- 25 3月, 2022 4 次提交
-
-
由 David Hildenbrand 提交于
All users are gone, let's remove it. Link: https://lkml.kernel.org/r/20220131162940.210846-9-david@redhat.comSigned-off-by: NDavid Hildenbrand <david@redhat.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Hildenbrand 提交于
We currently have a different COW logic for anon THP than we have for ordinary anon pages in do_wp_page(): the effect is that the issue reported in CVE-2020-29374 is currently still possible for anon THP: an unintended information leak from the parent to the child. Let's apply the same logic (page_count() == 1), with similar optimizations to remove additional references first as we really want to avoid PTE-mapping the THP and copying individual pages best we can. If we end up with a page that has page_count() != 1, we'll have to PTE-map the THP and fallback to do_wp_page(), which will always copy the page. Note that KSM does not apply to THP. I. Interaction with the swapcache and writeback While a THP is in the swapcache, the swapcache holds one reference on each subpage of the THP. So with PageSwapCache() set, we expect as many additional references as we have subpages. If we manage to remove the THP from the swapcache, all these references will be gone. Usually, a THP is not split when entered into the swapcache and stays a compound page. However, try_to_unmap() will PTE-map the THP and use PTE swap entries. There are no PMD swap entries for that purpose, consequently, we always only swapin subpages into PTEs. Removing a page from the swapcache can fail either when there are remaining swap entries (in which case COW is the right thing to do) or if the page is currently under writeback. Having a locked, R/O PMD-mapped THP that is in the swapcache seems to be possible only in corner cases, for example, if try_to_unmap() failed after adding the page to the swapcache. However, it's comparatively easy to handle. As we have to fully unmap a THP before starting writeback, and swapin is always done on the PTE level, we shouldn't find a R/O PMD-mapped THP in the swapcache that is under writeback. This should at least leave writeback out of the picture. II. Interaction with GUP references Having a R/O PMD-mapped THP with GUP references (i.e., R/O references) will result in PTE-mapping the THP on a write fault. Similar to ordinary anon pages, do_wp_page() will have to copy sub-pages and result in a disconnect between the GUP references and the pages actually mapped into the page tables. To improve the situation in the future, we'll need additional handling to mark anonymous pages as definitely exclusive to a single process, only allow GUP pins on exclusive anon pages, and disallow sharing of exclusive anon pages with GUP pins e.g., during fork(). III. Interaction with references from LRU pagevecs There is no need to try draining the (local) LRU pagevecs in case we would stumble over a !PageLRU() page: folio_add_lru() and friends will always flush the affected pagevec after adding a compound page to it immediately -- pagevec_add_and_need_flush() always returns "true" for them. Note that the LRU pagevecs will hold a reference on the compound page for a very short time, between adding the page to the pagevec and draining it immediately afterwards. IV. Interaction with speculative/temporary references Similar to ordinary anon pages, other speculative/temporary references on the THP, for example, from the pagecache or page migration code, will disallow exclusive reuse of the page. We'll have to PTE-map the THP. Link: https://lkml.kernel.org/r/20220131162940.210846-6-david@redhat.comSigned-off-by: NDavid Hildenbrand <david@redhat.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miaohe Lin 提交于
It's only used inside the huge_memory.c now. Don't export it and make it static. We can thus reduce the size of huge_memory.o a bit. Without this patch: text data bss dec hex filename 32319 2965 4 35288 89d8 mm/huge_memory.o With this patch: text data bss dec hex filename 32042 2957 4 35003 88bb mm/huge_memory.o Link: https://lkml.kernel.org/r/20220302082145.12028-1-linmiaohe@huawei.comSigned-off-by: NMiaohe Lin <linmiaohe@huawei.com> Reviewed-by: NMuchun Song <songmuchun@bytedance.com> Reviewed-by: NYang Shi <shy828301@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Anshuman Khandual 提交于
