vmscan.c 123.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/pagevec.h>
50
#include <linux/prefetch.h>
51
#include <linux/printk.h>
52
#include <linux/dax.h>
53
#include <linux/psi.h>
L
Linus Torvalds 已提交
54 55 56 57 58

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
59
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
60

61 62
#include "internal.h"

63 64 65
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
66
struct scan_control {
67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71 72 73 74
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
75

76 77 78 79 80
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
81

82 83 84 85 86 87 88
	/* Can active pages be deactivated as part of reclaim? */
#define DEACTIVATE_ANON 1
#define DEACTIVATE_FILE 2
	unsigned int may_deactivate:2;
	unsigned int force_deactivate:1;
	unsigned int skipped_deactivate:1;

89
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
90 91 92 93 94 95 96 97
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

98 99 100 101 102 103 104
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
105

106 107 108 109 110
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

111 112 113
	/* There is easily reclaimable cold cache in the current node */
	unsigned int cache_trim_mode:1;

114 115 116
	/* The file pages on the current node are dangerously low */
	unsigned int file_is_tiny:1;

G
Greg Thelen 已提交
117 118 119 120 121 122 123 124 125 126 127 128
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

129 130 131 132 133
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
134 135 136 137 138 139 140 141 142 143

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
144 145 146

	/* for recording the reclaimed slab by now */
	struct reclaim_state reclaim_state;
L
Linus Torvalds 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
};

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
164
 * From 0 .. 200.  Higher means more swappy.
L
Linus Torvalds 已提交
165 166
 */
int vm_swappiness = 60;
167 168 169 170 171
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
172

173 174 175 176 177 178 179 180 181 182 183 184
static void set_task_reclaim_state(struct task_struct *task,
				   struct reclaim_state *rs)
{
	/* Check for an overwrite */
	WARN_ON_ONCE(rs && task->reclaim_state);

	/* Check for the nulling of an already-nulled member */
	WARN_ON_ONCE(!rs && !task->reclaim_state);

	task->reclaim_state = rs;
}

L
Linus Torvalds 已提交
185 186 187
static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

188
#ifdef CONFIG_MEMCG
189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

202 203 204 205 206 207 208 209 210
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
211
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
212 213 214
	if (id < 0)
		goto unlock;

215 216 217 218 219 220
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

221
		shrinker_nr_max = id + 1;
222
	}
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}

241
static bool cgroup_reclaim(struct scan_control *sc)
242
{
243
	return sc->target_mem_cgroup;
244
}
245 246

/**
247
 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
248 249 250 251 252 253 254 255 256 257 258
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
259
static bool writeback_throttling_sane(struct scan_control *sc)
260
{
261
	if (!cgroup_reclaim(sc))
262 263
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
264
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
265 266 267 268
		return true;
#endif
	return false;
}
269
#else
270 271 272 273 274 275 276 277 278
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}

279
static bool cgroup_reclaim(struct scan_control *sc)
280
{
281
	return false;
282
}
283

284
static bool writeback_throttling_sane(struct scan_control *sc)
285 286 287
{
	return true;
}
288 289
#endif

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

308 309 310 311 312 313 314
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
315
{
316
	unsigned long size = 0;
317 318
	int zid;

319
	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
320
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
321

322 323 324 325
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
326
			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
327
		else
328
			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
329
	}
330
	return size;
331 332
}

L
Linus Torvalds 已提交
333
/*
G
Glauber Costa 已提交
334
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
335
 */
336
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
337
{
338
	unsigned int size = sizeof(*shrinker->nr_deferred);
G
Glauber Costa 已提交
339 340 341 342 343 344 345

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
346 347 348 349 350 351

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

352
	return 0;
353 354 355 356 357

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
358 359 360 361
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
362 363 364 365 366 367
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

368 369 370
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
371

372 373
void register_shrinker_prepared(struct shrinker *shrinker)
{
374 375
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
376
#ifdef CONFIG_MEMCG
377 378
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
379
#endif
380
	up_write(&shrinker_rwsem);
381 382 383 384 385 386 387 388 389
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
390
	return 0;
L
Linus Torvalds 已提交
391
}
392
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
393 394 395 396

/*
 * Remove one
 */
397
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
398
{
399 400
	if (!shrinker->nr_deferred)
		return;
401 402
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
403 404 405
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
406
	kfree(shrinker->nr_deferred);
407
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
408
}
409
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
410 411

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
412

413
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
414
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
415 416 417 418
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
419
	long freeable;
G
Glauber Costa 已提交
420 421 422 423 424
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
425
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
426

427 428 429
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

430
	freeable = shrinker->count_objects(shrinker, shrinkctl);
431 432
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
433 434 435 436 437 438 439 440 441

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
442 443 444 445 446 447 448 449 450 451 452 453
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
454

G
Glauber Costa 已提交
455 456
	total_scan += delta;
	if (total_scan < 0) {
457
		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
458
		       shrinker->scan_objects, total_scan);
459
		total_scan = freeable;
460 461 462
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
463 464 465 466 467 468 469

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
470
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
471 472 473 474 475
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
476 477
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
478 479 480 481 482 483

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
484 485
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
486 487

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
488
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
489

490 491 492 493 494 495 496 497 498 499 500
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
501
	 * than the total number of objects on slab (freeable), we must be
502 503 504 505
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
506
	       total_scan >= freeable) {
D
Dave Chinner 已提交
507
		unsigned long ret;
508
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
509

510
		shrinkctl->nr_to_scan = nr_to_scan;
511
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
512 513 514 515
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
516

517 518 519
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
520 521 522 523

		cond_resched();
	}

524 525 526 527
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
528 529 530 531 532
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
533 534
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
535 536 537 538
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

539
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
540
	return freed;
541 542
}

543
#ifdef CONFIG_MEMCG
544 545 546 547
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
548 549
	unsigned long ret, freed = 0;
	int i;
550

551
	if (!mem_cgroup_online(memcg))
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
571 572 573
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
574 575 576
			continue;
		}

577 578 579 580 581
		/* Call non-slab shrinkers even though kmem is disabled */
		if (!memcg_kmem_enabled() &&
		    !(shrinker->flags & SHRINKER_NONSLAB))
			continue;

582
		ret = do_shrink_slab(&sc, shrinker, priority);
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
607 608 609 610 611 612 613 614 615 616 617
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
618
#else /* CONFIG_MEMCG */
619 620 621 622 623
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
624
#endif /* CONFIG_MEMCG */
625

626
/**
627
 * shrink_slab - shrink slab caches
628 629
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
630
 * @memcg: memory cgroup whose slab caches to target
631
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
632
 *
633
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
634
 *
635 636
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
637
 *
638 639
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
640
 *
641 642
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
643
 *
644
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
645
 */
646 647
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
648
				 int priority)
L
Linus Torvalds 已提交
649
{
650
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
651 652
	struct shrinker *shrinker;

653 654 655 656 657 658 659 660
	/*
	 * The root memcg might be allocated even though memcg is disabled
	 * via "cgroup_disable=memory" boot parameter.  This could make
	 * mem_cgroup_is_root() return false, then just run memcg slab
	 * shrink, but skip global shrink.  This may result in premature
	 * oom.
	 */
	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
661
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
662

663
	if (!down_read_trylock(&shrinker_rwsem))
664
		goto out;
L
Linus Torvalds 已提交
665 666

	list_for_each_entry(shrinker, &shrinker_list, list) {
667 668 669
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
670
			.memcg = memcg,
671
		};
672

673 674 675 676
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
677 678 679 680 681 682 683 684 685
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
686
	}
687

L
Linus Torvalds 已提交
688
	up_read(&shrinker_rwsem);
689 690
out:
	cond_resched();
D
Dave Chinner 已提交
691
	return freed;
L
Linus Torvalds 已提交
692 693
}

694 695 696 697 698 699 700 701
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
702
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
703
		do {
704
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
705 706 707 708 709 710 711 712 713 714 715 716
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
717 718
static inline int is_page_cache_freeable(struct page *page)
{
719 720
	/*
	 * A freeable page cache page is referenced only by the caller
721 722
	 * that isolated the page, the page cache and optional buffer
	 * heads at page->private.
723
	 */
724
	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
725
		HPAGE_PMD_NR : 1;
726
	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
L
Linus Torvalds 已提交
727 728
}

729
static int may_write_to_inode(struct inode *inode)
L
Linus Torvalds 已提交
730
{
731
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
732
		return 1;
733
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
734
		return 1;
735
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
755
	lock_page(page);
756 757
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
758 759 760
	unlock_page(page);
}

761 762 763 764 765 766 767 768 769 770 771 772
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
773
/*
A
Andrew Morton 已提交
774 775
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
776
 */
777
static pageout_t pageout(struct page *page, struct address_space *mapping)
L
Linus Torvalds 已提交
778 779 780 781 782 783 784 785
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
786
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
802
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
803 804
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
805
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
806 807 808 809 810 811 812
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
813
	if (!may_write_to_inode(mapping->host))
L
Linus Torvalds 已提交
814 815 816 817 818 819 820
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
821 822
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
823 824 825 826 827 828 829
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
830
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
831 832 833
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
834

L
Linus Torvalds 已提交
835 836 837 838
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
839
		trace_mm_vmscan_writepage(page);
840
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
841 842 843 844 845 846
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

