i915_gem.c 120.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173 174 175 176 177
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
	int ret;

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

352 353 354
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
355 356
 */
static __must_check int
357 358 359
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
360 361 362
{
	struct i915_gem_active *active;
	unsigned long active_mask;
363
	int idx;
364

365
	active_mask = __I915_BO_ACTIVE(obj);
366 367 368 369 370 371 372 373 374 375
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

376 377
	for_each_active(active_mask, idx) {
		int ret;
378

379 380 381 382
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
383 384
	}

385
	return 0;
386 387 388 389 390 391 392 393 394
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

395 396 397 398 399
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
400
	int ret;
401 402 403 404 405 406 407 408 409 410 411 412 413 414

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
415 416 417 418 419
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
420 421 422
	if (ret)
		return ret;

423 424 425 426 427 428
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
429 430 431
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
432 433 434 435 436 437 438 439 440
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
441
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
442
	int ret = 0;
443 444 445 446 447 448 449

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
450

451
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
452 453 454 455 456 457 458 459 460 461
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
462 463 464 465
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
466 467
	}

468
	drm_clflush_virt_range(vaddr, args->size);
469
	i915_gem_chipset_flush(to_i915(dev));
470 471

out:
472
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
473
	return ret;
474 475
}

476 477
void *i915_gem_object_alloc(struct drm_device *dev)
{
478
	struct drm_i915_private *dev_priv = to_i915(dev);
479
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
480 481 482 483
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
484
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
485
	kmem_cache_free(dev_priv->objects, obj);
486 487
}

488 489 490 491 492
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
493
{
494
	struct drm_i915_gem_object *obj;
495 496
	int ret;
	u32 handle;
497

498
	size = roundup(size, PAGE_SIZE);
499 500
	if (size == 0)
		return -EINVAL;
501 502

	/* Allocate the new object */
503
	obj = i915_gem_object_create(dev, size);
504 505
	if (IS_ERR(obj))
		return PTR_ERR(obj);
506

507
	ret = drm_gem_handle_create(file, &obj->base, &handle);
508
	/* drop reference from allocate - handle holds it now */
509
	i915_gem_object_put_unlocked(obj);
510 511
	if (ret)
		return ret;
512

513
	*handle_p = handle;
514 515 516
	return 0;
}

517 518 519 520 521 522
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
523
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
524 525
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
526
			       args->size, &args->handle);
527 528 529 530
}

/**
 * Creates a new mm object and returns a handle to it.
531 532 533
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
534 535 536 537 538 539
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
540

541
	return i915_gem_create(file, dev,
542
			       args->size, &args->handle);
543 544
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

571
static inline int
572 573
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

597 598 599 600 601 602 603 604 605 606 607 608
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

609
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
610 611
		return -EINVAL;

612 613 614 615
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

634 635 636
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
637
static int
638 639 640 641 642 643 644
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

645
	if (unlikely(page_do_bit17_swizzling))
646 647 648 649 650 651 652 653 654 655 656
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

657
	return ret ? -EFAULT : 0;
658 659
}

660 661 662 663
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
664
	if (unlikely(swizzled)) {
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

682 683 684 685 686 687 688 689 690 691 692 693
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
694 695 696
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
697 698 699 700 701 702 703 704 705 706 707

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

708
	return ret ? - EFAULT : 0;
709 710
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
738
	struct drm_i915_private *dev_priv = to_i915(dev);
739 740 741 742 743 744 745
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

746
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

847
static int
848 849 850 851
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
852
{
853
	char __user *user_data;
854
	ssize_t remain;
855
	loff_t offset;
856
	int shmem_page_offset, page_length, ret = 0;
857
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
858
	int prefaulted = 0;
859
	int needs_clflush = 0;
860
	struct sg_page_iter sg_iter;
861

862
	if (!i915_gem_object_has_struct_page(obj))
863 864
		return -ENODEV;

865
	user_data = u64_to_user_ptr(args->data_ptr);
866 867
	remain = args->size;

868
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
869

870
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
871 872 873
	if (ret)
		return ret;

874
	offset = args->offset;
875

876 877
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
878
		struct page *page = sg_page_iter_page(&sg_iter);
879 880 881 882

		if (remain <= 0)
			break;

883 884 885 886 887
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
888
		shmem_page_offset = offset_in_page(offset);
889 890 891 892
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

893 894 895
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

896 897 898 899 900
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
901 902 903

		mutex_unlock(&dev->struct_mutex);

904
		if (likely(!i915.prefault_disable) && !prefaulted) {
905
			ret = fault_in_multipages_writeable(user_data, remain);
906 907 908 909 910 911 912
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
913

914 915 916
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
917

918
		mutex_lock(&dev->struct_mutex);
919 920

		if (ret)
921 922
			goto out;

923
next_page:
924
		remain -= page_length;
925
		user_data += page_length;
926 927 928
		offset += page_length;
	}

929
out:
930 931
	i915_gem_object_unpin_pages(obj);

932 933 934
	return ret;
}

935 936
/**
 * Reads data from the object referenced by handle.
937 938 939
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
940 941 942 943 944
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
945
		     struct drm_file *file)
946 947
{
	struct drm_i915_gem_pread *args = data;
948
	struct drm_i915_gem_object *obj;
949
	int ret = 0;
950

951 952 953 954
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
955
		       u64_to_user_ptr(args->data_ptr),
956 957 958
		       args->size))
		return -EFAULT;

959
	ret = i915_mutex_lock_interruptible(dev);
960
	if (ret)
961
		return ret;
962

963 964
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
965 966
		ret = -ENOENT;
		goto unlock;
967
	}
968

969
	/* Bounds check source.  */
970 971
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
972
		ret = -EINVAL;
973
		goto out;
C
Chris Wilson 已提交
974 975
	}

C
Chris Wilson 已提交
976 977
	trace_i915_gem_object_pread(obj, args->offset, args->size);

978
	ret = i915_gem_shmem_pread(dev, obj, args, file);
979

980
	/* pread for non shmem backed objects */
981 982
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
983 984
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
985 986
		intel_runtime_pm_put(to_i915(dev));
	}
987

988
out:
989
	i915_gem_object_put(obj);
990
unlock:
991
	mutex_unlock(&dev->struct_mutex);
992
	return ret;
993 994
}

995 996
/* This is the fast write path which cannot handle
 * page faults in the source data
997
 */
998 999 1000 1001 1002 1003

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1004
{
1005 1006
	void __iomem *vaddr_atomic;
	void *vaddr;
1007
	unsigned long unwritten;
1008

P
Peter Zijlstra 已提交
1009
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1010 1011 1012
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1013
						      user_data, length);
P
Peter Zijlstra 已提交
1014
	io_mapping_unmap_atomic(vaddr_atomic);
1015
	return unwritten;
1016 1017
}

1018 1019 1020
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1021
 * @i915: i915 device private data
1022 1023 1024
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1025
 */
1026
static int
1027
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1028
			 struct drm_i915_gem_object *obj,
1029
			 struct drm_i915_gem_pwrite *args,
1030
			 struct drm_file *file)
1031
{
1032
	struct i915_ggtt *ggtt = &i915->ggtt;
1033
	struct drm_device *dev = obj->base.dev;
1034 1035
	struct drm_mm_node node;
	uint64_t remain, offset;
1036
	char __user *user_data;
1037
	int ret;
1038 1039 1040 1041
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
1042

1043 1044
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
1060 1061 1062
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
1063
	}
D
Daniel Vetter 已提交
1064 1065 1066 1067 1068

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1069
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
1070
	obj->dirty = true;
1071

1072 1073 1074 1075
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1076 1077
		/* Operation in this page
		 *
1078 1079 1080
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1081
		 */
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1095
		/* If we get a fault while copying data, then (presumably) our
1096 1097
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1098 1099
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1100
		 */
1101
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1102
				    page_offset, user_data, page_length)) {
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1115
		}
1116

1117 1118 1119
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1120 1121
	}

1122
out_flush:
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1136
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1137
out_unpin:
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1148
out:
1149
	return ret;
1150 1151
}