Patch series "mm/migration: Add trace events", v3. This adds trace events for all migration scenarios including base page, THP and HugeTLB. This patch (of 3): This adds two trace events for PMD based THP migration without split. These events closely follow the implementation details like setting and removing of PMD migration entries, which are essential operations for THP migration. This moves CREATE_TRACE_POINTS into generic THP from powerpc for these new trace events to be available on other platforms as well. Link: https://lkml.kernel.org/r/1643368182-9588-1-git-send-email-anshuman.khandual@arm.com Link: https://lkml.kernel.org/r/1643368182-9588-2-git-send-email-anshuman.khandual@arm.comSigned-off-by: NAnshuman Khandual <anshuman.khandual@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 3月, 2022 4 次提交
-
-
由 Huang Ying 提交于
If the NUMA balancing isn't used to optimize the page placement among sockets but only among memory types, the hot pages in the fast memory node couldn't be migrated (promoted) to anywhere. So it's unnecessary to scan the pages in the fast memory node via changing their PTE/PMD mapping to be PROT_NONE. So that the page faults could be avoided too. In the test, if only the memory tiering NUMA balancing mode is enabled, the number of the NUMA balancing hint faults for the DRAM node is reduced to almost 0 with the patch. While the benchmark score doesn't change visibly. Link: https://lkml.kernel.org/r/20220221084529.1052339-4-ying.huang@intel.comSigned-off-by: N"Huang, Ying" <ying.huang@intel.com> Suggested-by: NDave Hansen <dave.hansen@linux.intel.com> Tested-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NOscar Salvador <osalvador@suse.de> Reviewed-by: NYang Shi <shy828301@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Migration entries do not contribute to a page's reference count: move __split_huge_pmd_locked()'s page_ref_add() into pmd_migration's else block (along with the page_count() check - a page is quite likely to have reference count frozen to 0 when a migration entry is found). This will fix a very rare anonymous memory leak, after a split_huge_pmd() raced with an anon split_huge_page() or an anon THP migrate_pages(): since the wrongly raised refcount stopped the page (perhaps small, perhaps huge, depending on when the race hit) from ever being freed. At first I thought there were worse risks, from prematurely unfreezing a frozen page: but now think that would only affect page cache pages, which do not come this way (except for anonymous pages in swap cache, perhaps). Link: https://lkml.kernel.org/r/84792468-f512-e48f-378c-e34c3641e97@google.com Fixes: ec0abae6 ("mm/thp: fix __split_huge_pmd_locked() for migration PMD") Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NYang Shi <shy828301@gmail.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Zi Yan <ziy@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miaohe Lin 提交于
We can pass FOLL_GET | FOLL_DUMP to follow_page directly to simplify the code a bit in add_page_for_migration and split_huge_pages_pid. Link: https://lkml.kernel.org/r/20220311072002.35575-1-linmiaohe@huawei.comSigned-off-by: NMiaohe Lin <linmiaohe@huawei.com> Reviewed-by: NAnshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
Patch series "Fix some cache flush bugs", v5. This series focuses on fixing cache maintenance. This patch (of 7): The flush_cache_range() is supposed to be justified only if the page is already placed in process page table, and that is done right after flush_cache_range(). So using this interface is wrong. And there is no need to invalite cache since it was non-present before in remove_migration_pmd(). So just to remove it. Link: https://lkml.kernel.org/r/20220210123058.79206-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20220210123058.79206-2-songmuchun@bytedance.comSigned-off-by: NMuchun Song <songmuchun@bytedance.com> Reviewed-by: NZi Yan <ziy@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Lars Persson <lars.persson@axis.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 3月, 2022 8 次提交
-
-
由 William Kucharski 提交于
When we have the opportunity to use PMDs to map a file, we want to follow the same rules as DAX. Signed-off-by: NWilliam Kucharski <william.kucharski@oracle.com> Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org>
-
由 Matthew Wilcox (Oracle) 提交于
This function already required a head page to be passed, so this just adds type-safety and removes a few implicit calls to compound_head(). Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org>
-
由 Matthew Wilcox (Oracle) 提交于
This ripples all the way through to every calling and called function from rmap. Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org>
-
由 Matthew Wilcox (Oracle) 提交于
Convert the implementation and all callers. Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org>
-
由 Matthew Wilcox (Oracle) 提交于
