workqueue.c 156.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23
 *
24
 * Please read Documentation/core-api/workqueue.rst for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51
#include <linux/sched/isolation.h>
52

53
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
54

T
Tejun Heo 已提交
55
enum {
56 57
	/*
	 * worker_pool flags
58
	 *
59
	 * A bound pool is either associated or disassociated with its CPU.
60 61 62 63 64 65
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
66
	 * be executing on any CPU.  The pool behaves as an unbound one.
67
	 *
68
	 * Note that DISASSOCIATED should be flipped only while holding
69
	 * attach_mutex to avoid changing binding state while
70
	 * worker_attach_to_pool() is in progress.
71
	 */
72
	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
73
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
74

T
Tejun Heo 已提交
75 76 77
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
78
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82

83 84
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
85

86
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87

88
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
89
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90

91 92 93
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

94 95 96
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
97 98 99 100 101
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
102
	 * all cpus.  Give MIN_NICE.
103
	 */
104 105
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
106 107

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
108
};
L
Linus Torvalds 已提交
109 110

/*
T
Tejun Heo 已提交
111 112
 * Structure fields follow one of the following exclusion rules.
 *
113 114
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
115
 *
116 117 118
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
119
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
120
 *
121 122 123 124
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
125
 *
126
 * A: pool->attach_mutex protected.
127
 *
128
 * PL: wq_pool_mutex protected.
129
 *
130
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
131
 *
132 133 134 135 136
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      sched-RCU for reads.
 *
137 138
 * WQ: wq->mutex protected.
 *
139
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
140 141
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
142 143
 */

144
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
145

146
struct worker_pool {
147
	spinlock_t		lock;		/* the pool lock */
148
	int			cpu;		/* I: the associated cpu */
149
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
150
	int			id;		/* I: pool ID */
151
	unsigned int		flags;		/* X: flags */
152

T
Tejun Heo 已提交
153 154
	unsigned long		watchdog_ts;	/* L: watchdog timestamp */

155 156
	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
157 158

	/* nr_idle includes the ones off idle_list for rebinding */
159 160 161 162 163 164
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

165
	/* a workers is either on busy_hash or idle_list, or the manager */
166 167 168
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

169
	/* see manage_workers() for details on the two manager mutexes */
170
	struct worker		*manager;	/* L: purely informational */
171 172
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
173
	struct completion	*detach_completion; /* all workers detached */
174

175
	struct ida		worker_ida;	/* worker IDs for task name */
176

T
Tejun Heo 已提交
177
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
178 179
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
180

181 182 183 184 185 186
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
187 188 189 190 191 192

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
193 194
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
195
/*
196 197 198 199
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
200
 */
201
struct pool_workqueue {
202
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
203
	struct workqueue_struct *wq;		/* I: the owning workqueue */
204 205
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
206
	int			refcnt;		/* L: reference count */
207 208
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
209
	int			nr_active;	/* L: nr of active works */
210
	int			max_active;	/* L: max active works */
211
	struct list_head	delayed_works;	/* L: delayed works */
212
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
213
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
214 215 216 217 218

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
219
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
220 221 222
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
223
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
224

225 226 227 228
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
229 230
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
231 232 233
	struct completion	done;		/* flush completion */
};

234 235
struct wq_device;

L
Linus Torvalds 已提交
236
/*
237 238
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
239 240
 */
struct workqueue_struct {
241
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
242
	struct list_head	list;		/* PR: list of all workqueues */
243

244 245 246
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
247
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
248 249 250
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
251

252
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
253 254
	struct worker		*rescuer;	/* I: rescue worker */

255
	int			nr_drainers;	/* WQ: drain in progress */
256
	int			saved_max_active; /* WQ: saved pwq max_active */
257

258 259
	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
260

261 262 263
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
264
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
265
	struct lockdep_map	lockdep_map;
266
#endif
267
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
268

269 270 271 272 273 274 275
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

276 277 278
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
280 281
};

282 283
static struct kmem_cache *pwq_cache;

284 285 286
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

287 288 289
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

290
/* see the comment above the definition of WQ_POWER_EFFICIENT */
291
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 293
module_param_named(power_efficient, wq_power_efficient, bool, 0444);

T
Tejun Heo 已提交
294
static bool wq_online;			/* can kworkers be created yet? */
295

296 297
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

298 299 300
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

301
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
303
static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304

305
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
306
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
307

308 309 310 311 312
/* PL: allowable cpus for unbound wqs and work items */
static cpumask_var_t wq_unbound_cpumask;

/* CPU where unbound work was last round robin scheduled from this CPU */
static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313

314 315 316 317 318 319 320 321 322 323 324 325
/*
 * Local execution of unbound work items is no longer guaranteed.  The
 * following always forces round-robin CPU selection on unbound work items
 * to uncover usages which depend on it.
 */
#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
static bool wq_debug_force_rr_cpu = true;
#else
static bool wq_debug_force_rr_cpu = false;
#endif
module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);

