vmscan.c 123.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/pagevec.h>
50
#include <linux/prefetch.h>
51
#include <linux/printk.h>
52
#include <linux/dax.h>
53
#include <linux/psi.h>
L
Linus Torvalds 已提交
54 55 56 57 58

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
59
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
60

61 62
#include "internal.h"

63 64 65
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
66
struct scan_control {
67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71 72 73 74
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
75

76 77 78 79 80
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
81

82 83 84 85 86 87
	/*
	 * Scan pressure balancing between anon and file LRUs
	 */
	unsigned long	anon_cost;
	unsigned long	file_cost;

88 89 90 91 92 93 94
	/* Can active pages be deactivated as part of reclaim? */
#define DEACTIVATE_ANON 1
#define DEACTIVATE_FILE 2
	unsigned int may_deactivate:2;
	unsigned int force_deactivate:1;
	unsigned int skipped_deactivate:1;

95
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
96 97 98 99 100 101 102 103
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

104 105 106 107 108 109 110
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
111

112 113 114 115 116
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

117 118 119
	/* There is easily reclaimable cold cache in the current node */
	unsigned int cache_trim_mode:1;

120 121 122
	/* The file pages on the current node are dangerously low */
	unsigned int file_is_tiny:1;

G
Greg Thelen 已提交
123 124 125 126 127 128 129 130 131 132 133 134
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

135 136 137 138 139
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
140 141 142 143 144 145 146 147 148 149

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
150 151 152

	/* for recording the reclaimed slab by now */
	struct reclaim_state reclaim_state;
L
Linus Torvalds 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
};

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
170
 * From 0 .. 200.  Higher means more swappy.
L
Linus Torvalds 已提交
171 172
 */
int vm_swappiness = 60;
173 174 175 176 177
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
178

179 180 181 182 183 184 185 186 187 188 189 190
static void set_task_reclaim_state(struct task_struct *task,
				   struct reclaim_state *rs)
{
	/* Check for an overwrite */
	WARN_ON_ONCE(rs && task->reclaim_state);

	/* Check for the nulling of an already-nulled member */
	WARN_ON_ONCE(!rs && !task->reclaim_state);

	task->reclaim_state = rs;
}

L
Linus Torvalds 已提交
191 192 193
static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

194
#ifdef CONFIG_MEMCG
195 196 197 198 199 200 201 202 203 204 205 206 207
/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

208 209 210 211 212 213 214 215 216
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
217
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
218 219 220
	if (id < 0)
		goto unlock;

221 222 223 224 225 226
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

227
		shrinker_nr_max = id + 1;
228
	}
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}

247
static bool cgroup_reclaim(struct scan_control *sc)
248
{
249
	return sc->target_mem_cgroup;
250
}
251 252

/**
253
 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
254 255 256 257 258 259 260 261 262 263 264
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
265
static bool writeback_throttling_sane(struct scan_control *sc)
266
{
267
	if (!cgroup_reclaim(sc))
268 269
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
270
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
271 272 273 274
		return true;
#endif
	return false;
}
275
#else
276 277 278 279 280 281 282 283 284
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}

285
static bool cgroup_reclaim(struct scan_control *sc)
286
{
287
	return false;
288
}
289

290
static bool writeback_throttling_sane(struct scan_control *sc)
291 292 293
{
	return true;
}
294 295
#endif

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

314 315 316 317 318 319 320
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
321
{
322
	unsigned long size = 0;
323 324
	int zid;

325
	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
326
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
327

328 329 330 331
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
332
			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
333
		else
334
			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
335
	}
336
	return size;
337 338
}

L
Linus Torvalds 已提交
339
/*
G
Glauber Costa 已提交
340
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
341
 */
342
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
343
{
344
	unsigned int size = sizeof(*shrinker->nr_deferred);
G
Glauber Costa 已提交
345 346 347 348 349 350 351

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
352 353 354 355 356 357

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

358
	return 0;
359 360 361 362 363

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
364 365 366 367
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
368 369 370 371 372 373
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

374 375 376
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
377

378 379
void register_shrinker_prepared(struct shrinker *shrinker)
{
380 381
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
382
#ifdef CONFIG_MEMCG
383 384
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
385
#endif
386
	up_write(&shrinker_rwsem);
387 388 389 390 391 392 393 394 395
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
396
	return 0;
L
Linus Torvalds 已提交
397
}
398
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
399 400 401 402

/*
 * Remove one
 */
403
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
404
{
405 406
	if (!shrinker->nr_deferred)
		return;
407 408
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
409 410 411
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
412
	kfree(shrinker->nr_deferred);
413
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
414
}
415
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
416 417

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
418

419
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
420
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
421 422 423 424
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
425
	long freeable;
G
Glauber Costa 已提交
426 427 428 429 430
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
431
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
432

433 434 435
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

436
	freeable = shrinker->count_objects(shrinker, shrinkctl);
437 438
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
439 440 441 442 443 444 445 446 447

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
448 449 450 451 452 453 454 455 456 457 458 459
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
460

G
Glauber Costa 已提交
461 462
	total_scan += delta;
	if (total_scan < 0) {
463
		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
464
		       shrinker->scan_objects, total_scan);
465
		total_scan = freeable;
466 467 468
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
469 470 471 472 473 474 475

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
476
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
477 478 479 480 481
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
482 483
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
484 485 486 487 488 489

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
490 491
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
492 493

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
494
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
495

496 497 498 499 500 501 502 503 504 505 506
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
507
	 * than the total number of objects on slab (freeable), we must be
508 509 510 511
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
512
	       total_scan >= freeable) {
D
Dave Chinner 已提交
513
		unsigned long ret;
514
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
515

516
		shrinkctl->nr_to_scan = nr_to_scan;
517
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
518 519 520 521
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
522

523 524 525
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
526 527 528 529

		cond_resched();
	}

530 531 532 533
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
534 535 536 537 538
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
539 540
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
541 542 543 544
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

545
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
546
	return freed;
547 548
}

549
#ifdef CONFIG_MEMCG
550 551 552 553
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
554 555
	unsigned long ret, freed = 0;
	int i;
556

557
	if (!mem_cgroup_online(memcg))
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
577 578 579
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
580 581 582
			continue;
		}

583 584 585 586 587
		/* Call non-slab shrinkers even though kmem is disabled */
		if (!memcg_kmem_enabled() &&
		    !(shrinker->flags & SHRINKER_NONSLAB))
			continue;

588
		ret = do_shrink_slab(&sc, shrinker, priority);
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
613 614 615 616 617 618 619 620 621 622 623
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
624
#else /* CONFIG_MEMCG */
625 626 627 628 629
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
630
#endif /* CONFIG_MEMCG */
631

632
/**
633
 * shrink_slab - shrink slab caches
634 635
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
636
 * @memcg: memory cgroup whose slab caches to target
637
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
638
 *
639
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
640
 *
641 642
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
643
 *
644 645
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
646
 *
647 648
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
649
 *
650
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
651
 */
652 653
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
654
				 int priority)
L
Linus Torvalds 已提交
655
{
656
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
657 658
	struct shrinker *shrinker;

659 660 661 662 663 664 665 666
	/*
	 * The root memcg might be allocated even though memcg is disabled
	 * via "cgroup_disable=memory" boot parameter.  This could make
	 * mem_cgroup_is_root() return false, then just run memcg slab
	 * shrink, but skip global shrink.  This may result in premature
	 * oom.
	 */
	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
667
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
668

669
	if (!down_read_trylock(&shrinker_rwsem))
670
		goto out;
L
Linus Torvalds 已提交
671 672

	list_for_each_entry(shrinker, &shrinker_list, list) {
673 674 675
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
676
			.memcg = memcg,
677
		};
678

679 680 681 682
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
683 684
		/*
		 * Bail out if someone want to register a new shrinker to
E
Ethon Paul 已提交
685
		 * prevent the registration from being stalled for long periods
686 687 688 689 690 691
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
692
	}
693

L
Linus Torvalds 已提交
694
	up_read(&shrinker_rwsem);
695 696
out:
	cond_resched();
D
Dave Chinner 已提交
697
	return freed;
L
Linus Torvalds 已提交
698 699
}

700 701 702 703 704 705 706 707
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
708
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
709
		do {
710
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
711 712 713 714 715 716 717 718 719 720 721 722
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
723 724
static inline int is_page_cache_freeable(struct page *page)
{
725 726
	/*
	 * A freeable page cache page is referenced only by the caller
727 728
	 * that isolated the page, the page cache and optional buffer
	 * heads at page->private.
729
	 */
730
	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
731
		HPAGE_PMD_NR : 1;
732
	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
L
Linus Torvalds 已提交
733 734
}

735
static int may_write_to_inode(struct inode *inode)
L
Linus Torvalds 已提交
736
{
737
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
738
		return 1;
739
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
740
		return 1;
741
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
761
	lock_page(page);
762 763
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
764 765 766
	unlock_page(page);
}

767 768 769 770 771 772 773 774 775 776 777 778
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
779
/*
A
Andrew Morton 已提交
780 781
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
782
 */
783
static pageout_t pageout(struct page *page, struct address_space *mapping)
L
Linus Torvalds 已提交
784 785 786 787 788 789 790 791
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
792
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
808
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
809 810
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
811
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
812 813 814 815 816 817 818
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
819
	if (!may_write_to_inode(mapping->host))
L
Linus Torvalds 已提交
820 821 822 823 824 825 826
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
827 828
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
829 830 831 832 833 834 835
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
836
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
837 838 839
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
840

