entry_64.S 49.2 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11
 * Some of this is documented in Documentation/x86/entry_64.rst
12
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18
 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 20
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
SYM_CODE_START(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
SYM_CODE_END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	btl	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95
	btl	$9, EFLAGS(%rsp)		/* interrupts off? */
96
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145
SYM_CODE_START(entry_SYSCALL_64)
146
	UNWIND_HINT_EMPTY
147 148 149 150 151
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
152

153
	swapgs
154
	/* tss.sp2 is scratch space. */
155
	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
156
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
157
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158 159

	/* Construct struct pt_regs on stack */
160 161 162 163 164
	pushq	$__USER_DS				/* pt_regs->ss */
	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
	pushq	%r11					/* pt_regs->flags */
	pushq	$__USER_CS				/* pt_regs->cs */
	pushq	%rcx					/* pt_regs->ip */
165
SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
166
	pushq	%rax					/* pt_regs->orig_ax */
167 168

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
169

170
	/* IRQs are off. */
171 172
	movq	%rax, %rdi
	movq	%rsp, %rsi
173 174
	call	do_syscall_64		/* returns with IRQs disabled */

175 176
	/*
	 * Try to use SYSRET instead of IRET if we're returning to
177 178
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
179
	 */
180 181
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
182 183 184

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
185 186 187 188

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
189
	 * the kernel, since userspace controls RSP.
190
	 *
191
	 * If width of "canonical tail" ever becomes variable, this will need
192
	 * to be updated to remain correct on both old and new CPUs.
193
	 *
194 195
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
196
	 */
197
#ifdef CONFIG_X86_5LEVEL
198 199
	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
200
#else
201 202
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
203
#endif
204

205 206
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
207
	jne	swapgs_restore_regs_and_return_to_usermode
208

209
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
210
	jne	swapgs_restore_regs_and_return_to_usermode
211

212 213
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
214
	jne	swapgs_restore_regs_and_return_to_usermode
215 216

	/*
217 218 219 220 221 222 223 224 225
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
226
	 *
227
	 *           movq	$stuck_here, %rcx
228 229 230 231 232 233
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
234
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
235
	jnz	swapgs_restore_regs_and_return_to_usermode
236 237 238

	/* nothing to check for RSP */

239
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
240
	jne	swapgs_restore_regs_and_return_to_usermode
241 242

	/*
243 244
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
245 246
	 */
syscall_return_via_sysret:
247
	/* rcx and r11 are already restored (see code above) */
248
	POP_REGS pop_rdi=0 skip_r11rcx=1
249 250 251 252 253 254

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
255
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
256
	UNWIND_HINT_EMPTY
257 258 259 260 261 262 263 264

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
265 266
	STACKLEAK_ERASE_NOCLOBBER

267
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
268

269
	popq	%rdi
270
	popq	%rsp
271
	USERGS_SYSRET64
272
SYM_CODE_END(entry_SYSCALL_64)
273

274 275 276 277
/*
 * %rdi: prev task
 * %rsi: next task
 */
278
.pushsection .text, "ax"
279
SYM_FUNC_START(__switch_to_asm)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

295
#ifdef CONFIG_STACKPROTECTOR
296
	movq	TASK_stack_canary(%rsi), %rbx
297
	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
298 299
#endif

300 301 302 303 304 305 306 307
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
308
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
309 310
#endif

311 312 313 314 315 316 317 318 319
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
320
SYM_FUNC_END(__switch_to_asm)
321
.popsection
322

323 324 325
/*
 * A newly forked process directly context switches into this address.
 *
326
 * rax: prev task we switched from
327 328
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
329
 */
330
.pushsection .text, "ax"
331
SYM_CODE_START(ret_from_fork)
332
	UNWIND_HINT_EMPTY
333
	movq	%rax, %rdi
334
	call	schedule_tail			/* rdi: 'prev' task parameter */
335

336 337
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
338

339
2:
340
	UNWIND_HINT_REGS
341
	movq	%rsp, %rdi
342
	call	syscall_return_slowpath	/* returns with IRQs disabled */
343
	jmp	swapgs_restore_regs_and_return_to_usermode
344 345 346

1:
	/* kernel thread */
347
	UNWIND_HINT_EMPTY
348
	movq	%r12, %rdi
349
	CALL_NOSPEC rbx
350 351 352 353 354 355 356
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
357
SYM_CODE_END(ret_from_fork)
358
.popsection
359