Convert the callers to pass a folio and the try_to_migrate_one() worker to use a folio throughout. Fixes an assumption that a folio must be <= PMD size. Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org>
-
由 Matthew Wilcox (Oracle) 提交于
Change all three callers and the worker function try_to_unmap_one(). Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org>
-
由 Matthew Wilcox (Oracle) 提交于
Convert split_huge_pmd_address() at the same time since it only passes the folio through, and its two callers already have a folio on hand. Removes numerous calls to compound_head() and removes an assumption that a page cannot be larger than a PMD. Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org>
-
由 Matthew Wilcox (Oracle) 提交于
This implements the same algorithm as total_mapcount(), which is transformed into a wrapper function. Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 18 2月, 2022 3 次提交
-
-
由 Hugh Dickins 提交于
Previous patches have been preparatory: now implement page->mlock_count. The ordering of the "Unevictable LRU" is of no significance, and there is no point holding unevictable pages on a list: place page->mlock_count to overlay page->lru.prev (since page->lru.next is overlaid by compound_head, which needs to be even so as not to satisfy PageTail - though 2 could be added instead of 1 for each mlock, if that's ever an improvement). But it's only safe to rely on or modify page->mlock_count while lruvec lock is held and page is on unevictable "LRU" - we can save lots of edits by continuing to pretend that there's an imaginary LRU here (there is an unevictable count which still needs to be maintained, but not a list). The mlock_count technique suffers from an unreliability much like with page_mlock(): while someone else has the page off LRU, not much can be done. As before, err on the safe side (behave as if mlock_count 0), and let try_to_unlock_one() move the page to unevictable if reclaim finds out later on - a few misplaced pages don't matter, what we want to avoid is imbalancing reclaim by flooding evictable lists with unevictable pages. I am not a fan of "if (!isolate_lru_page(page)) putback_lru_page(page);": if we have taken lruvec lock to get the page off its present list, then we save everyone trouble (and however many extra atomic ops) by putting it on its destination list immediately. Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org>
-
由 Hugh Dickins 提交于
Add vma argument to mlock_vma_page() and munlock_vma_page(), make them inline functions which check (vma->vm_flags & VM_LOCKED) before calling mlock_page() and munlock_page() in mm/mlock.c. Add bool compound to mlock_vma_page() and munlock_vma_page(): this is because we have understandable difficulty in accounting pte maps of THPs, and if passed a PageHead page, mlock_page() and munlock_page() cannot tell whether it's a pmd map to be counted or a pte map to be ignored. Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the others, and use that to call mlock_vma_page() at the end of the page adds, and munlock_vma_page() at the end of page_remove_rmap() (end or beginning? unimportant, but end was easier for assertions in testing). No page lock is required (although almost all adds happen to hold it): delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s. Certainly page lock did serialize with page migration, but I'm having difficulty explaining why that was ever important. Mlock accounting on THPs has been hard to define, differed between anon and file, involved PageDoubleMap in some places and not others, required clear_page_mlock() at some points. Keep it simple now: just count the pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks. page_add_new_anon_rmap() callers unchanged: they have long been calling lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED handling (it also checks for not VM_SPECIAL: I think that's overcautious, and inconsistent with other checks, that mmap_region() already prevents VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it). Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org>
-
由 Hugh Dickins 提交于
If counting page mlocks, we must not double-count: follow_page_pte() can tell if a page has already been Mlocked or not, but cannot tell if a pte has already been counted or not: that will have to be done when the pte is mapped in (which lru_cache_add_inactive_or_unevictable() already tracks for new anon pages, but there's no such tracking yet for others). Delete all the FOLL_MLOCK code - faulting in the missing pages will do all that is necessary, without special mlock_vma_page() calls from here. But then FOLL_POPULATE turns out to serve no purpose - it was there so that its absence would tell faultin_page() not to faultin page when setting up VM_LOCKONFAULT areas; but if there's no special work needed here for mlock, then there's no work at all here for VM_LOCKONFAULT. Have I got that right? I've not looked into the history, but see that FOLL_POPULATE goes back before VM_LOCKONFAULT: did it serve a different purpose before? Ah, yes, it was used to skip the old stack guard page. And is it intentional that COW is not broken on existing pages when setting up a VM_LOCKONFAULT area? I can see that being argued either way, and have no reason to disagree with current behaviour. Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org>
