torvalds 已提交
1232

1233
		if (!ignore_references)
1234 1235
			references = page_check_references(page, sc);

1236 1237
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1238
			goto activate_locked;
1239
		case PAGEREF_KEEP:
1240
			stat->nr_ref_keep += nr_pages;
1241
			goto keep_locked;
1242 1243 1244 1245
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1246 1247 1248 1249

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1250
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1251
		 */
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
1272
						goto activate_locked_split;
1273 1274 1275 1276
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1277 1278 1279
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1280
					if (!add_to_swap(page))
1281
						goto activate_locked_split;
1282
				}
1283

1284
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1285

1286 1287 1288
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1289 1290 1291 1292
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1293
		}
L
Linus Torvalds 已提交
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		/*
		 * THP may get split above, need minus tail pages and update
		 * nr_pages to avoid accounting tail pages twice.
		 *
		 * The tail pages that are added into swap cache successfully
		 * reach here.
		 */
		if ((nr_pages > 1) && !PageTransHuge(page)) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}

L
Linus Torvalds 已提交
1307 1308 1309 1310
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1311
		if (page_mapped(page)) {
1312 1313 1314 1315 1316
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1317
				stat->nr_unmap_fail += nr_pages;
L
Linus Torvalds 已提交
1318 1319 1320 1321 1322
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1323
			/*
1324 1325 1326 1327 1328 1329 1330 1331
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1332
			 */
1333
			if (page_is_file_cache(page) &&
1334 1335
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1336 1337 1338 1339 1340 1341
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1342
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1343 1344
				SetPageReclaim(page);

1345
				goto activate_locked;
1346 1347
			}

1348
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1349
				goto keep_locked;
1350
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1351
				goto keep_locked;
1352
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1353 1354
				goto keep_locked;

1355 1356 1357 1358 1359 1360
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1361
			switch (pageout(page, mapping)) {
L
Linus Torvalds 已提交
1362 1363 1364 1365 1366
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1367
				if (PageWriteback(page))
1368
					goto keep;
1369
				if (PageDirty(page))
L
Linus Torvalds 已提交
1370
					goto keep;
1371

L
Linus Torvalds 已提交
1372 1373 1374 1375
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1376
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1396
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1407
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1408 1409
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1426 1427
		}

S
Shaohua Li 已提交
1428 1429 1430 1431 1432 1433 1434 1435
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1436

S
Shaohua Li 已提交
1437
			count_vm_event(PGLAZYFREED);
1438
			count_memcg_page_event(page, PGLAZYFREED);
1439 1440
		} else if (!mapping || !__remove_mapping(mapping, page, true,
							 sc->target_mem_cgroup))
S
Shaohua Li 已提交
1441
			goto keep_locked;
1442 1443

		unlock_page(page);
N
Nick Piggin 已提交
1444
free_it:
1445 1446 1447 1448 1449
		/*
		 * THP may get swapped out in a whole, need account
		 * all base pages.
		 */
		nr_reclaimed += nr_pages;
1450 1451 1452 1453 1454

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1455
		if (unlikely(PageTransHuge(page)))
1456
			(*get_compound_page_dtor(page))(page);
1457
		else
1458
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1459 1460
		continue;

1461 1462 1463 1464 1465 1466 1467 1468 1469
activate_locked_split:
		/*
		 * The tail pages that are failed to add into swap cache
		 * reach here.  Fixup nr_scanned and nr_pages.
		 */
		if (nr_pages > 1) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}
L
Linus Torvalds 已提交
1470
activate_locked:
1471
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1472 1473
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1474
			try_to_free_swap(page);
1475
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1476
		if (!PageMlocked(page)) {
1477
			int type = page_is_file_cache(page);
M
Minchan Kim 已提交
1478
			SetPageActive(page);
1479
			stat->nr_activate[type] += nr_pages;
1480
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1481
		}
L
Linus Torvalds 已提交
1482 1483 1484 1485
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1486
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1487
	}
1488

1489 1490
	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];

1491
	mem_cgroup_uncharge_list(&free_pages);
1492
	try_to_unmap_flush();
1493
	free_unref_page_list(&free_pages);
1494

L
Linus Torvalds 已提交
1495
	list_splice(&ret_pages, page_list);
1496
	count_vm_events(PGACTIVATE, pgactivate);
1497

1498
	return nr_reclaimed;
L
Linus Torvalds 已提交
1499 1500
}

1501 1502 1503 1504 1505 1506 1507 1508
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1509
	struct reclaim_stat dummy_stat;
1510
	unsigned long ret;
1511 1512 1513 1514
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1515
		if (page_is_file_cache(page) && !PageDirty(page) &&
1516
		    !__PageMovable(page) && !PageUnevictable(page)) {
1517 1518 1519 1520 1521
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1522
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1523
			TTU_IGNORE_ACCESS, &dummy_stat, true);
1524
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1525
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1526 1527 1528
	return ret;
}

A
Andy Whitcroft 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1539
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1540 1541 1542 1543 1544 1545 1546
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1547 1548
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1549 1550
		return ret;

A
Andy Whitcroft 已提交
1551
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1552

1553 1554 1555 1556 1557 1558 1559 1560
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1561
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1562 1563 1564 1565 1566 1567
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1568
			bool migrate_dirty;
1569 1570 1571 1572

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1573 1574 1575 1576 1577
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1578
			 */
1579 1580 1581
			if (!trylock_page(page))
				return ret;

1582
			mapping = page_mapping(page);
1583
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1584 1585
			unlock_page(page);
			if (!migrate_dirty)
1586 1587 1588
				return ret;
		}
	}
1589

1590 1591 1592
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1606 1607 1608 1609 1610 1611

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1612
			enum lru_list lru, unsigned long *nr_zone_taken)
1613 1614 1615 1616 1617 1618 1619 1620 1621
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1622
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1623
#endif
1624 1625
	}

1626 1627
}

1628 1629
/**
 * pgdat->lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1630 1631 1632 1633 1634 1635 1636 1637
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1638
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1639
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1640
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1641
 * @nr_scanned:	The number of pages that were scanned.
1642
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1643
 * @mode:	One of the LRU isolation modes
1644
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1645 1646 1647
 *
 * returns how many pages were moved onto *@dst.
 */
1648
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1649
		struct lruvec *lruvec, struct list_head *dst,
1650
		unsigned long *nr_scanned, struct scan_control *sc,
1651
		enum lru_list lru)
L
Linus Torvalds 已提交
1652
{
H
Hugh Dickins 已提交
1653
	struct list_head *src = &lruvec->lists[lru];
1654
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1655
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1656
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1657
	unsigned long skipped = 0;
1658
	unsigned long scan, total_scan, nr_pages;
1659
	LIST_HEAD(pages_skipped);
1660
	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
L
Linus Torvalds 已提交
1661