360
/*
361 362
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
363
 */
364
	.align 8
365
SYM_CODE_START(irq_entries_start)
366 367
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
368
	UNWIND_HINT_IRET_REGS
369
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
370 371
	jmp	common_interrupt
	.align	8
372
	vector=vector+1
373
    .endr
374
SYM_CODE_END(irq_entries_start)
375

376
	.align 8
377
SYM_CODE_START(spurious_entries_start)
378 379 380 381 382 383 384 385
    vector=FIRST_SYSTEM_VECTOR
    .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
	UNWIND_HINT_IRET_REGS
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
	jmp	common_spurious
	.align	8
	vector=vector+1
    .endr
386
SYM_CODE_END(spurious_entries_start)
387

388 389
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
390 391 392
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
393 394 395
	jz .Lokay_\@
	ud2
.Lokay_\@:
396
	popq %rax
397 398 399 400 401 402 403 404 405 406
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
407
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
408
	DEBUG_ENTRY_ASSERT_IRQS_OFF
409 410 411 412 413 414 415 416 417

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
418
	movq	%rsp, \old_rsp
419
	.endif
420 421 422 423 424

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

425
	incl	PER_CPU_VAR(irq_count)
426
	jnz	.Lirq_stack_push_old_rsp_\@
427 428 429 430 431 432 433 434 435

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
436 437 438 439 440 441 442
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

443
	movq	\old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
444
	movq	PER_CPU_VAR(hardirq_stack_ptr), %rsp
445 446 447 448 449 450 451

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
452
	 */
453 454 455 456 457
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
458

459
.Lirq_stack_push_old_rsp_\@:
460
	pushq	\old_rsp
461 462 463 464

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
465 466 467 468 469 470 471 472 473

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
474 475 476 477 478
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
479
.macro LEAVE_IRQ_STACK regs=1
480 481 482 483
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

484 485 486 487
	.if \regs
	UNWIND_HINT_REGS
	.endif

488 489 490 491 492 493 494 495
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

496
/*
497
 * Interrupt entry helper function.
498
 *
499 500 501 502 503 504 505 506 507 508 509 510
 * Entry runs with interrupts off. Stack layout at entry:
 * +----------------------------------------------------+
 * | regs->ss						|
 * | regs->rsp						|
 * | regs->eflags					|
 * | regs->cs						|
 * | regs->ip						|
 * +----------------------------------------------------+
 * | regs->orig_ax = ~(interrupt number)		|
 * +----------------------------------------------------+
 * | return address					|
 * +----------------------------------------------------+
511
 */
512
SYM_CODE_START(interrupt_entry)
513
	UNWIND_HINT_IRET_REGS offset=16
514
	ASM_CLAC
515
	cld
516

517
	testb	$3, CS-ORIG_RAX+8(%rsp)
518 519
	jz	1f
	SWAPGS
520
	FENCE_SWAPGS_USER_ENTRY
521 522 523 524 525 526
	/*
	 * Switch to the thread stack. The IRET frame and orig_ax are
	 * on the stack, as well as the return address. RDI..R12 are
	 * not (yet) on the stack and space has not (yet) been
	 * allocated for them.
	 */
527
	pushq	%rdi
528

529 530 531 532
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
533 534 535 536 537 538

	 /*
	  * We have RDI, return address, and orig_ax on the stack on
	  * top of the IRET frame. That means offset=24
	  */
	UNWIND_HINT_IRET_REGS base=%rdi offset=24
539 540 541 542 543 544

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
545
	UNWIND_HINT_IRET_REGS
546 547 548 549
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */

	movq	(%rdi), %rdi
550
	jmp	2f
551
1:
552 553
	FENCE_SWAPGS_KERNEL_ENTRY
2:
554 555
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
556

557
	testb	$3, CS+8(%rsp)
558
	jz	1f
559 560

	/*
561 562
	 * IRQ from user mode.
	 *
563 564
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
565
	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
566 567 568 569 570 571
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

572
	CALL_enter_from_user_mode
573

574
1:
575
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
576 577 578
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

579
	ret
580
SYM_CODE_END(interrupt_entry)
581
_ASM_NOKPROBE(interrupt_entry)
582