-
- 15 1月, 2022 2 次提交
-
-
由 Matthew Wilcox (Oracle) 提交于
All callers pass NULL, so we can stop calculating the value we would store in it. Link: https://lkml.kernel.org/r/20211220205943.456187-3-willy@infradead.orgSigned-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NWilliam Kucharski <william.kucharski@oracle.com> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox (Oracle) 提交于
None of the callers care about the total_map_swapcount() any more. Link: https://lkml.kernel.org/r/20211220205943.456187-1-willy@infradead.orgSigned-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Reviewed-by: NWilliam Kucharski <william.kucharski@oracle.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 1月, 2022 1 次提交
-
-
由 Matthew Wilcox (Oracle) 提交于
We currently store large folios as 2^N consecutive entries. While this consumes rather more memory than necessary, it also turns out to be buggy. A writeback operation which starts within a tail page of a dirty folio will not write back the folio as the xarray's dirty bit is only set on the head index. With multi-index entries, the dirty bit will be found no matter where in the folio the operation starts. This does end up simplifying the page cache slightly, although not as much as I had hoped. Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NWilliam Kucharski <william.kucharski@oracle.com>
-
- 29 10月, 2021 1 次提交
-
-
由 Yang Shi 提交于
When handling shmem page fault the THP with corrupted subpage could be PMD mapped if certain conditions are satisfied. But kernel is supposed to send SIGBUS when trying to map hwpoisoned page. There are two paths which may do PMD map: fault around and regular fault. Before commit f9ce0be7 ("mm: Cleanup faultaround and finish_fault() codepaths") the thing was even worse in fault around path. The THP could be PMD mapped as long as the VMA fits regardless what subpage is accessed and corrupted. After this commit as long as head page is not corrupted the THP could be PMD mapped. In the regular fault path the THP could be PMD mapped as long as the corrupted page is not accessed and the VMA fits. This loophole could be fixed by iterating every subpage to check if any of them is hwpoisoned or not, but it is somewhat costly in page fault path. So introduce a new page flag called HasHWPoisoned on the first tail page. It indicates the THP has hwpoisoned subpage(s). It is set if any subpage of THP is found hwpoisoned by memory failure and after the refcount is bumped successfully, then cleared when the THP is freed or split. The soft offline path doesn't need this since soft offline handler just marks a subpage hwpoisoned when the subpage is migrated successfully. But shmem THP didn't get split then migrated at all. Link: https://lkml.kernel.org/r/20211020210755.23964-3-shy828301@gmail.com Fixes: 800d8c63 ("shmem: add huge pages support") Signed-off-by: NYang Shi <shy828301@gmail.com> Reviewed-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Suggested-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 10月, 2021 1 次提交
-
-
由 Marek Szyprowski 提交于
Decrease nr_thps counter in file's mapping to ensure that the page cache won't be dropped excessively on file write access if page has been already split. I've tried a test scenario running a big binary, kernel remaps it with THPs, then force a THP split with /sys/kernel/debug/split_huge_pages. During any further open of that binary with O_RDWR or O_WRITEONLY kernel drops page cache for it, because of non-zero thps counter. Link: https://lkml.kernel.org/r/20211012120237.2600-1-m.szyprowski@samsung.comSigned-off-by: NMarek Szyprowski <m.szyprowski@samsung.com> Fixes: 09d91cda ("mm,thp: avoid writes to file with THP in pagecache") Fixes: 06d3eff6 ("mm/thp: fix node page state in split_huge_page_to_list()") Acked-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NYang Shi <shy828301@gmail.com> Cc: <sfoon.kim@samsung.com> Cc: Song Liu <songliubraving@fb.com> Cc: Rik van Riel <riel@surriel.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 9月, 2021 2 次提交
-
-
由 Matthew Wilcox (Oracle) 提交于