1662
	total_scan = 0;
1663
	scan = 0;
1664
	while (scan < nr_to_scan && !list_empty(src)) {
A
Andy Whitcroft 已提交
1665 1666
		struct page *page;

L
Linus Torvalds 已提交
1667 1668 1669
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1670
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1671

1672
		nr_pages = compound_nr(page);
1673 1674
		total_scan += nr_pages;

1675 1676
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1677
			nr_skipped[page_zonenum(page)] += nr_pages;
1678 1679 1680
			continue;
		}

1681 1682 1683 1684 1685
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
1686 1687 1688 1689
		 *
		 * Account all tail pages of THP.  This would not cause
		 * premature OOM since __isolate_lru_page() returns -EBUSY
		 * only when the page is being freed somewhere else.
1690
		 */
1691
		scan += nr_pages;
1692
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1693
		case 0:
M
Mel Gorman 已提交
1694 1695
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1696 1697 1698 1699 1700 1701 1702
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1703

A
Andy Whitcroft 已提交
1704 1705 1706
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1707 1708
	}

1709 1710 1711 1712 1713 1714 1715
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1716 1717 1718
	if (!list_empty(&pages_skipped)) {
		int zid;

1719
		list_splice(&pages_skipped, src);
1720 1721 1722 1723 1724
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1725
			skipped += nr_skipped[zid];
1726 1727
		}
	}
1728
	*nr_scanned = total_scan;
1729
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1730
				    total_scan, skipped, nr_taken, mode, lru);
1731
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1732 1733 1734
	return nr_taken;
}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1746 1747 1748
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1749 1750 1751 1752 1753
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1754
 *
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1765
	VM_BUG_ON_PAGE(!page_count(page), page);
1766
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1767

1768
	if (PageLRU(page)) {
1769
		pg_data_t *pgdat = page_pgdat(page);
1770
		struct lruvec *lruvec;
1771

1772 1773
		spin_lock_irq(&pgdat->lru_lock);
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1774
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1775
			int lru = page_lru(page);
1776
			get_page(page);
1777
			ClearPageLRU(page);
1778 1779
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1780
		}
1781
		spin_unlock_irq(&pgdat->lru_lock);
1782 1783 1784 1785
	}
	return ret;
}

1786
/*
F
Fengguang Wu 已提交
1787
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
X
Xianting Tian 已提交
1788
 * then get rescheduled. When there are massive number of tasks doing page
F
Fengguang Wu 已提交
1789 1790 1791
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1792
 */
M
Mel Gorman 已提交
1793
static int too_many_isolated(struct pglist_data *pgdat, int file,
1794 1795 1796 1797 1798 1799 1800
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1801
	if (!writeback_throttling_sane(sc))
1802 1803 1804
		return 0;

	if (file) {
M
Mel Gorman 已提交
1805 1806
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1807
	} else {
M
Mel Gorman 已提交
1808 1809
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1810 1811
	}

1812 1813 1814 1815 1816
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1817
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1818 1819
		inactive >>= 3;

1820 1821 1822
	return isolated > inactive;
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
/*
 * This moves pages from @list to corresponding LRU list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone_lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone_lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_refcount against each page.
 * But we had to alter page->flags anyway.
 *
 * Returns the number of pages moved to the given lruvec.
 */

static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
						     struct list_head *list)
1845
{
M
Mel Gorman 已提交
1846
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1847
	int nr_pages, nr_moved = 0;
1848
	LIST_HEAD(pages_to_free);
1849 1850
	struct page *page;
	enum lru_list lru;
1851

1852 1853
	while (!list_empty(list)) {
		page = lru_to_page(list);
1854
		VM_BUG_ON_PAGE(PageLRU(page), page);
1855
		if (unlikely(!page_evictable(page))) {
1856
			list_del(&page->lru);
M
Mel Gorman 已提交
1857
			spin_unlock_irq(&pgdat->lru_lock);
1858
			putback_lru_page(page);
M
Mel Gorman 已提交
1859
			spin_lock_irq(&pgdat->lru_lock);
1860 1861
			continue;
		}
M
Mel Gorman 已提交
1862
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1863

1864
		SetPageLRU(page);
1865
		lru = page_lru(page);
1866 1867 1868 1869

		nr_pages = hpage_nr_pages(page);
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
		list_move(&page->lru, &lruvec->lists[lru]);
1870

1871 1872 1873
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1874
			del_page_from_lru_list(page, lruvec, lru);
1875 1876

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1877
				spin_unlock_irq(&pgdat->lru_lock);
1878
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1879
				spin_lock_irq(&pgdat->lru_lock);
1880 1881
			} else
				list_add(&page->lru, &pages_to_free);
1882 1883
		} else {
			nr_moved += nr_pages;
1884 1885 1886
		}
	}

1887 1888 1889
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
1890 1891 1892
	list_splice(&pages_to_free, list);

	return nr_moved;
1893 1894
}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1908
/*
1909
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1910
 * of reclaimed pages
L
Linus Torvalds 已提交
1911
 */
1912
static noinline_for_stack unsigned long
1913
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1914
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1915 1916
{
	LIST_HEAD(page_list);
1917
	unsigned long nr_scanned;
1918
	unsigned long nr_reclaimed = 0;
1919
	unsigned long nr_taken;
1920
	struct reclaim_stat stat;
1921
	int file = is_file_lru(lru);
1922
	enum vm_event_item item;
M
Mel Gorman 已提交
1923
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1924
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1925
	bool stalled = false;
1926

M
Mel Gorman 已提交
1927
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1928 1929 1930 1931 1932 1933
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1934 1935 1936 1937 1938 1939

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1940
	lru_add_drain();
1941

M
Mel Gorman 已提交
1942
	spin_lock_irq(&pgdat->lru_lock);
1943

1944
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1945
				     &nr_scanned, sc, lru);
1946

M
Mel Gorman 已提交
1947
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1948
	reclaim_stat->recent_scanned[file] += nr_taken;
1949

1950
	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1951
	if (!cgroup_reclaim(sc))
1952 1953
		__count_vm_events(item, nr_scanned);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
M
Mel Gorman 已提交
1954
	spin_unlock_irq(&pgdat->lru_lock);
1955

1956
	if (nr_taken == 0)
1957
		return 0;
A
Andy Whitcroft 已提交
1958

S
Shaohua Li 已提交
1959
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1960
				&stat, false);
1961

M
Mel Gorman 已提交
1962
	spin_lock_irq(&pgdat->lru_lock);
1963

1964
	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1965
	if (!cgroup_reclaim(sc))
1966 1967
		__count_vm_events(item, nr_reclaimed);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1968 1969
	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
N
Nick Piggin 已提交
1970