1152 1153 1154 1155
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1156
static int
1157 1158 1159 1160 1161
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1162
{
1163
	char *vaddr;
1164
	int ret;
1165

1166
	if (unlikely(page_do_bit17_swizzling))
1167
		return -EINVAL;
1168

1169 1170 1171 1172
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1173 1174
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1175 1176 1177 1178
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1179

1180
	return ret ? -EFAULT : 0;
1181 1182
}

1183 1184
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1185
static int
1186 1187 1188 1189 1190
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1191
{
1192 1193
	char *vaddr;
	int ret;
1194

1195
	vaddr = kmap(page);
1196
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1197 1198 1199
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1200 1201
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1202 1203
						user_data,
						page_length);
1204 1205 1206 1207 1208
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1209 1210 1211
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1212
	kunmap(page);
1213

1214
	return ret ? -EFAULT : 0;
1215 1216 1217
}

static int
1218 1219 1220 1221
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1222 1223
{
	ssize_t remain;
1224 1225
	loff_t offset;
	char __user *user_data;
1226
	int shmem_page_offset, page_length, ret = 0;
1227
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1228
	int hit_slowpath = 0;
1229 1230
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1231
	struct sg_page_iter sg_iter;
1232

1233
	user_data = u64_to_user_ptr(args->data_ptr);
1234 1235
	remain = args->size;

1236
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1237

1238 1239 1240 1241
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1242 1243 1244 1245 1246
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1247
		needs_clflush_after = cpu_write_needs_clflush(obj);
1248
	}
1249 1250 1251 1252 1253
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1254

1255 1256 1257 1258
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1259
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1260

1261 1262
	i915_gem_object_pin_pages(obj);

1263
	offset = args->offset;
1264
	obj->dirty = 1;
1265

1266 1267
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1268
		struct page *page = sg_page_iter_page(&sg_iter);
1269
		int partial_cacheline_write;
1270

1271 1272 1273
		if (remain <= 0)
			break;

1274 1275 1276 1277 1278
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1279
		shmem_page_offset = offset_in_page(offset);
1280 1281 1282 1283 1284

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1285 1286 1287 1288 1289 1290 1291
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1292 1293 1294
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1295 1296 1297 1298 1299 1300
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1301 1302 1303

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1304 1305 1306 1307
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1308

1309
		mutex_lock(&dev->struct_mutex);
1310 1311

		if (ret)
1312 1313
			goto out;

1314
next_page:
1315
		remain -= page_length;
1316
		user_data += page_length;
1317
		offset += page_length;
1318 1319
	}

1320
out:
1321 1322
	i915_gem_object_unpin_pages(obj);

1323
	if (hit_slowpath) {
1324 1325 1326 1327 1328 1329 1330
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1331
			if (i915_gem_clflush_object(obj, obj->pin_display))
1332
				needs_clflush_after = true;
1333
		}
1334
	}
1335

1336
	if (needs_clflush_after)
1337
		i915_gem_chipset_flush(to_i915(dev));
1338 1339
	else
		obj->cache_dirty = true;
1340

1341
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1342
	return ret;
1343 1344 1345 1346
}

/**
 * Writes data to the object referenced by handle.
1347 1348 1349
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1350 1351 1352 1353 1354
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1355
		      struct drm_file *file)
1356
{
1357
	struct drm_i915_private *dev_priv = to_i915(dev);
1358
	struct drm_i915_gem_pwrite *args = data;
1359
	struct drm_i915_gem_object *obj;
1360 1361 1362 1363 1364 1365
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1366
		       u64_to_user_ptr(args->data_ptr),
1367 1368 1369
		       args->size))
		return -EFAULT;

1370
	if (likely(!i915.prefault_disable)) {
1371
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1372 1373 1374 1375
						   args->size);
		if (ret)
			return -EFAULT;
	}
1376

1377 1378
	intel_runtime_pm_get(dev_priv);

1379
	ret = i915_mutex_lock_interruptible(dev);
1380
	if (ret)
1381
		goto put_rpm;
1382

1383 1384
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1385 1386
		ret = -ENOENT;
		goto unlock;
1387
	}
1388

1389
	/* Bounds check destination. */
1390 1391
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1392
		ret = -EINVAL;
1393
		goto out;
C
Chris Wilson 已提交
1394 1395
	}

C
Chris Wilson 已提交
1396 1397
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1398
	ret = -EFAULT;
1399 1400 1401 1402 1403 1404
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1405 1406
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1407
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1408 1409 1410
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1411
	}
1412

1413
	if (ret == -EFAULT || ret == -ENOSPC) {
1414 1415
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1416
		else if (i915_gem_object_has_struct_page(obj))
1417
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1418 1419
		else
			ret = -ENODEV;
1420
	}
1421

1422
out:
1423
	i915_gem_object_put(obj);
1424
unlock:
1425
	mutex_unlock(&dev->struct_mutex);
1426 1427 1428
put_rpm:
	intel_runtime_pm_put(dev_priv);

1429 1430 1431
	return ret;
}

1432 1433 1434 1435 1436 1437 1438
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1439
/**
1440 1441
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1442 1443 1444
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1445 1446 1447
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1448
			  struct drm_file *file)
1449 1450
{
	struct drm_i915_gem_set_domain *args = data;
1451
	struct drm_i915_gem_object *obj;
1452 1453
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1454 1455
	int ret;

1456
	/* Only handle setting domains to types used by the CPU. */
1457
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1458 1459 1460 1461 1462 1463 1464 1465
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1466
	obj = i915_gem_object_lookup(file, args->handle);
1467 1468
	if (!obj)
		return -ENOENT;
1469

1470 1471 1472 1473
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1474 1475 1476 1477 1478
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1479
	if (ret)
1480
		goto err;
1481

1482
	if (read_domains & I915_GEM_DOMAIN_GTT)
1483
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1484
	else
1485
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1486

1487
	if (write_domain != 0)
1488
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1489

1490
	i915_gem_object_put(obj);
1491 1492
	mutex_unlock(&dev->struct_mutex);
	return ret;
1493 1494 1495 1496

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1497 1498 1499 1500
}

/**
 * Called when user space has done writes to this buffer
1501 1502 1503
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1504 1505 1506
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1507
			 struct drm_file *file)
1508 1509
{
	struct drm_i915_gem_sw_finish *args = data;
1510
	struct drm_i915_gem_object *obj;
1511 1512
	int ret = 0;

1513
	ret = i915_mutex_lock_interruptible(dev);
1514
	if (ret)
1515
		return ret;
1516

1517 1518
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1519 1520
		ret = -ENOENT;
		goto unlock;
1521 1522 1523
	}

	/* Pinned buffers may be scanout, so flush the cache */
1524
	if (obj->pin_display)
1525
		i915_gem_object_flush_cpu_write_domain(obj);
1526

1527
	i915_gem_object_put(obj);
1528
unlock:
1529 1530 1531 1532 1533
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1534 1535 1536 1537 1538
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1539 1540 1541
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1552 1553 1554
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1555
		    struct drm_file *file)
1556 1557
{
	struct drm_i915_gem_mmap *args = data;
1558
	struct drm_i915_gem_object *obj;
1559 1560
	unsigned long addr;

1561 1562 1563
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1564
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1565 1566
		return -ENODEV;

1567 1568
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1569
		return -ENOENT;
1570

1571 1572 1573
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1574
	if (!obj->base.filp) {
1575
		i915_gem_object_put_unlocked(obj);
1576 1577 1578
		return -EINVAL;
	}

1579
	addr = vm_mmap(obj->base.filp, 0, args->size,
1580 1581
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1582 1583 1584 1585
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1586
		if (down_write_killable(&mm->mmap_sem)) {
1587
			i915_gem_object_put_unlocked(obj);
1588 1589
			return -EINTR;
		}
1590 1591 1592 1593 1594 1595 1596
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1597 1598