847
/*
N
Nick Piggin 已提交
848 849
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
850
 */
851
static int __remove_mapping(struct address_space *mapping, struct page *page,
852
			    bool reclaimed, struct mem_cgroup *target_memcg)
853
{
854
	unsigned long flags;
855
	int refcount;
856

857 858
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
859

M
Matthew Wilcox 已提交
860
	xa_lock_irqsave(&mapping->i_pages, flags);
861
	/*
N
Nick Piggin 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
881
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
882 883
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
884
	 * and thus under the i_pages lock, then this ordering is not required.
885
	 */
886
	refcount = 1 + compound_nr(page);
887
	if (!page_ref_freeze(page, refcount))
888
		goto cannot_free;
889
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
890
	if (unlikely(PageDirty(page))) {
891
		page_ref_unfreeze(page, refcount);
892
		goto cannot_free;
N
Nick Piggin 已提交
893
	}
894 895 896

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
897
		mem_cgroup_swapout(page, swap);
898
		__delete_from_swap_cache(page, swap);
M
Matthew Wilcox 已提交
899
		xa_unlock_irqrestore(&mapping->i_pages, flags);
900
		put_swap_page(page, swap);
N
Nick Piggin 已提交
901
	} else {
902
		void (*freepage)(struct page *);
903
		void *shadow = NULL;
904 905

		freepage = mapping->a_ops->freepage;
906 907 908 909 910 911 912 913 914
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
915 916 917 918 919
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
920
		 * same address_space.
921
		 */
H
Huang Ying 已提交
922
		if (reclaimed && page_is_file_lru(page) &&
923
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
924
			shadow = workingset_eviction(page, target_memcg);
J
Johannes Weiner 已提交
925
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
926
		xa_unlock_irqrestore(&mapping->i_pages, flags);
927 928 929

		if (freepage != NULL)
			freepage(page);
930 931 932 933 934
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
935
	xa_unlock_irqrestore(&mapping->i_pages, flags);
936 937 938
	return 0;
}

N
Nick Piggin 已提交
939 940 941 942 943 944 945 946
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
947
	if (__remove_mapping(mapping, page, false, NULL)) {
N
Nick Piggin 已提交
948 949 950 951 952
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
953
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
954 955 956 957 958
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
959 960 961 962 963 964 965 966 967 968 969
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
970
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
971 972 973
	put_page(page);		/* drop ref from isolate */
}

974 975 976
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
977
	PAGEREF_KEEP,
978 979 980 981 982 983
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
984
	int referenced_ptes, referenced_page;
985 986
	unsigned long vm_flags;

987 988
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
989
	referenced_page = TestClearPageReferenced(page);
990 991 992 993 994 995 996 997

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

998
	if (referenced_ptes) {
999
		if (PageSwapBacked(page))
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1017
		if (referenced_page || referenced_ptes > 1)
1018 1019
			return PAGEREF_ACTIVATE;

1020 1021 1022 1023 1024 1025
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1026 1027
		return PAGEREF_KEEP;
	}
1028 1029

	/* Reclaim if clean, defer dirty pages to writeback */
1030
	if (referenced_page && !PageSwapBacked(page))
1031 1032 1033
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1034 1035
}

1036 1037 1038 1039
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1040 1041
	struct address_space *mapping;

1042 1043 1044 1045
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
H
Huang Ying 已提交
1046
	if (!page_is_file_lru(page) ||
S
Shaohua Li 已提交
1047
	    (PageAnon(page) && !PageSwapBacked(page))) {
1048 1049 1050 1051 1052 1053 1054 1055
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1056 1057 1058 1059 1060 1061 1062 1063

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1064 1065
}

L
Linus Torvalds 已提交
1066
/*
A
Andrew Morton 已提交
1067
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1068
 */
1069 1070 1071 1072 1073 1074
static unsigned int shrink_page_list(struct list_head *page_list,
				     struct pglist_data *pgdat,
				     struct scan_control *sc,
				     enum ttu_flags ttu_flags,
				     struct reclaim_stat *stat,
				     bool ignore_references)
L
Linus Torvalds 已提交
1075 1076
{
	LIST_HEAD(ret_pages);
1077
	LIST_HEAD(free_pages);
1078 1079
	unsigned int nr_reclaimed = 0;
	unsigned int pgactivate = 0;
L
Linus Torvalds 已提交
1080

1081
	memset(stat, 0, sizeof(*stat));
L
Linus Torvalds 已提交
1082 1083 1084 1085 1086
	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
1087
		enum page_references references = PAGEREF_RECLAIM;
1088
		bool dirty, writeback, may_enter_fs;
1089
		unsigned int nr_pages;
L
Linus Torvalds 已提交
1090 1091 1092 1093 1094 1095

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1096
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1097 1098
			goto keep;

1099
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1100

1101
		nr_pages = compound_nr(page);
1102 1103 1104

		/* Account the number of base pages even though THP */
		sc->nr_scanned += nr_pages;
1105

1106
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1107
			goto activate_locked;
L
Lee Schermerhorn 已提交
1108

1109
		if (!sc->may_unmap && page_mapped(page))
1110 1111
			goto keep_locked;

1112 1113 1114
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1115
		/*
1116
		 * The number of dirty pages determines if a node is marked
1117 1118 1119 1120 1121 1122
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
1123
			stat->nr_dirty++;
1124 1125

		if (dirty && !writeback)
1126
			stat->nr_unqueued_dirty++;
1127

1128 1129 1130 1131 1132 1133
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1134
		mapping = page_mapping(page);
1135
		if (((dirty || writeback) && mapping &&
1136
		     inode_write_congested(mapping->host)) ||
1137
		    (writeback && PageReclaim(page)))
1138
			stat->nr_congested++;
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1151 1152
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1153
		 *
1154
		 * 2) Global or new memcg reclaim encounters a page that is
1155 1156 1157
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1158
		 *    reclaim and continue scanning.
1159
		 *
1160 1161
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1162 1163 1164 1165 1166
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1167
		 * 3) Legacy memcg encounters a page that is already marked
1168 1169 1170 1171
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1172 1173 1174 1175 1176 1177 1178 1179 1180
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1181
		 */
1182
		if (PageWriteback(page)) {
1183 1184 1185
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1186
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1187
				stat->nr_immediate++;
1188
				goto activate_locked;
1189 1190

			/* Case 2 above */
1191
			} else if (writeback_throttling_sane(sc) ||
1192
			    !PageReclaim(page) || !may_enter_fs) {
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1205
				stat->nr_writeback++;
1206
				goto activate_locked;
1207 1208 1209

			/* Case 3 above */
			} else {
1210
				unlock_page(page);
1211
				wait_on_page_writeback(page);
1212 1213 1214
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1215
			}
1216
		}
L
Linus Torvalds 已提交
1217

1218
		if (!ignore_references)
1219 1220
			references = page_check_references(page, sc);

1221 1222
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1223
			goto activate_locked;
1224
		case PAGEREF_KEEP:
1225
			stat->nr_ref_keep += nr_pages;
1226
			goto keep_locked;
1227 1228 1229 1230
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1231 1232 1233 1234

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1235
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1236
		 */
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
1257
						goto activate_locked_split;
1258 1259 1260 1261
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1262 1263 1264
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1265
					if (!add_to_swap(page))
1266
						goto activate_locked_split;
1267
				}
1268

1269
				may_enter_fs = true;
L
Linus Torvalds 已提交
1270

1271 1272 1273
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1274 1275 1276 1277
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1278
		}
L
Linus Torvalds 已提交
1279

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		/*
		 * THP may get split above, need minus tail pages and update
		 * nr_pages to avoid accounting tail pages twice.
		 *
		 * The tail pages that are added into swap cache successfully
		 * reach here.
		 */
		if ((nr_pages > 1) && !PageTransHuge(page)) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}

L
Linus Torvalds 已提交
1292 1293 1294 1295
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1296
		if (page_mapped(page)) {
1297
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1298
			bool was_swapbacked = PageSwapBacked(page);
1299 1300 1301

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
1302

1303
			if (!try_to_unmap(page, flags)) {
1304
				stat->nr_unmap_fail += nr_pages;
1305 1306
				if (!was_swapbacked && PageSwapBacked(page))
					stat->nr_lazyfree_fail += nr_pages;
L
Linus Torvalds 已提交
1307 1308 1309 1310 1311
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1312
			/*
1313 1314 1315 1316 1317 1318 1319 1320
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1321
			 */
H
Huang Ying 已提交
1322
			if (page_is_file_lru(page) &&
1323 1324
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1325 1326 1327 1328 1329 1330
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1331
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1332 1333
				SetPageReclaim(page);

1334
				goto activate_locked;
1335 1336
			}

1337
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1338
				goto keep_locked;
1339
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1340
				goto keep_locked;
1341
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1342 1343
				goto keep_locked;

1344 1345 1346 1347 1348 1349
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1350
			switch (pageout(page, mapping)) {
L
Linus Torvalds 已提交
1351 1352 1353 1354 1355
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1356
				if (PageWriteback(page))
1357
					goto keep;
1358
				if (PageDirty(page))
L
Linus Torvalds 已提交
1359
					goto keep;
1360