L
Linus Torvalds 已提交
841 842 843 844
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
845
		trace_mm_vmscan_writepage(page);
846
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
847 848 849 850 851 852
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

853
/*
N
Nick Piggin 已提交
854 855
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
856
 */
857
static int __remove_mapping(struct address_space *mapping, struct page *page,
858
			    bool reclaimed, struct mem_cgroup *target_memcg)
859
{
860
	unsigned long flags;
861
	int refcount;
862

863 864
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
865

M
Matthew Wilcox 已提交
866
	xa_lock_irqsave(&mapping->i_pages, flags);
867
	/*
N
Nick Piggin 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
887
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
888 889
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
890
	 * and thus under the i_pages lock, then this ordering is not required.
891
	 */
892
	refcount = 1 + compound_nr(page);
893
	if (!page_ref_freeze(page, refcount))
894
		goto cannot_free;
895
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
896
	if (unlikely(PageDirty(page))) {
897
		page_ref_unfreeze(page, refcount);
898
		goto cannot_free;
N
Nick Piggin 已提交
899
	}
900 901 902

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
903
		mem_cgroup_swapout(page, swap);
904
		__delete_from_swap_cache(page, swap);
M
Matthew Wilcox 已提交
905
		xa_unlock_irqrestore(&mapping->i_pages, flags);
906
		put_swap_page(page, swap);
907
		workingset_eviction(page, target_memcg);
N
Nick Piggin 已提交
908
	} else {
909
		void (*freepage)(struct page *);
910
		void *shadow = NULL;
911 912

		freepage = mapping->a_ops->freepage;
913 914 915 916 917 918 919 920 921
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
922 923 924 925 926
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
927
		 * same address_space.
928
		 */
H
Huang Ying 已提交
929
		if (reclaimed && page_is_file_lru(page) &&
930
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
931
			shadow = workingset_eviction(page, target_memcg);
J
Johannes Weiner 已提交
932
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
933
		xa_unlock_irqrestore(&mapping->i_pages, flags);
934 935 936

		if (freepage != NULL)
			freepage(page);
937 938 939 940 941
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
942
	xa_unlock_irqrestore(&mapping->i_pages, flags);
943 944 945
	return 0;
}

N
Nick Piggin 已提交
946 947 948 949 950 951 952 953
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
954
	if (__remove_mapping(mapping, page, false, NULL)) {
N
Nick Piggin 已提交
955 956 957 958 959
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
960
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
961 962 963 964 965
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
966 967 968 969 970 971 972 973 974 975 976
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
977
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
978 979 980
	put_page(page);		/* drop ref from isolate */
}

981 982 983
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
984
	PAGEREF_KEEP,
985 986 987 988 989 990
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
991
	int referenced_ptes, referenced_page;
992 993
	unsigned long vm_flags;

994 995
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
996
	referenced_page = TestClearPageReferenced(page);
997 998 999 1000 1001 1002 1003 1004

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1005
	if (referenced_ptes) {
1006
		if (PageSwapBacked(page))
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1024
		if (referenced_page || referenced_ptes > 1)
1025 1026
			return PAGEREF_ACTIVATE;

1027 1028 1029 1030 1031 1032
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1033 1034
		return PAGEREF_KEEP;
	}
1035 1036

	/* Reclaim if clean, defer dirty pages to writeback */
1037
	if (referenced_page && !PageSwapBacked(page))
1038 1039 1040
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1041 1042
}

1043 1044 1045 1046
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1047 1048
	struct address_space *mapping;

1049 1050 1051 1052
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
H
Huang Ying 已提交
1053
	if (!page_is_file_lru(page) ||
S
Shaohua Li 已提交
1054
	    (PageAnon(page) && !PageSwapBacked(page))) {
1055 1056 1057 1058 1059 1060 1061 1062
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1063 1064 1065 1066 1067 1068 1069 1070

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1071 1072
}

L
Linus Torvalds 已提交
1073
/*
A
Andrew Morton 已提交
1074
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1075
 */
1076 1077 1078 1079 1080 1081
static unsigned int shrink_page_list(struct list_head *page_list,
				     struct pglist_data *pgdat,
				     struct scan_control *sc,
				     enum ttu_flags ttu_flags,
				     struct reclaim_stat *stat,
				     bool ignore_references)
L
Linus Torvalds 已提交
1082 1083
{
	LIST_HEAD(ret_pages);
1084
	LIST_HEAD(free_pages);
1085 1086
	unsigned int nr_reclaimed = 0;
	unsigned int pgactivate = 0;
L
Linus Torvalds 已提交
1087

1088
	memset(stat, 0, sizeof(*stat));
L
Linus Torvalds 已提交
1089 1090 1091 1092 1093
	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
1094
		enum page_references references = PAGEREF_RECLAIM;
1095
		bool dirty, writeback, may_enter_fs;
1096
		unsigned int nr_pages;
L
Linus Torvalds 已提交
1097 1098 1099 1100 1101 1102

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1103
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1104 1105
			goto keep;

1106
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1107

1108
		nr_pages = compound_nr(page);
1109 1110 1111

		/* Account the number of base pages even though THP */
		sc->nr_scanned += nr_pages;
1112

1113
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1114
			goto activate_locked;
L
Lee Schermerhorn 已提交
1115

1116
		if (!sc->may_unmap && page_mapped(page))
1117 1118
			goto keep_locked;

1119 1120 1121
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1122
		/*
1123
		 * The number of dirty pages determines if a node is marked
1124 1125 1126 1127 1128 1129
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
1130
			stat->nr_dirty++;
1131 1132

		if (dirty && !writeback)
1133
			stat->nr_unqueued_dirty++;
1134

1135 1136 1137 1138 1139 1140
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1141
		mapping = page_mapping(page);
1142
		if (((dirty || writeback) && mapping &&
1143
		     inode_write_congested(mapping->host)) ||
1144
		    (writeback && PageReclaim(page)))
1145
			stat->nr_congested++;
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1158 1159
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1160
		 *
1161
		 * 2) Global or new memcg reclaim encounters a page that is
1162 1163 1164
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1165
		 *    reclaim and continue scanning.
1166
		 *
1167 1168
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1169 1170 1171 1172 1173
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1174
		 * 3) Legacy memcg encounters a page that is already marked
1175 1176 1177 1178
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1179 1180 1181 1182 1183 1184 1185 1186 1187
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1188
		 */
1189
		if (PageWriteback(page)) {
1190 1191 1192
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1193
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1194
				stat->nr_immediate++;
1195
				goto activate_locked;
1196 1197

			/* Case 2 above */
1198
			} else if (writeback_throttling_sane(sc) ||
1199
			    !PageReclaim(page) || !may_enter_fs) {
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1212
				stat->nr_writeback++;
1213
				goto activate_locked;
1214 1215 1216

			/* Case 3 above */
			} else {
1217
				unlock_page(page);
1218
				wait_on_page_writeback(page);
1219 1220 1221
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1222
			}
1223
		}
L
Linus Torvalds 已提交
1224

1225
		if (!ignore_references)
1226 1227
			references = page_check_references(page, sc);

1228 1229
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1230
			goto activate_locked;
1231
		case PAGEREF_KEEP:
1232
			stat->nr_ref_keep += nr_pages;
1233
			goto keep_locked;
1234 1235 1236 1237
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1238 1239 1240 1241

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1242
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1243
		 */
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
1264
						goto activate_locked_split;
1265 1266 1267 1268
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1269 1270 1271
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1272
					if (!add_to_swap(page))
1273
						goto activate_locked_split;
1274
				}
1275

1276
				may_enter_fs = true;
L
Linus Torvalds 已提交
1277

1278 1279 1280
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1281 1282 1283 1284
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1285
		}
L
Linus Torvalds 已提交
1286

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		/*
		 * THP may get split above, need minus tail pages and update
		 * nr_pages to avoid accounting tail pages twice.
		 *
		 * The tail pages that are added into swap cache successfully
		 * reach here.
		 */
		if ((nr_pages > 1) && !PageTransHuge(page)) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}

L
Linus Torvalds 已提交
1299 1300 1301 1302
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1303
		if (page_mapped(page)) {
1304
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1305
			bool was_swapbacked = PageSwapBacked(page);
1306 1307 1308

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
1309

1310
			if (!try_to_unmap(page, flags)) {
1311
				stat->nr_unmap_fail += nr_pages;
1312 1313
				if (!was_swapbacked && PageSwapBacked(page))
					stat->nr_lazyfree_fail += nr_pages;
L
Linus Torvalds 已提交
1314 1315 1316 1317 1318
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1319
			/*
1320 1321 1322 1323 1324 1325 1326 1327
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1328
			 */
H
Huang Ying 已提交
1329
			if (page_is_file_lru(page) &&
1330 1331
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1332 1333 1334 1335 1336 1337
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1338
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1339 1340
				SetPageReclaim(page);

1341
				goto activate_locked;
1342 1343
			}

1344
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1345
				goto keep_locked;
1346
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1347
				goto keep_locked;
1348
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1349 1350
				goto keep_locked;

1351 1352 1353 1354 1355 1356
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1357
			switch (pageout(page, mapping)) {
L
Linus Torvalds 已提交
1358 1359 1360 1361 1362
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1363 1364
				stat->nr_pageout += hpage_nr_pages(page);