		/* This may race, but that's ok, it only gets set */
1599
		WRITE_ONCE(obj->has_wc_mmap, true);
1600
	}
1601
	i915_gem_object_put_unlocked(obj);
1602 1603 1604 1605 1606 1607 1608 1609
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1610 1611
/**
 * i915_gem_fault - fault a page into the GTT
1612 1613
 * @vma: VMA in question
 * @vmf: fault info
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1628 1629
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1630 1631
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1632
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1633
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1634 1635
	pgoff_t page_offset;
	unsigned long pfn;
1636
	int ret;
1637

1638 1639 1640 1641
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

C
Chris Wilson 已提交
1642 1643
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1644
	/* Try to flush the object off the GPU first without holding the lock.
1645
	 * Upon acquiring the lock, we will perform our sanity checks and then
1646 1647 1648
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1649
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1650
	if (ret)
1651 1652 1653 1654 1655 1656 1657
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1658

1659 1660
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1661
		ret = -EFAULT;
1662
		goto err_unlock;
1663 1664
	}

1665
	/* Use a partial view if the object is bigger than the aperture. */
1666
	if (obj->base.size >= ggtt->mappable_end &&
1667
	    obj->tiling_mode == I915_TILING_NONE) {
1668
		static const unsigned int chunk_size = 256; // 1 MiB
1669

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
1681
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1682
	if (ret)
1683
		goto err_unlock;
1684

1685 1686
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1687
		goto err_unpin;
1688

1689
	ret = i915_gem_object_get_fence(obj);
1690
	if (ret)
1691
		goto err_unpin;
1692

1693
	/* Finally, remap it using the new GTT offset */
1694
	pfn = ggtt->mappable_base +
1695
		i915_gem_obj_ggtt_offset_view(obj, &view);
1696
	pfn >>= PAGE_SHIFT;
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1707

1708 1709
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1710 1711 1712 1713 1714
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1736
err_unpin:
1737
	i915_gem_object_ggtt_unpin_view(obj, &view);
1738
err_unlock:
1739
	mutex_unlock(&dev->struct_mutex);
1740 1741 1742
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1743
	switch (ret) {
1744
	case -EIO:
1745 1746 1747 1748 1749 1750 1751
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1752 1753 1754
			ret = VM_FAULT_SIGBUS;
			break;
		}
1755
	case -EAGAIN:
D
Daniel Vetter 已提交
1756 1757 1758 1759
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1760
		 */
1761 1762
	case 0:
	case -ERESTARTSYS:
1763
	case -EINTR:
1764 1765 1766 1767 1768
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1769 1770
		ret = VM_FAULT_NOPAGE;
		break;
1771
	case -ENOMEM:
1772 1773
		ret = VM_FAULT_OOM;
		break;
1774
	case -ENOSPC:
1775
	case -EFAULT:
1776 1777
		ret = VM_FAULT_SIGBUS;
		break;
1778
	default:
1779
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1780 1781
		ret = VM_FAULT_SIGBUS;
		break;
1782
	}
1783
	return ret;
1784 1785
}

1786 1787 1788 1789
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1790
 * Preserve the reservation of the mmapping with the DRM core code, but
1791 1792 1793 1794 1795 1796 1797 1798 1799
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1800
void
1801
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1802
{
1803 1804 1805 1806 1807 1808
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1809 1810
	if (!obj->fault_mappable)
		return;
1811

1812 1813
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1824
	obj->fault_mappable = false;
1825 1826
}

1827 1828 1829 1830 1831 1832 1833 1834 1835
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1836 1837
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1838
 * @dev_priv: i915 device
1839 1840 1841 1842 1843 1844
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1845 1846
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1847
{
1848
	u64 ggtt_size;
1849

1850 1851
	GEM_BUG_ON(size == 0);

1852
	if (INTEL_GEN(dev_priv) >= 4 ||
1853 1854
	    tiling_mode == I915_TILING_NONE)
		return size;
1855 1856

	/* Previous chips need a power-of-two fence region when tiling */
1857
	if (IS_GEN3(dev_priv))
1858
		ggtt_size = 1024*1024;
1859
	else
1860
		ggtt_size = 512*1024;
1861

1862 1863
	while (ggtt_size < size)
		ggtt_size <<= 1;
1864

1865
	return ggtt_size;
1866 1867
}

1868
/**
1869
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1870
 * @dev_priv: i915 device
1871 1872
 * @size: object size
 * @tiling_mode: tiling mode
1873
 * @fenced: is fenced alignment required or not
1874
 *
1875
 * Return the required global GTT alignment for an object, taking into account
1876
 * potential fence register mapping.
1877
 */
1878
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1879
				int tiling_mode, bool fenced)
1880
{
1881 1882
	GEM_BUG_ON(size == 0);

1883 1884 1885 1886
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1887
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1888
	    tiling_mode == I915_TILING_NONE)
1889 1890
		return 4096;

1891 1892 1893 1894
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1895
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1896 1897
}

1898 1899
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1900
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1901 1902
	int ret;

1903 1904
	dev_priv->mm.shrinker_no_lock_stealing = true;

1905 1906
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1907
		goto out;
1908 1909 1910 1911 1912 1913 1914 1915

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1916 1917 1918 1919 1920
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1921 1922
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1923
		goto out;
1924 1925

	i915_gem_shrink_all(dev_priv);
1926 1927 1928 1929 1930
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1931 1932 1933 1934 1935 1936 1937
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1938
int
1939 1940
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1941
		  uint32_t handle,
1942
		  uint64_t *offset)
1943
{
1944
	struct drm_i915_gem_object *obj;
1945 1946
	int ret;

1947
	ret = i915_mutex_lock_interruptible(dev);
1948
	if (ret)
1949
		return ret;
1950

1951 1952
	obj = i915_gem_object_lookup(file, handle);
	if (!obj) {
1953 1954 1955
		ret = -ENOENT;
		goto unlock;
	}
1956

1957
	if (obj->madv != I915_MADV_WILLNEED) {
1958
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1959
		ret = -EFAULT;
1960
		goto out;
1961 1962
	}

1963 1964 1965
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1966

1967
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1968

1969
out:
1970
	i915_gem_object_put(obj);
1971
unlock:
1972
	mutex_unlock(&dev->struct_mutex);
1973
	return ret;
1974 1975
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1997
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1998 1999
}

D
Daniel Vetter 已提交
2000 2001 2002
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2003
{
2004
	i915_gem_object_free_mmap_offset(obj);
2005

2006 2007
	if (obj->base.filp == NULL)
		return;
2008

D
Daniel Vetter 已提交
2009 2010 2011 2012 2013
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2014
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2015 2016
	obj->madv = __I915_MADV_PURGED;
}
2017

2018 2019 2020
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2021
{
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2036 2037
}

2038
static void
2039
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2040
{
2041 2042
	struct sgt_iter sgt_iter;
	struct page *page;
2043
	int ret;
2044

2045
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2046

C
Chris Wilson 已提交
2047
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2048
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2049 2050 2051
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2052
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2053 2054 2055
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2056 2057
	i915_gem_gtt_finish_object(obj);

2058
	if (i915_gem_object_needs_bit17_swizzle(obj))
2059 2060
		i915_gem_object_save_bit_17_swizzle(obj);

2061 2062
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2063

2064
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2065
		if (obj->dirty)
2066
			set_page_dirty(page);
2067

2068
		if (obj->madv == I915_MADV_WILLNEED)
2069
			mark_page_accessed(page);
2070

2071
		put_page(page);
2072
	}
2073
	obj->dirty = 0;
2074

2075 2076
	sg_free_table(obj->pages);
	kfree(obj->pages);
2077
}
C
Chris Wilson 已提交
2078

2079
int
2080 2081 2082 2083
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2084
	if (obj->pages == NULL)
2085 2086
		return 0;

2087 2088 2089
	if (obj->pages_pin_count)
		return -EBUSY;

2090
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2091

2092 2093 2094
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2095
	list_del(&obj->global_list);
2096

2097
	if (obj->mapping) {
2098 2099 2100 2101
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2102 2103 2104
		obj->mapping = NULL;
	}

