timekeeping.c 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17 18 19 20 21
#include <linux/sysdev.h>
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* The shift value of the current clocksource. */
	int	shift;
30 31 32 33 34

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
35 36
	/* shifted nano seconds left over when rounding cycle_interval */
	s64	xtime_remainder;
37 38 39 40 41 42 43 44
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
45 46 47
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
48 49
	/* NTP adjusted clock multiplier */
	u32	mult;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
};

struct timekeeper timekeeper;

/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
67
	u64 tmp, ntpinterval;
68 69 70 71 72 73 74

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
75
	ntpinterval = tmp;
76 77
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
78 79 80 81 82 83 84 85
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
86
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87
	timekeeper.raw_interval =
88
		((u64) interval * clock->mult) >> clock->shift;
89 90

	timekeeper.xtime_nsec = 0;
91
	timekeeper.shift = clock->shift;
92 93

	timekeeper.ntp_error = 0;
94
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
95 96 97 98 99 100 101

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
102
}
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

138 139
/*
 * This read-write spinlock protects us from races in SMP while
140
 * playing with xtime.
141
 */
A
Adrian Bunk 已提交
142
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
143 144 145 146 147 148 149 150 151


/*
 * The current time
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
T
Tomas Janousek 已提交
152 153 154 155 156 157 158
 *
 * wall_to_monotonic is moved after resume from suspend for the monotonic
 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
 * to get the real boot based time offset.
 *
 * - wall_to_monotonic is no longer the boot time, getboottime must be
 * used instead.
159
 */
160 161
static struct timespec xtime __attribute__ ((aligned (16)));
static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162
static struct timespec total_sleep_time;
163

164 165 166 167 168
/*
 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
 */
struct timespec raw_time;

169 170 171
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

172 173 174 175 176
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
	xtime.tv_sec += leapsecond;
	wall_to_monotonic.tv_sec -= leapsecond;
177 178
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
			timekeeper.mult);
179
}
180 181

/**
182
 * timekeeping_forward_now - update clock to the current time
183
 *
184 185 186
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
187
 */
188
static void timekeeping_forward_now(void)
189 190
{
	cycle_t cycle_now, cycle_delta;
191
	struct clocksource *clock;
192
	s64 nsec;
193

194
	clock = timekeeper.clock;
195
	cycle_now = clock->read(clock);
196
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197
	clock->cycle_last = cycle_now;
198

199 200
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
201 202 203 204

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

205
	timespec_add_ns(&xtime, nsec);
206

207
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208
	timespec_add_ns(&raw_time, nsec);
209 210 211
}

/**
212
 * getnstimeofday - Returns the time of day in a timespec
213 214
 * @ts:		pointer to the timespec to be set
 *
215
 * Returns the time of day in a timespec.
216
 */
217
void getnstimeofday(struct timespec *ts)
218 219 220 221
{
	unsigned long seq;
	s64 nsecs;

222 223
	WARN_ON(timekeeping_suspended);

224 225 226 227
	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
228
		nsecs = timekeeping_get_ns();
229

230 231 232
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

233 234 235 236 237 238 239
	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

240 241 242 243 244 245 246 247 248 249 250
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251
		nsecs += timekeeping_get_ns();
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

	} while (read_seqretry(&xtime_lock, seq));
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
282
		nsecs = timekeeping_get_ns();
283 284 285 286 287 288 289 290

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

291 292 293 294
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
295
 * NOTE: Users should be converted to using getnstimeofday()
296 297 298 299 300
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

301
	getnstimeofday(&now);
302 303 304 305 306 307 308 309 310 311 312 313 314
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
int do_settimeofday(struct timespec *tv)
{
315
	struct timespec ts_delta;
316 317 318 319 320 321 322
	unsigned long flags;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

323
	timekeeping_forward_now();
324 325 326 327

	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
328

329
	xtime = *tv;
330

331
	timekeeper.ntp_error = 0;
332 333
	ntp_clear();

334 335
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
352
static int change_clocksource(void *data)
353
{
354
	struct clocksource *new, *old;
355