1365
				if (PageWriteback(page))
1366
					goto keep;
1367
				if (PageDirty(page))
L
Linus Torvalds 已提交
1368
					goto keep;
1369

L
Linus Torvalds 已提交
1370 1371 1372 1373
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1374
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1394
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1405
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1406 1407
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1424 1425
		}

S
Shaohua Li 已提交
1426 1427 1428 1429 1430 1431 1432 1433
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1434

S
Shaohua Li 已提交
1435
			count_vm_event(PGLAZYFREED);
1436
			count_memcg_page_event(page, PGLAZYFREED);
1437 1438
		} else if (!mapping || !__remove_mapping(mapping, page, true,
							 sc->target_mem_cgroup))
S
Shaohua Li 已提交
1439
			goto keep_locked;
1440 1441

		unlock_page(page);
N
Nick Piggin 已提交
1442
free_it:
1443 1444 1445 1446 1447
		/*
		 * THP may get swapped out in a whole, need account
		 * all base pages.
		 */
		nr_reclaimed += nr_pages;
1448 1449 1450 1451 1452

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1453
		if (unlikely(PageTransHuge(page)))
1454
			destroy_compound_page(page);
1455
		else
1456
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1457 1458
		continue;

1459 1460 1461 1462 1463 1464 1465 1466 1467
activate_locked_split:
		/*
		 * The tail pages that are failed to add into swap cache
		 * reach here.  Fixup nr_scanned and nr_pages.
		 */
		if (nr_pages > 1) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}
L
Linus Torvalds 已提交
1468
activate_locked:
1469
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1470 1471
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1472
			try_to_free_swap(page);
1473
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1474
		if (!PageMlocked(page)) {
H
Huang Ying 已提交
1475
			int type = page_is_file_lru(page);
M
Minchan Kim 已提交
1476
			SetPageActive(page);
1477
			stat->nr_activate[type] += nr_pages;
1478
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1479
		}
L
Linus Torvalds 已提交
1480 1481 1482 1483
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1484
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1485
	}
1486

1487 1488
	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];

1489
	mem_cgroup_uncharge_list(&free_pages);
1490
	try_to_unmap_flush();
1491
	free_unref_page_list(&free_pages);
1492

L
Linus Torvalds 已提交
1493
	list_splice(&ret_pages, page_list);
1494
	count_vm_events(PGACTIVATE, pgactivate);
1495

1496
	return nr_reclaimed;
L
Linus Torvalds 已提交
1497 1498
}

1499
unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1500 1501 1502 1503 1504 1505 1506
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1507
	struct reclaim_stat stat;
1508
	unsigned int nr_reclaimed;
1509 1510 1511 1512
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
H
Huang Ying 已提交
1513
		if (page_is_file_lru(page) && !PageDirty(page) &&
1514
		    !__PageMovable(page) && !PageUnevictable(page)) {
1515 1516 1517 1518 1519
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

1520 1521
	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
			TTU_IGNORE_ACCESS, &stat, true);
1522
	list_splice(&clean_pages, page_list);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
	/*
	 * Since lazyfree pages are isolated from file LRU from the beginning,
	 * they will rotate back to anonymous LRU in the end if it failed to
	 * discard so isolated count will be mismatched.
	 * Compensate the isolated count for both LRU lists.
	 */
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
			    stat.nr_lazyfree_fail);
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
			    -stat.nr_lazyfree_fail);
	return nr_reclaimed;
1535 1536
}

A
Andy Whitcroft 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1547
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1548 1549 1550 1551 1552 1553 1554
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1555 1556
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1557 1558
		return ret;

A
Andy Whitcroft 已提交
1559
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1560

1561 1562 1563 1564 1565 1566 1567 1568
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1569
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1570 1571 1572 1573 1574 1575
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1576
			bool migrate_dirty;
1577 1578 1579 1580

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1581 1582 1583 1584 1585
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1586
			 */
1587 1588 1589
			if (!trylock_page(page))
				return ret;

1590
			mapping = page_mapping(page);
1591
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1592 1593
			unlock_page(page);
			if (!migrate_dirty)
1594 1595 1596
				return ret;
		}
	}
1597

1598 1599 1600
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1614 1615 1616

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
E
Ethon Paul 已提交
1617
 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1618 1619
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1620
			enum lru_list lru, unsigned long *nr_zone_taken)
1621 1622 1623 1624 1625 1626 1627
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

1628
		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1629 1630
	}

1631 1632
}

1633 1634
/**
 * pgdat->lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1635 1636 1637 1638 1639 1640 1641 1642
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1643
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1644
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1645
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1646
 * @nr_scanned:	The number of pages that were scanned.
1647
 * @sc:		The scan_control struct for this reclaim session
1648
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1649 1650 1651
 *
 * returns how many pages were moved onto *@dst.
 */
1652
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1653
		struct lruvec *lruvec, struct list_head *dst,
1654
		unsigned long *nr_scanned, struct scan_control *sc,
1655
		enum lru_list lru)
L
Linus Torvalds 已提交
1656
{
H
Hugh Dickins 已提交
1657
	struct list_head *src = &lruvec->lists[lru];
1658
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1659
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1660
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1661
	unsigned long skipped = 0;
1662
	unsigned long scan, total_scan, nr_pages;
1663
	LIST_HEAD(pages_skipped);
1664
	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
L
Linus Torvalds 已提交
1665

1666
	total_scan = 0;
1667
	scan = 0;
1668
	while (scan < nr_to_scan && !list_empty(src)) {
A
Andy Whitcroft 已提交
1669 1670
		struct page *page;

L
Linus Torvalds 已提交
1671 1672 1673
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1674
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1675

1676
		nr_pages = compound_nr(page);
1677 1678
		total_scan += nr_pages;

1679 1680
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1681
			nr_skipped[page_zonenum(page)] += nr_pages;
1682 1683 1684
			continue;
		}

1685 1686 1687 1688 1689
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
1690 1691 1692 1693
		 *
		 * Account all tail pages of THP.  This would not cause
		 * premature OOM since __isolate_lru_page() returns -EBUSY
		 * only when the page is being freed somewhere else.
1694
		 */
1695
		scan += nr_pages;
1696
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1697
		case 0:
M
Mel Gorman 已提交
1698 1699
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1700 1701 1702 1703 1704 1705 1706
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1707

A
Andy Whitcroft 已提交
1708 1709 1710
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1711 1712
	}

1713 1714 1715 1716 1717 1718 1719
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1720 1721 1722
	if (!list_empty(&pages_skipped)) {
		int zid;

1723
		list_splice(&pages_skipped, src);
1724 1725 1726 1727 1728
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1729
			skipped += nr_skipped[zid];
1730 1731
		}
	}
1732
	*nr_scanned = total_scan;
1733
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1734
				    total_scan, skipped, nr_taken, mode, lru);
1735
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1736 1737 1738
	return nr_taken;
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1750 1751 1752
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1753 1754 1755 1756 1757
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1758
 *
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1769
	VM_BUG_ON_PAGE(!page_count(page), page);
1770
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1771

1772
	if (PageLRU(page)) {
1773
		pg_data_t *pgdat = page_pgdat(page);
1774
		struct lruvec *lruvec;
1775

1776 1777
		spin_lock_irq(&pgdat->lru_lock);
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1778
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1779
			int lru = page_lru(page);
1780
			get_page(page);
1781
			ClearPageLRU(page);
1782 1783
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1784
		}
1785
		spin_unlock_irq(&pgdat->lru_lock);
1786 1787 1788 1789
	}
	return ret;
}

1790
/*
F
Fengguang Wu 已提交
1791
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
X
Xianting Tian 已提交
1792
 * then get rescheduled. When there are massive number of tasks doing page
F
Fengguang Wu 已提交
1793 1794 1795
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1796
 */
M
Mel Gorman 已提交
1797
static int too_many_isolated(struct pglist_data *pgdat, int file,
1798 1799 1800 1801 1802 1803 1804
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1805
	if (!writeback_throttling_sane(sc))
1806 1807 1808
		return 0;

	if (file) {
M
Mel Gorman 已提交
1809 1810
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1811
	} else {
M
Mel Gorman 已提交
1812 1813
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1814 1815
	}

1816 1817 1818 1819 1820
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1821
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1822 1823
		inactive >>= 3;

1824 1825 1826
	return isolated > inactive;
}

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
/*
 * This moves pages from @list to corresponding LRU list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone_lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone_lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_refcount against each page.
 * But we had to alter page->flags anyway.
 *
 * Returns the number of pages moved to the given lruvec.
 */

static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
						     struct list_head *list)
1849
{
M
Mel Gorman 已提交
1850
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1851
	int nr_pages, nr_moved = 0;
1852
	LIST_HEAD(pages_to_free);
1853 1854
	struct page *page;
	enum lru_list lru;
1855

1856 1857
	while (!list_empty(list)) {
		page = lru_to_page(list);
1858
		VM_BUG_ON_PAGE(PageLRU(page), page);
1859
		if (unlikely(!page_evictable(page))) {
1860
			list_del(&page->lru);
M
Mel Gorman 已提交
1861
			spin_unlock_irq(&pgdat->lru_lock);
1862
			putback_lru_page(page);
M
Mel Gorman 已提交
1863
			spin_lock_irq(&pgdat->lru_lock);
1864 1865
			continue;
		}
M
Mel Gorman 已提交
1866
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1867