1971
	move_pages_to_lru(lruvec, &page_list);
1972

M
Mel Gorman 已提交
1973
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1974

M
Mel Gorman 已提交
1975
	spin_unlock_irq(&pgdat->lru_lock);
1976

1977
	mem_cgroup_uncharge_list(&page_list);
1978
	free_unref_page_list(&page_list);
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1994 1995 1996 1997 1998 1999 2000 2001
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2002

M
Mel Gorman 已提交
2003
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2004
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2005
	return nr_reclaimed;
L
Linus Torvalds 已提交
2006 2007
}

H
Hugh Dickins 已提交
2008
static void shrink_active_list(unsigned long nr_to_scan,
2009
			       struct lruvec *lruvec,
2010
			       struct scan_control *sc,
2011
			       enum lru_list lru)
L
Linus Torvalds 已提交
2012
{
2013
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2014
	unsigned long nr_scanned;
2015
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2016
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2017
	LIST_HEAD(l_active);
2018
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2019
	struct page *page;
2020
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2021 2022
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2023
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2024
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2025 2026

	lru_add_drain();
2027

M
Mel Gorman 已提交
2028
	spin_lock_irq(&pgdat->lru_lock);
2029

2030
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2031
				     &nr_scanned, sc, lru);
2032

M
Mel Gorman 已提交
2033
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2034
	reclaim_stat->recent_scanned[file] += nr_taken;
2035

M
Mel Gorman 已提交
2036
	__count_vm_events(PGREFILL, nr_scanned);
2037
	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2038

M
Mel Gorman 已提交
2039
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2040 2041 2042 2043 2044

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2045

2046
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2047 2048 2049 2050
			putback_lru_page(page);
			continue;
		}

2051 2052 2053 2054 2055 2056 2057 2058
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2059 2060
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2061
			nr_rotated += hpage_nr_pages(page);
2062 2063 2064 2065 2066 2067 2068 2069 2070
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2071
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2072 2073 2074 2075
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2076

2077
		ClearPageActive(page);	/* we are de-activating */
2078
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2079 2080 2081
		list_add(&page->lru, &l_inactive);
	}

2082
	/*
2083
	 * Move pages back to the lru list.
2084
	 */
M
Mel Gorman 已提交
2085
	spin_lock_irq(&pgdat->lru_lock);
2086
	/*
2087 2088 2089
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2090
	 * get_scan_count.
2091
	 */
2092
	reclaim_stat->recent_rotated[file] += nr_rotated;
2093

2094 2095
	nr_activate = move_pages_to_lru(lruvec, &l_active);
	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2096 2097
	/* Keep all free pages in l_active list */
	list_splice(&l_inactive, &l_active);
2098 2099 2100 2101

	__count_vm_events(PGDEACTIVATE, nr_deactivate);
	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);

M
Mel Gorman 已提交
2102 2103
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2104

2105 2106
	mem_cgroup_uncharge_list(&l_active);
	free_unref_page_list(&l_active);
2107 2108
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2109 2110
}

M
Minchan Kim 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
unsigned long reclaim_pages(struct list_head *page_list)
{
	int nid = -1;
	unsigned long nr_reclaimed = 0;
	LIST_HEAD(node_page_list);
	struct reclaim_stat dummy_stat;
	struct page *page;
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_writepage = 1,
		.may_unmap = 1,
		.may_swap = 1,
	};

	while (!list_empty(page_list)) {
		page = lru_to_page(page_list);
		if (nid == -1) {
			nid = page_to_nid(page);
			INIT_LIST_HEAD(&node_page_list);
		}

		if (nid == page_to_nid(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &node_page_list);
			continue;
		}

		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}

		nid = -1;
	}

	if (!list_empty(&node_page_list)) {
		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}
	}

	return nr_reclaimed;
}

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
				 struct lruvec *lruvec, struct scan_control *sc)
{
	if (is_active_lru(lru)) {
		if (sc->may_deactivate & (1 << is_file_lru(lru)))
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
		else
			sc->skipped_deactivate = 1;
		return 0;
	}

	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
}

2181 2182 2183
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2184
 *
2185 2186 2187
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2188
 *
2189 2190
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2191
 *
2192 2193
 * If that fails and refaulting is observed, the inactive list grows.
 *
2194
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2195
 * on this LRU, maintained by the pageout code. An inactive_ratio
2196
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2197
 *
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2208
 */
2209
static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2210
{
2211
	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2212 2213
	unsigned long inactive, active;
	unsigned long inactive_ratio;
2214
	unsigned long gb;
2215

2216 2217
	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2218

2219 2220 2221 2222 2223
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;
2224

2225
	return inactive * inactive_ratio < active;
2226 2227
}

2228 2229 2230 2231 2232 2233 2234
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2235 2236 2237 2238 2239 2240
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2241 2242
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2243
 */
2244 2245
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
			   unsigned long *nr)
2246
{
2247
	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2248
	int swappiness = mem_cgroup_swappiness(memcg);
2249 2250 2251
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2252
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2253
	unsigned long anon_prio, file_prio;
2254
	enum scan_balance scan_balance;
2255
	unsigned long anon, file;
2256
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2257
	enum lru_list lru;
2258 2259

	/* If we have no swap space, do not bother scanning anon pages. */
2260
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2261
		scan_balance = SCAN_FILE;
2262 2263
		goto out;
	}
2264

2265 2266 2267 2268 2269 2270 2271
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2272
	if (cgroup_reclaim(sc) && !swappiness) {
2273
		scan_balance = SCAN_FILE;
2274 2275 2276 2277 2278 2279 2280 2281
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2282
	if (!sc->priority && swappiness) {
2283
		scan_balance = SCAN_EQUAL;
2284 2285 2286
		goto out;
	}

2287
	/*
2288
	 * If the system is almost out of file pages, force-scan anon.
2289
	 */
2290
	if (sc->file_is_tiny) {
2291 2292
		scan_balance = SCAN_ANON;
		goto out;
2293 2294
	}

2295
	/*
2296 2297
	 * If there is enough inactive page cache, we do not reclaim
	 * anything from the anonymous working right now.
2298
	 */
2299
	if (sc->cache_trim_mode) {
2300
		scan_balance = SCAN_FILE;
2301 2302 2303
		goto out;
	}

2304 2305
	scan_balance = SCAN_FRACT;

2306 2307 2308 2309
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2310
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2311
	file_prio = 200 - anon_prio;
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2324

2325 2326 2327 2328
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2329

M
Mel Gorman 已提交
2330
	spin_lock_irq(&pgdat->lru_lock);
2331 2332 2333
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2334 2335
	}

2336 2337 2338
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2339 2340 2341
	}

	/*
2342 2343 2344
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2345
	 */
2346
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2347
	ap /= reclaim_stat->recent_rotated[0] + 1;
2348

2349
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2350
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2351
	spin_unlock_irq(&pgdat->lru_lock);
2352

2353 2354 2355 2356
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2357 2358
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
2359
		unsigned long lruvec_size;
2360
		unsigned long scan;
2361
		unsigned long protection;
2362 2363