2105
	ops->put_pages(obj);
2106
	obj->pages = NULL;
2107

2108
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2109 2110 2111 2112

	return 0;
}

2113
static int
C
Chris Wilson 已提交
2114
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2115
{
2116
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2117 2118
	int page_count, i;
	struct address_space *mapping;
2119 2120
	struct sg_table *st;
	struct scatterlist *sg;
2121
	struct sgt_iter sgt_iter;
2122
	struct page *page;
2123
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2124
	int ret;
C
Chris Wilson 已提交
2125
	gfp_t gfp;
2126

C
Chris Wilson 已提交
2127 2128 2129 2130 2131 2132 2133
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2134 2135 2136 2137
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2138
	page_count = obj->base.size / PAGE_SIZE;
2139 2140
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2141
		return -ENOMEM;
2142
	}
2143

2144 2145 2146 2147 2148
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2149
	mapping = file_inode(obj->base.filp)->i_mapping;
2150
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2151
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2152 2153 2154
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2155 2156
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2157 2158 2159 2160 2161
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2162 2163 2164 2165 2166 2167 2168 2169
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2170
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2171 2172
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2173
				goto err_pages;
I
Imre Deak 已提交
2174
			}
C
Chris Wilson 已提交
2175
		}
2176 2177 2178 2179 2180 2181 2182 2183
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2184 2185 2186 2187 2188 2189 2190 2191 2192
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2193 2194 2195

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2196
	}
2197 2198 2199 2200
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2201 2202
	obj->pages = st;

I
Imre Deak 已提交
2203 2204 2205 2206
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2207
	if (i915_gem_object_needs_bit17_swizzle(obj))
2208 2209
		i915_gem_object_do_bit_17_swizzle(obj);

2210 2211 2212 2213
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2214 2215 2216
	return 0;

err_pages:
2217
	sg_mark_end(sg);
2218 2219
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2220 2221
	sg_free_table(st);
	kfree(st);
2222 2223 2224 2225 2226 2227 2228 2229 2230

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2231 2232 2233 2234
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2235 2236
}

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2247
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2248 2249 2250
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2251
	if (obj->pages)
2252 2253
		return 0;

2254
	if (obj->madv != I915_MADV_WILLNEED) {
2255
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2256
		return -EFAULT;
2257 2258
	}

2259 2260
	BUG_ON(obj->pages_pin_count);

2261 2262 2263 2264
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2265
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2266 2267 2268 2269

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2270
	return 0;
2271 2272
}

2273 2274 2275 2276 2277
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2278 2279
	struct sgt_iter sgt_iter;
	struct page *page;
2280 2281
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2282 2283 2284 2285 2286 2287 2288
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2289 2290 2291 2292 2293 2294
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2295

2296 2297
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2298 2299 2300 2301 2302 2303

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2304 2305
	if (pages != stack_pages)
		drm_free_large(pages);
2306 2307 2308 2309 2310

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2323 2324 2325
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2326 2327 2328 2329 2330 2331 2332 2333
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2334
static void
2335 2336
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2337
{
2338 2339
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2340

2341
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2342 2343
}

2344
static void
2345 2346
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2347
{
2348 2349 2350
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2351

2352
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2353

2354 2355
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2356
		return;
2357

2358 2359 2360 2361
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2362 2363 2364
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2365

2366
	i915_gem_object_put(obj);
2367 2368
}

2369
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2370
{
2371
	unsigned long elapsed;
2372

2373
	if (ctx->hang_stats.banned)
2374 2375
		return true;

2376
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2377 2378
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2379 2380
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2381 2382 2383 2384 2385
	}

	return false;
}

2386
static void i915_set_reset_status(struct i915_gem_context *ctx,
2387
				  const bool guilty)
2388
{
2389
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2390 2391

	if (guilty) {
2392
		hs->banned = i915_context_is_banned(ctx);
2393 2394 2395 2396
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2397 2398 2399
	}
}

2400
struct drm_i915_gem_request *
2401
i915_gem_find_active_request(struct intel_engine_cs *engine)
2402
{
2403 2404
	struct drm_i915_gem_request *request;

2405 2406 2407 2408 2409 2410 2411 2412
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2413
	list_for_each_entry(request, &engine->request_list, link) {
2414
		if (i915_gem_request_completed(request))
2415
			continue;
2416

2417
		return request;
2418
	}
2419 2420 2421 2422

	return NULL;
}

2423
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2424 2425 2426 2427
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2428
	request = i915_gem_find_active_request(engine);
2429 2430 2431
	if (request == NULL)
		return;

2432
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2433

2434
	i915_set_reset_status(request->ctx, ring_hung);
2435
	list_for_each_entry_continue(request, &engine->request_list, link)
2436
		i915_set_reset_status(request->ctx, false);
2437
}
2438

2439
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2440
{
2441
	struct drm_i915_gem_request *request;
2442
	struct intel_ring *ring;
2443

2444 2445 2446
	request = i915_gem_active_peek(&engine->last_request,
				       &engine->i915->drm.struct_mutex);

2447 2448 2449 2450
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2451 2452
	if (request)
		intel_engine_init_seqno(engine, request->fence.seqno);
2453

2454 2455 2456 2457 2458 2459
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2460
	if (i915.enable_execlists) {
2461 2462
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2463

2464
		intel_execlists_cancel_requests(engine);
2465 2466
	}

2467 2468 2469 2470 2471 2472 2473
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2474
	if (request)
2475
		i915_gem_request_retire_upto(request);
2476
	GEM_BUG_ON(intel_engine_is_active(engine));
2477 2478 2479 2480 2481 2482 2483 2484

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2485 2486 2487
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2488
	}
2489

2490
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2491 2492
}

2493
void i915_gem_reset(struct drm_device *dev)
2494
{
2495
	struct drm_i915_private *dev_priv = to_i915(dev);
2496
	struct intel_engine_cs *engine;
2497

2498 2499 2500 2501 2502
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2503
	for_each_engine(engine, dev_priv)
2504
		i915_gem_reset_engine_status(engine);
2505

2506
	for_each_engine(engine, dev_priv)
2507
		i915_gem_reset_engine_cleanup(engine);
2508
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2509

2510 2511
	i915_gem_context_reset(dev);

2512
	i915_gem_restore_fences(dev);
2513 2514
}

2515
static void
2516 2517
i915_gem_retire_work_handler(struct work_struct *work)
{
2518
	struct drm_i915_private *dev_priv =
2519
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2520
	struct drm_device *dev = &dev_priv->drm;
2521

2522
	/* Come back later if the device is busy... */
2523
	if (mutex_trylock(&dev->struct_mutex)) {
2524
		i915_gem_retire_requests(dev_priv);
2525
		mutex_unlock(&dev->struct_mutex);
2526
	}
2527 2528 2529 2530 2531

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2532 2533
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2534 2535
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2536
				   round_jiffies_up_relative(HZ));
2537
	}
2538
}
2539

2540 2541 2542 2543
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2544
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2545
	struct drm_device *dev = &dev_priv->drm;
2546
	struct intel_engine_cs *engine;
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2569

2570
	for_each_engine(engine, dev_priv)
2571
		i915_gem_batch_pool_fini(&engine->batch_pool);
2572

2573 2574 2575
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2576

2577 2578 2579 2580
	/* As we have disabled hangcheck, we need to unstick any waiters still
	 * hanging around. However, as we may be racing against the interrupt
	 * handler or the waiters themselves, we skip enabling the fake-irq.
	 */
2581
	stuck_engines = intel_kick_waiters(dev_priv);
2582 2583 2584
	if (unlikely(stuck_engines))
		DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
				 stuck_engines);
2585

2586 2587 2588 2589 2590
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2591

2592 2593 2594 2595
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2596
	}
2597 2598
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2612 2613
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2614 2615 2616
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2641
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
2642 2643
	int i, n = 0;
	int ret;
2644

2645 2646 2647
	if (args->flags != 0)
		return -EINVAL;

2648 2649 2650 2651
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2652 2653
	obj = i915_gem_object_lookup(file, args->bo_handle);
	if (!obj) {
2654 2655 2656 2657
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2658
	if (!i915_gem_object_is_active(obj))
2659
		goto out;
2660

2661
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2662
		struct drm_i915_gem_request *req;
2663