1868
		SetPageLRU(page);
1869
		lru = page_lru(page);
1870 1871 1872 1873

		nr_pages = hpage_nr_pages(page);
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
		list_move(&page->lru, &lruvec->lists[lru]);
1874

1875 1876 1877
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1878
			del_page_from_lru_list(page, lruvec, lru);
1879 1880

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1881
				spin_unlock_irq(&pgdat->lru_lock);
1882
				destroy_compound_page(page);
M
Mel Gorman 已提交
1883
				spin_lock_irq(&pgdat->lru_lock);
1884 1885
			} else
				list_add(&page->lru, &pages_to_free);
1886 1887
		} else {
			nr_moved += nr_pages;
1888 1889
			if (PageActive(page))
				workingset_age_nonresident(lruvec, nr_pages);
1890 1891 1892
		}
	}

1893 1894 1895
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
1896 1897 1898
	list_splice(&pages_to_free, list);

	return nr_moved;
1899 1900
}

1901 1902
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
1903
 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1904 1905 1906 1907 1908
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
1909
	return !(current->flags & PF_LOCAL_THROTTLE) ||
1910 1911 1912 1913
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1914
/*
1915
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1916
 * of reclaimed pages
L
Linus Torvalds 已提交
1917
 */
1918
static noinline_for_stack unsigned long
1919
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1920
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1921 1922
{
	LIST_HEAD(page_list);
1923
	unsigned long nr_scanned;
1924
	unsigned int nr_reclaimed = 0;
1925
	unsigned long nr_taken;
1926
	struct reclaim_stat stat;
1927
	bool file = is_file_lru(lru);
1928
	enum vm_event_item item;
M
Mel Gorman 已提交
1929
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1930
	bool stalled = false;
1931

M
Mel Gorman 已提交
1932
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1933 1934 1935 1936 1937 1938
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1939 1940 1941 1942 1943 1944

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1945
	lru_add_drain();
1946

M
Mel Gorman 已提交
1947
	spin_lock_irq(&pgdat->lru_lock);
1948

1949
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1950
				     &nr_scanned, sc, lru);
1951

M
Mel Gorman 已提交
1952
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1953
	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1954
	if (!cgroup_reclaim(sc))
1955 1956
		__count_vm_events(item, nr_scanned);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1957 1958
	__count_vm_events(PGSCAN_ANON + file, nr_scanned);

M
Mel Gorman 已提交
1959
	spin_unlock_irq(&pgdat->lru_lock);
1960

1961
	if (nr_taken == 0)
1962
		return 0;
A
Andy Whitcroft 已提交
1963

S
Shaohua Li 已提交
1964
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1965
				&stat, false);
1966

M
Mel Gorman 已提交
1967
	spin_lock_irq(&pgdat->lru_lock);
1968

1969 1970 1971
	move_pages_to_lru(lruvec, &page_list);

	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1972
	lru_note_cost(lruvec, file, stat.nr_pageout);
1973
	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1974
	if (!cgroup_reclaim(sc))
1975 1976
		__count_vm_events(item, nr_reclaimed);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1977
	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1978

M
Mel Gorman 已提交
1979
	spin_unlock_irq(&pgdat->lru_lock);
1980

1981
	mem_cgroup_uncharge_list(&page_list);
1982
	free_unref_page_list(&page_list);
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1998 1999 2000 2001 2002 2003 2004 2005
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2006

M
Mel Gorman 已提交
2007
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2008
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2009
	return nr_reclaimed;
L
Linus Torvalds 已提交
2010 2011
}

H
Hugh Dickins 已提交
2012
static void shrink_active_list(unsigned long nr_to_scan,
2013
			       struct lruvec *lruvec,
2014
			       struct scan_control *sc,
2015
			       enum lru_list lru)
L
Linus Torvalds 已提交
2016
{
2017
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2018
	unsigned long nr_scanned;
2019
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2020
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2021
	LIST_HEAD(l_active);
2022
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2023
	struct page *page;
2024 2025
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2026
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2027
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2028 2029

	lru_add_drain();
2030

M
Mel Gorman 已提交
2031
	spin_lock_irq(&pgdat->lru_lock);
2032

2033
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2034
				     &nr_scanned, sc, lru);
2035

M
Mel Gorman 已提交
2036
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2037

M
Mel Gorman 已提交
2038
	__count_vm_events(PGREFILL, nr_scanned);
2039
	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2040

M
Mel Gorman 已提交
2041
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2042 2043 2044 2045 2046

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2047

2048
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2049 2050 2051 2052
			putback_lru_page(page);
			continue;
		}

2053 2054 2055 2056 2057 2058 2059 2060
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2061 2062
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2063 2064 2065 2066 2067 2068 2069 2070 2071
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
H
Huang Ying 已提交
2072
			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2073
				nr_rotated += hpage_nr_pages(page);
2074 2075 2076 2077
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2078

2079
		ClearPageActive(page);	/* we are de-activating */
2080
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2081 2082 2083
		list_add(&page->lru, &l_inactive);
	}

2084
	/*
2085
	 * Move pages back to the lru list.
2086
	 */
M
Mel Gorman 已提交
2087
	spin_lock_irq(&pgdat->lru_lock);
2088

2089 2090
	nr_activate = move_pages_to_lru(lruvec, &l_active);
	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2091 2092
	/* Keep all free pages in l_active list */
	list_splice(&l_inactive, &l_active);
2093 2094 2095 2096

	__count_vm_events(PGDEACTIVATE, nr_deactivate);
	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);

M
Mel Gorman 已提交
2097 2098
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2099

2100 2101
	mem_cgroup_uncharge_list(&l_active);
	free_unref_page_list(&l_active);
2102 2103
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2104 2105
}

M
Minchan Kim 已提交
2106 2107
unsigned long reclaim_pages(struct list_head *page_list)
{
2108
	int nid = NUMA_NO_NODE;
2109
	unsigned int nr_reclaimed = 0;
M
Minchan Kim 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	LIST_HEAD(node_page_list);
	struct reclaim_stat dummy_stat;
	struct page *page;
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_writepage = 1,
		.may_unmap = 1,
		.may_swap = 1,
	};

	while (!list_empty(page_list)) {
		page = lru_to_page(page_list);
2123
		if (nid == NUMA_NO_NODE) {
M
Minchan Kim 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
			nid = page_to_nid(page);
			INIT_LIST_HEAD(&node_page_list);
		}

		if (nid == page_to_nid(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &node_page_list);
			continue;
		}

		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}

2144
		nid = NUMA_NO_NODE;
M
Minchan Kim 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	}

	if (!list_empty(&node_page_list)) {
		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}
	}

	return nr_reclaimed;
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
				 struct lruvec *lruvec, struct scan_control *sc)
{
	if (is_active_lru(lru)) {
		if (sc->may_deactivate & (1 << is_file_lru(lru)))
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
		else
			sc->skipped_deactivate = 1;
		return 0;
	}

	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
}

2176 2177 2178
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2179
 *
2180 2181 2182
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2183
 *
2184 2185
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2186
 *
2187 2188
 * If that fails and refaulting is observed, the inactive list grows.
 *
2189
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2190
 * on this LRU, maintained by the pageout code. An inactive_ratio
2191
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2192
 *
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2203
 */
2204
static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2205
{
2206
	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2207 2208
	unsigned long inactive, active;
	unsigned long inactive_ratio;
2209
	unsigned long gb;
2210

2211 2212
	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2213

2214 2215 2216 2217 2218
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;
2219

2220
	return inactive * inactive_ratio < active;
2221 2222
}

2223 2224 2225 2226 2227 2228 2229
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2230 2231 2232 2233 2234 2235
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2236 2237
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2238
 */
2239 2240
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
			   unsigned long *nr)
2241
{
2242
	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2243
	unsigned long anon_cost, file_cost, total_cost;
2244
	int swappiness = mem_cgroup_swappiness(memcg);
2245 2246 2247
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	enum scan_balance scan_balance;
2248
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2249
	enum lru_list lru;
2250 2251

	/* If we have no swap space, do not bother scanning anon pages. */
2252
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2253
		scan_balance = SCAN_FILE;
2254 2255
		goto out;
	}
2256

2257 2258 2259 2260 2261 2262 2263
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2264
	if (cgroup_reclaim(sc) && !swappiness) {
2265
		scan_balance = SCAN_FILE;
2266 2267 2268 2269 2270 2271 2272 2273
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2274
	if (!sc->priority && swappiness) {
2275
		scan_balance = SCAN_EQUAL;
2276 2277 2278
		goto out;
	}

2279
	/*
2280
	 * If the system is almost out of file pages, force-scan anon.
2281
	 */
2282
	if (sc->file_is_tiny) {
2283 2284
		scan_balance = SCAN_ANON;
		goto out;
2285 2286
	}

2287
	/*
2288 2289
	 * If there is enough inactive page cache, we do not reclaim
	 * anything from the anonymous working right now.
2290
	 */
2291
	if (sc->cache_trim_mode) {
2292
		scan_balance = SCAN_FILE;
2293 2294 2295
		goto out;
	}