These are the folio equivalents of lock_page_lruvec() and similar functions. Also convert lruvec_memcg_debug() to take a folio. Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDavid Howells <dhowells@redhat.com> Acked-by: NVlastimil Babka <vbabka@suse.cz>
-
由 Matthew Wilcox (Oracle) 提交于
Convert all callers of mem_cgroup_charge() to call page_folio() on the page they're currently passing in. Many of them will be converted to use folios themselves soon. Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDavid Howells <dhowells@redhat.com> Acked-by: NVlastimil Babka <vbabka@suse.cz>
-
- 04 9月, 2021 2 次提交
-
-
由 Huang Ying 提交于
Before commit c5b5a3dd ("mm: thp: refactor NUMA fault handling"), the TLB flushing is done in do_huge_pmd_numa_page() itself via flush_tlb_range(). But after commit c5b5a3dd ("mm: thp: refactor NUMA fault handling"), the TLB flushing is done in migrate_pages() as in the following code path anyway. do_huge_pmd_numa_page migrate_misplaced_page migrate_pages So now, the TLB flushing code in do_huge_pmd_numa_page() becomes unnecessary. So the code is deleted in this patch to simplify the code. This is only code cleanup, there's no visible performance difference. The mmu_notifier_invalidate_range() in do_huge_pmd_numa_page() is deleted too. Because migrate_pages() takes care of that too when CPU TLB is flushed. Link: https://lkml.kernel.org/r/20210720065529.716031-1-ying.huang@intel.comSigned-off-by: N"Huang, Ying" <ying.huang@intel.com> Reviewed-by: NZi Yan <ziy@nvidia.com> Reviewed-by: NYang Shi <shy828301@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
A successful shmem_fallocate() guarantees that the extent has been reserved, even beyond i_size when the FALLOC_FL_KEEP_SIZE flag was used. But that guarantee is broken by shmem_unused_huge_shrink()'s attempts to split huge pages and free their excess beyond i_size; and by other uses of split_huge_page() near i_size. It's sad to add a shmem inode field just for this, but I did not find a better way to keep the guarantee. A flag to say KEEP_SIZE has been used would be cheaper, but I'm averse to unclearable flags. The fallocend field is not perfect either (many disjoint ranges might be fallocated), but good enough; and gains another use later on. Link: https://lkml.kernel.org/r/ca9a146-3a59-6cd3-7f28-e9a044bb1052@google.com Fixes: 779750d2 ("shmem: split huge pages beyond i_size under memory pressure") Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NYang Shi <shy828301@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 7月, 2021 1 次提交
-
-
由 Hugh Dickins 提交于
Parallel developments in mm/rmap.c have left behind some out-of-date comments: try_to_migrate_one() also accepts TTU_SYNC (already commented in try_to_migrate() itself), and try_to_migrate() returns nothing at all. TTU_SPLIT_FREEZE has just been deleted, so reword the comment about it in mm/huge_memory.c; and TTU_IGNORE_ACCESS was removed in 5.11, so delete the "recently referenced" comment from try_to_unmap_one() (once upon a time the comment was near the removed codeblock, but they drifted apart). Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NAlistair Popple <apopple@nvidia.com> Link: https://lore.kernel.org/lkml/563ce5b2-7a44-5b4d-1dfd-59a0e65932a9@google.com/ Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 7月, 2021 3 次提交
-
-
由 Alistair Popple 提交于
Migration is currently implemented as a mode of operation for try_to_unmap_one() generally specified by passing the TTU_MIGRATION flag or in the case of splitting a huge anonymous page TTU_SPLIT_FREEZE. However it does not have much in common with the rest of the unmap functionality of try_to_unmap_one() and thus splitting it into a separate function reduces the complexity of try_to_unmap_one() making it more readable. Several simplifications can also be made in try_to_migrate_one() based on the following observations: - All users of TTU_MIGRATION also set TTU_IGNORE_MLOCK. - No users of TTU_MIGRATION ever set TTU_IGNORE_HWPOISON. - No users of TTU_MIGRATION ever set TTU_BATCH_FLUSH. TTU_SPLIT_FREEZE is a special case of migration used when splitting an anonymous page. This is most easily dealt with by calling the correct function from unmap_page() in mm/huge_memory.c - either try_to_migrate() for PageAnon or try_to_unmap(). Link: https://lkml.kernel.org/r/20210616105937.23201-5-apopple@nvidia.comSigned-off-by: NAlistair Popple <apopple@nvidia.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRalph Campbell <rcampbell@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alistair Popple 提交于