583 584

/* Interrupt entry/exit. */
L
Linus Torvalds 已提交
585

586 587 588 589
/*
 * The interrupt stubs push (~vector+0x80) onto the stack and
 * then jump to common_spurious/interrupt.
 */
590
SYM_CODE_START_LOCAL(common_spurious)
591 592 593 594 595
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	smp_spurious_interrupt		/* rdi points to pt_regs */
	jmp	ret_from_intr
596
SYM_CODE_END(common_spurious)
597 598 599
_ASM_NOKPROBE(common_spurious)

/* common_interrupt is a hotpath. Align it */
600
	.p2align CONFIG_X86_L1_CACHE_SHIFT
601
SYM_CODE_START_LOCAL(common_interrupt)
602
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
603 604 605
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
606
	/* 0(%rsp): old RSP */
607
ret_from_intr:
608
	DISABLE_INTERRUPTS(CLBR_ANY)
609
	TRACE_IRQS_OFF
610

611
	LEAVE_IRQ_STACK
612

613
	testb	$3, CS(%rsp)
614
	jz	retint_kernel
615

616
	/* Interrupt came from user space */
J
Jiri Slaby 已提交
617
.Lretint_user:
618 619
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
620

621
SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
622 623
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
624
	testb	$3, CS(%rsp)
625 626 627 628
	jnz	1f
	ud2
1:
#endif
629
	POP_REGS pop_rdi=0
630 631 632 633 634 635

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
636
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
637
	UNWIND_HINT_EMPTY
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
653
	STACKLEAK_ERASE_NOCLOBBER
654

655
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
656

657 658 659
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
660 661
	INTERRUPT_RETURN

662

663
/* Returning to kernel space */
664
retint_kernel:
T
Thomas Gleixner 已提交
665
#ifdef CONFIG_PREEMPTION
666 667
	/* Interrupts are off */
	/* Check if we need preemption */
668
	btl	$9, EFLAGS(%rsp)		/* were interrupts off? */
669
	jnc	1f
670
	cmpl	$0, PER_CPU_VAR(__preempt_count)
671
	jnz	1f
672
	call	preempt_schedule_irq
673
1:
674
#endif
675 676 677 678
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
679

680
SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
681 682
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
683
	testb	$3, CS(%rsp)
684 685 686 687
	jz	1f
	ud2
1:
#endif
688
	POP_REGS
689
	addq	$8, %rsp	/* skip regs->orig_ax */
690 691 692 693
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
694 695
	INTERRUPT_RETURN

696
SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
697
	UNWIND_HINT_IRET_REGS
698 699 700 701
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
702
#ifdef CONFIG_X86_ESPFIX64
703 704
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
705
#endif
706

707
SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
A
Andy Lutomirski 已提交
708 709 710 711 712 713
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
714
	iretq
I
Ingo Molnar 已提交
715

716
#ifdef CONFIG_X86_ESPFIX64
717
native_irq_return_ldt:
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
740 741 742
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

743
	movq	PER_CPU_VAR(espfix_waddr), %rdi
744 745
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
746
	movq	%rax, (1*8)(%rdi)
747
	movq	(2*8)(%rsp), %rax		/* user CS */
748
	movq	%rax, (2*8)(%rdi)
749
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
750
	movq	%rax, (3*8)(%rdi)
751
	movq	(5*8)(%rsp), %rax		/* user SS */
752
	movq	%rax, (5*8)(%rdi)
753
	movq	(4*8)(%rsp), %rax		/* user RSP */
754
	movq	%rax, (4*8)(%rdi)
755 756 757 758 759 760 761 762 763 764 765 766
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
767
	orq	PER_CPU_VAR(espfix_stack), %rax
768

769
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
770 771 772
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

773
	movq	%rax, %rsp
774
	UNWIND_HINT_IRET_REGS offset=8
775 776 777 778 779 780 781 782 783 784 785 786

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
787
	jmp	native_irq_return_iret
788
#endif
789
SYM_CODE_END(common_interrupt)
790
_ASM_NOKPROBE(common_interrupt)
791

L
Linus Torvalds 已提交
792 793
/*
 * APIC interrupts.
794
 */
795
.macro apicinterrupt3 num sym do_sym
796
SYM_CODE_START(\sym)
797
	UNWIND_HINT_IRET_REGS
798
	pushq	$~(\num)
799 800 801
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
802
	jmp	ret_from_intr
803
SYM_CODE_END(\sym)
804
_ASM_NOKPROBE(\sym)
805
.endm
L
Linus Torvalds 已提交
806