L
Linus Torvalds 已提交
1361 1362 1363 1364
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1365
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1385
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1396
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1397 1398
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1415 1416
		}

S
Shaohua Li 已提交
1417 1418 1419 1420 1421 1422 1423 1424
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1425

S
Shaohua Li 已提交
1426
			count_vm_event(PGLAZYFREED);
1427
			count_memcg_page_event(page, PGLAZYFREED);
1428 1429
		} else if (!mapping || !__remove_mapping(mapping, page, true,
							 sc->target_mem_cgroup))
S
Shaohua Li 已提交
1430
			goto keep_locked;
1431 1432

		unlock_page(page);
N
Nick Piggin 已提交
1433
free_it:
1434 1435 1436 1437 1438
		/*
		 * THP may get swapped out in a whole, need account
		 * all base pages.
		 */
		nr_reclaimed += nr_pages;
1439 1440 1441 1442 1443

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1444
		if (unlikely(PageTransHuge(page)))
1445
			destroy_compound_page(page);
1446
		else
1447
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1448 1449
		continue;

1450 1451 1452 1453 1454 1455 1456 1457 1458
activate_locked_split:
		/*
		 * The tail pages that are failed to add into swap cache
		 * reach here.  Fixup nr_scanned and nr_pages.
		 */
		if (nr_pages > 1) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}
L
Linus Torvalds 已提交
1459
activate_locked:
1460
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1461 1462
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1463
			try_to_free_swap(page);
1464
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1465
		if (!PageMlocked(page)) {
H
Huang Ying 已提交
1466
			int type = page_is_file_lru(page);
M
Minchan Kim 已提交
1467
			SetPageActive(page);
1468
			stat->nr_activate[type] += nr_pages;
1469
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1470
		}
L
Linus Torvalds 已提交
1471 1472 1473 1474
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1475
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1476
	}
1477

1478 1479
	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];

1480
	mem_cgroup_uncharge_list(&free_pages);
1481
	try_to_unmap_flush();
1482
	free_unref_page_list(&free_pages);
1483

L
Linus Torvalds 已提交
1484
	list_splice(&ret_pages, page_list);
1485
	count_vm_events(PGACTIVATE, pgactivate);
1486

1487
	return nr_reclaimed;
L
Linus Torvalds 已提交
1488 1489
}

1490
unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1491 1492 1493 1494 1495 1496 1497
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1498
	struct reclaim_stat stat;
1499
	unsigned int nr_reclaimed;
1500 1501 1502 1503
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
H
Huang Ying 已提交
1504
		if (page_is_file_lru(page) && !PageDirty(page) &&
1505
		    !__PageMovable(page) && !PageUnevictable(page)) {
1506 1507 1508 1509 1510
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

1511 1512
	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
			TTU_IGNORE_ACCESS, &stat, true);
1513
	list_splice(&clean_pages, page_list);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
	/*
	 * Since lazyfree pages are isolated from file LRU from the beginning,
	 * they will rotate back to anonymous LRU in the end if it failed to
	 * discard so isolated count will be mismatched.
	 * Compensate the isolated count for both LRU lists.
	 */
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
			    stat.nr_lazyfree_fail);
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
			    -stat.nr_lazyfree_fail);
	return nr_reclaimed;
1526 1527
}

A
Andy Whitcroft 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1538
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1539 1540 1541 1542 1543 1544 1545
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1546 1547
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1548 1549
		return ret;

A
Andy Whitcroft 已提交
1550
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1551

1552 1553 1554 1555 1556 1557 1558 1559
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1560
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1561 1562 1563 1564 1565 1566
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1567
			bool migrate_dirty;
1568 1569 1570 1571

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1572 1573 1574 1575 1576
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1577
			 */
1578 1579 1580
			if (!trylock_page(page))
				return ret;

1581
			mapping = page_mapping(page);
1582
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1583 1584
			unlock_page(page);
			if (!migrate_dirty)
1585 1586 1587
				return ret;
		}
	}
1588

1589 1590 1591
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1605 1606 1607 1608 1609 1610

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1611
			enum lru_list lru, unsigned long *nr_zone_taken)
1612 1613 1614 1615 1616 1617 1618
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

1619
		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1620 1621
	}

1622 1623
}

1624 1625
/**
 * pgdat->lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1626 1627 1628 1629 1630 1631 1632 1633
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1634
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1635
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1636
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1637
 * @nr_scanned:	The number of pages that were scanned.
1638
 * @sc:		The scan_control struct for this reclaim session
1639
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1640 1641 1642
 *
 * returns how many pages were moved onto *@dst.
 */
1643
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1644
		struct lruvec *lruvec, struct list_head *dst,
1645
		unsigned long *nr_scanned, struct scan_control *sc,
1646
		enum lru_list lru)
L
Linus Torvalds 已提交
1647
{
H
Hugh Dickins 已提交
1648
	struct list_head *src = &lruvec->lists[lru];
1649
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1650
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1651
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1652
	unsigned long skipped = 0;
1653
	unsigned long scan, total_scan, nr_pages;
1654
	LIST_HEAD(pages_skipped);
1655
	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
L
Linus Torvalds 已提交
1656

1657
	total_scan = 0;
1658
	scan = 0;
1659
	while (scan < nr_to_scan && !list_empty(src)) {
A
Andy Whitcroft 已提交
1660 1661
		struct page *page;

L
Linus Torvalds 已提交
1662 1663 1664
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1665
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1666

1667
		nr_pages = compound_nr(page);
1668 1669
		total_scan += nr_pages;

1670 1671
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1672
			nr_skipped[page_zonenum(page)] += nr_pages;
1673 1674 1675
			continue;
		}

1676 1677 1678 1679 1680
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
1681 1682 1683 1684
		 *
		 * Account all tail pages of THP.  This would not cause
		 * premature OOM since __isolate_lru_page() returns -EBUSY
		 * only when the page is being freed somewhere else.
1685
		 */
1686
		scan += nr_pages;
1687
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1688
		case 0:
M
Mel Gorman 已提交
1689 1690
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1691 1692 1693 1694 1695 1696 1697
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1698

A
Andy Whitcroft 已提交
1699 1700 1701
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1702 1703
	}

1704 1705 1706 1707 1708 1709 1710
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1711 1712 1713
	if (!list_empty(&pages_skipped)) {
		int zid;

1714
		list_splice(&pages_skipped, src);
1715 1716 1717 1718 1719
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1720
			skipped += nr_skipped[zid];
1721 1722
		}
	}
1723
	*nr_scanned = total_scan;
1724
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1725
				    total_scan, skipped, nr_taken, mode, lru);
1726
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1727 1728 1729
	return nr_taken;
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1741 1742 1743
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1744 1745 1746 1747 1748
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1749
 *
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1760
	VM_BUG_ON_PAGE(!page_count(page), page);
1761
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1762

1763
	if (PageLRU(page)) {
1764
		pg_data_t *pgdat = page_pgdat(page);
1765
		struct lruvec *lruvec;
1766

1767 1768
		spin_lock_irq(&pgdat->lru_lock);
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1769
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1770
			int lru = page_lru(page);
1771
			get_page(page);
1772
			ClearPageLRU(page);
1773 1774
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1775
		}
1776
		spin_unlock_irq(&pgdat->lru_lock);
1777 1778 1779 1780
	}
	return ret;
}

1781
/*
F
Fengguang Wu 已提交
1782
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
X
Xianting Tian 已提交
1783
 * then get rescheduled. When there are massive number of tasks doing page
F
Fengguang Wu 已提交
1784 1785 1786
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1787
 */
M
Mel Gorman 已提交
1788
static int too_many_isolated(struct pglist_data *pgdat, int file,
1789 1790 1791 1792 1793 1794 1795
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1796
	if (!writeback_throttling_sane(sc))
1797 1798 1799
		return 0;

	if (file) {
M
Mel Gorman 已提交
1800 1801
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1802
	} else {
M
Mel Gorman 已提交
1803 1804
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1805 1806
	}

1807 1808 1809 1810 1811
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1812
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1813 1814
		inactive >>= 3;

1815 1816 1817
	return isolated > inactive;
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
/*
 * This moves pages from @list to corresponding LRU list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone_lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone_lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_refcount against each page.
 * But we had to alter page->flags anyway.
 *
 * Returns the number of pages moved to the given lruvec.
 */

static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
						     struct list_head *list)
1840
{
M
Mel Gorman 已提交
1841
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1842
	int nr_pages, nr_moved = 0;
1843
	LIST_HEAD(pages_to_free);
1844 1845
	struct page *page;
	enum lru_list lru;
1846

1847 1848
	while (!list_empty(list)) {
		page = lru_to_page(list);
1849
		VM_BUG_ON_PAGE(PageLRU(page), page);
1850
		if (unlikely(!page_evictable(page))) {
1851
			list_del(&page->lru);
M
Mel Gorman 已提交
1852
			spin_unlock_irq(&pgdat->lru_lock);
1853
			putback_lru_page(page);
M
Mel Gorman 已提交
1854
			spin_lock_irq(&pgdat->lru_lock);
1855 1856
			continue;
		}
M
Mel Gorman 已提交
1857
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1858