2664 2665
		req = i915_gem_active_get(&obj->last_read[i],
					  &obj->base.dev->struct_mutex);
2666 2667
		if (req)
			requests[n++] = req;
2668 2669
	}

2670 2671
out:
	i915_gem_object_put(obj);
2672 2673
	mutex_unlock(&dev->struct_mutex);

2674 2675
	for (i = 0; i < n; i++) {
		if (ret == 0)
2676 2677 2678
			ret = i915_wait_request(requests[i], true,
						args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						to_rps_client(file));
2679
		i915_gem_request_put(requests[i]);
2680
	}
2681
	return ret;
2682 2683
}

2684
static int
2685
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2686
		       struct drm_i915_gem_request *from)
2687 2688 2689
{
	int ret;

2690
	if (to->engine == from->engine)
2691 2692
		return 0;

2693
	if (!i915.semaphores) {
2694 2695 2696 2697
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2698 2699 2700
		if (ret)
			return ret;
	} else {
2701
		int idx = intel_engine_sync_index(from->engine, to->engine);
2702
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2703 2704
			return 0;

2705
		trace_i915_gem_ring_sync_to(to, from);
2706
		ret = to->engine->semaphore.sync_to(to, from);
2707 2708 2709
		if (ret)
			return ret;

2710
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2711 2712 2713 2714 2715
	}

	return 0;
}

2716 2717 2718 2719
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2720
 * @to: request we are wishing to use
2721 2722
 *
 * This code is meant to abstract object synchronization with the GPU.
2723 2724 2725
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2726 2727 2728 2729 2730 2731 2732
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2733 2734 2735
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2736 2737
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2738
		     struct drm_i915_gem_request *to)
2739
{
C
Chris Wilson 已提交
2740 2741 2742
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2743

C
Chris Wilson 已提交
2744
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2745

2746
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2747 2748
	if (!active_mask)
		return 0;
2749

C
Chris Wilson 已提交
2750 2751
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2752
	} else {
C
Chris Wilson 已提交
2753 2754
		active_mask = 1;
		active = &obj->last_write;
2755
	}
C
Chris Wilson 已提交
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2766
		ret = __i915_gem_object_sync(to, request);
2767 2768 2769
		if (ret)
			return ret;
	}
2770

2771
	return 0;
2772 2773
}

2774 2775 2776 2777 2778 2779 2780
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2781 2782 2783
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2795 2796
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2797
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2798 2799 2800 2801 2802 2803 2804 2805

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2806
int i915_vma_unbind(struct i915_vma *vma)
2807
{
2808
	struct drm_i915_gem_object *obj = vma->obj;
2809
	unsigned long active;
2810
	int ret;
2811

2812 2813 2814 2815
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2816
	if (active) {
2817 2818
		int idx;

2819 2820 2821 2822 2823
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2824
		__i915_vma_pin(vma);
2825

2826 2827 2828 2829
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2830
				break;
2831 2832
		}

2833
		__i915_vma_unpin(vma);
2834 2835 2836
		if (ret)
			return ret;

2837 2838 2839
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2840
	if (i915_vma_is_pinned(vma))
2841 2842
		return -EBUSY;

2843 2844
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2845

2846 2847
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2848

2849 2850
	if (i915_vma_is_ggtt(vma) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2851
		i915_gem_object_finish_gtt(obj);
2852

2853 2854 2855 2856
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2857 2858

		__i915_vma_iounmap(vma);
2859
	}
2860

2861 2862 2863 2864
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2865
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2866

2867 2868 2869
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2870
	if (i915_vma_is_ggtt(vma)) {
2871 2872 2873 2874 2875 2876
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
2877
		vma->ggtt_view.pages = NULL;
2878
	}
2879

B
Ben Widawsky 已提交
2880
	/* Since the unbound list is global, only move to that list if
2881
	 * no more VMAs exist. */
2882 2883 2884
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2885

2886 2887 2888 2889 2890 2891
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2892
destroy:
2893
	if (unlikely(i915_vma_is_closed(vma)))
2894 2895
		i915_vma_destroy(vma);

2896
	return 0;
2897 2898
}

2899 2900
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2901
{
2902
	struct intel_engine_cs *engine;
2903
	int ret;
2904

2905
	for_each_engine(engine, dev_priv) {
2906 2907 2908
		if (engine->last_context == NULL)
			continue;

2909
		ret = intel_engine_idle(engine, interruptible);
2910 2911 2912
		if (ret)
			return ret;
	}
2913

2914
	return 0;
2915 2916
}

2917
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2918 2919
				     unsigned long cache_level)
{
2920
	struct drm_mm_node *gtt_space = &vma->node;
2921 2922
	struct drm_mm_node *other;

2923 2924 2925 2926 2927 2928
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2929
	 */
2930
	if (vma->vm->mm.color_adjust == NULL)
2931 2932
		return true;

2933
	if (!drm_mm_node_allocated(gtt_space))
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2950
/**
2951 2952
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
2953
 * @size: requested size in bytes (can be larger than the VMA)
2954
 * @alignment: required alignment
2955
 * @flags: mask of PIN_* flags to use
2956 2957 2958 2959 2960 2961 2962
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
2963
 */
2964 2965
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2966
{
2967 2968
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
2969 2970
	u64 start, end;
	u64 min_alignment;
2971
	int ret;
2972

2973
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
2974
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
		size = i915_gem_get_ggtt_size(dev_priv, size, obj->tiling_mode);

	min_alignment =
		i915_gem_get_ggtt_alignment(dev_priv, size, obj->tiling_mode,
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
2988
		return -EINVAL;
2989
	}
2990

2991
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
2992 2993

	end = vma->vm->total;
2994
	if (flags & PIN_MAPPABLE)
2995
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
2996
	if (flags & PIN_ZONE_4G)
2997
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
2998

2999 3000 3001
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3002
	 */
3003
	if (size > end) {
3004
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3005
			  size, obj->base.size,
3006
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3007
			  end);
3008
		return -E2BIG;
3009 3010
	}

3011
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3012
	if (ret)
3013
		return ret;
C
Chris Wilson 已提交
3014

3015 3016
	i915_gem_object_pin_pages(obj);

3017
	if (flags & PIN_OFFSET_FIXED) {
3018
		u64 offset = flags & PIN_OFFSET_MASK;
3019
		if (offset & (alignment - 1) || offset > end - size) {
3020
			ret = -EINVAL;
3021
			goto err_unpin;
3022
		}
3023

3024 3025 3026
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3027
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3028 3029 3030
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3031 3032 3033
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3034
		}
3035
	} else {
3036 3037
		u32 search_flag, alloc_flag;

3038 3039 3040 3041 3042 3043 3044
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3045

3046 3047 3048 3049 3050 3051 3052 3053 3054
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3055
search_free:
3056 3057
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3058 3059 3060 3061 3062 3063
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3064
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3065 3066 3067 3068 3069
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3070

3071
			goto err_unpin;
3072
		}
3073
	}
3074
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3075

3076
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3077
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3078
	obj->bind_count++;
3079

3080
	return 0;
B
Ben Widawsky 已提交
3081

3082
err_unpin:
B
Ben Widawsky 已提交
3083
	i915_gem_object_unpin_pages(obj);
3084
	return ret;
3085 3086
}

3087
bool
3088 3089
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3090 3091 3092 3093 3094
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3095
	if (obj->pages == NULL)
3096
		return false;
3097

3098 3099 3100 3101
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3102
	if (obj->stolen || obj->phys_handle)
3103
		return false;
3104

3105 3106 3107 3108 3109 3110 3111 3112
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3113 3114
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3115
		return false;
3116
	}
3117

C
Chris Wilson 已提交
3118
	trace_i915_gem_object_clflush(obj);
3119
	drm_clflush_sg(obj->pages);
3120
	obj->cache_dirty = false;
3121 3122

	return true;
3123 3124 3125 3126
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3127
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3128
{
C
Chris Wilson 已提交
3129 3130
	uint32_t old_write_domain;

3131
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3132 3133
		return;