356
	new = (struct clocksource *) data;
357

358
	timekeeping_forward_now();
359 360 361 362 363 364 365 366
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
	return 0;
}
367

368 369 370 371 372 373 374 375 376 377
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
378
		return;
379
	stop_machine(change_clocksource, clock, NULL);
380 381
	tick_clock_notify();
}
382

383 384 385 386 387 388 389 390 391 392 393 394 395 396
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
397

398 399 400 401 402 403 404 405 406 407 408 409 410
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);
411
		nsecs = timekeeping_get_ns_raw();
412
		*ts = raw_time;
413 414 415 416 417 418 419 420

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


421
/**
422
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
423
 */
424
int timekeeping_valid_for_hres(void)
425 426 427 428 429 430 431
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

432
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
433 434 435 436 437 438

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

439 440 441 442 443 444 445 446 447 448 449
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 *
 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
 * ensure that the clocksource does not change!
 */
u64 timekeeping_max_deferment(void)
{
	return timekeeper.clock->max_idle_ns;
}

450
/**
451
 * read_persistent_clock -  Return time from the persistent clock.
452 453
 *
 * Weak dummy function for arches that do not yet support it.
454 455
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
456 457 458
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
459
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
460
{
461 462
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

480 481 482 483 484
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
485
	struct clocksource *clock;
486
	unsigned long flags;
487
	struct timespec now, boot;
488 489

	read_persistent_clock(&now);
490
	read_boot_clock(&boot);
491 492 493

	write_seqlock_irqsave(&xtime_lock, flags);

R
Roman Zippel 已提交
494
	ntp_init();
495

496
	clock = clocksource_default_clock();
497 498
	if (clock->enable)
		clock->enable(clock);
499
	timekeeper_setup_internals(clock);
500

501 502
	xtime.tv_sec = now.tv_sec;
	xtime.tv_nsec = now.tv_nsec;
503 504
	raw_time.tv_sec = 0;
	raw_time.tv_nsec = 0;
505 506 507 508
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
		boot.tv_sec = xtime.tv_sec;
		boot.tv_nsec = xtime.tv_nsec;
	}
509
	set_normalized_timespec(&wall_to_monotonic,
510
				-boot.tv_sec, -boot.tv_nsec);
511 512
	total_sleep_time.tv_sec = 0;
	total_sleep_time.tv_nsec = 0;
513 514 515 516
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* time in seconds when suspend began */
517
static struct timespec timekeeping_suspend_time;
518 519 520 521 522 523 524 525 526 527 528 529

/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 * @dev:	unused
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
static int timekeeping_resume(struct sys_device *dev)
{
	unsigned long flags;
530 531 532
	struct timespec ts;

	read_persistent_clock(&ts);
533

534 535
	clocksource_resume();

536 537
	write_seqlock_irqsave(&xtime_lock, flags);

538 539
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
J
John Stultz 已提交
540
		xtime = timespec_add(xtime, ts);
541
		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
J
John Stultz 已提交
542
		total_sleep_time = timespec_add(total_sleep_time, ts);
543 544
	}
	/* re-base the last cycle value */
545 546
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
	hres_timers_resume();

	return 0;
}

static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
{
	unsigned long flags;

564
	read_persistent_clock(&timekeeping_suspend_time);
565

566
	write_seqlock_irqsave(&xtime_lock, flags);
567
	timekeeping_forward_now();
568 569 570 571
	timekeeping_suspended = 1;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
572
	clocksource_suspend();
573 574 575 576 577 578

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
static struct sysdev_class timekeeping_sysclass = {
579
	.name		= "timekeeping",
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

static struct sys_device device_timer = {
	.id		= 0,
	.cls		= &timekeeping_sysclass,
};

static int __init timekeeping_init_device(void)
{
	int error = sysdev_class_register(&timekeeping_sysclass);
	if (!error)
		error = sysdev_register(&device_timer);
	return error;
}

device_initcall(timekeeping_init_device);