807
/* Make sure APIC interrupt handlers end up in the irqentry section: */
808 809
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
810

811
.macro apicinterrupt num sym do_sym
812
PUSH_SECTION_IRQENTRY
813
apicinterrupt3 \num \sym \do_sym
814
POP_SECTION_IRQENTRY
815 816
.endm

817
#ifdef CONFIG_SMP
818 819
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
820
#endif
L
Linus Torvalds 已提交
821

N
Nick Piggin 已提交
822
#ifdef CONFIG_X86_UV
823
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
824
#endif
825 826 827

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
828

829
#ifdef CONFIG_HAVE_KVM
830 831
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
832
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
833 834
#endif

835
#ifdef CONFIG_X86_MCE_THRESHOLD
836
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
837 838
#endif

839
#ifdef CONFIG_X86_MCE_AMD
840
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
841 842
#endif

843
#ifdef CONFIG_X86_THERMAL_VECTOR
844
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
845
#endif
846

847
#ifdef CONFIG_SMP
848 849 850
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
851
#endif
L
Linus Torvalds 已提交
852

853 854
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
855

856
#ifdef CONFIG_IRQ_WORK
857
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
858 859
#endif

L
Linus Torvalds 已提交
860 861
/*
 * Exception entry points.
862
 */
863
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)
864

865
.macro idtentry_part do_sym, has_error_code:req, read_cr2:req, paranoid:req, shift_ist=-1, ist_offset=0
866 867 868 869 870 871 872 873 874

	.if \paranoid
	call	paranoid_entry
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
	.else
	call	error_entry
	.endif
	UNWIND_HINT_REGS

875
	.if \read_cr2
876 877 878 879 880 881
	/*
	 * Store CR2 early so subsequent faults cannot clobber it. Use R12 as
	 * intermediate storage as RDX can be clobbered in enter_from_user_mode().
	 * GET_CR2_INTO can clobber RAX.
	 */
	GET_CR2_INTO(%r12);
882 883
	.endif

884 885 886 887 888
	.if \shift_ist != -1
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
	.else
	TRACE_IRQS_OFF
	.endif
889

890
#ifdef CONFIG_CONTEXT_TRACKING
891 892 893 894 895
	.if \paranoid == 0
	testb	$3, CS(%rsp)
	jz	.Lfrom_kernel_no_context_tracking_\@
	CALL_enter_from_user_mode
.Lfrom_kernel_no_context_tracking_\@:
896
	.endif
897
#endif
898 899 900 901 902 903 904 905 906 907 908 909 910 911

	movq	%rsp, %rdi			/* pt_regs pointer */

	.if \has_error_code
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
	.else
	xorl	%esi, %esi			/* no error code */
	.endif

	.if \shift_ist != -1
	subq	$\ist_offset, CPU_TSS_IST(\shift_ist)
	.endif

912 913 914 915
	.if \read_cr2
	movq	%r12, %rdx			/* Move CR2 into 3rd argument */
	.endif

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	call	\do_sym

	.if \shift_ist != -1
	addq	$\ist_offset, CPU_TSS_IST(\shift_ist)
	.endif

	.if \paranoid
	/* this procedure expect "no swapgs" flag in ebx */
	jmp	paranoid_exit
	.else
	jmp	error_exit
	.endif

.endm

931 932 933
/**
 * idtentry - Generate an IDT entry stub
 * @sym:		Name of the generated entry point
934 935 936
 * @do_sym:		C function to be called
 * @has_error_code:	True if this IDT vector has an error code on the stack
 * @paranoid:		non-zero means that this vector may be invoked from
937 938 939
 *			kernel mode with user GSBASE and/or user CR3.
 *			2 is special -- see below.
 * @shift_ist:		Set to an IST index if entries from kernel mode should
940
 *			decrement the IST stack so that nested entries get a
941
 *			fresh stack.  (This is for #DB, which has a nasty habit
942 943
 *			of recursing.)
 * @create_gap:		create a 6-word stack gap when coming from kernel mode.
944
 * @read_cr2:		load CR2 into the 3rd argument; done before calling any C code
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
 *
 * idtentry generates an IDT stub that sets up a usable kernel context,
 * creates struct pt_regs, and calls @do_sym.  The stub has the following
 * special behaviors:
 *
 * On an entry from user mode, the stub switches from the trampoline or
 * IST stack to the normal thread stack.  On an exit to user mode, the
 * normal exit-to-usermode path is invoked.
 *
 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
 * whereas we omit the preemption check if @paranoid != 0.  This is purely
 * because the implementation is simpler this way.  The kernel only needs
 * to check for asynchronous kernel preemption when IRQ handlers return.
 *
 * If @paranoid == 0, then the stub will handle IRET faults by pretending
 * that the fault came from user mode.  It will handle gs_change faults by
 * pretending that the fault happened with kernel GSBASE.  Since this handling
 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
 * @paranoid == 0.  This special handling will do the wrong thing for
 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
 *
 * @paranoid == 2 is special: the stub will never switch stacks.  This is for
 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
 */
969
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 ist_offset=0 create_gap=0 read_cr2=0
970
SYM_CODE_START(\sym)
971
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
972