3134
	/* No actual flushing is required for the GTT write domain.  Writes
3135 3136
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3137 3138 3139 3140
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3141
	 */
3142 3143
	wmb();

3144 3145
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3146

3147
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3148

C
Chris Wilson 已提交
3149
	trace_i915_gem_object_change_domain(obj,
3150
					    obj->base.read_domains,
C
Chris Wilson 已提交
3151
					    old_write_domain);
3152 3153 3154 3155
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3156
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3157
{
C
Chris Wilson 已提交
3158
	uint32_t old_write_domain;
3159

3160
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3161 3162
		return;

3163
	if (i915_gem_clflush_object(obj, obj->pin_display))
3164
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3165

3166 3167
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3168

3169
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3170

C
Chris Wilson 已提交
3171
	trace_i915_gem_object_change_domain(obj,
3172
					    obj->base.read_domains,
C
Chris Wilson 已提交
3173
					    old_write_domain);
3174 3175
}

3176 3177
/**
 * Moves a single object to the GTT read, and possibly write domain.
3178 3179
 * @obj: object to act on
 * @write: ask for write access or read only
3180 3181 3182 3183
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3184
int
3185
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3186
{
C
Chris Wilson 已提交
3187
	uint32_t old_write_domain, old_read_domains;
3188
	struct i915_vma *vma;
3189
	int ret;
3190

3191
	ret = i915_gem_object_wait_rendering(obj, !write);
3192 3193 3194
	if (ret)
		return ret;

3195 3196 3197
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3210
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3211

3212 3213 3214 3215 3216 3217 3218
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3219 3220
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3221

3222 3223 3224
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3225 3226
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3227
	if (write) {
3228 3229 3230
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3231 3232
	}

C
Chris Wilson 已提交
3233 3234 3235 3236
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3237
	/* And bump the LRU for this access */
3238
	vma = i915_gem_obj_to_ggtt(obj);
3239 3240 3241 3242
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3243

3244 3245 3246
	return 0;
}

3247 3248
/**
 * Changes the cache-level of an object across all VMA.
3249 3250
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3262 3263 3264
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3265
	struct i915_vma *vma;
3266
	int ret = 0;
3267 3268

	if (obj->cache_level == cache_level)
3269
		goto out;
3270

3271 3272 3273 3274 3275
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3276 3277
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3278 3279 3280
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3281
		if (i915_vma_is_pinned(vma)) {
3282 3283 3284 3285
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3298 3299
	}

3300 3301 3302 3303 3304 3305 3306
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3307
	if (obj->bind_count) {
3308 3309 3310 3311
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3312
		ret = i915_gem_object_wait_rendering(obj, false);
3313 3314 3315
		if (ret)
			return ret;

3316
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3333 3334 3335
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3336 3337 3338 3339 3340 3341 3342 3343
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3344 3345
		}

3346
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3347 3348 3349 3350 3351 3352 3353
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3354 3355
	}

3356
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3357 3358 3359
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3360
out:
3361 3362 3363 3364
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3365
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3366
		if (i915_gem_clflush_object(obj, true))
3367
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3368 3369 3370 3371 3372
	}

	return 0;
}

B
Ben Widawsky 已提交
3373 3374
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3375
{
B
Ben Widawsky 已提交
3376
	struct drm_i915_gem_caching *args = data;
3377 3378
	struct drm_i915_gem_object *obj;

3379 3380
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3381
		return -ENOENT;
3382

3383 3384 3385 3386 3387 3388
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3389 3390 3391 3392
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3393 3394 3395 3396
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3397

3398
	i915_gem_object_put_unlocked(obj);
3399
	return 0;
3400 3401
}

B
Ben Widawsky 已提交
3402 3403
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3404
{
3405
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3406
	struct drm_i915_gem_caching *args = data;
3407 3408 3409 3410
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3411 3412
	switch (args->caching) {
	case I915_CACHING_NONE:
3413 3414
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3415
	case I915_CACHING_CACHED:
3416 3417 3418 3419 3420 3421
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3422
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3423 3424
			return -ENODEV;

3425 3426
		level = I915_CACHE_LLC;
		break;
3427 3428 3429
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3430 3431 3432 3433
	default:
		return -EINVAL;
	}

3434 3435
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3436 3437
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3438
		goto rpm_put;
B
Ben Widawsky 已提交
3439

3440 3441
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3442 3443 3444 3445 3446 3447
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3448
	i915_gem_object_put(obj);
3449 3450
unlock:
	mutex_unlock(&dev->struct_mutex);
3451 3452 3453
rpm_put:
	intel_runtime_pm_put(dev_priv);

3454 3455 3456
	return ret;
}

3457
/*
3458 3459 3460
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3461 3462
 */
int
3463 3464
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3465
				     const struct i915_ggtt_view *view)
3466
{
3467
	u32 old_read_domains, old_write_domain;
3468 3469
	int ret;

3470 3471 3472
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3473
	obj->pin_display++;
3474

3475 3476 3477 3478 3479 3480 3481 3482 3483
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3484 3485
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3486
	if (ret)
3487
		goto err_unpin_display;
3488

3489 3490 3491 3492
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3493
	ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3494 3495
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3496
	if (ret)
3497
		goto err_unpin_display;
3498

3499
	i915_gem_object_flush_cpu_write_domain(obj);
3500

3501
	old_write_domain = obj->base.write_domain;
3502
	old_read_domains = obj->base.read_domains;
3503 3504 3505 3506

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3507
	obj->base.write_domain = 0;
3508
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3509 3510 3511

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3512
					    old_write_domain);
3513 3514

	return 0;
3515 3516

err_unpin_display:
3517
	obj->pin_display--;
3518 3519 3520 3521
	return ret;
}

void
3522 3523
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3524
{
3525 3526 3527
	if (WARN_ON(obj->pin_display == 0))
		return;

3528 3529
	i915_gem_object_ggtt_unpin_view(obj, view);

3530
	obj->pin_display--;
3531 3532
}

3533 3534
/**
 * Moves a single object to the CPU read, and possibly write domain.
3535 3536
 * @obj: object to act on
 * @write: requesting write or read-only access
3537 3538 3539 3540
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3541
int
3542
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3543
{
C
Chris Wilson 已提交
3544
	uint32_t old_write_domain, old_read_domains;
3545 3546
	int ret;

3547
	ret = i915_gem_object_wait_rendering(obj, !write);
3548 3549 3550
	if (ret)
		return ret;

3551 3552 3553
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3554
	i915_gem_object_flush_gtt_write_domain(obj);
3555

3556 3557
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3558

3559
	/* Flush the CPU cache if it's still invalid. */
3560
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3561
		i915_gem_clflush_object(obj, false);
3562

3563
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3564 3565 3566 3567 3568
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3569
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3570 3571 3572 3573 3574

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3575 3576
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3577
	}
3578

C
Chris Wilson 已提交
3579 3580 3581 3582
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3583 3584 3585
	return 0;
}

3586 3587 3588
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3589 3590 3591 3592
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3593 3594 3595
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3596
static int
3597
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3598
{
3599
	struct drm_i915_private *dev_priv = to_i915(dev);
3600
	struct drm_i915_file_private *file_priv = file->driver_priv;
3601
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3602
	struct drm_i915_gem_request *request, *target = NULL;
3603
	int ret;
3604

3605 3606 3607 3608
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3609 3610 3611
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3612

3613
	spin_lock(&file_priv->mm.lock);
3614
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3615 3616
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3617

3618 3619 3620 3621 3622 3623 3624
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3625
		target = request;
3626
	}
3627
	if (target)
3628
		i915_gem_request_get(target);
3629
	spin_unlock(&file_priv->mm.lock);
3630

3631
	if (target == NULL)
3632
		return 0;
3633

3634
	ret = i915_wait_request(target, true, NULL, NULL);
3635
	i915_gem_request_put(target);
3636

3637 3638 3639
	return ret;
}

3640
static bool
3641
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3642 3643 3644
{
	struct drm_i915_gem_object *obj = vma->obj;

3645 3646 3647
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3648 3649 3650 3651
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3652 3653 3654 3655 3656 3657 3658 3659 3660
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3661 3662 3663 3664
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3665 3666 3667
	return false;
}