2296
	scan_balance = SCAN_FRACT;
2297
	/*
2298 2299 2300 2301 2302 2303 2304 2305
	 * Calculate the pressure balance between anon and file pages.
	 *
	 * The amount of pressure we put on each LRU is inversely
	 * proportional to the cost of reclaiming each list, as
	 * determined by the share of pages that are refaulting, times
	 * the relative IO cost of bringing back a swapped out
	 * anonymous page vs reloading a filesystem page (swappiness).
	 *
2306 2307 2308 2309
	 * Although we limit that influence to ensure no list gets
	 * left behind completely: at least a third of the pressure is
	 * applied, before swappiness.
	 *
2310
	 * With swappiness at 100, anon and file have equal IO cost.
2311
	 */
2312 2313 2314 2315
	total_cost = sc->anon_cost + sc->file_cost;
	anon_cost = total_cost + sc->anon_cost;
	file_cost = total_cost + sc->file_cost;
	total_cost = anon_cost + file_cost;
2316

2317 2318
	ap = swappiness * (total_cost + 1);
	ap /= anon_cost + 1;
2319

2320 2321
	fp = (200 - swappiness) * (total_cost + 1);
	fp /= file_cost + 1;
2322

2323 2324
	fraction[0] = ap;
	fraction[1] = fp;
2325
	denominator = ap + fp;
2326
out:
2327 2328
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
2329
		unsigned long lruvec_size;
2330
		unsigned long scan;
2331
		unsigned long protection;
2332 2333

		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2334 2335
		protection = mem_cgroup_protection(sc->target_mem_cgroup,
						   memcg,
2336
						   sc->memcg_low_reclaim);
2337

2338
		if (protection) {
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
			/*
			 * Scale a cgroup's reclaim pressure by proportioning
			 * its current usage to its memory.low or memory.min
			 * setting.
			 *
			 * This is important, as otherwise scanning aggression
			 * becomes extremely binary -- from nothing as we
			 * approach the memory protection threshold, to totally
			 * nominal as we exceed it.  This results in requiring
			 * setting extremely liberal protection thresholds. It
			 * also means we simply get no protection at all if we
			 * set it too low, which is not ideal.
2351 2352 2353 2354
			 *
			 * If there is any protection in place, we reduce scan
			 * pressure by how much of the total memory used is
			 * within protection thresholds.
2355
			 *
2356 2357 2358 2359 2360 2361 2362 2363
			 * There is one special case: in the first reclaim pass,
			 * we skip over all groups that are within their low
			 * protection. If that fails to reclaim enough pages to
			 * satisfy the reclaim goal, we come back and override
			 * the best-effort low protection. However, we still
			 * ideally want to honor how well-behaved groups are in
			 * that case instead of simply punishing them all
			 * equally. As such, we reclaim them based on how much
2364 2365 2366
			 * memory they are using, reducing the scan pressure
			 * again by how much of the total memory used is under
			 * hard protection.
2367
			 */
2368 2369 2370 2371 2372 2373 2374
			unsigned long cgroup_size = mem_cgroup_size(memcg);

			/* Avoid TOCTOU with earlier protection check */
			cgroup_size = max(cgroup_size, protection);

			scan = lruvec_size - lruvec_size * protection /
				cgroup_size;
2375 2376

			/*
2377
			 * Minimally target SWAP_CLUSTER_MAX pages to keep
E
Ethon Paul 已提交
2378
			 * reclaim moving forwards, avoiding decrementing
2379
			 * sc->priority further than desirable.
2380
			 */
2381
			scan = max(scan, SWAP_CLUSTER_MAX);
2382 2383 2384 2385 2386
		} else {
			scan = lruvec_size;
		}

		scan >>= sc->priority;
2387

2388 2389 2390 2391 2392
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
2393
			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2394

2395 2396 2397 2398 2399
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2400
			/*
2401 2402
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2403 2404 2405
			 * Make sure we don't miss the last page on
			 * the offlined memory cgroups because of a
			 * round-off error.
2406
			 */
2407 2408 2409
			scan = mem_cgroup_online(memcg) ?
			       div64_u64(scan * fraction[file], denominator) :
			       DIV64_U64_ROUND_UP(scan * fraction[file],
2410
						  denominator);
2411 2412 2413 2414
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
2415
			if ((scan_balance == SCAN_FILE) != file)
2416 2417 2418 2419 2420
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
2421
		}
2422 2423

		nr[lru] = scan;
2424
	}
2425
}
2426

2427
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2428 2429
{
	unsigned long nr[NR_LRU_LISTS];
2430
	unsigned long targets[NR_LRU_LISTS];
2431 2432 2433 2434 2435
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2436
	bool scan_adjusted;
2437

2438
	get_scan_count(lruvec, sc, nr);
2439

2440 2441 2442
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
2454
	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2455 2456
			 sc->priority == DEF_PRIORITY);

2457 2458 2459
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2460 2461 2462
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2463 2464 2465 2466 2467 2468
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2469
							    lruvec, sc);
2470 2471
			}
		}
2472

2473 2474
		cond_resched();

2475 2476 2477 2478 2479
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2480
		 * requested. Ensure that the anon and file LRUs are scanned
2481 2482 2483 2484 2485 2486 2487
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2488 2489 2490 2491 2492 2493 2494 2495 2496
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2528 2529 2530 2531 2532 2533 2534 2535
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2536
	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2537 2538 2539 2540
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2541
/* Use reclaim/compaction for costly allocs or under memory pressure */
2542
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2543
{
2544
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2545
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2546
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2547 2548 2549 2550 2551
		return true;

	return false;
}

2552
/*
M
Mel Gorman 已提交
2553 2554 2555
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
2556
 * calls try_to_compact_pages() that it will have enough free pages to succeed.
M
Mel Gorman 已提交
2557
 * It will give up earlier than that if there is difficulty reclaiming pages.
2558
 */
2559
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2560 2561 2562 2563 2564
					unsigned long nr_reclaimed,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2565
	int z;
2566 2567

	/* If not in reclaim/compaction mode, stop */
2568
	if (!in_reclaim_compaction(sc))
2569 2570
		return false;

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
	/*
	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
	 * number of pages that were scanned. This will return to the caller
	 * with the risk reclaim/compaction and the resulting allocation attempt
	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
	 * allocations through requiring that the full LRU list has been scanned
	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
	 * scan, but that approximation was wrong, and there were corner cases
	 * where always a non-zero amount of pages were scanned.
	 */
	if (!nr_reclaimed)
		return false;
2583 2584

	/* If compaction would go ahead or the allocation would succeed, stop */
2585 2586
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2587
		if (!managed_zone(zone))
2588 2589 2590
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2591
		case COMPACT_SUCCESS:
2592 2593 2594 2595 2596 2597
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2598
	}
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = compact_gap(sc->order);
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);

2609
	return inactive_lru_pages > pages_for_compaction;
2610 2611
}

2612
static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2613
{
2614
	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2615
	struct mem_cgroup *memcg;
L
Linus Torvalds 已提交
2616

2617
	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2618
	do {
2619
		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2620 2621
		unsigned long reclaimed;
		unsigned long scanned;
2622

2623
		switch (mem_cgroup_protected(target_memcg, memcg)) {
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
		case MEMCG_PROT_MIN:
			/*
			 * Hard protection.
			 * If there is no reclaimable memory, OOM.
			 */
			continue;
		case MEMCG_PROT_LOW:
			/*
			 * Soft protection.
			 * Respect the protection only as long as
			 * there is an unprotected supply
			 * of reclaimable memory from other cgroups.
			 */
			if (!sc->memcg_low_reclaim) {
				sc->memcg_low_skipped = 1;
R
Roman Gushchin 已提交
2639
				continue;
2640
			}
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
			memcg_memory_event(memcg, MEMCG_LOW);
			break;
		case MEMCG_PROT_NONE:
			/*
			 * All protection thresholds breached. We may
			 * still choose to vary the scan pressure
			 * applied based on by how much the cgroup in
			 * question has exceeded its protection
			 * thresholds (see get_scan_count).
			 */
			break;
		}
2653

2654 2655
		reclaimed = sc->nr_reclaimed;
		scanned = sc->nr_scanned;
2656 2657

		shrink_lruvec(lruvec, sc);
2658

2659 2660
		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
			    sc->priority);
2661

2662 2663 2664 2665
		/* Record the group's reclaim efficiency */
		vmpressure(sc->gfp_mask, memcg, false,
			   sc->nr_scanned - scanned,
			   sc->nr_reclaimed - reclaimed);
2666

2667 2668 2669
	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
}

2670
static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2671 2672 2673
{
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long nr_reclaimed, nr_scanned;
2674
	struct lruvec *target_lruvec;
2675
	bool reclaimable = false;
2676
	unsigned long file;
2677

2678 2679
	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);

2680 2681 2682 2683 2684 2685
again:
	memset(&sc->nr, 0, sizeof(sc->nr));

	nr_reclaimed = sc->nr_reclaimed;
	nr_scanned = sc->nr_scanned;

2686 2687 2688 2689 2690 2691 2692 2693
	/*
	 * Determine the scan balance between anon and file LRUs.
	 */
	spin_lock_irq(&pgdat->lru_lock);
	sc->anon_cost = target_lruvec->anon_cost;
	sc->file_cost = target_lruvec->file_cost;
	spin_unlock_irq(&pgdat->lru_lock);

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	/*
	 * Target desirable inactive:active list ratios for the anon
	 * and file LRU lists.
	 */
	if (!sc->force_deactivate) {
		unsigned long refaults;

		if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
			sc->may_deactivate |= DEACTIVATE_ANON;
		else
			sc->may_deactivate &= ~DEACTIVATE_ANON;