973
	/* Sanity check */
974
	.if \shift_ist != -1 && \paranoid != 1
975 976 977
	.error "using shift_ist requires paranoid=1"
	.endif

978 979 980 981
	.if \create_gap && \paranoid
	.error "using create_gap requires paranoid=0"
	.endif

982
	ASM_CLAC
983

984
	.if \has_error_code == 0
985
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
986 987
	.endif

988
	.if \paranoid == 1
989
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
990
	jnz	.Lfrom_usermode_switch_stack_\@
991
	.endif
992

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	.if \create_gap == 1
	/*
	 * If coming from kernel space, create a 6-word gap to allow the
	 * int3 handler to emulate a call instruction.
	 */
	testb	$3, CS-ORIG_RAX(%rsp)
	jnz	.Lfrom_usermode_no_gap_\@
	.rept	6
	pushq	5*8(%rsp)
	.endr
	UNWIND_HINT_IRET_REGS offset=8
.Lfrom_usermode_no_gap_\@:
	.endif

1007
	idtentry_part \do_sym, \has_error_code, \read_cr2, \paranoid, \shift_ist, \ist_offset
1008

1009
	.if \paranoid == 1
1010
	/*
1011
	 * Entry from userspace.  Switch stacks and treat it
1012 1013 1014
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1015
.Lfrom_usermode_switch_stack_\@:
1016
	idtentry_part \do_sym, \has_error_code, \read_cr2, paranoid=0
1017 1018
	.endif

1019
_ASM_NOKPROBE(\sym)
1020
SYM_CODE_END(\sym)
1021
.endm
1022

1023 1024 1025 1026 1027
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
1028
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2 read_cr2=1
1029 1030 1031 1032 1033 1034 1035 1036 1037
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


1038 1039 1040 1041 1042 1043
/*
 * Reload gs selector with exception handling
 * edi:  new selector
 *
 * Is in entry.text as it shouldn't be instrumented.
 */
1044
SYM_FUNC_START(asm_load_gs_index)
1045
	FRAME_BEGIN
1046
	SWAPGS
1047
.Lgs_change:
1048
	movl	%edi, %gs
1049
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1050
	SWAPGS
1051
	FRAME_END
1052
	ret
1053 1054
SYM_FUNC_END(asm_load_gs_index)
EXPORT_SYMBOL(asm_load_gs_index)
1055

1056
	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
1057
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1058
	/* running with kernelgs */
1059
SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
1060
	SWAPGS					/* switch back to user gs */
1061 1062 1063 1064 1065 1066
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1067 1068 1069
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1070
SYM_CODE_END(.Lbad_gs)
1071
	.previous
1072

1073
/* Call softirq on interrupt stack. Interrupts are off. */
1074
.pushsection .text, "ax"
1075
SYM_FUNC_START(do_softirq_own_stack)
1076 1077
	pushq	%rbp
	mov	%rsp, %rbp
1078
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1079
	call	__do_softirq
1080
	LEAVE_IRQ_STACK regs=0
1081
	leaveq
1082
	ret
1083
SYM_FUNC_END(do_softirq_own_stack)
1084
.popsection
1085

1086
#ifdef CONFIG_XEN_PV
1087
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1088 1089

/*
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
J
Jiri Slaby 已提交
1102 1103
/* do_hypervisor_callback(struct *pt_regs) */
SYM_CODE_START_LOCAL(xen_do_hypervisor_callback)
1104