Both migration and device private pages use special swap entries that are manipluated by a range of inline functions. The arguments to these are somewhat inconsistent so rework them to remove flag type arguments and to make the arguments similar for both read and write entry creation. Link: https://lkml.kernel.org/r/20210616105937.23201-3-apopple@nvidia.comSigned-off-by: NAlistair Popple <apopple@nvidia.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJason Gunthorpe <jgg@nvidia.com> Reviewed-by: NRalph Campbell <rcampbell@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alistair Popple 提交于
Patch series "Add support for SVM atomics in Nouveau", v11. Introduction ============ Some devices have features such as atomic PTE bits that can be used to implement atomic access to system memory. To support atomic operations to a shared virtual memory page such a device needs access to that page which is exclusive of the CPU. This series introduces a mechanism to temporarily unmap pages granting exclusive access to a device. These changes are required to support OpenCL atomic operations in Nouveau to shared virtual memory (SVM) regions allocated with the CL_MEM_SVM_ATOMICS clSVMAlloc flag. A more complete description of the OpenCL SVM feature is available at https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/ OpenCL_API.html#_shared_virtual_memory . Implementation ============== Exclusive device access is implemented by adding a new swap entry type (SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry. The main difference is that on fault the original entry is immediately restored by the fault handler instead of waiting. Restoring the entry triggers calls to MMU notifers which allows a device driver to revoke the atomic access permission from the GPU prior to the CPU finalising the entry. Patches ======= Patches 1 & 2 refactor existing migration and device private entry functions. Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated functionality into separate functions - try_to_migrate_one() and try_to_munlock_one(). Patch 5 renames some existing code but does not introduce functionality. Patch 6 is a small clean-up to swap entry handling in copy_pte_range(). Patch 7 contains the bulk of the implementation for device exclusive memory. Patch 8 contains some additions to the HMM selftests to ensure everything works as expected. Patch 9 is a cleanup for the Nouveau SVM implementation. Patch 10 contains the implementation of atomic access for the Nouveau driver. Testing ======= This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program which checks that GPU atomic accesses to system memory are atomic. Without this series the test fails as there is no way of write-protecting the page mapping which results in the device clobbering CPU writes. For reference the test is available at https://ozlabs.org/~apopple/opencl_svm_atomics/ Further testing has been performed by adding support for testing exclusive access to the hmm-tests kselftests. This patch (of 10): Remove multiple similar inline functions for dealing with different types of special swap entries. Both migration and device private swap entries use the swap offset to store a pfn. Instead of multiple inline functions to obtain a struct page for each swap entry type use a common function pfn_swap_entry_to_page(). Also open-code the various entry_to_pfn() functions as this results is shorter code that is easier to understand. Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.comSigned-off-by: NAlistair Popple <apopple@nvidia.com> Reviewed-by: NRalph Campbell <rcampbell@nvidia.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 7月, 2021 8 次提交
-
-
由 Matthew Wilcox (Oracle) 提交于
Using MAX_INPUT_BUF_SZ as the maximum length of the string makes fortify complain as it thinks the string might be longer than the buffer, and if it is, we will end up with a "string" that is missing a NUL terminator. It's trivial to show that 'tok' points to a NUL-terminated string which is less than MAX_INPUT_BUF_SZ in length, so we may as well just use strcpy() and avoid the warning. Link: https://lkml.kernel.org/r/20210615200242.1716568-4-willy@infradead.orgSigned-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
THP splitting's unmap_page() only sets TTU_SPLIT_FREEZE when PageAnon, and migration entries are only inserted when TTU_MIGRATION (unused here) or TTU_SPLIT_FREEZE is set: so it's just a waste of time for remap_page() to search for migration entries to remove when !PageAnon. Link: https://lkml.kernel.org/r/f987bc44-f28e-688d-2424-b4722153ed8@google.com Fixes: baa355fd ("thp: file pages support for split_huge_page()") Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NYang Shi <shy828301@gmail.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Jue Wang <juew@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