		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2364 2365
		protection = mem_cgroup_protection(memcg,
						   sc->memcg_low_reclaim);
2366

2367
		if (protection) {
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
			/*
			 * Scale a cgroup's reclaim pressure by proportioning
			 * its current usage to its memory.low or memory.min
			 * setting.
			 *
			 * This is important, as otherwise scanning aggression
			 * becomes extremely binary -- from nothing as we
			 * approach the memory protection threshold, to totally
			 * nominal as we exceed it.  This results in requiring
			 * setting extremely liberal protection thresholds. It
			 * also means we simply get no protection at all if we
			 * set it too low, which is not ideal.
2380 2381 2382 2383
			 *
			 * If there is any protection in place, we reduce scan
			 * pressure by how much of the total memory used is
			 * within protection thresholds.
2384
			 *
2385 2386 2387 2388 2389 2390 2391 2392
			 * There is one special case: in the first reclaim pass,
			 * we skip over all groups that are within their low
			 * protection. If that fails to reclaim enough pages to
			 * satisfy the reclaim goal, we come back and override
			 * the best-effort low protection. However, we still
			 * ideally want to honor how well-behaved groups are in
			 * that case instead of simply punishing them all
			 * equally. As such, we reclaim them based on how much
2393 2394 2395
			 * memory they are using, reducing the scan pressure
			 * again by how much of the total memory used is under
			 * hard protection.
2396
			 */
2397 2398 2399 2400 2401 2402 2403
			unsigned long cgroup_size = mem_cgroup_size(memcg);

			/* Avoid TOCTOU with earlier protection check */
			cgroup_size = max(cgroup_size, protection);

			scan = lruvec_size - lruvec_size * protection /
				cgroup_size;
2404 2405

			/*
2406
			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2407 2408
			 * reclaim moving forwards, avoiding decremeting
			 * sc->priority further than desirable.
2409
			 */
2410
			scan = max(scan, SWAP_CLUSTER_MAX);
2411 2412 2413 2414 2415
		} else {
			scan = lruvec_size;
		}

		scan >>= sc->priority;
2416

2417 2418 2419 2420 2421
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
2422
			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2423

2424 2425 2426 2427 2428
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2429
			/*
2430 2431
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2432 2433
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2434
			 */
2435 2436
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2437 2438 2439 2440 2441
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
2442
				lruvec_size = 0;
2443 2444 2445 2446 2447 2448
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2449
		}
2450 2451

		nr[lru] = scan;
2452
	}
2453
}
2454

2455
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2456 2457
{
	unsigned long nr[NR_LRU_LISTS];
2458
	unsigned long targets[NR_LRU_LISTS];
2459 2460 2461 2462 2463
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2464
	bool scan_adjusted;
2465

2466
	get_scan_count(lruvec, sc, nr);
2467

2468 2469 2470
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
2482
	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2483 2484
			 sc->priority == DEF_PRIORITY);

2485 2486 2487
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2488 2489 2490
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2491 2492 2493 2494 2495 2496
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2497
							    lruvec, sc);
2498 2499
			}
		}
2500

2501 2502
		cond_resched();

2503 2504 2505 2506 2507
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2508
		 * requested. Ensure that the anon and file LRUs are scanned
2509 2510 2511 2512 2513 2514 2515
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2516 2517 2518 2519 2520 2521 2522 2523 2524
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2556 2557 2558 2559 2560 2561 2562 2563
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2564
	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2565 2566 2567 2568
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2569
/* Use reclaim/compaction for costly allocs or under memory pressure */
2570
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2571
{
2572
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2573
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2574
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2575 2576 2577 2578 2579
		return true;

	return false;
}

2580
/*
M
Mel Gorman 已提交
2581 2582 2583 2584 2585
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2586
 */
2587
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2588 2589 2590 2591 2592
					unsigned long nr_reclaimed,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2593
	int z;
2594 2595

	/* If not in reclaim/compaction mode, stop */
2596
	if (!in_reclaim_compaction(sc))
2597 2598
		return false;

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
	/*
	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
	 * number of pages that were scanned. This will return to the caller
	 * with the risk reclaim/compaction and the resulting allocation attempt
	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
	 * allocations through requiring that the full LRU list has been scanned
	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
	 * scan, but that approximation was wrong, and there were corner cases
	 * where always a non-zero amount of pages were scanned.
	 */
	if (!nr_reclaimed)
		return false;
2611 2612

	/* If compaction would go ahead or the allocation would succeed, stop */
2613 2614
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2615
		if (!managed_zone(zone))
2616 2617 2618
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2619
		case COMPACT_SUCCESS:
2620 2621 2622 2623 2624 2625
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2626
	}
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = compact_gap(sc->order);
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);

2637
	return inactive_lru_pages > pages_for_compaction;
2638 2639
}

2640
static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2641
{
2642
	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2643
	struct mem_cgroup *memcg;
L
Linus Torvalds 已提交
2644

2645
	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2646
	do {
2647
		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2648 2649
		unsigned long reclaimed;
		unsigned long scanned;
2650

2651
		switch (mem_cgroup_protected(target_memcg, memcg)) {
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		case MEMCG_PROT_MIN:
			/*
			 * Hard protection.
			 * If there is no reclaimable memory, OOM.
			 */
			continue;
		case MEMCG_PROT_LOW:
			/*
			 * Soft protection.
			 * Respect the protection only as long as
			 * there is an unprotected supply
			 * of reclaimable memory from other cgroups.
			 */
			if (!sc->memcg_low_reclaim) {
				sc->memcg_low_skipped = 1;
R
Roman Gushchin 已提交
2667
				continue;
2668
			}
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
			memcg_memory_event(memcg, MEMCG_LOW);
			break;
		case MEMCG_PROT_NONE:
			/*
			 * All protection thresholds breached. We may
			 * still choose to vary the scan pressure
			 * applied based on by how much the cgroup in
			 * question has exceeded its protection
			 * thresholds (see get_scan_count).
			 */
			break;
		}
2681

2682 2683
		reclaimed = sc->nr_reclaimed;
		scanned = sc->nr_scanned;
2684 2685

		shrink_lruvec(lruvec, sc);
2686

2687 2688
		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
			    sc->priority);
2689

2690 2691 2692 2693
		/* Record the group's reclaim efficiency */
		vmpressure(sc->gfp_mask, memcg, false,
			   sc->nr_scanned - scanned,
			   sc->nr_reclaimed - reclaimed);
2694

2695 2696 2697 2698 2699 2700 2701
	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
}

static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
{
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long nr_reclaimed, nr_scanned;
2702
	struct lruvec *target_lruvec;
2703
	bool reclaimable = false;
2704
	unsigned long file;
2705

2706 2707
	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);