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
603
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
604 605 606 607 608 609 610 611 612 613 614 615
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
616
	 * here.  This is tuned so that an error of about 1 msec is adjusted
617 618
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
619
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
620 621 622 623 624 625 626 627
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
628
	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
629
	tick_error -= timekeeper.xtime_interval >> 1;
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
654
static void timekeeping_adjust(s64 offset)
655
{
656
	s64 error, interval = timekeeper.cycle_interval;
657 658
	int adj;

659
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
660 661 662 663 664
	if (error > interval) {
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
665
			adj = timekeeping_bigadjust(error, &interval, &offset);
666 667 668 669 670 671 672
	} else if (error < -interval) {
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
673
			adj = timekeeping_bigadjust(error, &interval, &offset);
674 675 676
	} else
		return;

677
	timekeeper.mult += adj;
678 679 680
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
681
				timekeeper.ntp_error_shift;
682 683
}

L
Linus Torvalds 已提交
684

685 686 687 688 689 690 691 692 693 694 695 696
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
697
	u64 raw_nsecs;
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
		timekeeper.xtime_nsec -= nsecps;
		xtime.tv_sec++;
		second_overflow();
	}

714 715 716
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
	raw_nsecs += raw_time.tv_nsec;
717 718 719 720
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
		raw_time.tv_sec += raw_secs;
721
	}
722
	raw_time.tv_nsec = raw_nsecs;
723 724 725

	/* Accumulate error between NTP and clock interval */
	timekeeper.ntp_error += tick_length << shift;
726 727
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
728 729 730 731 732
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
733

734 735 736 737 738 739 740
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
void update_wall_time(void)
{
741
	struct clocksource *clock;
742
	cycle_t offset;
743
	int shift = 0, maxshift;
744 745 746 747 748

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;

749
	clock = timekeeper.clock;
J
John Stultz 已提交
750 751

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
752
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
753 754
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
755
#endif
756
	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
757

758 759 760 761 762 763 764
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
765
	 */
766 767 768 769 770
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
	shift = min(shift, maxshift);
771
	while (offset >= timekeeper.cycle_interval) {
772
		offset = logarithmic_accumulation(offset, shift);
773 774
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
775 776 777
	}

	/* correct the clock when NTP error is too big */
778
	timekeeping_adjust(offset);
779

780 781 782 783
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
784
	 * slightly speeding the clocksource up in timekeeping_adjust(),
785 786 787 788 789 790 791 792 793 794 795
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
796 797 798
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
799
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
800 801
	}

J
John Stultz 已提交
802 803 804

	/*
	 * Store full nanoseconds into xtime after rounding it up and
805 806
	 * add the remainder to the error difference.
	 */
807 808 809 810
	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
811

J
John Stultz 已提交
812 813 814 815 816 817 818 819 820
	/*
	 * Finally, make sure that after the rounding
	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
	 */
	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
		xtime.tv_nsec -= NSEC_PER_SEC;
		xtime.tv_sec++;
		second_overflow();
	}
L
Linus Torvalds 已提交
821

822
	/* check to see if there is a new clocksource to use */
823 824
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
825
}
T
Tomas Janousek 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
840 841 842 843
	struct timespec boottime = {
		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
	};
844 845

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
846
}
847
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
848 849 850 851 852 853 854

/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
J
John Stultz 已提交
855
	*ts = timespec_add(*ts, total_sleep_time);
T
Tomas Janousek 已提交
856
}
857
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
858

859 860
unsigned long get_seconds(void)
{
J
John Stultz 已提交
861
	return xtime.tv_sec;
862 863 864
}
EXPORT_SYMBOL(get_seconds);

865 866
struct timespec __current_kernel_time(void)
{
J
John Stultz 已提交
867
	return xtime;
868
}
869

870 871 872 873 874
struct timespec __get_wall_to_monotonic(void)
{
	return wall_to_monotonic;
}

875 876 877 878 879 880 881
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
882

J
John Stultz 已提交
883
		now = xtime;
884 885 886 887 888
	} while (read_seqretry(&xtime_lock, seq));

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
889 890 891 892 893 894 895 896

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
897

J
John Stultz 已提交
898
		now = xtime;
899 900 901 902 903 904 905
		mono = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}