A quick grep shows x86_64, PowerPC (book3s), ARM64 and S390 support both NUMA balancing and THP. But S390 doesn't support THP migration so NUMA balancing actually can't migrate any misplaced pages. Skip make PMD PROT_NONE for such case otherwise CPU cycles may be wasted by pointless NUMA hinting faults on S390. Link: https://lkml.kernel.org/r/20210518200801.7413-8-shy828301@gmail.comSigned-off-by: NYang Shi <shy828301@gmail.com> Acked-by: NMel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.comSigned-off-by: NYang Shi <shy828301@gmail.com> Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Acked-by: NMel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
Pach series "mm: thp: use generic THP migration for NUMA hinting fault", v3. When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. It is definitely a maintenance burden to keep two THP migration implementation for different code paths and it is more error prone. Using the generic THP migration implementation allows us remove the duplicate code and some hacks needed by the old ad hoc implementation. A quick grep shows x86_64, PowerPC (book3s), ARM64 ans S390 support both THP and NUMA balancing. The most of them support THP migration except for S390. Zi Yan tried to add THP migration support for S390 before but it was not accepted due to the design of S390 PMD. For the discussion, please see: https://lkml.org/lkml/2018/4/27/953. Per the discussion with Gerald Schaefer in v1 it is acceptible to skip huge PMD for S390 for now. I saw there were some hacks about gup from git history, but I didn't figure out if they have been removed or not since I just found FOLL_NUMA code in the current gup implementation and they seems useful. Patch #1 ~ #2 are preparation patches. Patch #3 is the real meat. Patch #4 ~ #6 keep consistent counters and behaviors with before. Patch #7 skips change huge PMD to prot_none if thp migration is not supported. Test ---- Did some tests to measure the latency of do_huge_pmd_numa_page. The test VM has 80 vcpus and 64G memory. The test would create 2 processes to consume 128G memory together which would incur memory pressure to cause THP splits. And it also creates 80 processes to hog cpu, and the memory consumer processes are bound to different nodes periodically in order to increase NUMA faults. The below test script is used: echo 3 > /proc/sys/vm/drop_caches # Run stress-ng for 24 hours ./stress-ng/stress-ng --vm 2 --vm-bytes 64G --timeout 24h & PID=$! ./stress-ng/stress-ng --cpu $NR_CPUS --timeout 24h & # Wait for vm stressors forked sleep 5 PID_1=`pgrep -P $PID | awk 'NR == 1'` PID_2=`pgrep -P $PID | awk 'NR == 2'` JOB1=`pgrep -P $PID_1` JOB2=`pgrep -P $PID_2` # Bind load jobs to different nodes periodically to force generate # cross node memory access while [ -d "/proc/$PID" ] do taskset -apc 8 $JOB1 taskset -apc 8 $JOB2 sleep 300 taskset -apc 58 $JOB1 taskset -apc 58 $JOB2 sleep 300 done With the above test the histogram of latency of do_huge_pmd_numa_page is as shown below. Since the number of do_huge_pmd_numa_page varies drastically for each run (should be due to scheduler), so I converted the raw number to percentage. patched base @us[stress-ng]: [0] 3.57% 0.16% [1] 55.68% 18.36% [2, 4) 10.46% 40.44% [4, 8) 7.26% 17.82% [8, 16) 21.12% 13.41% [16, 32) 1.06% 4.27% [32, 64) 0.56% 4.07% [64, 128) 0.16% 0.35% [128, 256) < 0.1% < 0.1% [256, 512) < 0.1% < 0.1% [512, 1K) < 0.1% < 0.1% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) < 0.1% < 0.1% [16K, 32K) < 0.1% < 0.1% [32K, 64K) < 0.1% < 0.1% Per the result, patched kernel is even slightly better than the base kernel. I think this is because the lock contention against THP split is less than base kernel due to the refactor. To exclude the affect from THP split, I also did test w/o memory pressure. No obvious regression is spotted. The below is the test result *w/o* memory pressure. patched base @us[stress-ng]: [0] 7.97% 18.4% [1] 69.63% 58.24% [2, 4) 4.18% 2.63% [4, 8) 0.22% 0.17% [8, 16) 1.03% 0.92% [16, 32) 0.14% < 0.1% [32, 64) < 0.1% < 0.1% [64, 128) < 0.1% < 0.1% [128, 256) < 0.1% < 0.1% [256, 512) 0.45% 1.19% [512, 1K) 15.45% 17.27% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) 0.86% 0.88% [16K, 32K) < 0.1% 0.15% [32K, 64K) < 0.1% < 0.1% [64K, 128K) < 0.1% < 0.1% [128K, 256K) < 0.1% < 0.1% The series also survived a series of tests that exercise NUMA balancing migrations by Mel. This patch (of 7): Add orig_pmd to struct vm_fault so the "orig_pmd" parameter used by huge page fault could be removed, just like its PTE counterpart does. Link: https://lkml.kernel.org/r/20210518200801.7413-1-shy828301@gmail.com Link: https://lkml.kernel.org/r/20210518200801.7413-2-shy828301@gmail.comSigned-off-by: NYang Shi <shy828301@gmail.com> Acked-by: NMel Gorman <mgorman@suse.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Peter Xu 提交于