2708 2709 2710 2711 2712 2713
again:
	memset(&sc->nr, 0, sizeof(sc->nr));

	nr_reclaimed = sc->nr_reclaimed;
	nr_scanned = sc->nr_scanned;

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	/*
	 * Target desirable inactive:active list ratios for the anon
	 * and file LRU lists.
	 */
	if (!sc->force_deactivate) {
		unsigned long refaults;

		if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
			sc->may_deactivate |= DEACTIVATE_ANON;
		else
			sc->may_deactivate &= ~DEACTIVATE_ANON;

		/*
		 * When refaults are being observed, it means a new
		 * workingset is being established. Deactivate to get
		 * rid of any stale active pages quickly.
		 */
		refaults = lruvec_page_state(target_lruvec,
					     WORKINGSET_ACTIVATE);
		if (refaults != target_lruvec->refaults ||
		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
			sc->may_deactivate |= DEACTIVATE_FILE;
		else
			sc->may_deactivate &= ~DEACTIVATE_FILE;
	} else
		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;

	/*
	 * If we have plenty of inactive file pages that aren't
	 * thrashing, try to reclaim those first before touching
	 * anonymous pages.
	 */
	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
		sc->cache_trim_mode = 1;
	else
		sc->cache_trim_mode = 0;

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (!cgroup_reclaim(sc)) {
		unsigned long total_high_wmark = 0;
2763 2764
		unsigned long free, anon;
		int z;
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
			if (!managed_zone(zone))
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
		/*
		 * Consider anon: if that's low too, this isn't a
		 * runaway file reclaim problem, but rather just
		 * extreme pressure. Reclaim as per usual then.
		 */
		anon = node_page_state(pgdat, NR_INACTIVE_ANON);

		sc->file_is_tiny =
			file + free <= total_high_wmark &&
			!(sc->may_deactivate & DEACTIVATE_ANON) &&
			anon >> sc->priority;
2789 2790
	}

2791
	shrink_node_memcgs(pgdat, sc);
2792

2793 2794 2795 2796
	if (reclaim_state) {
		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
		reclaim_state->reclaimed_slab = 0;
	}
2797

2798
	/* Record the subtree's reclaim efficiency */
2799
	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2800 2801
		   sc->nr_scanned - nr_scanned,
		   sc->nr_reclaimed - nr_reclaimed);
2802

2803 2804
	if (sc->nr_reclaimed - nr_reclaimed)
		reclaimable = true;
2805

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	if (current_is_kswapd()) {
		/*
		 * If reclaim is isolating dirty pages under writeback,
		 * it implies that the long-lived page allocation rate
		 * is exceeding the page laundering rate. Either the
		 * global limits are not being effective at throttling
		 * processes due to the page distribution throughout
		 * zones or there is heavy usage of a slow backing
		 * device. The only option is to throttle from reclaim
		 * context which is not ideal as there is no guarantee
		 * the dirtying process is throttled in the same way
		 * balance_dirty_pages() manages.
		 *
		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
		 * count the number of pages under pages flagged for
		 * immediate reclaim and stall if any are encountered
		 * in the nr_immediate check below.
		 */
		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2826

2827 2828 2829
		/* Allow kswapd to start writing pages during reclaim.*/
		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
			set_bit(PGDAT_DIRTY, &pgdat->flags);
2830

2831
		/*
2832 2833 2834 2835
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU
		 * faster than they are written so also forcibly stall.
2836
		 */
2837 2838 2839 2840 2841
		if (sc->nr.immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
	}

	/*
2842 2843 2844 2845
	 * Tag a node/memcg as congested if all the dirty pages
	 * scanned were backed by a congested BDI and
	 * wait_iff_congested will stall.
	 *
2846 2847 2848
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling in wait_iff_congested().
	 */
2849 2850
	if ((current_is_kswapd() ||
	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2851
	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2852
		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2853 2854 2855 2856 2857 2858 2859

	/*
	 * Stall direct reclaim for IO completions if underlying BDIs
	 * and node is congested. Allow kswapd to continue until it
	 * starts encountering unqueued dirty pages or cycling through
	 * the LRU too quickly.
	 */
2860 2861 2862
	if (!current_is_kswapd() && current_may_throttle() &&
	    !sc->hibernation_mode &&
	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2863
		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2864

2865 2866 2867
	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
				    sc))
		goto again;
2868

2869 2870 2871 2872 2873 2874 2875 2876 2877
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2878
	return reclaimable;
2879 2880
}

2881
/*
2882 2883 2884
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2885
 */
2886
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2887
{
M
Mel Gorman 已提交
2888
	unsigned long watermark;
2889
	enum compact_result suitable;
2890

2891 2892 2893 2894 2895 2896 2897
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2898

2899
	/*
2900 2901 2902 2903 2904 2905 2906
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2907
	 */
2908
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2909

2910
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2911 2912
}

L
Linus Torvalds 已提交
2913 2914 2915 2916 2917 2918 2919 2920
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2921
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2922
{
2923
	struct zoneref *z;
2924
	struct zone *zone;
2925 2926
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2927
	gfp_t orig_mask;
2928
	pg_data_t *last_pgdat = NULL;
2929

2930 2931 2932 2933 2934
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2935
	orig_mask = sc->gfp_mask;
2936
	if (buffer_heads_over_limit) {
2937
		sc->gfp_mask |= __GFP_HIGHMEM;
2938
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2939
	}
2940

2941
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2942
					sc->reclaim_idx, sc->nodemask) {
2943 2944 2945 2946
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2947
		if (!cgroup_reclaim(sc)) {
2948 2949
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2950
				continue;
2951

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2963
			    compaction_ready(zone, sc)) {
2964 2965
				sc->compaction_ready = true;
				continue;
2966
			}
2967

2968 2969 2970 2971 2972 2973 2974 2975 2976
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2977 2978 2979 2980 2981 2982 2983
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2984
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2985 2986 2987 2988
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2989
			/* need some check for avoid more shrink_zone() */
2990
		}
2991

2992 2993 2994 2995
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2996
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2997
	}
2998

2999 3000 3001 3002 3003
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
3004
}
3005

3006
static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3007
{
3008 3009
	struct lruvec *target_lruvec;
	unsigned long refaults;
3010

3011 3012 3013
	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
	target_lruvec->refaults = refaults;
3014 3015
}

L
Linus Torvalds 已提交
3016 3017 3018 3019 3020 3021 3022 3023
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3024 3025 3026 3027
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3028 3029 3030
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3031
 */
3032
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3033
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3034
{
3035
	int initial_priority = sc->priority;
3036 3037 3038
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3039
retry:
3040 3041
	delayacct_freepages_start();

3042
	if (!cgroup_reclaim(sc))
3043
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3044

3045
	do {
3046 3047
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3048
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3049
		shrink_zones(zonelist, sc);
3050

3051
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3052 3053 3054 3055
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3056

3057 3058 3059 3060 3061 3062
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3063
	} while (--sc->priority >= 0);
3064