		/*
		 * When refaults are being observed, it means a new
		 * workingset is being established. Deactivate to get
		 * rid of any stale active pages quickly.
		 */
		refaults = lruvec_page_state(target_lruvec,
					     WORKINGSET_ACTIVATE);
		if (refaults != target_lruvec->refaults ||
		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
			sc->may_deactivate |= DEACTIVATE_FILE;
		else
			sc->may_deactivate &= ~DEACTIVATE_FILE;
	} else
		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;

	/*
	 * If we have plenty of inactive file pages that aren't
	 * thrashing, try to reclaim those first before touching
	 * anonymous pages.
	 */
	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
		sc->cache_trim_mode = 1;
	else
		sc->cache_trim_mode = 0;

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (!cgroup_reclaim(sc)) {
		unsigned long total_high_wmark = 0;
2743 2744
		unsigned long free, anon;
		int z;
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757

		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
			if (!managed_zone(zone))
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
		/*
		 * Consider anon: if that's low too, this isn't a
		 * runaway file reclaim problem, but rather just
		 * extreme pressure. Reclaim as per usual then.
		 */
		anon = node_page_state(pgdat, NR_INACTIVE_ANON);

		sc->file_is_tiny =
			file + free <= total_high_wmark &&
			!(sc->may_deactivate & DEACTIVATE_ANON) &&
			anon >> sc->priority;
2769 2770
	}

2771
	shrink_node_memcgs(pgdat, sc);
2772

2773 2774 2775 2776
	if (reclaim_state) {
		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
		reclaim_state->reclaimed_slab = 0;
	}
2777

2778
	/* Record the subtree's reclaim efficiency */
2779
	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2780 2781
		   sc->nr_scanned - nr_scanned,
		   sc->nr_reclaimed - nr_reclaimed);
2782

2783 2784
	if (sc->nr_reclaimed - nr_reclaimed)
		reclaimable = true;
2785

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	if (current_is_kswapd()) {
		/*
		 * If reclaim is isolating dirty pages under writeback,
		 * it implies that the long-lived page allocation rate
		 * is exceeding the page laundering rate. Either the
		 * global limits are not being effective at throttling
		 * processes due to the page distribution throughout
		 * zones or there is heavy usage of a slow backing
		 * device. The only option is to throttle from reclaim
		 * context which is not ideal as there is no guarantee
		 * the dirtying process is throttled in the same way
		 * balance_dirty_pages() manages.
		 *
		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
		 * count the number of pages under pages flagged for
		 * immediate reclaim and stall if any are encountered
		 * in the nr_immediate check below.
		 */
		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2806

2807 2808 2809
		/* Allow kswapd to start writing pages during reclaim.*/
		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
			set_bit(PGDAT_DIRTY, &pgdat->flags);
2810

2811
		/*
2812 2813 2814 2815
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU
		 * faster than they are written so also forcibly stall.
2816
		 */
2817 2818 2819 2820 2821
		if (sc->nr.immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
	}

	/*
2822 2823 2824 2825
	 * Tag a node/memcg as congested if all the dirty pages
	 * scanned were backed by a congested BDI and
	 * wait_iff_congested will stall.
	 *
2826 2827 2828
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling in wait_iff_congested().
	 */
2829 2830
	if ((current_is_kswapd() ||
	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2831
	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2832
		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2833 2834 2835 2836 2837 2838 2839

	/*
	 * Stall direct reclaim for IO completions if underlying BDIs
	 * and node is congested. Allow kswapd to continue until it
	 * starts encountering unqueued dirty pages or cycling through
	 * the LRU too quickly.
	 */
2840 2841 2842
	if (!current_is_kswapd() && current_may_throttle() &&
	    !sc->hibernation_mode &&
	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2843
		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2844

2845 2846 2847
	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
				    sc))
		goto again;
2848

2849 2850 2851 2852 2853 2854 2855 2856
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;
2857 2858
}

2859
/*
2860 2861 2862
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2863
 */
2864
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2865
{
M
Mel Gorman 已提交
2866
	unsigned long watermark;
2867
	enum compact_result suitable;
2868

2869 2870 2871 2872 2873 2874 2875
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2876

2877
	/*
2878 2879 2880 2881 2882 2883 2884
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2885
	 */
2886
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2887

2888
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2889 2890
}

L
Linus Torvalds 已提交
2891 2892 2893 2894 2895 2896 2897 2898
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2899
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2900
{
2901
	struct zoneref *z;
2902
	struct zone *zone;
2903 2904
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2905
	gfp_t orig_mask;
2906
	pg_data_t *last_pgdat = NULL;
2907

2908 2909 2910 2911 2912
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2913
	orig_mask = sc->gfp_mask;
2914
	if (buffer_heads_over_limit) {
2915
		sc->gfp_mask |= __GFP_HIGHMEM;
2916
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2917
	}
2918

2919
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2920
					sc->reclaim_idx, sc->nodemask) {
2921 2922 2923 2924
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2925
		if (!cgroup_reclaim(sc)) {
2926 2927
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2928
				continue;
2929

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2941
			    compaction_ready(zone, sc)) {
2942 2943
				sc->compaction_ready = true;
				continue;
2944
			}
2945

2946 2947 2948 2949 2950 2951 2952 2953 2954
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2955 2956 2957 2958 2959 2960 2961
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2962
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2963 2964 2965 2966
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2967
			/* need some check for avoid more shrink_zone() */
2968
		}
2969

2970 2971 2972 2973
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2974
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2975
	}
2976

2977 2978 2979 2980 2981
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2982
}
2983

2984
static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2985
{
2986 2987
	struct lruvec *target_lruvec;
	unsigned long refaults;
2988

2989 2990 2991
	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
	target_lruvec->refaults = refaults;
2992 2993
}

L
Linus Torvalds 已提交
2994 2995 2996 2997 2998 2999 3000 3001
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3002 3003 3004 3005
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3006 3007 3008
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3009
 */
3010
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3011
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3012
{
3013
	int initial_priority = sc->priority;
3014 3015 3016
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3017
retry:
3018 3019
	delayacct_freepages_start();

3020
	if (!cgroup_reclaim(sc))
3021
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3022

3023
	do {
3024 3025
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3026
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3027
		shrink_zones(zonelist, sc);
3028

3029
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3030 3031 3032 3033
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3034

3035 3036 3037 3038 3039 3040
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3041
	} while (--sc->priority >= 0);
3042

3043 3044 3045 3046 3047 3048
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
3049

3050
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3051 3052 3053 3054 3055 3056 3057 3058

		if (cgroup_reclaim(sc)) {
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
						   zone->zone_pgdat);
			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
		}
3059 3060
	}

3061 3062
	delayacct_freepages_end();

3063 3064 3065
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3066
	/* Aborted reclaim to try compaction? don't OOM, then */
3067
	if (sc->compaction_ready)
3068 3069
		return 1;

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
	/*
	 * We make inactive:active ratio decisions based on the node's
	 * composition of memory, but a restrictive reclaim_idx or a
	 * memory.low cgroup setting can exempt large amounts of
	 * memory from reclaim. Neither of which are very common, so
	 * instead of doing costly eligibility calculations of the
	 * entire cgroup subtree up front, we assume the estimates are
	 * good, and retry with forcible deactivation if that fails.
	 */
	if (sc->skipped_deactivate) {
		sc->priority = initial_priority;
		sc->force_deactivate = 1;
		sc->skipped_deactivate = 0;
		goto retry;
	}

3086
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3087
	if (sc->memcg_low_skipped) {
3088
		sc->priority = initial_priority;
3089
		sc->force_deactivate = 0;
3090 3091
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3092 3093 3094
		goto retry;
	}

3095
	return 0;
L
Linus Torvalds 已提交
3096 3097
}

3098
static bool allow_direct_reclaim(pg_data_t *pgdat)
3099 3100 3101 3102 3103 3104 3105
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3106 3107 3108
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3109 3110
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3111 3112 3113 3114
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3115 3116
			continue;

3117 3118 3119 3120
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3121 3122 3123 3124
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3125 3126 3127 3128
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3129 3130
		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3142 3143 3144 3145
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3146
 */
3147
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3148 3149
					nodemask_t *nodemask)
{
3150
	struct zoneref *z;
3151
	struct zone *zone;
3152
	pg_data_t *pgdat = NULL;
3153 3154 3155 3156 3157 3158 3159 3160 3161

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3162 3163 3164 3165 3166 3167 3168 3169
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3170

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3186
					gfp_zone(gfp_mask), nodemask) {
3187 3188 3189 3190 3191
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3192
		if (allow_direct_reclaim(pgdat))
3193 3194 3195 3196 3197 3198
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3199
		goto out;
3200

3201 3202 3203
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3214
			allow_direct_reclaim(pgdat), HZ);
3215 3216

		goto check_pending;
3217 3218 3219 3220
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3221
		allow_direct_reclaim(pgdat));
3222 3223 3224 3225 3226 3227 3228

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3229 3230
}

3231
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3232
				gfp_t gfp_mask, nodemask_t *nodemask)
3233
{
3234
	unsigned long nr_reclaimed;
3235
	struct scan_control sc = {
3236
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3237
		.gfp_mask = current_gfp_context(gfp_mask),
3238
		.reclaim_idx = gfp_zone(gfp_mask),
3239 3240 3241
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3242
		.may_writepage = !laptop_mode,
3243
		.may_unmap = 1,
3244
		.may_swap = 1,
3245 3246
	};