1859
		SetPageLRU(page);
1860
		lru = page_lru(page);
1861 1862 1863 1864

		nr_pages = hpage_nr_pages(page);
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
		list_move(&page->lru, &lruvec->lists[lru]);
1865

1866 1867 1868
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1869
			del_page_from_lru_list(page, lruvec, lru);
1870 1871

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1872
				spin_unlock_irq(&pgdat->lru_lock);
1873
				destroy_compound_page(page);
M
Mel Gorman 已提交
1874
				spin_lock_irq(&pgdat->lru_lock);
1875 1876
			} else
				list_add(&page->lru, &pages_to_free);
1877 1878
		} else {
			nr_moved += nr_pages;
1879 1880 1881
		}
	}

1882 1883 1884
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
1885 1886 1887
	list_splice(&pages_to_free, list);

	return nr_moved;
1888 1889
}

1890 1891
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
1892
 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1893 1894 1895 1896 1897
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
1898
	return !(current->flags & PF_LOCAL_THROTTLE) ||
1899 1900 1901 1902
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1903
/*
1904
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1905
 * of reclaimed pages
L
Linus Torvalds 已提交
1906
 */
1907
static noinline_for_stack unsigned long
1908
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1909
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1910 1911
{
	LIST_HEAD(page_list);
1912
	unsigned long nr_scanned;
1913
	unsigned int nr_reclaimed = 0;
1914
	unsigned long nr_taken;
1915
	struct reclaim_stat stat;
1916
	bool file = is_file_lru(lru);
1917
	enum vm_event_item item;
M
Mel Gorman 已提交
1918
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1919
	bool stalled = false;
1920

M
Mel Gorman 已提交
1921
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1922 1923 1924 1925 1926 1927
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1928 1929 1930 1931 1932 1933

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1934
	lru_add_drain();
1935

M
Mel Gorman 已提交
1936
	spin_lock_irq(&pgdat->lru_lock);
1937

1938
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1939
				     &nr_scanned, sc, lru);
1940

M
Mel Gorman 已提交
1941
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1942
	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1943
	if (!cgroup_reclaim(sc))
1944 1945
		__count_vm_events(item, nr_scanned);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1946 1947
	__count_vm_events(PGSCAN_ANON + file, nr_scanned);

M
Mel Gorman 已提交
1948
	spin_unlock_irq(&pgdat->lru_lock);
1949

1950
	if (nr_taken == 0)
1951
		return 0;
A
Andy Whitcroft 已提交
1952

S
Shaohua Li 已提交
1953
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1954
				&stat, false);
1955

M
Mel Gorman 已提交
1956
	spin_lock_irq(&pgdat->lru_lock);
1957

1958 1959 1960
	move_pages_to_lru(lruvec, &page_list);

	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1961
	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1962
	if (!cgroup_reclaim(sc))
1963 1964
		__count_vm_events(item, nr_reclaimed);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1965
	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1966

M
Mel Gorman 已提交
1967
	spin_unlock_irq(&pgdat->lru_lock);
1968

1969
	mem_cgroup_uncharge_list(&page_list);
1970
	free_unref_page_list(&page_list);
1971

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1986 1987 1988 1989 1990 1991 1992 1993
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
1994

M
Mel Gorman 已提交
1995
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1996
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1997
	return nr_reclaimed;
L
Linus Torvalds 已提交
1998 1999
}

H
Hugh Dickins 已提交
2000
static void shrink_active_list(unsigned long nr_to_scan,
2001
			       struct lruvec *lruvec,
2002
			       struct scan_control *sc,
2003
			       enum lru_list lru)
L
Linus Torvalds 已提交
2004
{
2005
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2006
	unsigned long nr_scanned;
2007
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2008
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2009
	LIST_HEAD(l_active);
2010
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2011
	struct page *page;
2012 2013
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2014
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2015
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2016 2017

	lru_add_drain();
2018

M
Mel Gorman 已提交
2019
	spin_lock_irq(&pgdat->lru_lock);
2020

2021
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2022
				     &nr_scanned, sc, lru);
2023

M
Mel Gorman 已提交
2024
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2025

M
Mel Gorman 已提交
2026
	__count_vm_events(PGREFILL, nr_scanned);
2027
	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2028

M
Mel Gorman 已提交
2029
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2035

2036
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2037 2038 2039 2040
			putback_lru_page(page);
			continue;
		}

2041 2042 2043 2044 2045 2046 2047 2048
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2049 2050
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2051 2052 2053 2054 2055 2056 2057 2058 2059
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
H
Huang Ying 已提交
2060
			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2061
				nr_rotated += hpage_nr_pages(page);
2062 2063 2064 2065
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2066

2067
		ClearPageActive(page);	/* we are de-activating */
2068
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2069 2070 2071
		list_add(&page->lru, &l_inactive);
	}

2072
	/*
2073
	 * Move pages back to the lru list.
2074
	 */
M
Mel Gorman 已提交
2075
	spin_lock_irq(&pgdat->lru_lock);
2076

2077 2078
	nr_activate = move_pages_to_lru(lruvec, &l_active);
	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2079 2080
	/* Keep all free pages in l_active list */
	list_splice(&l_inactive, &l_active);
2081 2082 2083 2084

	__count_vm_events(PGDEACTIVATE, nr_deactivate);
	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);

M
Mel Gorman 已提交
2085 2086
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2087

2088 2089
	mem_cgroup_uncharge_list(&l_active);
	free_unref_page_list(&l_active);
2090 2091
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2092 2093
}

M
Minchan Kim 已提交
2094 2095
unsigned long reclaim_pages(struct list_head *page_list)
{
2096
	int nid = NUMA_NO_NODE;
2097
	unsigned int nr_reclaimed = 0;
M
Minchan Kim 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	LIST_HEAD(node_page_list);
	struct reclaim_stat dummy_stat;
	struct page *page;
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_writepage = 1,
		.may_unmap = 1,
		.may_swap = 1,
	};

	while (!list_empty(page_list)) {
		page = lru_to_page(page_list);
2111
		if (nid == NUMA_NO_NODE) {
M
Minchan Kim 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
			nid = page_to_nid(page);
			INIT_LIST_HEAD(&node_page_list);
		}

		if (nid == page_to_nid(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &node_page_list);
			continue;
		}

		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}

2132
		nid = NUMA_NO_NODE;
M
Minchan Kim 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	}

	if (!list_empty(&node_page_list)) {
		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}
	}

	return nr_reclaimed;
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
				 struct lruvec *lruvec, struct scan_control *sc)
{
	if (is_active_lru(lru)) {
		if (sc->may_deactivate & (1 << is_file_lru(lru)))
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
		else
			sc->skipped_deactivate = 1;
		return 0;
	}

	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
}

2164 2165 2166
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2167
 *
2168 2169 2170
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2171
 *
2172 2173
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2174
 *
2175 2176
 * If that fails and refaulting is observed, the inactive list grows.
 *
2177
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2178
 * on this LRU, maintained by the pageout code. An inactive_ratio
2179
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2180
 *
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2191
 */
2192
static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2193
{
2194
	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2195 2196
	unsigned long inactive, active;
	unsigned long inactive_ratio;
2197
	unsigned long gb;
2198

2199 2200
	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2201

2202 2203 2204 2205 2206
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;
2207

2208
	return inactive * inactive_ratio < active;
2209 2210
}

2211 2212 2213 2214 2215 2216 2217
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2218 2219 2220 2221 2222 2223
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2224 2225
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2226
 */
2227 2228
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
			   unsigned long *nr)
2229
{
2230
	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2231
	int swappiness = mem_cgroup_swappiness(memcg);
2232 2233
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2234
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2235
	unsigned long anon_prio, file_prio;
2236
	enum scan_balance scan_balance;
2237
	unsigned long anon, file;
2238
	unsigned long totalcost;
2239
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2240
	enum lru_list lru;
2241 2242

	/* If we have no swap space, do not bother scanning anon pages. */
2243
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2244
		scan_balance = SCAN_FILE;
2245 2246
		goto out;
	}
2247

2248 2249 2250 2251 2252 2253 2254
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2255
	if (cgroup_reclaim(sc) && !swappiness) {
2256
		scan_balance = SCAN_FILE;
2257 2258 2259 2260 2261 2262 2263 2264
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2265
	if (!sc->priority && swappiness) {
2266
		scan_balance = SCAN_EQUAL;
2267 2268 2269
		goto out;
	}

2270
	/*
2271
	 * If the system is almost out of file pages, force-scan anon.
2272
	 */
2273
	if (sc->file_is_tiny) {
2274 2275
		scan_balance = SCAN_ANON;
		goto out;
2276 2277
	}

2278
	/*
2279 2280
	 * If there is enough inactive page cache, we do not reclaim
	 * anything from the anonymous working right now.
2281
	 */
2282
	if (sc->cache_trim_mode) {
2283
		scan_balance = SCAN_FILE;
2284 2285 2286
		goto out;
	}

2287 2288
	scan_balance = SCAN_FRACT;

2289
	/*
2290 2291 2292 2293 2294 2295 2296 2297 2298
	 * Calculate the pressure balance between anon and file pages.
	 *
	 * The amount of pressure we put on each LRU is inversely
	 * proportional to the cost of reclaiming each list, as
	 * determined by the share of pages that are refaulting, times
	 * the relative IO cost of bringing back a swapped out
	 * anonymous page vs reloading a filesystem page (swappiness).
	 *
	 * With swappiness at 100, anon and file have equal IO cost.
2299
	 */
2300
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2301
	file_prio = 200 - anon_prio;
2302