1105 1106 1107 1108
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1109
	UNWIND_HINT_FUNC
1110
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1111
	UNWIND_HINT_REGS
1112 1113

	ENTER_IRQ_STACK old_rsp=%r10
1114
	call	xen_evtchn_do_upcall
1115 1116
	LEAVE_IRQ_STACK

T
Thomas Gleixner 已提交
1117
#ifndef CONFIG_PREEMPTION
1118
	call	xen_maybe_preempt_hcall
1119
#endif
1120
	jmp	error_exit
J
Jiri Slaby 已提交
1121
SYM_CODE_END(xen_do_hypervisor_callback)
1122 1123

/*
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1136
SYM_CODE_START(xen_failsafe_callback)
1137
	UNWIND_HINT_EMPTY
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1150
	/* All segments match their saved values => Category 2 (Bad IRET). */
1151 1152 1153 1154
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1155
	UNWIND_HINT_IRET_REGS offset=8
1156
	jmp	general_protection
1157
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1158 1159 1160
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1161
	UNWIND_HINT_IRET_REGS
1162
	pushq	$-1 /* orig_ax = -1 => not a system call */
1163
	PUSH_AND_CLEAR_REGS
1164
	ENCODE_FRAME_POINTER
1165
	jmp	error_exit
1166
SYM_CODE_END(xen_failsafe_callback)
1167
#endif /* CONFIG_XEN_PV */
1168

1169
#ifdef CONFIG_XEN_PVHVM
1170
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1171
	xen_hvm_callback_vector xen_evtchn_do_upcall
1172
#endif
1173

1174

1175
#if IS_ENABLED(CONFIG_HYPERV)
1176
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1177
	hyperv_callback_vector hyperv_vector_handler
1178 1179 1180

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1181 1182 1183

apicinterrupt3 HYPERV_STIMER0_VECTOR \
	hv_stimer0_callback_vector hv_stimer0_vector_handler
1184 1185
#endif /* CONFIG_HYPERV */

1186 1187 1188 1189 1190
#if IS_ENABLED(CONFIG_ACRN_GUEST)
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
	acrn_hv_callback_vector acrn_hv_vector_handler
#endif

1191
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=IST_INDEX_DB ist_offset=DB_STACK_OFFSET
1192
idtentry int3			do_int3			has_error_code=0	create_gap=1
1193 1194
idtentry stack_segment		do_stack_segment	has_error_code=1

1195
#ifdef CONFIG_XEN_PV
1196
idtentry xennmi			do_nmi			has_error_code=0
1197
idtentry xendebug		do_debug		has_error_code=0
1198
#endif
1199 1200

idtentry general_protection	do_general_protection	has_error_code=1
1201
idtentry page_fault		do_page_fault		has_error_code=1	read_cr2=1
1202

1203
#ifdef CONFIG_X86_MCE
1204
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1205 1206
#endif

1207
/*
1208
 * Save all registers in pt_regs, and switch gs if needed.
1209 1210 1211
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
J
Jiri Slaby 已提交
1212
SYM_CODE_START_LOCAL(paranoid_entry)
1213
	UNWIND_HINT_FUNC
1214
	cld
1215 1216
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1217 1218
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1219
	rdmsr
1220 1221
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1222
	SWAPGS
1223
	xorl	%ebx, %ebx
1224 1225

1:
1226 1227
	/*
	 * Always stash CR3 in %r14.  This value will be restored,
1228 1229 1230
	 * verbatim, at exit.  Needed if paranoid_entry interrupted
	 * another entry that already switched to the user CR3 value
	 * but has not yet returned to userspace.
1231 1232 1233
	 *
	 * This is also why CS (stashed in the "iret frame" by the
	 * hardware at entry) can not be used: this may be a return
1234
	 * to kernel code, but with a user CR3 value.
1235
	 */
1236 1237
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

1238 1239 1240 1241 1242 1243 1244
	/*
	 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
	 * unconditional CR3 write, even in the PTI case.  So do an lfence
	 * to prevent GS speculation, regardless of whether PTI is enabled.
	 */
	FENCE_SWAPGS_KERNEL_ENTRY