326
/* the per-cpu worker pools */
327
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328

329
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
330

331
/* PL: hash of all unbound pools keyed by pool->attrs */
332 333
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

334
/* I: attributes used when instantiating standard unbound pools on demand */
335 336
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

337 338 339
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

340
struct workqueue_struct *system_wq __read_mostly;
341
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
342
struct workqueue_struct *system_highpri_wq __read_mostly;
343
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
344
struct workqueue_struct *system_long_wq __read_mostly;
345
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
346
struct workqueue_struct *system_unbound_wq __read_mostly;
347
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
348
struct workqueue_struct *system_freezable_wq __read_mostly;
349
EXPORT_SYMBOL_GPL(system_freezable_wq);
350 351 352 353
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354

355
static int worker_thread(void *__worker);
356
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357

358 359 360
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

361
#define assert_rcu_or_pool_mutex()					\
362 363 364
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU or wq_pool_mutex should be held")
365

366
#define assert_rcu_or_wq_mutex(wq)					\
367 368 369
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex),			\
			 "sched RCU or wq->mutex should be held")
370

371
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
372 373 374 375
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex) &&		\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
376

377 378 379
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380
	     (pool)++)
381

T
Tejun Heo 已提交
382 383 384
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
385
 * @pi: integer used for iteration
386
 *
387 388 389
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
390 391 392
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
393
 */
394 395
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
396
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
397
		else
T
Tejun Heo 已提交
398

399 400 401 402 403
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
404
 * This must be called with @pool->attach_mutex.
405 406 407 408
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
409 410
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
411
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
412 413
		else

414 415 416 417
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
418
 *
419
 * This must be called either with wq->mutex held or sched RCU read locked.
420 421
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
422 423 424
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
425 426
 */
#define for_each_pwq(pwq, wq)						\
427
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
428
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
429
		else
430

431 432 433 434
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

435 436 437 438 439
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

440 441 442 443 444 445 446
static bool work_is_static_object(void *addr)
{
	struct work_struct *work = addr;

	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
}

447 448 449 450
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
451
static bool work_fixup_init(void *addr, enum debug_obj_state state)
452 453 454 455 456 457 458
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
459
		return true;
460
	default:
461
		return false;
462 463 464 465 466 467 468
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
469
static bool work_fixup_free(void *addr, enum debug_obj_state state)
470 471 472 473 474 475 476
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
477
		return true;
478
	default:
479
		return false;
480 481 482 483 484
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
485
	.debug_hint	= work_debug_hint,
486
	.is_static_object = work_is_static_object,
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	.fixup_init	= work_fixup_init,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

516 517 518 519 520 521 522
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

523 524 525 526 527
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

528 529 530 531 532 533 534
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
535 536 537 538
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

539
	lockdep_assert_held(&wq_pool_mutex);
540

541 542
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
543
	if (ret >= 0) {
T
Tejun Heo 已提交
544
		pool->id = ret;
545 546
		return 0;
	}
547
	return ret;
548 549
}

550 551 552 553 554
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
555 556
 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 * read locked.
557 558
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
559 560
 *
 * Return: The unbound pool_workqueue for @node.
561 562 563 564
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
565
	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566 567 568 569 570 571 572 573 574 575

	/*
	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
	 * delayed item is pending.  The plan is to keep CPU -> NODE
	 * mapping valid and stable across CPU on/offlines.  Once that
	 * happens, this workaround can be removed.
	 */
	if (unlikely(node == NUMA_NO_NODE))
		return wq->dfl_pwq;

576 577 578
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
594

595
/*
596 597
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
598
 * is cleared and the high bits contain OFFQ flags and pool ID.
599
 *
600 601
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
602 603
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
604
 *
605
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606
 * corresponding to a work.  Pool is available once the work has been
607
 * queued anywhere after initialization until it is sync canceled.  pwq is
608
 * available only while the work item is queued.
609
 *
610 611 612 613
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
614
 */
615 616
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
617
{
618
	WARN_ON_ONCE(!work_pending(work));
619 620
	atomic_long_set(&work->data, data | flags | work_static(work));
}
621

622
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 624
			 unsigned long extra_flags)
{
625 626
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 628
}

629 630 631 632 633 634 635
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