2303 2304 2305
	/*
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
2306
	 * up weighing recent refaults more than old ones.
2307
	 */
2308

2309 2310 2311 2312
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2313

M
Mel Gorman 已提交
2314
	spin_lock_irq(&pgdat->lru_lock);
2315 2316 2317 2318 2319
	totalcost = lruvec->anon_cost + lruvec->file_cost;
	if (unlikely(totalcost > (anon + file) / 4)) {
		lruvec->anon_cost /= 2;
		lruvec->file_cost /= 2;
		totalcost /= 2;
2320
	}
2321 2322
	ap = anon_prio * (totalcost + 1);
	ap /= lruvec->anon_cost + 1;
2323

2324 2325
	fp = file_prio * (totalcost + 1);
	fp /= lruvec->file_cost + 1;
M
Mel Gorman 已提交
2326
	spin_unlock_irq(&pgdat->lru_lock);
2327

2328 2329
	fraction[0] = ap;
	fraction[1] = fp;
2330
	denominator = ap + fp;
2331
out:
2332 2333
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
2334
		unsigned long lruvec_size;
2335
		unsigned long scan;
2336
		unsigned long protection;
2337 2338

		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2339 2340
		protection = mem_cgroup_protection(memcg,
						   sc->memcg_low_reclaim);
2341

2342
		if (protection) {
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
			/*
			 * Scale a cgroup's reclaim pressure by proportioning
			 * its current usage to its memory.low or memory.min
			 * setting.
			 *
			 * This is important, as otherwise scanning aggression
			 * becomes extremely binary -- from nothing as we
			 * approach the memory protection threshold, to totally
			 * nominal as we exceed it.  This results in requiring
			 * setting extremely liberal protection thresholds. It
			 * also means we simply get no protection at all if we
			 * set it too low, which is not ideal.
2355 2356 2357 2358
			 *
			 * If there is any protection in place, we reduce scan
			 * pressure by how much of the total memory used is
			 * within protection thresholds.
2359
			 *
2360 2361 2362 2363 2364 2365 2366 2367
			 * There is one special case: in the first reclaim pass,
			 * we skip over all groups that are within their low
			 * protection. If that fails to reclaim enough pages to
			 * satisfy the reclaim goal, we come back and override
			 * the best-effort low protection. However, we still
			 * ideally want to honor how well-behaved groups are in
			 * that case instead of simply punishing them all
			 * equally. As such, we reclaim them based on how much
2368 2369 2370
			 * memory they are using, reducing the scan pressure
			 * again by how much of the total memory used is under
			 * hard protection.
2371
			 */
2372 2373 2374 2375 2376 2377 2378
			unsigned long cgroup_size = mem_cgroup_size(memcg);

			/* Avoid TOCTOU with earlier protection check */
			cgroup_size = max(cgroup_size, protection);

			scan = lruvec_size - lruvec_size * protection /
				cgroup_size;
2379 2380

			/*
2381
			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2382 2383
			 * reclaim moving forwards, avoiding decremeting
			 * sc->priority further than desirable.
2384
			 */
2385
			scan = max(scan, SWAP_CLUSTER_MAX);
2386 2387 2388 2389 2390
		} else {
			scan = lruvec_size;
		}

		scan >>= sc->priority;
2391

2392 2393 2394 2395 2396
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
2397
			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2398

2399 2400 2401 2402 2403
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2404
			/*
2405 2406
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2407 2408 2409
			 * Make sure we don't miss the last page on
			 * the offlined memory cgroups because of a
			 * round-off error.
2410
			 */
2411 2412 2413
			scan = mem_cgroup_online(memcg) ?
			       div64_u64(scan * fraction[file], denominator) :
			       DIV64_U64_ROUND_UP(scan * fraction[file],
2414
						  denominator);
2415 2416 2417 2418
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
2419
			if ((scan_balance == SCAN_FILE) != file)
2420 2421 2422 2423 2424
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
2425
		}
2426 2427

		nr[lru] = scan;
2428
	}
2429
}
2430

2431
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2432 2433
{
	unsigned long nr[NR_LRU_LISTS];
2434
	unsigned long targets[NR_LRU_LISTS];
2435 2436 2437 2438 2439
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2440
	bool scan_adjusted;
2441

2442
	get_scan_count(lruvec, sc, nr);
2443

2444 2445 2446
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
2458
	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2459 2460
			 sc->priority == DEF_PRIORITY);

2461 2462 2463
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2464 2465 2466
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2467 2468 2469 2470 2471 2472
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2473
							    lruvec, sc);
2474 2475
			}
		}
2476

2477 2478
		cond_resched();

2479 2480 2481 2482 2483
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2484
		 * requested. Ensure that the anon and file LRUs are scanned
2485 2486 2487 2488 2489 2490 2491
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2492 2493 2494 2495 2496 2497 2498 2499 2500
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2532 2533 2534 2535 2536 2537 2538 2539
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2540
	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2541 2542 2543 2544
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2545
/* Use reclaim/compaction for costly allocs or under memory pressure */
2546
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2547
{
2548
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2549
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2550
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2551 2552 2553 2554 2555
		return true;

	return false;
}

2556
/*
M
Mel Gorman 已提交
2557 2558 2559
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
2560
 * calls try_to_compact_pages() that it will have enough free pages to succeed.
M
Mel Gorman 已提交
2561
 * It will give up earlier than that if there is difficulty reclaiming pages.
2562
 */
2563
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2564 2565 2566 2567 2568
					unsigned long nr_reclaimed,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2569
	int z;
2570 2571

	/* If not in reclaim/compaction mode, stop */
2572
	if (!in_reclaim_compaction(sc))
2573 2574
		return false;

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	/*
	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
	 * number of pages that were scanned. This will return to the caller
	 * with the risk reclaim/compaction and the resulting allocation attempt
	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
	 * allocations through requiring that the full LRU list has been scanned
	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
	 * scan, but that approximation was wrong, and there were corner cases
	 * where always a non-zero amount of pages were scanned.
	 */
	if (!nr_reclaimed)
		return false;
2587 2588

	/* If compaction would go ahead or the allocation would succeed, stop */
2589 2590
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2591
		if (!managed_zone(zone))
2592 2593 2594
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2595
		case COMPACT_SUCCESS:
2596 2597 2598 2599 2600 2601
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2602
	}
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = compact_gap(sc->order);
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);

2613
	return inactive_lru_pages > pages_for_compaction;
2614 2615
}

2616
static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2617
{
2618
	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2619
	struct mem_cgroup *memcg;
L
Linus Torvalds 已提交
2620

2621
	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2622
	do {
2623
		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2624 2625
		unsigned long reclaimed;
		unsigned long scanned;
2626

2627
		switch (mem_cgroup_protected(target_memcg, memcg)) {
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		case MEMCG_PROT_MIN:
			/*
			 * Hard protection.
			 * If there is no reclaimable memory, OOM.
			 */
			continue;
		case MEMCG_PROT_LOW:
			/*
			 * Soft protection.
			 * Respect the protection only as long as
			 * there is an unprotected supply
			 * of reclaimable memory from other cgroups.
			 */
			if (!sc->memcg_low_reclaim) {
				sc->memcg_low_skipped = 1;
R
Roman Gushchin 已提交
2643
				continue;
2644
			}
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
			memcg_memory_event(memcg, MEMCG_LOW);
			break;
		case MEMCG_PROT_NONE:
			/*
			 * All protection thresholds breached. We may
			 * still choose to vary the scan pressure
			 * applied based on by how much the cgroup in
			 * question has exceeded its protection
			 * thresholds (see get_scan_count).
			 */
			break;
		}
2657

2658 2659
		reclaimed = sc->nr_reclaimed;
		scanned = sc->nr_scanned;
2660 2661

		shrink_lruvec(lruvec, sc);
2662

2663 2664
		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
			    sc->priority);
2665

2666 2667 2668 2669
		/* Record the group's reclaim efficiency */
		vmpressure(sc->gfp_mask, memcg, false,
			   sc->nr_scanned - scanned,
			   sc->nr_reclaimed - reclaimed);
2670

2671 2672 2673
	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
}

2674
static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2675 2676 2677
{
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long nr_reclaimed, nr_scanned;
2678
	struct lruvec *target_lruvec;
2679
	bool reclaimable = false;
2680
	unsigned long file;
2681

2682 2683
	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);

2684 2685 2686 2687 2688 2689
again:
	memset(&sc->nr, 0, sizeof(sc->nr));

	nr_reclaimed = sc->nr_reclaimed;
	nr_scanned = sc->nr_scanned;

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	/*
	 * Target desirable inactive:active list ratios for the anon
	 * and file LRU lists.
	 */
	if (!sc->force_deactivate) {
		unsigned long refaults;

		if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
			sc->may_deactivate |= DEACTIVATE_ANON;
		else
			sc->may_deactivate &= ~DEACTIVATE_ANON;