3668 3669 3670
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3671
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3672 3673 3674
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3675
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3676 3677
					    obj->base.size,
					    obj->tiling_mode);
3678
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3679 3680 3681
						      obj->base.size,
						      obj->tiling_mode,
						      true);
3682 3683 3684 3685 3686

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3687
		    dev_priv->ggtt.mappable_end);
3688 3689 3690 3691

	obj->map_and_fenceable = mappable && fenceable;
}

3692 3693
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3694
{
3695
	unsigned int bound = vma->flags;
3696 3697
	int ret;

3698
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3699
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3700

3701 3702 3703 3704
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3705

3706
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3707 3708 3709
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3710
	}
3711

3712
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3713
	if (ret)
3714
		goto err;
3715

3716
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3717
		__i915_vma_set_map_and_fenceable(vma);
3718

3719
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3720 3721
	return 0;

3722 3723 3724
err:
	__i915_vma_unpin(vma);
	return ret;
3725 3726 3727 3728 3729
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3730
			 u64 size,
3731 3732
			 u64 alignment,
			 u64 flags)
3733
{
3734 3735
	struct i915_vma *vma;
	int ret;
3736

3737 3738
	if (!view)
		view = &i915_ggtt_view_normal;
3739

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
			return -ENOSPC;

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
		     " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
		     " obj->map_and_fenceable=%d\n",
		     upper_32_bits(vma->node.start),
		     lower_32_bits(vma->node.start),
		     alignment,
		     !!(flags & PIN_MAPPABLE),
		     obj->map_and_fenceable);
		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;
	}

	return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3764 3765
}

3766
void
3767 3768
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3769
{
3770
	i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
3771 3772 3773 3774
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3775
		    struct drm_file *file)
3776 3777
{
	struct drm_i915_gem_busy *args = data;
3778
	struct drm_i915_gem_object *obj;
3779 3780
	int ret;

3781
	ret = i915_mutex_lock_interruptible(dev);
3782
	if (ret)
3783
		return ret;
3784

3785 3786
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3787 3788
		ret = -ENOENT;
		goto unlock;
3789
	}
3790

3791 3792
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
3793
	 * become non-busy without any further actions.
3794
	 */
3795
	args->busy = 0;
3796
	if (i915_gem_object_is_active(obj)) {
3797
		struct drm_i915_gem_request *req;
3798 3799
		int i;

3800
		for (i = 0; i < I915_NUM_ENGINES; i++) {
3801 3802
			req = i915_gem_active_peek(&obj->last_read[i],
						   &obj->base.dev->struct_mutex);
3803
			if (req)
3804
				args->busy |= 1 << (16 + req->engine->exec_id);
3805
		}
3806 3807
		req = i915_gem_active_peek(&obj->last_write,
					   &obj->base.dev->struct_mutex);
3808 3809
		if (req)
			args->busy |= req->engine->exec_id;
3810
	}
3811

3812
	i915_gem_object_put(obj);
3813
unlock:
3814
	mutex_unlock(&dev->struct_mutex);
3815
	return ret;
3816 3817 3818 3819 3820 3821
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3822
	return i915_gem_ring_throttle(dev, file_priv);
3823 3824
}

3825 3826 3827 3828
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3829
	struct drm_i915_private *dev_priv = to_i915(dev);
3830
	struct drm_i915_gem_madvise *args = data;
3831
	struct drm_i915_gem_object *obj;
3832
	int ret;
3833 3834 3835 3836 3837 3838 3839 3840 3841

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3842 3843 3844 3845
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3846 3847
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3848 3849
		ret = -ENOENT;
		goto unlock;
3850 3851
	}

B
Ben Widawsky 已提交
3852
	if (i915_gem_obj_is_pinned(obj)) {
3853 3854
		ret = -EINVAL;
		goto out;
3855 3856
	}

3857 3858 3859 3860 3861 3862 3863 3864 3865
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3866 3867
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3868

C
Chris Wilson 已提交
3869
	/* if the object is no longer attached, discard its backing storage */
3870
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3871 3872
		i915_gem_object_truncate(obj);

3873
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3874

3875
out:
3876
	i915_gem_object_put(obj);
3877
unlock:
3878
	mutex_unlock(&dev->struct_mutex);
3879
	return ret;
3880 3881
}

3882 3883
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3884
{
3885 3886
	int i;

3887
	INIT_LIST_HEAD(&obj->global_list);
3888
	for (i = 0; i < I915_NUM_ENGINES; i++)
3889 3890 3891 3892 3893
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
3894
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3895
	INIT_LIST_HEAD(&obj->vma_list);
3896
	INIT_LIST_HEAD(&obj->batch_pool_link);
3897

3898 3899
	obj->ops = ops;

3900 3901 3902
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

3903
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3904 3905
}

3906
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3907
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
3908 3909 3910 3911
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3912
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3913
						  size_t size)
3914
{
3915
	struct drm_i915_gem_object *obj;
3916
	struct address_space *mapping;
D
Daniel Vetter 已提交
3917
	gfp_t mask;
3918
	int ret;
3919

3920
	obj = i915_gem_object_alloc(dev);
3921
	if (obj == NULL)
3922
		return ERR_PTR(-ENOMEM);
3923

3924 3925 3926
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
3927

3928 3929 3930 3931 3932 3933 3934
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
3935
	mapping = file_inode(obj->base.filp)->i_mapping;
3936
	mapping_set_gfp_mask(mapping, mask);
3937

3938
	i915_gem_object_init(obj, &i915_gem_object_ops);
3939

3940 3941
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3942

3943 3944
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3960 3961
	trace_i915_gem_object_create(obj);

3962
	return obj;
3963 3964 3965 3966 3967

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
3968 3969
}

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

3994
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3995
{
3996
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3997
	struct drm_device *dev = obj->base.dev;
3998
	struct drm_i915_private *dev_priv = to_i915(dev);
3999
	struct i915_vma *vma, *next;
4000

4001 4002
	intel_runtime_pm_get(dev_priv);

4003 4004
	trace_i915_gem_object_destroy(obj);

4005 4006 4007 4008 4009 4010 4011
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4012
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4013
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4014
		GEM_BUG_ON(i915_vma_is_active(vma));
4015
		vma->flags &= ~I915_VMA_PIN_MASK;
4016
		i915_vma_close(vma);
4017
	}
4018
	GEM_BUG_ON(obj->bind_count);
4019

B
Ben Widawsky 已提交
4020 4021 4022 4023 4024
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4025
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4026

4027 4028 4029 4030 4031
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4032 4033
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4034
	if (discard_backing_storage(obj))
4035
		obj->madv = I915_MADV_DONTNEED;
4036
	i915_gem_object_put_pages(obj);
4037

4038 4039
	BUG_ON(obj->pages);

4040 4041
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4042

4043 4044 4045
	if (obj->ops->release)
		obj->ops->release(obj);

4046 4047
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4048

4049
	kfree(obj->bit_17);
4050
	i915_gem_object_free(obj);
4051 4052

	intel_runtime_pm_put(dev_priv);
4053 4054
}

4055 4056
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4057 4058
{
	struct i915_vma *vma;
4059
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4060 4061
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4062
			return vma;
4063 4064 4065 4066 4067 4068 4069 4070
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4071

4072
	GEM_BUG_ON(!view);
4073

4074
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4075 4076
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4077
			return vma;
4078 4079 4080
	return NULL;
}

4081
int i915_gem_suspend(struct drm_device *dev)
4082
{
4083
	struct drm_i915_private *dev_priv = to_i915(dev);
4084
	int ret;
4085

4086 4087
	intel_suspend_gt_powersave(dev_priv);

4088
	mutex_lock(&dev->struct_mutex);
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4102
	ret = i915_gem_wait_for_idle(dev_priv, true);
4103
	if (ret)
4104
		goto err;
4105

4106
	i915_gem_retire_requests(dev_priv);
4107

4108
	i915_gem_context_lost(dev_priv);
4109 4110
	mutex_unlock(&dev->struct_mutex);

4111
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4112 4113
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4114