G
Greg Thelen 已提交
3247 3248 3249 3250 3251 3252 3253 3254
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3255
	/*
3256 3257 3258
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3259
	 */
3260
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3261 3262
		return 1;

3263
	set_task_reclaim_state(current, &sc.reclaim_state);
3264
	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3265

3266
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3267 3268

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3269
	set_task_reclaim_state(current, NULL);
3270 3271

	return nr_reclaimed;
3272 3273
}

A
Andrew Morton 已提交
3274
#ifdef CONFIG_MEMCG
3275

3276
/* Only used by soft limit reclaim. Do not reuse for anything else. */
3277
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3278
						gfp_t gfp_mask, bool noswap,
3279
						pg_data_t *pgdat,
3280
						unsigned long *nr_scanned)
3281
{
3282
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3283
	struct scan_control sc = {
3284
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3285
		.target_mem_cgroup = memcg,
3286 3287
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3288
		.reclaim_idx = MAX_NR_ZONES - 1,
3289 3290
		.may_swap = !noswap,
	};
3291

3292 3293
	WARN_ON_ONCE(!current->reclaim_state);

3294 3295
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3296

3297
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3298
						      sc.gfp_mask);
3299

3300 3301 3302
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3303
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3304 3305 3306
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3307
	shrink_lruvec(lruvec, &sc);
3308 3309 3310

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3311
	*nr_scanned = sc.nr_scanned;
3312

3313 3314 3315
	return sc.nr_reclaimed;
}

3316
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3317
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3318
					   gfp_t gfp_mask,
3319
					   bool may_swap)
3320
{
3321
	unsigned long nr_reclaimed;
3322
	unsigned long pflags;
3323
	unsigned int noreclaim_flag;
3324
	struct scan_control sc = {
3325
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3326
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3327
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3328
		.reclaim_idx = MAX_NR_ZONES - 1,
3329 3330 3331 3332
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3333
		.may_swap = may_swap,
3334
	};
3335
	/*
3336 3337 3338
	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
	 * equal pressure on all the nodes. This is based on the assumption that
	 * the reclaim does not bail out early.
3339
	 */
3340
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3341

3342
	set_task_reclaim_state(current, &sc.reclaim_state);
3343

3344
	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3345

3346
	psi_memstall_enter(&pflags);
3347
	noreclaim_flag = memalloc_noreclaim_save();
3348

3349
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3350

3351
	memalloc_noreclaim_restore(noreclaim_flag);
3352
	psi_memstall_leave(&pflags);
3353 3354

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3355
	set_task_reclaim_state(current, NULL);
3356 3357

	return nr_reclaimed;
3358 3359 3360
}
#endif

3361
static void age_active_anon(struct pglist_data *pgdat,
3362
				struct scan_control *sc)
3363
{
3364
	struct mem_cgroup *memcg;
3365
	struct lruvec *lruvec;
3366

3367 3368 3369
	if (!total_swap_pages)
		return;

3370 3371 3372 3373
	lruvec = mem_cgroup_lruvec(NULL, pgdat);
	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
		return;

3374 3375
	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3376 3377 3378
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
3379 3380
		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3381 3382
}

3383
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
	 * should not be checked at the time time as reclaim would
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
3395
	for (i = highest_zoneidx; i >= 0; i--) {
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3407 3408
/*
 * Returns true if there is an eligible zone balanced for the request order
3409
 * and highest_zoneidx
3410
 */
3411
static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3412
{
3413 3414 3415
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3416

3417 3418 3419 3420
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3421
	for (i = 0; i <= highest_zoneidx; i++) {
3422
		zone = pgdat->node_zones + i;
3423

3424 3425 3426 3427
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
3428
		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3429 3430 3431 3432
			return true;
	}

	/*
3433
	 * If a node has no populated zone within highest_zoneidx, it does not
3434 3435 3436 3437 3438 3439 3440
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3441 3442
}

3443 3444 3445
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
3446 3447 3448
	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);

	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3449 3450 3451 3452
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3453 3454 3455 3456 3457 3458
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3459 3460
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
				int highest_zoneidx)
3461
{
3462
	/*
3463
	 * The throttled processes are normally woken up in balance_pgdat() as
3464
	 * soon as allow_direct_reclaim() is true. But there is a potential
3465 3466 3467 3468 3469 3470 3471 3472 3473
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3474
	 */
3475 3476
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3477

3478 3479 3480 3481
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3482
	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3483 3484
		clear_pgdat_congested(pgdat);
		return true;
3485 3486
	}

3487
	return false;
3488 3489
}

3490
/*
3491 3492
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3493 3494
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3495 3496
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3497
 */
3498
static bool kswapd_shrink_node(pg_data_t *pgdat,
3499
			       struct scan_control *sc)
3500
{
3501 3502
	struct zone *zone;
	int z;
3503

3504 3505
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3506
	for (z = 0; z <= sc->reclaim_idx; z++) {
3507
		zone = pgdat->node_zones + z;
3508
		if (!managed_zone(zone))
3509
			continue;
3510

3511 3512
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3513 3514

	/*
3515 3516
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3517
	 */
3518
	shrink_node(pgdat, sc);
3519

3520
	/*
3521 3522 3523 3524 3525
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3526
	 */
3527
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3528
		sc->order = 0;
3529

3530
	return sc->nr_scanned >= sc->nr_to_reclaim;
3531 3532
}

L
Linus Torvalds 已提交
3533
/*
3534 3535 3536
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3537
 *
3538
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3539 3540
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3541
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
W
Wei Yang 已提交
3542
 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3543 3544
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3545
 */
3546
static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
L
Linus Torvalds 已提交
3547 3548
{
	int i;
3549 3550
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3551
	unsigned long pflags;
3552 3553 3554
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3555
	struct zone *zone;
3556 3557
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3558
		.order = order,
3559
		.may_unmap = 1,
3560
	};
3561

3562
	set_task_reclaim_state(current, &sc.reclaim_state);
3563
	psi_memstall_enter(&pflags);
3564 3565
	__fs_reclaim_acquire();

3566
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3567

3568 3569 3570 3571 3572 3573
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
3574
	for (i = 0; i <= highest_zoneidx; i++) {
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3586
	do {
3587
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3588
		bool raise_priority = true;
3589
		bool balanced;
3590
		bool ret;
3591

3592
		sc.reclaim_idx = highest_zoneidx;
L
Linus Torvalds 已提交
3593

3594
		/*
3595 3596 3597 3598 3599 3600 3601 3602
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3603 3604 3605 3606
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3607
				if (!managed_zone(zone))
3608
					continue;
3609

3610
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3611
				break;
L
Linus Torvalds 已提交
3612 3613
			}
		}
3614

3615
		/*
3616 3617 3618 3619 3620 3621
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
3622
		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3623 3624 3625 3626 3627 3628 3629 3630 3631
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3632
		 */
3633
		if (!nr_boost_reclaim && balanced)
3634
			goto out;
A
Andrew Morton 已提交
3635

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;

3649 3650 3651 3652 3653 3654
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3655
		age_active_anon(pgdat, &sc);
3656

3657 3658 3659 3660
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3661
		if (sc.priority < DEF_PRIORITY - 2)
3662 3663
			sc.may_writepage = 1;

3664 3665 3666
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3667
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3668 3669 3670
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3671
		/*
3672 3673 3674
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3675
		 */
3676
		if (kswapd_shrink_node(pgdat, &sc))
3677
			raise_priority = false;
3678 3679 3680 3681 3682 3683 3684

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3685
				allow_direct_reclaim(pgdat))
3686
			wake_up_all(&pgdat->pfmemalloc_wait);
3687

3688
		/* Check if kswapd should be suspending */
3689 3690 3691 3692
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3693
			break;
3694

3695
		/*
3696 3697
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3698
		 */
3699
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3710
		if (raise_priority || !nr_reclaimed)
3711
			sc.priority--;
3712
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3713

3714 3715 3716
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3717
out:
3718 3719 3720 3721
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

3722
		for (i = 0; i <= highest_zoneidx; i++) {
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
3737
		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3738 3739
	}

3740
	snapshot_refaults(NULL, pgdat);
3741
	__fs_reclaim_release();
3742
	psi_memstall_leave(&pflags);
3743
	set_task_reclaim_state(current, NULL);
3744

3745
	/*
3746 3747 3748 3749
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3750
	 */
3751
	return sc.order;
L
Linus Torvalds 已提交
3752 3753
}

3754
/*
3755 3756 3757 3758 3759
 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
 * not a valid index then either kswapd runs for first time or kswapd couldn't
 * sleep after previous reclaim attempt (node is still unbalanced). In that
 * case return the zone index of the previous kswapd reclaim cycle.
3760
 */
3761 3762
static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
					   enum zone_type prev_highest_zoneidx)
3763
{
3764
	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3765

3766
	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3767 3768
}

3769
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3770
				unsigned int highest_zoneidx)
3771 3772 3773 3774 3775 3776 3777 3778 3779
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3780 3781 3782 3783 3784 3785 3786
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3787
	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3800
		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3801