		/*
		 * When refaults are being observed, it means a new
		 * workingset is being established. Deactivate to get
		 * rid of any stale active pages quickly.
		 */
		refaults = lruvec_page_state(target_lruvec,
					     WORKINGSET_ACTIVATE);
		if (refaults != target_lruvec->refaults ||
		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
			sc->may_deactivate |= DEACTIVATE_FILE;
		else
			sc->may_deactivate &= ~DEACTIVATE_FILE;
	} else
		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;

	/*
	 * If we have plenty of inactive file pages that aren't
	 * thrashing, try to reclaim those first before touching
	 * anonymous pages.
	 */
	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
		sc->cache_trim_mode = 1;
	else
		sc->cache_trim_mode = 0;

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (!cgroup_reclaim(sc)) {
		unsigned long total_high_wmark = 0;
2739 2740
		unsigned long free, anon;
		int z;
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753

		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
			if (!managed_zone(zone))
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
		/*
		 * Consider anon: if that's low too, this isn't a
		 * runaway file reclaim problem, but rather just
		 * extreme pressure. Reclaim as per usual then.
		 */
		anon = node_page_state(pgdat, NR_INACTIVE_ANON);

		sc->file_is_tiny =
			file + free <= total_high_wmark &&
			!(sc->may_deactivate & DEACTIVATE_ANON) &&
			anon >> sc->priority;
2765 2766
	}

2767
	shrink_node_memcgs(pgdat, sc);
2768

2769 2770 2771 2772
	if (reclaim_state) {
		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
		reclaim_state->reclaimed_slab = 0;
	}
2773

2774
	/* Record the subtree's reclaim efficiency */
2775
	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2776 2777
		   sc->nr_scanned - nr_scanned,
		   sc->nr_reclaimed - nr_reclaimed);
2778

2779 2780
	if (sc->nr_reclaimed - nr_reclaimed)
		reclaimable = true;
2781

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
	if (current_is_kswapd()) {
		/*
		 * If reclaim is isolating dirty pages under writeback,
		 * it implies that the long-lived page allocation rate
		 * is exceeding the page laundering rate. Either the
		 * global limits are not being effective at throttling
		 * processes due to the page distribution throughout
		 * zones or there is heavy usage of a slow backing
		 * device. The only option is to throttle from reclaim
		 * context which is not ideal as there is no guarantee
		 * the dirtying process is throttled in the same way
		 * balance_dirty_pages() manages.
		 *
		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
		 * count the number of pages under pages flagged for
		 * immediate reclaim and stall if any are encountered
		 * in the nr_immediate check below.
		 */
		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2802

2803 2804 2805
		/* Allow kswapd to start writing pages during reclaim.*/
		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
			set_bit(PGDAT_DIRTY, &pgdat->flags);
2806

2807
		/*
2808 2809 2810 2811
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU
		 * faster than they are written so also forcibly stall.
2812
		 */
2813 2814 2815 2816 2817
		if (sc->nr.immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
	}

	/*
2818 2819 2820 2821
	 * Tag a node/memcg as congested if all the dirty pages
	 * scanned were backed by a congested BDI and
	 * wait_iff_congested will stall.
	 *
2822 2823 2824
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling in wait_iff_congested().
	 */
2825 2826
	if ((current_is_kswapd() ||
	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2827
	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2828
		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2829 2830 2831 2832 2833 2834 2835

	/*
	 * Stall direct reclaim for IO completions if underlying BDIs
	 * and node is congested. Allow kswapd to continue until it
	 * starts encountering unqueued dirty pages or cycling through
	 * the LRU too quickly.
	 */
2836 2837 2838
	if (!current_is_kswapd() && current_may_throttle() &&
	    !sc->hibernation_mode &&
	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2839
		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2840

2841 2842 2843
	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
				    sc))
		goto again;
2844

2845 2846 2847 2848 2849 2850 2851 2852
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;
2853 2854
}

2855
/*
2856 2857 2858
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2859
 */
2860
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2861
{
M
Mel Gorman 已提交
2862
	unsigned long watermark;
2863
	enum compact_result suitable;
2864

2865 2866 2867 2868 2869 2870 2871
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2872

2873
	/*
2874 2875 2876 2877 2878 2879 2880
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2881
	 */
2882
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2883

2884
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2885 2886
}

L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892 2893 2894
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2895
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2896
{
2897
	struct zoneref *z;
2898
	struct zone *zone;
2899 2900
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2901
	gfp_t orig_mask;
2902
	pg_data_t *last_pgdat = NULL;
2903

2904 2905 2906 2907 2908
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2909
	orig_mask = sc->gfp_mask;
2910
	if (buffer_heads_over_limit) {
2911
		sc->gfp_mask |= __GFP_HIGHMEM;
2912
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2913
	}
2914

2915
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2916
					sc->reclaim_idx, sc->nodemask) {
2917 2918 2919 2920
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2921
		if (!cgroup_reclaim(sc)) {
2922 2923
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2924
				continue;
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2937
			    compaction_ready(zone, sc)) {
2938 2939
				sc->compaction_ready = true;
				continue;
2940
			}
2941

2942 2943 2944 2945 2946 2947 2948 2949 2950
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2951 2952 2953 2954 2955 2956 2957
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2958
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2959 2960 2961 2962
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2963
			/* need some check for avoid more shrink_zone() */
2964
		}
2965

2966 2967 2968 2969
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2970
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2971
	}
2972

2973 2974 2975 2976 2977
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2978
}
2979

2980
static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2981
{
2982 2983
	struct lruvec *target_lruvec;
	unsigned long refaults;
2984

2985 2986 2987
	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
	target_lruvec->refaults = refaults;
2988 2989
}

L
Linus Torvalds 已提交
2990 2991 2992 2993 2994 2995 2996 2997
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2998 2999 3000 3001
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3002 3003 3004
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3005
 */
3006
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3007
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3008
{
3009
	int initial_priority = sc->priority;
3010 3011 3012
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3013
retry:
3014 3015
	delayacct_freepages_start();

3016
	if (!cgroup_reclaim(sc))
3017
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3018

3019
	do {
3020 3021
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3022
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3023
		shrink_zones(zonelist, sc);
3024

3025
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3026 3027 3028 3029
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3030

3031 3032 3033 3034 3035 3036
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3037
	} while (--sc->priority >= 0);
3038

3039 3040 3041 3042 3043 3044
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
3045

3046
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3047 3048 3049 3050 3051 3052 3053 3054

		if (cgroup_reclaim(sc)) {
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
						   zone->zone_pgdat);
			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
		}
3055 3056
	}

3057 3058
	delayacct_freepages_end();

3059 3060 3061
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3062
	/* Aborted reclaim to try compaction? don't OOM, then */
3063
	if (sc->compaction_ready)
3064 3065
		return 1;

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
	/*
	 * We make inactive:active ratio decisions based on the node's
	 * composition of memory, but a restrictive reclaim_idx or a
	 * memory.low cgroup setting can exempt large amounts of
	 * memory from reclaim. Neither of which are very common, so
	 * instead of doing costly eligibility calculations of the
	 * entire cgroup subtree up front, we assume the estimates are
	 * good, and retry with forcible deactivation if that fails.
	 */
	if (sc->skipped_deactivate) {
		sc->priority = initial_priority;
		sc->force_deactivate = 1;
		sc->skipped_deactivate = 0;
		goto retry;
	}

3082
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3083
	if (sc->memcg_low_skipped) {
3084
		sc->priority = initial_priority;
3085
		sc->force_deactivate = 0;
3086 3087
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3088 3089 3090
		goto retry;
	}

3091
	return 0;
L
Linus Torvalds 已提交
3092 3093
}

3094
static bool allow_direct_reclaim(pg_data_t *pgdat)
3095 3096 3097 3098 3099 3100 3101
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3102 3103 3104
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3105 3106
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3107 3108 3109 3110
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3111 3112
			continue;

3113 3114 3115 3116
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3117 3118 3119 3120
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3121 3122 3123 3124
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3125 3126
		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3127

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3138 3139 3140 3141
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3142
 */
3143
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3144 3145
					nodemask_t *nodemask)
{
3146
	struct zoneref *z;
3147
	struct zone *zone;
3148
	pg_data_t *pgdat = NULL;
3149 3150 3151 3152 3153 3154 3155 3156 3157

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3158 3159 3160 3161 3162 3163 3164 3165
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3166

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3182
					gfp_zone(gfp_mask), nodemask) {
3183 3184 3185 3186 3187
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3188
		if (allow_direct_reclaim(pgdat))
3189 3190 3191 3192 3193 3194
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3195
		goto out;
3196

3197 3198 3199
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3210
			allow_direct_reclaim(pgdat), HZ);
3211 3212

		goto check_pending;
3213 3214 3215 3216
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3217
		allow_direct_reclaim(pgdat));
3218 3219 3220 3221 3222 3223 3224

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3225 3226
}

3227
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3228
				gfp_t gfp_mask, nodemask_t *nodemask)
3229
{
3230
	unsigned long nr_reclaimed;
3231
	struct scan_control sc = {
3232
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3233
		.gfp_mask = current_gfp_context(gfp_mask),
3234
		.reclaim_idx = gfp_zone(gfp_mask),
3235 3236 3237
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3238
		.may_writepage = !laptop_mode,
3239
		.may_unmap = 1,
3240
		.may_swap = 1,
3241 3242
	};