3065 3066 3067 3068 3069 3070
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
3071

3072
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3073 3074 3075 3076 3077 3078 3079 3080

		if (cgroup_reclaim(sc)) {
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
						   zone->zone_pgdat);
			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
		}
3081 3082
	}

3083 3084
	delayacct_freepages_end();

3085 3086 3087
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3088
	/* Aborted reclaim to try compaction? don't OOM, then */
3089
	if (sc->compaction_ready)
3090 3091
		return 1;

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	/*
	 * We make inactive:active ratio decisions based on the node's
	 * composition of memory, but a restrictive reclaim_idx or a
	 * memory.low cgroup setting can exempt large amounts of
	 * memory from reclaim. Neither of which are very common, so
	 * instead of doing costly eligibility calculations of the
	 * entire cgroup subtree up front, we assume the estimates are
	 * good, and retry with forcible deactivation if that fails.
	 */
	if (sc->skipped_deactivate) {
		sc->priority = initial_priority;
		sc->force_deactivate = 1;
		sc->skipped_deactivate = 0;
		goto retry;
	}

3108
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3109
	if (sc->memcg_low_skipped) {
3110
		sc->priority = initial_priority;
3111 3112
		sc->force_deactivate = 0;
		sc->skipped_deactivate = 0;
3113 3114
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3115 3116 3117
		goto retry;
	}

3118
	return 0;
L
Linus Torvalds 已提交
3119 3120
}

3121
static bool allow_direct_reclaim(pg_data_t *pgdat)
3122 3123 3124 3125 3126 3127 3128
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3129 3130 3131
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3132 3133
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3134 3135 3136 3137
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3138 3139
			continue;

3140 3141 3142 3143
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3144 3145 3146 3147
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3148 3149 3150 3151
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3152
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3164 3165 3166 3167
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3168
 */
3169
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3170 3171
					nodemask_t *nodemask)
{
3172
	struct zoneref *z;
3173
	struct zone *zone;
3174
	pg_data_t *pgdat = NULL;
3175 3176 3177 3178 3179 3180 3181 3182 3183

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3184 3185 3186 3187 3188 3189 3190 3191
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3192

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3208
					gfp_zone(gfp_mask), nodemask) {
3209 3210 3211 3212 3213
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3214
		if (allow_direct_reclaim(pgdat))
3215 3216 3217 3218 3219 3220
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3221
		goto out;
3222

3223 3224 3225
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3236
			allow_direct_reclaim(pgdat), HZ);
3237 3238

		goto check_pending;
3239 3240 3241 3242
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3243
		allow_direct_reclaim(pgdat));
3244 3245 3246 3247 3248 3249 3250

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3251 3252
}

3253
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3254
				gfp_t gfp_mask, nodemask_t *nodemask)
3255
{
3256
	unsigned long nr_reclaimed;
3257
	struct scan_control sc = {
3258
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3259
		.gfp_mask = current_gfp_context(gfp_mask),
3260
		.reclaim_idx = gfp_zone(gfp_mask),
3261 3262 3263
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3264
		.may_writepage = !laptop_mode,
3265
		.may_unmap = 1,
3266
		.may_swap = 1,
3267 3268
	};

G
Greg Thelen 已提交
3269 3270 3271 3272 3273 3274 3275 3276
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3277
	/*
3278 3279 3280
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3281
	 */
3282
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3283 3284
		return 1;

3285
	set_task_reclaim_state(current, &sc.reclaim_state);
3286
	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3287

3288
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3289 3290

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3291
	set_task_reclaim_state(current, NULL);
3292 3293

	return nr_reclaimed;
3294 3295
}

A
Andrew Morton 已提交
3296
#ifdef CONFIG_MEMCG
3297

3298
/* Only used by soft limit reclaim. Do not reuse for anything else. */
3299
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3300
						gfp_t gfp_mask, bool noswap,
3301
						pg_data_t *pgdat,
3302
						unsigned long *nr_scanned)
3303
{
3304
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3305
	struct scan_control sc = {
3306
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3307
		.target_mem_cgroup = memcg,
3308 3309
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3310
		.reclaim_idx = MAX_NR_ZONES - 1,
3311 3312
		.may_swap = !noswap,
	};
3313

3314 3315
	WARN_ON_ONCE(!current->reclaim_state);

3316 3317
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3318

3319
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3320
						      sc.gfp_mask);
3321

3322 3323 3324
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3325
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3326 3327 3328
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3329
	shrink_lruvec(lruvec, &sc);
3330 3331 3332

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3333
	*nr_scanned = sc.nr_scanned;
3334

3335 3336 3337
	return sc.nr_reclaimed;
}

3338
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3339
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3340
					   gfp_t gfp_mask,
3341
					   bool may_swap)
3342
{
3343
	unsigned long nr_reclaimed;
3344
	unsigned long pflags;
3345
	unsigned int noreclaim_flag;
3346
	struct scan_control sc = {
3347
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3348
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3349
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3350
		.reclaim_idx = MAX_NR_ZONES - 1,
3351 3352 3353 3354
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3355
		.may_swap = may_swap,
3356
	};
3357
	/*
3358 3359 3360
	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
	 * equal pressure on all the nodes. This is based on the assumption that
	 * the reclaim does not bail out early.
3361
	 */
3362
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3363

3364
	set_task_reclaim_state(current, &sc.reclaim_state);
3365

3366
	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3367

3368
	psi_memstall_enter(&pflags);
3369
	noreclaim_flag = memalloc_noreclaim_save();
3370

3371
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3372

3373
	memalloc_noreclaim_restore(noreclaim_flag);
3374
	psi_memstall_leave(&pflags);
3375 3376

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3377
	set_task_reclaim_state(current, NULL);
3378 3379

	return nr_reclaimed;
3380 3381 3382
}
#endif

3383
static void age_active_anon(struct pglist_data *pgdat,
3384
				struct scan_control *sc)
3385
{
3386
	struct mem_cgroup *memcg;
3387
	struct lruvec *lruvec;
3388

3389 3390 3391
	if (!total_swap_pages)
		return;

3392 3393 3394 3395
	lruvec = mem_cgroup_lruvec(NULL, pgdat);
	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
		return;

3396 3397
	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3398 3399 3400
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
3401 3402
		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3403 3404
}

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
	 * should not be checked at the time time as reclaim would
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
	for (i = classzone_idx; i >= 0; i--) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3429 3430 3431 3432 3433
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3434
{
3435 3436 3437
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3438

3439 3440 3441 3442
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3443 3444
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3445

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3463 3464
}

3465 3466 3467
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
3468 3469 3470
	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);

	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3471 3472 3473 3474
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3475 3476 3477 3478 3479 3480
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3481
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3482
{
3483
	/*
3484
	 * The throttled processes are normally woken up in balance_pgdat() as
3485
	 * soon as allow_direct_reclaim() is true. But there is a potential
3486 3487 3488 3489 3490 3491 3492 3493 3494
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3495
	 */
3496 3497
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3498