3802
		remaining = schedule_timeout(HZ/10);
3803 3804

		/*
3805
		 * If woken prematurely then reset kswapd_highest_zoneidx and
3806 3807 3808 3809
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3810 3811 3812
			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
					kswapd_highest_zoneidx(pgdat,
							highest_zoneidx));
3813 3814 3815

			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3816 3817
		}

3818 3819 3820 3821 3822 3823 3824 3825
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3826
	if (!remaining &&
3827
	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3839 3840 3841 3842

		if (!kthread_should_stop())
			schedule();

3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3853 3854
/*
 * The background pageout daemon, started as a kernel thread
3855
 * from the init process.
L
Linus Torvalds 已提交
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3868
	unsigned int alloc_order, reclaim_order;
3869
	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3870 3871
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3872
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3873

R
Rusty Russell 已提交
3874
	if (!cpumask_empty(cpumask))
3875
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3889
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3890
	set_freezable();
L
Linus Torvalds 已提交
3891

3892
	WRITE_ONCE(pgdat->kswapd_order, 0);
3893
	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
L
Linus Torvalds 已提交
3894
	for ( ; ; ) {
3895
		bool ret;
3896

3897
		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3898 3899
		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
							highest_zoneidx);
3900

3901 3902
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3903
					highest_zoneidx);
3904

3905
		/* Read the new order and highest_zoneidx */
3906
		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3907 3908
		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
							highest_zoneidx);
3909
		WRITE_ONCE(pgdat->kswapd_order, 0);
3910
		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
L
Linus Torvalds 已提交
3911

3912 3913 3914 3915 3916 3917 3918 3919
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3931
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3932
						alloc_order);
3933 3934
		reclaim_order = balance_pgdat(pgdat, alloc_order,
						highest_zoneidx);
3935 3936
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3937
	}
3938

3939 3940
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);

L
Linus Torvalds 已提交
3941 3942 3943 3944
	return 0;
}

/*
3945 3946 3947 3948 3949
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3950
 */
3951
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3952
		   enum zone_type highest_zoneidx)
L
Linus Torvalds 已提交
3953 3954
{
	pg_data_t *pgdat;
3955
	enum zone_type curr_idx;
L
Linus Torvalds 已提交
3956

3957
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3958 3959
		return;

3960
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3961
		return;
3962

3963
	pgdat = zone->zone_pgdat;
3964
	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3965

3966 3967
	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3968 3969 3970

	if (READ_ONCE(pgdat->kswapd_order) < order)
		WRITE_ONCE(pgdat->kswapd_order, order);
3971

3972
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3973
		return;
3974

3975 3976
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3977 3978
	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3979 3980 3981 3982 3983 3984 3985 3986
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3987
			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3988
		return;
3989
	}
3990

3991
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3992
				      gfp_flags);
3993
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3994 3995
}

3996
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3997
/*
3998
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3999 4000 4001 4002 4003
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
4004
 */
4005
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
4006
{
4007
	struct scan_control sc = {
4008
		.nr_to_reclaim = nr_to_reclaim,
4009
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4010
		.reclaim_idx = MAX_NR_ZONES - 1,
4011
		.priority = DEF_PRIORITY,
4012
		.may_writepage = 1,
4013 4014
		.may_unmap = 1,
		.may_swap = 1,
4015
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
4016
	};
4017
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4018
	unsigned long nr_reclaimed;
4019
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
4020

4021
	fs_reclaim_acquire(sc.gfp_mask);
4022
	noreclaim_flag = memalloc_noreclaim_save();
4023
	set_task_reclaim_state(current, &sc.reclaim_state);
4024

4025
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4026

4027
	set_task_reclaim_state(current, NULL);
4028
	memalloc_noreclaim_restore(noreclaim_flag);
4029
	fs_reclaim_release(sc.gfp_mask);
4030

4031
	return nr_reclaimed;
L
Linus Torvalds 已提交
4032
}
4033
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
4034

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
4050
		BUG_ON(system_state < SYSTEM_RUNNING);
4051 4052
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
4053
		pgdat->kswapd = NULL;
4054 4055 4056 4057
	}
	return ret;
}

4058
/*
4059
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4060
 * hold mem_hotplug_begin/end().
4061 4062 4063 4064 4065
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

4066
	if (kswapd) {
4067
		kthread_stop(kswapd);
4068 4069
		NODE_DATA(nid)->kswapd = NULL;
	}
4070 4071
}

L
Linus Torvalds 已提交
4072 4073
static int __init kswapd_init(void)
{
4074
	int nid;
4075

L
Linus Torvalds 已提交
4076
	swap_setup();
4077
	for_each_node_state(nid, N_MEMORY)
4078
 		kswapd_run(nid);
L
Linus Torvalds 已提交
4079 4080 4081 4082
	return 0;
}

module_init(kswapd_init)
4083 4084 4085

#ifdef CONFIG_NUMA
/*
4086
 * Node reclaim mode
4087
 *
4088
 * If non-zero call node_reclaim when the number of free pages falls below
4089 4090
 * the watermarks.
 */
4091
int node_reclaim_mode __read_mostly;
4092

4093 4094
#define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
#define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
4095

4096
/*
4097
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4098 4099 4100
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4101
#define NODE_RECLAIM_PRIORITY 4
4102

4103
/*
4104
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4105 4106 4107 4108
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4109 4110 4111 4112 4113 4114
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4115
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4116
{
4117 4118 4119
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4130
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4131
{
4132 4133
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4134 4135

	/*
4136
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4137
	 * potentially reclaimable. Otherwise, we have to worry about
4138
	 * pages like swapcache and node_unmapped_file_pages() provides
4139 4140
	 * a better estimate
	 */
4141 4142
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4143
	else
4144
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4145 4146

	/* If we can't clean pages, remove dirty pages from consideration */
4147 4148
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4149 4150 4151 4152 4153 4154 4155 4156

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4157
/*
4158
 * Try to free up some pages from this node through reclaim.
4159
 */
4160
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4161
{
4162
	/* Minimum pages needed in order to stay on node */
4163
	const unsigned long nr_pages = 1 << order;
4164
	struct task_struct *p = current;
4165
	unsigned int noreclaim_flag;
4166
	struct scan_control sc = {
4167
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4168
		.gfp_mask = current_gfp_context(gfp_mask),
4169
		.order = order,
4170 4171 4172
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4173
		.may_swap = 1,
4174
		.reclaim_idx = gfp_zone(gfp_mask),
4175
	};
4176

4177 4178 4179
	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
					   sc.gfp_mask);

4180
	cond_resched();
4181
	fs_reclaim_acquire(sc.gfp_mask);
4182
	/*
4183
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4184
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4185
	 * and RECLAIM_UNMAP.
4186
	 */
4187 4188
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4189
	set_task_reclaim_state(p, &sc.reclaim_state);
4190

4191
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4192
		/*
4193
		 * Free memory by calling shrink node with increasing
4194 4195 4196
		 * priorities until we have enough memory freed.
		 */
		do {
4197
			shrink_node(pgdat, &sc);
4198
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4199
	}
4200

4201
	set_task_reclaim_state(p, NULL);
4202 4203
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4204
	fs_reclaim_release(sc.gfp_mask);
4205 4206 4207

	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);

4208
	return sc.nr_reclaimed >= nr_pages;
4209
}
4210

4211
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4212
{
4213
	int ret;
4214 4215

	/*
4216
	 * Node reclaim reclaims unmapped file backed pages and
4217
	 * slab pages if we are over the defined limits.
4218
	 *
4219 4220
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4221 4222
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4223
	 * unmapped file backed pages.
4224
	 */
4225
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4226 4227
	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
	    pgdat->min_slab_pages)
4228
		return NODE_RECLAIM_FULL;
4229 4230

	/*
4231
	 * Do not scan if the allocation should not be delayed.
4232
	 */
4233
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4234
		return NODE_RECLAIM_NOSCAN;
4235 4236

	/*
4237
	 * Only run node reclaim on the local node or on nodes that do not
4238 4239 4240 4241
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4242 4243
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4244

4245 4246
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4247

4248 4249
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4250

4251 4252 4253
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4254
	return ret;
4255
}
4256
#endif
L
Lee Schermerhorn 已提交
4257

4258
/**
4259 4260 4261
 * check_move_unevictable_pages - check pages for evictability and move to
 * appropriate zone lru list
 * @pvec: pagevec with lru pages to check
4262
 *
4263 4264 4265
 * Checks pages for evictability, if an evictable page is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru pages.
4266
 */
4267
void check_move_unevictable_pages(struct pagevec *pvec)
4268
{
4269
	struct lruvec *lruvec;
4270
	struct pglist_data *pgdat = NULL;
4271 4272 4273
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4274

4275 4276
	for (i = 0; i < pvec->nr; i++) {
		struct page *page = pvec->pages[i];
4277
		struct pglist_data *pagepgdat = page_pgdat(page);
4278

4279
		pgscanned++;
4280 4281 4282 4283 4284
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4285
		}
4286
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4287

4288 4289
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4290

4291
		if (page_evictable(page)) {
4292 4293
			enum lru_list lru = page_lru_base_type(page);

4294
			VM_BUG_ON_PAGE(PageActive(page), page);
4295
			ClearPageUnevictable(page);
4296 4297
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4298
			pgrescued++;
4299
		}
4300
	}
4301

4302
	if (pgdat) {
4303 4304
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4305
		spin_unlock_irq(&pgdat->lru_lock);
4306 4307
	}
}
4308
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);