G
Greg Thelen 已提交
3243 3244 3245 3246 3247 3248 3249 3250
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3251
	/*
3252 3253 3254
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3255
	 */
3256
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3257 3258
		return 1;

3259
	set_task_reclaim_state(current, &sc.reclaim_state);
3260
	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3261

3262
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3263 3264

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3265
	set_task_reclaim_state(current, NULL);
3266 3267

	return nr_reclaimed;
3268 3269
}

A
Andrew Morton 已提交
3270
#ifdef CONFIG_MEMCG
3271

3272
/* Only used by soft limit reclaim. Do not reuse for anything else. */
3273
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3274
						gfp_t gfp_mask, bool noswap,
3275
						pg_data_t *pgdat,
3276
						unsigned long *nr_scanned)
3277
{
3278
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3279
	struct scan_control sc = {
3280
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3281
		.target_mem_cgroup = memcg,
3282 3283
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3284
		.reclaim_idx = MAX_NR_ZONES - 1,
3285 3286
		.may_swap = !noswap,
	};
3287

3288 3289
	WARN_ON_ONCE(!current->reclaim_state);

3290 3291
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3292

3293
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3294
						      sc.gfp_mask);
3295

3296 3297 3298
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3299
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3300 3301 3302
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3303
	shrink_lruvec(lruvec, &sc);
3304 3305 3306

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3307
	*nr_scanned = sc.nr_scanned;
3308

3309 3310 3311
	return sc.nr_reclaimed;
}

3312
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3313
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3314
					   gfp_t gfp_mask,
3315
					   bool may_swap)
3316
{
3317
	unsigned long nr_reclaimed;
3318
	unsigned long pflags;
3319
	unsigned int noreclaim_flag;
3320
	struct scan_control sc = {
3321
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3322
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3323
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3324
		.reclaim_idx = MAX_NR_ZONES - 1,
3325 3326 3327 3328
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3329
		.may_swap = may_swap,
3330
	};
3331
	/*
3332 3333 3334
	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
	 * equal pressure on all the nodes. This is based on the assumption that
	 * the reclaim does not bail out early.
3335
	 */
3336
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3337

3338
	set_task_reclaim_state(current, &sc.reclaim_state);
3339

3340
	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3341

3342
	psi_memstall_enter(&pflags);
3343
	noreclaim_flag = memalloc_noreclaim_save();
3344

3345
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3346

3347
	memalloc_noreclaim_restore(noreclaim_flag);
3348
	psi_memstall_leave(&pflags);
3349 3350

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3351
	set_task_reclaim_state(current, NULL);
3352 3353

	return nr_reclaimed;
3354 3355 3356
}
#endif

3357
static void age_active_anon(struct pglist_data *pgdat,
3358
				struct scan_control *sc)
3359
{
3360
	struct mem_cgroup *memcg;
3361
	struct lruvec *lruvec;
3362

3363 3364 3365
	if (!total_swap_pages)
		return;

3366 3367 3368 3369
	lruvec = mem_cgroup_lruvec(NULL, pgdat);
	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
		return;

3370 3371
	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3372 3373 3374
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
3375 3376
		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3377 3378
}

3379
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
	 * should not be checked at the time time as reclaim would
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
3391
	for (i = highest_zoneidx; i >= 0; i--) {
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3403 3404
/*
 * Returns true if there is an eligible zone balanced for the request order
3405
 * and highest_zoneidx
3406
 */
3407
static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3408
{
3409 3410 3411
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3412

3413 3414 3415 3416
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3417
	for (i = 0; i <= highest_zoneidx; i++) {
3418
		zone = pgdat->node_zones + i;
3419

3420 3421 3422 3423
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
3424
		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3425 3426 3427 3428
			return true;
	}

	/*
3429
	 * If a node has no populated zone within highest_zoneidx, it does not
3430 3431 3432 3433 3434 3435 3436
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3437 3438
}

3439 3440 3441
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
3442 3443 3444
	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);

	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3445 3446 3447 3448
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3449 3450 3451 3452 3453 3454
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3455 3456
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
				int highest_zoneidx)
3457
{
3458
	/*
3459
	 * The throttled processes are normally woken up in balance_pgdat() as
3460
	 * soon as allow_direct_reclaim() is true. But there is a potential
3461 3462 3463 3464 3465 3466 3467 3468 3469
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3470
	 */
3471 3472
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3473

3474 3475 3476 3477
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3478
	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3479 3480
		clear_pgdat_congested(pgdat);
		return true;
3481 3482
	}

3483
	return false;
3484 3485
}

3486
/*
3487 3488
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3489 3490
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3491 3492
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3493
 */
3494
static bool kswapd_shrink_node(pg_data_t *pgdat,
3495
			       struct scan_control *sc)
3496
{
3497 3498
	struct zone *zone;
	int z;
3499

3500 3501
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3502
	for (z = 0; z <= sc->reclaim_idx; z++) {
3503
		zone = pgdat->node_zones + z;
3504
		if (!managed_zone(zone))
3505
			continue;
3506

3507 3508
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3509 3510

	/*
3511 3512
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3513
	 */
3514
	shrink_node(pgdat, sc);
3515

3516
	/*
3517 3518 3519 3520 3521
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3522
	 */
3523
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3524
		sc->order = 0;
3525

3526
	return sc->nr_scanned >= sc->nr_to_reclaim;
3527 3528
}

L
Linus Torvalds 已提交
3529
/*
3530 3531 3532
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3533
 *
3534
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3535 3536
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3537
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
W
Wei Yang 已提交
3538
 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3539 3540
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3541
 */
3542
static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
L
Linus Torvalds 已提交
3543 3544
{
	int i;
3545 3546
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3547
	unsigned long pflags;
3548 3549 3550
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3551
	struct zone *zone;
3552 3553
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3554
		.order = order,
3555
		.may_unmap = 1,
3556
	};
3557

3558
	set_task_reclaim_state(current, &sc.reclaim_state);
3559
	psi_memstall_enter(&pflags);
3560 3561
	__fs_reclaim_acquire();

3562
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3563

3564 3565 3566 3567 3568 3569
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
3570
	for (i = 0; i <= highest_zoneidx; i++) {
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3582
	do {
3583
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3584
		bool raise_priority = true;
3585
		bool balanced;
3586
		bool ret;
3587

3588
		sc.reclaim_idx = highest_zoneidx;
L
Linus Torvalds 已提交
3589

3590
		/*
3591 3592 3593 3594 3595 3596 3597 3598
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3599 3600 3601 3602
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3603
				if (!managed_zone(zone))
3604
					continue;
3605

3606
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3607
				break;
L
Linus Torvalds 已提交
3608 3609
			}
		}
3610

3611
		/*
3612 3613 3614 3615 3616 3617
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
3618
		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3619 3620 3621 3622 3623 3624 3625 3626 3627
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3628
		 */
3629
		if (!nr_boost_reclaim && balanced)
3630
			goto out;
A
Andrew Morton 已提交
3631

3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;

3645 3646 3647 3648 3649 3650
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3651
		age_active_anon(pgdat, &sc);
3652

3653 3654 3655 3656
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3657
		if (sc.priority < DEF_PRIORITY - 2)
3658 3659
			sc.may_writepage = 1;

3660 3661 3662
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3663
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3664 3665 3666
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3667
		/*
3668 3669 3670
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3671
		 */
3672
		if (kswapd_shrink_node(pgdat, &sc))
3673
			raise_priority = false;
3674 3675 3676 3677 3678 3679 3680

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3681
				allow_direct_reclaim(pgdat))
3682
			wake_up_all(&pgdat->pfmemalloc_wait);
3683

3684
		/* Check if kswapd should be suspending */
3685 3686 3687 3688
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3689
			break;
3690

3691
		/*
3692 3693
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3694
		 */
3695
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3706
		if (raise_priority || !nr_reclaimed)
3707
			sc.priority--;
3708
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3709

3710 3711 3712
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3713
out:
3714 3715 3716 3717
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

3718
		for (i = 0; i <= highest_zoneidx; i++) {
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
3733
		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3734 3735
	}

3736
	snapshot_refaults(NULL, pgdat);
3737
	__fs_reclaim_release();
3738
	psi_memstall_leave(&pflags);
3739
	set_task_reclaim_state(current, NULL);
3740

3741
	/*
3742 3743 3744 3745
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3746
	 */
3747
	return sc.order;
L
Linus Torvalds 已提交
3748 3749
}

3750
/*
3751 3752 3753 3754 3755
 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
 * not a valid index then either kswapd runs for first time or kswapd couldn't
 * sleep after previous reclaim attempt (node is still unbalanced). In that
 * case return the zone index of the previous kswapd reclaim cycle.
3756
 */
3757 3758
static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
					   enum zone_type prev_highest_zoneidx)
3759
{
3760
	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3761

3762
	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3763 3764
}

3765
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3766
				unsigned int highest_zoneidx)
3767 3768 3769 3770 3771 3772 3773 3774 3775
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3776 3777 3778 3779 3780 3781 3782
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3783
	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3796
		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3797

3798
		remaining = schedule_timeout(HZ/10);
3799 3800

		/*
3801
		 * If woken prematurely then reset kswapd_highest_zoneidx and
3802 3803 3804 3805
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3806 3807 3808
			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
					kswapd_highest_zoneidx(pgdat,
							highest_zoneidx));
3809 3810 3811