3499 3500 3501 3502
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3503 3504 3505
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3506 3507
	}

3508
	return false;
3509 3510
}

3511
/*
3512 3513
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3514 3515
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3516 3517
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3518
 */
3519
static bool kswapd_shrink_node(pg_data_t *pgdat,
3520
			       struct scan_control *sc)
3521
{
3522 3523
	struct zone *zone;
	int z;
3524

3525 3526
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3527
	for (z = 0; z <= sc->reclaim_idx; z++) {
3528
		zone = pgdat->node_zones + z;
3529
		if (!managed_zone(zone))
3530
			continue;
3531

3532 3533
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3534 3535

	/*
3536 3537
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3538
	 */
3539
	shrink_node(pgdat, sc);
3540

3541
	/*
3542 3543 3544 3545 3546
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3547
	 */
3548
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3549
		sc->order = 0;
3550

3551
	return sc->nr_scanned >= sc->nr_to_reclaim;
3552 3553
}

L
Linus Torvalds 已提交
3554
/*
3555 3556 3557
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3558
 *
3559
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3560 3561
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3562
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
W
Wei Yang 已提交
3563
 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3564 3565
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3566
 */
3567
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3568 3569
{
	int i;
3570 3571
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3572
	unsigned long pflags;
3573 3574 3575
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3576
	struct zone *zone;
3577 3578
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3579
		.order = order,
3580
		.may_unmap = 1,
3581
	};
3582

3583
	set_task_reclaim_state(current, &sc.reclaim_state);
3584
	psi_memstall_enter(&pflags);
3585 3586
	__fs_reclaim_acquire();

3587
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3588

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3607
	do {
3608
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3609
		bool raise_priority = true;
3610
		bool balanced;
3611
		bool ret;
3612

3613
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3614

3615
		/*
3616 3617 3618 3619 3620 3621 3622 3623
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3624 3625 3626 3627
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3628
				if (!managed_zone(zone))
3629
					continue;
3630

3631
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3632
				break;
L
Linus Torvalds 已提交
3633 3634
			}
		}
3635

3636
		/*
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3653
		 */
3654
		if (!nr_boost_reclaim && balanced)
3655
			goto out;
A
Andrew Morton 已提交
3656

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;

3670 3671 3672 3673 3674 3675
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3676
		age_active_anon(pgdat, &sc);
3677

3678 3679 3680 3681
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3682
		if (sc.priority < DEF_PRIORITY - 2)
3683 3684
			sc.may_writepage = 1;

3685 3686 3687
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3688
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3689 3690 3691
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3692
		/*
3693 3694 3695
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3696
		 */
3697
		if (kswapd_shrink_node(pgdat, &sc))
3698
			raise_priority = false;
3699 3700 3701 3702 3703 3704 3705

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3706
				allow_direct_reclaim(pgdat))
3707
			wake_up_all(&pgdat->pfmemalloc_wait);
3708

3709
		/* Check if kswapd should be suspending */
3710 3711 3712 3713
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3714
			break;
3715

3716
		/*
3717 3718
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3719
		 */
3720
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3731
		if (raise_priority || !nr_reclaimed)
3732
			sc.priority--;
3733
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3734

3735 3736 3737
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3738
out:
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

		for (i = 0; i <= classzone_idx; i++) {
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
	}

3761
	snapshot_refaults(NULL, pgdat);
3762
	__fs_reclaim_release();
3763
	psi_memstall_leave(&pflags);
3764
	set_task_reclaim_state(current, NULL);
3765

3766
	/*
3767 3768 3769 3770
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3771
	 */
3772
	return sc.order;
L
Linus Torvalds 已提交
3773 3774
}

3775
/*
3776 3777 3778 3779 3780
 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
 * after previous reclaim attempt (node is still unbalanced). In that case
 * return the zone index of the previous kswapd reclaim cycle.
3781 3782
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3783
					   enum zone_type prev_classzone_idx)
3784 3785
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3786 3787
		return prev_classzone_idx;
	return pgdat->kswapd_classzone_idx;
3788 3789
}

3790 3791
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3792 3793 3794 3795 3796 3797 3798 3799 3800
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3801 3802 3803 3804 3805 3806 3807
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3808
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3821
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3822

3823
		remaining = schedule_timeout(HZ/10);
3824 3825 3826 3827 3828 3829 3830

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3831
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3832 3833 3834
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3835 3836 3837 3838 3839 3840 3841 3842
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3843 3844
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3856 3857 3858 3859

		if (!kthread_should_stop())
			schedule();

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3870 3871
/*
 * The background pageout daemon, started as a kernel thread
3872
 * from the init process.
L
Linus Torvalds 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3885 3886
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3887 3888
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3889
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3890

R
Rusty Russell 已提交
3891
	if (!cpumask_empty(cpumask))
3892
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3906
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3907
	set_freezable();
L
Linus Torvalds 已提交
3908

3909 3910
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3911
	for ( ; ; ) {
3912
		bool ret;
3913

3914 3915 3916
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3917 3918 3919
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3920

3921 3922
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3923
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3924
		pgdat->kswapd_order = 0;
3925
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3926

3927 3928 3929 3930 3931 3932 3933 3934
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3946 3947
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3948 3949 3950
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3951
	}
3952

3953 3954
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);

L
Linus Torvalds 已提交
3955 3956 3957 3958
	return 0;
}

/*
3959 3960 3961 3962 3963
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3964
 */
3965 3966
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3967 3968 3969
{
	pg_data_t *pgdat;

3970
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3971 3972
		return;

3973
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3974
		return;
3975
	pgdat = zone->zone_pgdat;
3976 3977 3978 3979 3980 3981

	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		pgdat->kswapd_classzone_idx = classzone_idx;
	else
		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
						  classzone_idx);
3982
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3983
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3984
		return;
3985

3986 3987
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3988 3989
	    (pgdat_balanced(pgdat, order, classzone_idx) &&
	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3990 3991 3992 3993 3994 3995 3996 3997 3998
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3999
		return;
4000
	}
4001

4002 4003
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
4004
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
4005 4006
}

4007
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
4008
/*
4009
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4010 4011 4012 4013 4014
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
4015
 */
4016
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
4017
{
4018
	struct scan_control sc = {
4019
		.nr_to_reclaim = nr_to_reclaim,
4020
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4021
		.reclaim_idx = MAX_NR_ZONES - 1,
4022
		.priority = DEF_PRIORITY,
4023
		.may_writepage = 1,
4024 4025
		.may_unmap = 1,
		.may_swap = 1,
4026
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
4027
	};
4028
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4029
	unsigned long nr_reclaimed;
4030
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
4031