4115 4116 4117
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4118
	WARN_ON(dev_priv->gt.awake);
4119

4120
	return 0;
4121 4122 4123 4124

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4125 4126
}

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4144 4145
void i915_gem_init_swizzling(struct drm_device *dev)
{
4146
	struct drm_i915_private *dev_priv = to_i915(dev);
4147

4148
	if (INTEL_INFO(dev)->gen < 5 ||
4149 4150 4151 4152 4153 4154
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4155 4156 4157
	if (IS_GEN5(dev))
		return;

4158 4159
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4160
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4161
	else if (IS_GEN7(dev))
4162
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4163 4164
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4165 4166
	else
		BUG();
4167
}
D
Daniel Vetter 已提交
4168

4169 4170
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4171
	struct drm_i915_private *dev_priv = to_i915(dev);
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4196 4197 4198
int
i915_gem_init_hw(struct drm_device *dev)
{
4199
	struct drm_i915_private *dev_priv = to_i915(dev);
4200
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4201
	int ret;
4202

4203 4204 4205
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4206
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4207
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4208

4209 4210 4211
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4212

4213
	if (HAS_PCH_NOP(dev)) {
4214 4215 4216 4217 4218 4219 4220 4221 4222
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4223 4224
	}

4225 4226
	i915_gem_init_swizzling(dev);

4227 4228 4229 4230 4231 4232 4233 4234
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4235
	BUG_ON(!dev_priv->kernel_context);
4236

4237 4238 4239 4240 4241 4242 4243
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4244
	for_each_engine(engine, dev_priv) {
4245
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4246
		if (ret)
4247
			goto out;
D
Daniel Vetter 已提交
4248
	}
4249

4250 4251
	intel_mocs_init_l3cc_table(dev);

4252
	/* We can't enable contexts until all firmware is loaded */
4253 4254 4255
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4256

4257 4258
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4259
	return ret;
4260 4261
}

4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4283 4284
int i915_gem_init(struct drm_device *dev)
{
4285
	struct drm_i915_private *dev_priv = to_i915(dev);
4286 4287 4288
	int ret;

	mutex_lock(&dev->struct_mutex);
4289

4290
	if (!i915.enable_execlists) {
4291
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4292
	} else {
4293
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4294 4295
	}

4296 4297 4298 4299 4300 4301 4302 4303
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4304
	i915_gem_init_userptr(dev_priv);
4305 4306 4307 4308

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4309

4310
	ret = i915_gem_context_init(dev);
4311 4312
	if (ret)
		goto out_unlock;
4313

4314
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4315
	if (ret)
4316
		goto out_unlock;
4317

4318
	ret = i915_gem_init_hw(dev);
4319
	if (ret == -EIO) {
4320
		/* Allow engine initialisation to fail by marking the GPU as
4321 4322 4323 4324
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4325
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4326
		ret = 0;
4327
	}
4328 4329

out_unlock:
4330
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4331
	mutex_unlock(&dev->struct_mutex);
4332

4333
	return ret;
4334 4335
}

4336
void
4337
i915_gem_cleanup_engines(struct drm_device *dev)
4338
{
4339
	struct drm_i915_private *dev_priv = to_i915(dev);
4340
	struct intel_engine_cs *engine;
4341

4342
	for_each_engine(engine, dev_priv)
4343
		dev_priv->gt.cleanup_engine(engine);
4344 4345
}

4346
static void
4347
init_engine_lists(struct intel_engine_cs *engine)
4348
{
4349
	INIT_LIST_HEAD(&engine->request_list);
4350 4351
}

4352 4353 4354
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4355
	struct drm_device *dev = &dev_priv->drm;
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4366
	if (intel_vgpu_active(dev_priv))
4367 4368 4369 4370 4371 4372 4373 4374 4375
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4376
void
4377
i915_gem_load_init(struct drm_device *dev)
4378
{
4379
	struct drm_i915_private *dev_priv = to_i915(dev);
4380 4381
	int i;

4382
	dev_priv->objects =
4383 4384 4385 4386
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4387 4388 4389 4390 4391
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4392 4393 4394
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4395 4396 4397
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4398
				  NULL);
4399

4400
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4401 4402
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4403
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4404 4405
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4406
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4407
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4408
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4409
			  i915_gem_retire_work_handler);
4410
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4411
			  i915_gem_idle_work_handler);
4412
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4413
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4414

4415 4416
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4417
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4418

4419
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4420

4421 4422
	dev_priv->mm.interruptible = true;

4423
	spin_lock_init(&dev_priv->fb_tracking.lock);
4424
}
4425

4426 4427 4428 4429 4430 4431 4432
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4433 4434 4435

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4436 4437
}

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4466
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4467
{
4468
	struct drm_i915_file_private *file_priv = file->driver_priv;
4469
	struct drm_i915_gem_request *request;
4470 4471 4472 4473 4474

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4475
	spin_lock(&file_priv->mm.lock);
4476
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4477
		request->file_priv = NULL;
4478
	spin_unlock(&file_priv->mm.lock);
4479

4480
	if (!list_empty(&file_priv->rps.link)) {
4481
		spin_lock(&to_i915(dev)->rps.client_lock);
4482
		list_del(&file_priv->rps.link);
4483
		spin_unlock(&to_i915(dev)->rps.client_lock);
4484
	}
4485 4486 4487 4488 4489
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4490
	int ret;
4491 4492 4493 4494 4495 4496 4497 4498

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4499
	file_priv->dev_priv = to_i915(dev);
4500
	file_priv->file = file;
4501
	INIT_LIST_HEAD(&file_priv->rps.link);
4502 4503 4504 4505

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4506
	file_priv->bsd_engine = -1;
4507

4508 4509 4510
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4511

4512
	return ret;
4513 4514
}

4515 4516
/**
 * i915_gem_track_fb - update frontbuffer tracking
4517 4518 4519
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4520 4521 4522 4523
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4524 4525 4526 4527
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4528 4529 4530 4531 4532 4533 4534 4535 4536
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4537
	if (old) {
4538 4539
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4540 4541 4542
	}

	if (new) {
4543 4544
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4545 4546 4547
	}
}

4548
/* All the new VM stuff */
4549 4550
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4551
{
4552
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4553 4554
	struct i915_vma *vma;

4555
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4556

4557
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4558
		if (i915_vma_is_ggtt(vma) &&
4559 4560 4561
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4562 4563
			return vma->node.start;
	}
4564

4565 4566
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4567 4568 4569
	return -1;
}

4570 4571
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4572 4573 4574
{
	struct i915_vma *vma;

4575
	list_for_each_entry(vma, &o->vma_list, obj_link)
4576 4577
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4578 4579
			return vma->node.start;

4580
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4581 4582 4583 4584 4585 4586 4587 4588
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4589
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4590
		if (i915_vma_is_ggtt(vma) &&
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4601
				  const struct i915_ggtt_view *view)
4602 4603 4604
{
	struct i915_vma *vma;

4605
	list_for_each_entry(vma, &o->vma_list, obj_link)
4606
		if (i915_vma_is_ggtt(vma) &&
4607
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4608
		    drm_mm_node_allocated(&vma->node))
4609 4610 4611 4612 4613
			return true;

	return false;
}

4614
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4615 4616 4617
{
	struct i915_vma *vma;

4618
	GEM_BUG_ON(list_empty(&o->vma_list));
4619

4620
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4621
		if (i915_vma_is_ggtt(vma) &&
4622
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4623
			return vma->node.size;
4624
	}
4625

4626 4627 4628
	return 0;
}

4629
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4630 4631
{
	struct i915_vma *vma;
4632
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4633
		if (i915_vma_is_pinned(vma))
4634
			return true;
4635

4636
	return false;
4637
}
4638

4639 4640 4641 4642 4643 4644 4645
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4646
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4647 4648 4649 4650 4651 4652 4653
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4664
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4665
	if (IS_ERR(obj))
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4679
	obj->dirty = 1;		/* Backing store is now out of date */
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4691
	i915_gem_object_put(obj);
4692 4693
	return ERR_PTR(ret);
}