We tried to do something similar in b569a176 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") previously, but it's not doing it all right.. A few fixes around the code path: 1. We were referencing VM_UFFD_WP vm_flags on the _old_ vma rather than the new vma. That's overlooked in b569a176, so it won't work as expected. Thanks to the recent rework on fork code (7a4830c3), we can easily get the new vma now, so switch the checks to that. 2. Dropping the uffd-wp bit in copy_huge_pmd() could be wrong if the huge pmd is a migration huge pmd. When it happens, instead of using pmd_uffd_wp(), we should use pmd_swp_uffd_wp(). The fix is simply to handle them separately. 3. Forget to carry over uffd-wp bit for a write migration huge pmd entry. This also happens in copy_huge_pmd(), where we converted a write huge migration entry into a read one. 4. In copy_nonpresent_pte(), drop uffd-wp if necessary for swap ptes. 5. In copy_present_page() when COW is enforced when fork(), we also need to pass over the uffd-wp bit if VM_UFFD_WP is armed on the new vma, and when the pte to be copied has uffd-wp bit set. Remove the comment in copy_present_pte() about this. It won't help a huge lot to only comment there, but comment everywhere would be an overkill. Let's assume the commit messages would help. [peterx@redhat.com: fix a few thp pmd missing uffd-wp bit] Link: https://lkml.kernel.org/r/20210428225030.9708-4-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-3-peterx@redhat.com Fixes: b569a176 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") Signed-off-by: NPeter Xu <peterx@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Peter Xu 提交于
Patch series "mm/uffd: Misc fix for uffd-wp and one more test". This series tries to fix some corner case bugs for uffd-wp on either thp or fork(). Then it introduced a new test with pagemap/pageout. Patch layout: Patch 1: cleanup for THP, it'll slightly simplify the follow up patches Patch 2-4: misc fixes for uffd-wp here and there; please refer to each patch Patch 5: add pagemap support for uffd-wp Patch 6: add pagemap/pageout test for uffd-wp The last test introduced can also verify some of the fixes in previous patches, as the test will fail without the fixes. However it's not easy to verify all the changes in patch 2-4, but hopefully they can still be properly reviewed. Note that if considering the ongoing uffd-wp shmem & hugetlbfs work, patch 5 will be incomplete as it's missing e.g. hugetlbfs part or the special swap pte detection. However that's not needed in this series, and since that series is still during review, this series does not depend on that one (the last test only runs with anonymous memory, not file-backed). So this series can be merged even before that series. This patch (of 6): Huge zero page is handled in a special path in copy_huge_pmd(), however it should share most codes with a normal thp page. Trying to share more code with it by removing the special path. The only leftover so far is the huge zero page refcounting (mm_get_huge_zero_page()), because that's separately done with a global counter. This prepares for a future patch to modify the huge pmd to be installed, so that we don't need to duplicate it explicitly into huge zero page case too. Link: https://lkml.kernel.org/r/20210428225030.9708-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-2-peterx@redhat.comSigned-off-by: NPeter Xu <peterx@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Mike Kravetz <mike.kravetz@oracle.com>, peterx@redhat.com Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miaohe Lin 提交于
If other processes are mapping any other subpages of the hugepage, i.e. in pte-mapped thp case, page_mapcount() will return 1 incorrectly. Then we would discard the page while other processes are still mapping it. Fix it by using total_mapcount() which can tell whether other processes are still mapping it. Link: https://lkml.kernel.org/r/20210511134857.1581273-6-linmiaohe@huawei.com Fixes: b8d3c4c3 ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called") Reviewed-by: NYang Shi <shy828301@gmail.com> Signed-off-by: NMiaohe Lin <linmiaohe@huawei.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Rik van Riel <riel@surriel.com> Cc: Song Liu <songliubraving@fb.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-