4032
	fs_reclaim_acquire(sc.gfp_mask);
4033
	noreclaim_flag = memalloc_noreclaim_save();
4034
	set_task_reclaim_state(current, &sc.reclaim_state);
4035

4036
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4037

4038
	set_task_reclaim_state(current, NULL);
4039
	memalloc_noreclaim_restore(noreclaim_flag);
4040
	fs_reclaim_release(sc.gfp_mask);
4041

4042
	return nr_reclaimed;
L
Linus Torvalds 已提交
4043
}
4044
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
4045 4046 4047 4048 4049

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
4050
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
4051
{
4052
	int nid;
L
Linus Torvalds 已提交
4053

4054 4055 4056
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
4057

4058
		mask = cpumask_of_node(pgdat->node_id);
4059

4060 4061 4062
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
4063
	}
4064
	return 0;
L
Linus Torvalds 已提交
4065 4066
}

4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
4082
		BUG_ON(system_state < SYSTEM_RUNNING);
4083 4084
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
4085
		pgdat->kswapd = NULL;
4086 4087 4088 4089
	}
	return ret;
}

4090
/*
4091
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4092
 * hold mem_hotplug_begin/end().
4093 4094 4095 4096 4097
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

4098
	if (kswapd) {
4099
		kthread_stop(kswapd);
4100 4101
		NODE_DATA(nid)->kswapd = NULL;
	}
4102 4103
}

L
Linus Torvalds 已提交
4104 4105
static int __init kswapd_init(void)
{
4106
	int nid, ret;
4107

L
Linus Torvalds 已提交
4108
	swap_setup();
4109
	for_each_node_state(nid, N_MEMORY)
4110
 		kswapd_run(nid);
4111 4112 4113 4114
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
4115 4116 4117 4118
	return 0;
}

module_init(kswapd_init)
4119 4120 4121

#ifdef CONFIG_NUMA
/*
4122
 * Node reclaim mode
4123
 *
4124
 * If non-zero call node_reclaim when the number of free pages falls below
4125 4126
 * the watermarks.
 */
4127
int node_reclaim_mode __read_mostly;
4128

4129
#define RECLAIM_OFF 0
4130
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4131
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4132
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4133

4134
/*
4135
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4136 4137 4138
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4139
#define NODE_RECLAIM_PRIORITY 4
4140

4141
/*
4142
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4143 4144 4145 4146
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4147 4148 4149 4150 4151 4152
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4153
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4154
{
4155 4156 4157
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4168
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4169
{
4170 4171
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4172 4173

	/*
4174
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4175
	 * potentially reclaimable. Otherwise, we have to worry about
4176
	 * pages like swapcache and node_unmapped_file_pages() provides
4177 4178
	 * a better estimate
	 */
4179 4180
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4181
	else
4182
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4183 4184

	/* If we can't clean pages, remove dirty pages from consideration */
4185 4186
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4187 4188 4189 4190 4191 4192 4193 4194

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4195
/*
4196
 * Try to free up some pages from this node through reclaim.
4197
 */
4198
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4199
{
4200
	/* Minimum pages needed in order to stay on node */
4201
	const unsigned long nr_pages = 1 << order;
4202
	struct task_struct *p = current;
4203
	unsigned int noreclaim_flag;
4204
	struct scan_control sc = {
4205
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4206
		.gfp_mask = current_gfp_context(gfp_mask),
4207
		.order = order,
4208 4209 4210
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4211
		.may_swap = 1,
4212
		.reclaim_idx = gfp_zone(gfp_mask),
4213
	};
4214

4215 4216 4217
	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
					   sc.gfp_mask);

4218
	cond_resched();
4219
	fs_reclaim_acquire(sc.gfp_mask);
4220
	/*
4221
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4222
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4223
	 * and RECLAIM_UNMAP.
4224
	 */
4225 4226
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4227
	set_task_reclaim_state(p, &sc.reclaim_state);
4228

4229
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4230
		/*
4231
		 * Free memory by calling shrink node with increasing
4232 4233 4234
		 * priorities until we have enough memory freed.
		 */
		do {
4235
			shrink_node(pgdat, &sc);
4236
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4237
	}
4238

4239
	set_task_reclaim_state(p, NULL);
4240 4241
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4242
	fs_reclaim_release(sc.gfp_mask);
4243 4244 4245

	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);

4246
	return sc.nr_reclaimed >= nr_pages;
4247
}
4248

4249
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4250
{
4251
	int ret;
4252 4253

	/*
4254
	 * Node reclaim reclaims unmapped file backed pages and
4255
	 * slab pages if we are over the defined limits.
4256
	 *
4257 4258
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4259 4260
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4261
	 * unmapped file backed pages.
4262
	 */
4263
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4264
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4265
		return NODE_RECLAIM_FULL;
4266 4267

	/*
4268
	 * Do not scan if the allocation should not be delayed.
4269
	 */
4270
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4271
		return NODE_RECLAIM_NOSCAN;
4272 4273

	/*
4274
	 * Only run node reclaim on the local node or on nodes that do not
4275 4276 4277 4278
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4279 4280
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4281

4282 4283
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4284

4285 4286
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4287

4288 4289 4290
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4291
	return ret;
4292
}
4293
#endif
L
Lee Schermerhorn 已提交
4294 4295 4296 4297 4298 4299

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4300
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4301 4302
 *
 * Reasons page might not be evictable:
4303
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4304
 * (2) page is part of an mlocked VMA
4305
 *
L
Lee Schermerhorn 已提交
4306
 */
4307
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4308
{
4309 4310 4311 4312 4313 4314 4315
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4316
}
4317 4318

/**
4319 4320 4321
 * check_move_unevictable_pages - check pages for evictability and move to
 * appropriate zone lru list
 * @pvec: pagevec with lru pages to check
4322
 *
4323 4324 4325
 * Checks pages for evictability, if an evictable page is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru pages.
4326
 */
4327
void check_move_unevictable_pages(struct pagevec *pvec)
4328
{
4329
	struct lruvec *lruvec;
4330
	struct pglist_data *pgdat = NULL;
4331 4332 4333
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4334

4335 4336
	for (i = 0; i < pvec->nr; i++) {
		struct page *page = pvec->pages[i];
4337
		struct pglist_data *pagepgdat = page_pgdat(page);
4338

4339
		pgscanned++;
4340 4341 4342 4343 4344
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4345
		}
4346
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4347

4348 4349
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4350

4351
		if (page_evictable(page)) {
4352 4353
			enum lru_list lru = page_lru_base_type(page);

4354
			VM_BUG_ON_PAGE(PageActive(page), page);
4355
			ClearPageUnevictable(page);
4356 4357
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4358
			pgrescued++;
4359
		}
4360
	}
4361

4362
	if (pgdat) {
4363 4364
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4365
		spin_unlock_irq(&pgdat->lru_lock);
4366 4367
	}
}
4368
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);