1245
	ret
J
Jiri Slaby 已提交
1246
SYM_CODE_END(paranoid_entry)
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1257 1258
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1259
 */
J
Jiri Slaby 已提交
1260
SYM_CODE_START_LOCAL(paranoid_exit)
1261
	UNWIND_HINT_REGS
1262
	DISABLE_INTERRUPTS(CLBR_ANY)
1263
	TRACE_IRQS_OFF_DEBUG
1264
	testl	%ebx, %ebx			/* swapgs needed? */
1265
	jnz	.Lparanoid_exit_no_swapgs
1266
	TRACE_IRQS_IRETQ
1267
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1268
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1269
	SWAPGS_UNSAFE_STACK
1270
	jmp	restore_regs_and_return_to_kernel
1271
.Lparanoid_exit_no_swapgs:
1272
	TRACE_IRQS_IRETQ_DEBUG
1273
	/* Always restore stashed CR3 value (see paranoid_entry) */
1274
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1275
	jmp restore_regs_and_return_to_kernel
J
Jiri Slaby 已提交
1276
SYM_CODE_END(paranoid_exit)
1277 1278

/*
1279
 * Save all registers in pt_regs, and switch GS if needed.
1280
 */
J
Jiri Slaby 已提交
1281
SYM_CODE_START_LOCAL(error_entry)
1282
	UNWIND_HINT_FUNC
1283
	cld
1284 1285
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1286
	testb	$3, CS+8(%rsp)
1287
	jz	.Lerror_kernelspace
1288

1289 1290 1291 1292
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1293
	SWAPGS
1294
	FENCE_SWAPGS_USER_ENTRY
1295 1296
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1297

1298
.Lerror_entry_from_usermode_after_swapgs:
1299 1300 1301 1302 1303 1304 1305
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12
1306
	ret
1307

1308 1309
.Lerror_entry_done_lfence:
	FENCE_SWAPGS_KERNEL_ENTRY
1310
.Lerror_entry_done:
1311 1312
	ret

1313 1314 1315 1316 1317 1318
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1319
.Lerror_kernelspace:
1320 1321
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1322
	je	.Lerror_bad_iret
1323 1324
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1325
	je	.Lbstep_iret
1326
	cmpq	$.Lgs_change, RIP+8(%rsp)
1327
	jne	.Lerror_entry_done_lfence
1328 1329

	/*
1330
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1331
	 * gsbase and proceed.  We'll fix up the exception and land in
1332
	 * .Lgs_change's error handler with kernel gsbase.
1333
	 */
1334
	SWAPGS
1335
	FENCE_SWAPGS_USER_ENTRY
1336
	jmp .Lerror_entry_done
1337

1338
.Lbstep_iret:
1339
	/* Fix truncated RIP */
1340
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1341 1342
	/* fall through */

1343
.Lerror_bad_iret:
1344
	/*
1345 1346
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1347
	 */
A
Andy Lutomirski 已提交
1348
	SWAPGS
1349
	FENCE_SWAPGS_USER_ENTRY
1350
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1351 1352 1353

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
1354
	 * as if we faulted immediately after IRET.
1355
	 */
1356 1357 1358
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1359
	jmp	.Lerror_entry_from_usermode_after_swapgs
J
Jiri Slaby 已提交
1360
SYM_CODE_END(error_entry)
1361

J
Jiri Slaby 已提交
1362
SYM_CODE_START_LOCAL(error_exit)
1363
	UNWIND_HINT_REGS
1364
	DISABLE_INTERRUPTS(CLBR_ANY)
1365
	TRACE_IRQS_OFF
1366 1367
	testb	$3, CS(%rsp)
	jz	retint_kernel
J
Jiri Slaby 已提交
1368
	jmp	.Lretint_user
J
Jiri Slaby 已提交
1369
SYM_CODE_END(error_exit)
1370

1371 1372 1373
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1374 1375 1376 1377
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1378
 */
1379
SYM_CODE_START(nmi)
1380
	UNWIND_HINT_IRET_REGS
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1399 1400 1401
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1402 1403
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1404
	 *    o Modify the "iret" location to jump to the repeat_nmi
1405 1406 1407 1408 1409 1410 1411 1412
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1413 1414 1415 1416 1417
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1418 1419
	 */

1420 1421
	ASM_CLAC

1422
	/* Use %rdx as our temp variable throughout */
1423
	pushq	%rdx
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1434 1435 1436
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1437 1438
	 */