			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3812 3813
		}

3814 3815 3816 3817 3818 3819 3820 3821
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3822
	if (!remaining &&
3823
	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3835 3836 3837 3838

		if (!kthread_should_stop())
			schedule();

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3849 3850
/*
 * The background pageout daemon, started as a kernel thread
3851
 * from the init process.
L
Linus Torvalds 已提交
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3864
	unsigned int alloc_order, reclaim_order;
3865
	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3866 3867
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3868
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3869

R
Rusty Russell 已提交
3870
	if (!cpumask_empty(cpumask))
3871
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3885
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3886
	set_freezable();
L
Linus Torvalds 已提交
3887

3888
	WRITE_ONCE(pgdat->kswapd_order, 0);
3889
	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
L
Linus Torvalds 已提交
3890
	for ( ; ; ) {
3891
		bool ret;
3892

3893
		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3894 3895
		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
							highest_zoneidx);
3896

3897 3898
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3899
					highest_zoneidx);
3900

3901
		/* Read the new order and highest_zoneidx */
3902
		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3903 3904
		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
							highest_zoneidx);
3905
		WRITE_ONCE(pgdat->kswapd_order, 0);
3906
		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
L
Linus Torvalds 已提交
3907

3908 3909 3910 3911 3912 3913 3914 3915
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3927
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3928
						alloc_order);
3929 3930
		reclaim_order = balance_pgdat(pgdat, alloc_order,
						highest_zoneidx);
3931 3932
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3933
	}
3934

3935 3936
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);

L
Linus Torvalds 已提交
3937 3938 3939 3940
	return 0;
}

/*
3941 3942 3943 3944 3945
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3946
 */
3947
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3948
		   enum zone_type highest_zoneidx)
L
Linus Torvalds 已提交
3949 3950
{
	pg_data_t *pgdat;
3951
	enum zone_type curr_idx;
L
Linus Torvalds 已提交
3952

3953
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3954 3955
		return;

3956
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3957
		return;
3958

3959
	pgdat = zone->zone_pgdat;
3960
	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3961

3962 3963
	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3964 3965 3966

	if (READ_ONCE(pgdat->kswapd_order) < order)
		WRITE_ONCE(pgdat->kswapd_order, order);
3967

3968
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3969
		return;
3970

3971 3972
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3973 3974
	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3975 3976 3977 3978 3979 3980 3981 3982
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3983
			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3984
		return;
3985
	}
3986

3987
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3988
				      gfp_flags);
3989
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3990 3991
}

3992
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3993
/*
3994
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3995 3996 3997 3998 3999
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
4000
 */
4001
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
4002
{
4003
	struct scan_control sc = {
4004
		.nr_to_reclaim = nr_to_reclaim,
4005
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4006
		.reclaim_idx = MAX_NR_ZONES - 1,
4007
		.priority = DEF_PRIORITY,
4008
		.may_writepage = 1,
4009 4010
		.may_unmap = 1,
		.may_swap = 1,
4011
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
4012
	};
4013
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4014
	unsigned long nr_reclaimed;
4015
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
4016

4017
	fs_reclaim_acquire(sc.gfp_mask);
4018
	noreclaim_flag = memalloc_noreclaim_save();
4019
	set_task_reclaim_state(current, &sc.reclaim_state);
4020

4021
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4022

4023
	set_task_reclaim_state(current, NULL);
4024
	memalloc_noreclaim_restore(noreclaim_flag);
4025
	fs_reclaim_release(sc.gfp_mask);
4026

4027
	return nr_reclaimed;
L
Linus Torvalds 已提交
4028
}
4029
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
4030

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
4046
		BUG_ON(system_state < SYSTEM_RUNNING);
4047 4048
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
4049
		pgdat->kswapd = NULL;
4050 4051 4052 4053
	}
	return ret;
}

4054
/*
4055
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4056
 * hold mem_hotplug_begin/end().
4057 4058 4059 4060 4061
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

4062
	if (kswapd) {
4063
		kthread_stop(kswapd);
4064 4065
		NODE_DATA(nid)->kswapd = NULL;
	}
4066 4067
}

L
Linus Torvalds 已提交
4068 4069
static int __init kswapd_init(void)
{
4070
	int nid;
4071

L
Linus Torvalds 已提交
4072
	swap_setup();
4073
	for_each_node_state(nid, N_MEMORY)
4074
 		kswapd_run(nid);
L
Linus Torvalds 已提交
4075 4076 4077 4078
	return 0;
}

module_init(kswapd_init)
4079 4080 4081

#ifdef CONFIG_NUMA
/*
4082
 * Node reclaim mode
4083
 *
4084
 * If non-zero call node_reclaim when the number of free pages falls below
4085 4086
 * the watermarks.
 */
4087
int node_reclaim_mode __read_mostly;
4088

4089 4090
#define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
#define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
4091

4092
/*
4093
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4094 4095 4096
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4097
#define NODE_RECLAIM_PRIORITY 4
4098

4099
/*
4100
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4101 4102 4103 4104
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4105 4106 4107 4108 4109 4110
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4111
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4112
{
4113 4114 4115
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4126
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4127
{
4128 4129
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4130 4131

	/*
4132
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4133
	 * potentially reclaimable. Otherwise, we have to worry about
4134
	 * pages like swapcache and node_unmapped_file_pages() provides
4135 4136
	 * a better estimate
	 */
4137 4138
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4139
	else
4140
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4141 4142

	/* If we can't clean pages, remove dirty pages from consideration */
4143 4144
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4145 4146 4147 4148 4149 4150 4151 4152

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4153
/*
4154
 * Try to free up some pages from this node through reclaim.
4155
 */
4156
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4157
{
4158
	/* Minimum pages needed in order to stay on node */
4159
	const unsigned long nr_pages = 1 << order;
4160
	struct task_struct *p = current;
4161
	unsigned int noreclaim_flag;
4162
	struct scan_control sc = {
4163
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4164
		.gfp_mask = current_gfp_context(gfp_mask),
4165
		.order = order,
4166 4167 4168
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4169
		.may_swap = 1,
4170
		.reclaim_idx = gfp_zone(gfp_mask),
4171
	};
4172

4173 4174 4175
	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
					   sc.gfp_mask);

4176
	cond_resched();
4177
	fs_reclaim_acquire(sc.gfp_mask);
4178
	/*
4179
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4180
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4181
	 * and RECLAIM_UNMAP.
4182
	 */
4183 4184
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4185
	set_task_reclaim_state(p, &sc.reclaim_state);
4186

4187
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4188
		/*
4189
		 * Free memory by calling shrink node with increasing
4190 4191 4192
		 * priorities until we have enough memory freed.
		 */
		do {
4193
			shrink_node(pgdat, &sc);
4194
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4195
	}
4196

4197
	set_task_reclaim_state(p, NULL);
4198 4199
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4200
	fs_reclaim_release(sc.gfp_mask);
4201 4202 4203

	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);

4204
	return sc.nr_reclaimed >= nr_pages;
4205
}
4206

4207
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4208
{
4209
	int ret;
4210 4211

	/*
4212
	 * Node reclaim reclaims unmapped file backed pages and
4213
	 * slab pages if we are over the defined limits.
4214
	 *
4215 4216
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4217 4218
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4219
	 * unmapped file backed pages.
4220
	 */
4221
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4222
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4223
		return NODE_RECLAIM_FULL;
4224 4225

	/*
4226
	 * Do not scan if the allocation should not be delayed.
4227
	 */
4228
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4229
		return NODE_RECLAIM_NOSCAN;
4230 4231

	/*
4232
	 * Only run node reclaim on the local node or on nodes that do not
4233 4234 4235 4236
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4237 4238
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4239

4240 4241
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4242

4243 4244
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4245

4246 4247 4248
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4249
	return ret;
4250
}
4251
#endif
L
Lee Schermerhorn 已提交
4252

4253
/**
4254 4255 4256
 * check_move_unevictable_pages - check pages for evictability and move to
 * appropriate zone lru list
 * @pvec: pagevec with lru pages to check
4257
 *
4258 4259 4260
 * Checks pages for evictability, if an evictable page is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru pages.
4261
 */
4262
void check_move_unevictable_pages(struct pagevec *pvec)
4263
{
4264
	struct lruvec *lruvec;
4265
	struct pglist_data *pgdat = NULL;
4266 4267 4268
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4269

4270 4271
	for (i = 0; i < pvec->nr; i++) {
		struct page *page = pvec->pages[i];
4272
		struct pglist_data *pagepgdat = page_pgdat(page);
4273

4274
		pgscanned++;
4275 4276 4277 4278 4279
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4280
		}
4281
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4282

4283 4284
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4285

4286
		if (page_evictable(page)) {
4287 4288
			enum lru_list lru = page_lru_base_type(page);

4289
			VM_BUG_ON_PAGE(PageActive(page), page);
4290
			ClearPageUnevictable(page);
4291 4292
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4293
			pgrescued++;
4294
		}
4295
	}
4296

4297
	if (pgdat) {
4298 4299
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4300
		spin_unlock_irq(&pgdat->lru_lock);
4301 4302
	}
}
4303
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);