1439
	swapgs
1440
	cld
1441
	FENCE_SWAPGS_USER_ENTRY
1442
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1443 1444
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1445
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1446 1447 1448 1449 1450
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1451
	UNWIND_HINT_IRET_REGS
1452
	pushq   $-1		/* pt_regs->orig_ax */
1453
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1454
	ENCODE_FRAME_POINTER
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1466
	/*
1467
	 * Return back to user mode.  We must *not* do the normal exit
1468
	 * work, because we don't want to enable interrupts.
1469
	 */
1470
	jmp	swapgs_restore_regs_and_return_to_usermode
1471

1472
.Lnmi_from_kernel:
1473
	/*
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1514
	/*
1515 1516
	 * Determine whether we're a nested NMI.
	 *
1517 1518 1519 1520 1521 1522
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1523
	 */
1524 1525 1526 1527 1528 1529 1530 1531

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1532

1533
	/*
1534
	 * Now check "NMI executing".  If it's set, then we're nested.
1535 1536
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1537
	 */
1538 1539
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1540 1541

	/*
1542 1543
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1544 1545 1546 1547 1548 1549 1550 1551
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1552
	 */
1553 1554 1555 1556 1557
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1558

1559 1560 1561 1562
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1563 1564 1565 1566 1567 1568 1569

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1570

1571 1572
nested_nmi:
	/*
1573 1574
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1575
	 */
1576
	subq	$8, %rsp
1577 1578 1579
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1580
	pushfq
1581 1582
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1583 1584

	/* Put stack back */
1585
	addq	$(6*8), %rsp
1586 1587

nested_nmi_out:
1588
	popq	%rdx
1589

1590
	/* We are returning to kernel mode, so this cannot result in a fault. */
1591
	iretq
1592 1593

first_nmi:
1594
	/* Restore rdx. */
1595
	movq	(%rsp), %rdx
1596

1597 1598
	/* Make room for "NMI executing". */
	pushq	$0
1599

1600
	/* Leave room for the "iret" frame */
1601
	subq	$(5*8), %rsp
1602

1603
	/* Copy the "original" frame to the "outermost" frame */
1604
	.rept 5
1605
	pushq	11*8(%rsp)
1606
	.endr
1607
	UNWIND_HINT_IRET_REGS
1608

1609 1610
	/* Everything up to here is safe from nested NMIs */

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1622
	iretq			/* continues at repeat_nmi below */
1623
	UNWIND_HINT_IRET_REGS
1624 1625 1626
1:
#endif

1627
repeat_nmi:
1628 1629 1630 1631 1632 1633 1634 1635
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1636 1637 1638 1639
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1640 1641
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1642
	 */
1643
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1644

1645
	/*
1646 1647 1648
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1649
	 */
1650
	addq	$(10*8), %rsp
1651
	.rept 5
1652
	pushq	-6*8(%rsp)
1653
	.endr
1654
	subq	$(5*8), %rsp
1655
end_repeat_nmi:
1656 1657

	/*
1658 1659 1660
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1661
	 */
1662
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1663

1664
	/*
1665
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1666 1667 1668 1669 1670
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1671
	call	paranoid_entry
1672
	UNWIND_HINT_REGS
1673

1674
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1675 1676 1677
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1678

1679
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1680
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1681

1682 1683
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1684 1685 1686
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1687
	POP_REGS
1688

1689 1690 1691 1692 1693
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1694

1695 1696 1697
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1698 1699 1700 1701 1702
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1703 1704 1705
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1706 1707

	/*
1708 1709 1710 1711
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1712
	 */
1713
	iretq
1714
SYM_CODE_END(nmi)
1715

1716 1717 1718 1719 1720
#ifndef CONFIG_IA32_EMULATION
/*
 * This handles SYSCALL from 32-bit code.  There is no way to program
 * MSRs to fully disable 32-bit SYSCALL.
 */
1721
SYM_CODE_START(ignore_sysret)
1722
	UNWIND_HINT_EMPTY
1723
	mov	$-ENOSYS, %eax
1724
	sysretl
1725
SYM_CODE_END(ignore_sysret)
1726
#endif
1727

1728
.pushsection .text, "ax"
1729
SYM_CODE_START(rewind_stack_do_exit)
1730
	UNWIND_HINT_FUNC
1731 1732 1733 1734
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1735
	leaq	-PTREGS_SIZE(%rax), %rsp
1736
	UNWIND_HINT_REGS
1737 1738

	call	do_exit
1739
SYM_CODE_END(rewind_stack_do_exit)
1740
.popsection