636 637
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
638
{
639 640 641 642 643 644 645
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
646
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	/*
	 * The following mb guarantees that previous clear of a PENDING bit
	 * will not be reordered with any speculative LOADS or STORES from
	 * work->current_func, which is executed afterwards.  This possible
	 * reordering can lead to a missed execution on attempt to qeueue
	 * the same @work.  E.g. consider this case:
	 *
	 *   CPU#0                         CPU#1
	 *   ----------------------------  --------------------------------
	 *
	 * 1  STORE event_indicated
	 * 2  queue_work_on() {
	 * 3    test_and_set_bit(PENDING)
	 * 4 }                             set_..._and_clear_pending() {
	 * 5                                 set_work_data() # clear bit
	 * 6                                 smp_mb()
	 * 7                               work->current_func() {
	 * 8				      LOAD event_indicated
	 *				   }
	 *
	 * Without an explicit full barrier speculative LOAD on line 8 can
	 * be executed before CPU#0 does STORE on line 1.  If that happens,
	 * CPU#0 observes the PENDING bit is still set and new execution of
	 * a @work is not queued in a hope, that CPU#1 will eventually
	 * finish the queued @work.  Meanwhile CPU#1 does not see
	 * event_indicated is set, because speculative LOAD was executed
	 * before actual STORE.
	 */
	smp_mb();
676
}
677

678
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
679
{
680 681
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
682 683
}

684
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685
{
686
	unsigned long data = atomic_long_read(&work->data);
687

688
	if (data & WORK_STRUCT_PWQ)
689 690 691
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
692 693
}

694 695 696 697
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
698 699 700
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
701 702 703 704 705
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
706 707
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
708 709
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
710
{
711
	unsigned long data = atomic_long_read(&work->data);
712
	int pool_id;
713

714
	assert_rcu_or_pool_mutex();
715

716 717
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
718
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719

720 721
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
722 723
		return NULL;

724
	return idr_find(&worker_pool_idr, pool_id);
725 726 727 728 729 730
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
731
 * Return: The worker_pool ID @work was last associated with.
732 733 734 735
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
736 737
	unsigned long data = atomic_long_read(&work->data);

738 739
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
740
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741

742
	return data >> WORK_OFFQ_POOL_SHIFT;
743 744
}

745 746
static void mark_work_canceling(struct work_struct *work)
{
747
	unsigned long pool_id = get_work_pool_id(work);
748

749 750
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 752 753 754 755 756
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

757
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 759
}

760
/*
761 762
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
763
 * they're being called with pool->lock held.
764 765
 */

766
static bool __need_more_worker(struct worker_pool *pool)
767
{
768
	return !atomic_read(&pool->nr_running);
769 770
}

771
/*
772 773
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
774 775
 *
 * Note that, because unbound workers never contribute to nr_running, this
776
 * function will always return %true for unbound pools as long as the
777
 * worklist isn't empty.
778
 */
779
static bool need_more_worker(struct worker_pool *pool)
780
{
781
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
782
}
783

784
/* Can I start working?  Called from busy but !running workers. */
785
static bool may_start_working(struct worker_pool *pool)
786
{
787
	return pool->nr_idle;
788 789 790
}

/* Do I need to keep working?  Called from currently running workers. */
791
static bool keep_working(struct worker_pool *pool)
792
{
793 794
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
795 796 797
}

/* Do we need a new worker?  Called from manager. */
798
static bool need_to_create_worker(struct worker_pool *pool)
799
{
800
	return need_more_worker(pool) && !may_start_working(pool);
801
}
802

803
/* Do we have too many workers and should some go away? */
804
static bool too_many_workers(struct worker_pool *pool)
805
{
806
	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 808
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
809 810

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 812
}

813
/*
814 815 816
 * Wake up functions.
 */

817 818
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
819
{
820
	if (unlikely(list_empty(&pool->idle_list)))
821 822
		return NULL;

823
	return list_first_entry(&pool->idle_list, struct worker, entry);
824 825 826 827
}

/**
 * wake_up_worker - wake up an idle worker
828
 * @pool: worker pool to wake worker from
829
 *
830
 * Wake up the first idle worker of @pool.
831 832
 *
 * CONTEXT:
833
 * spin_lock_irq(pool->lock).
834
 */
835
static void wake_up_worker(struct worker_pool *pool)
836
{
837
	struct worker *worker = first_idle_worker(pool);
838 839 840 841 842

	if (likely(worker))
		wake_up_process(worker->task);
}

843
/**
844 845 846 847 848 849 850 851 852 853
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
854
void wq_worker_waking_up(struct task_struct *task, int cpu)
855 856 857
{
	struct worker *worker = kthread_data(task);

858
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
859
		WARN_ON_ONCE(worker->pool->cpu != cpu);
860
		atomic_inc(&worker->pool->nr_running);
861
	}
862 863 864 865 866 867 868 869 870 871 872 873 874
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
875
 * Return:
876 877
 * Worker task on @cpu to wake up, %NULL if none.
 */
878
struct task_struct *wq_worker_sleeping(struct task_struct *task)
879 880
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
881
	struct worker_pool *pool;
882

883 884 885 886 887
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
888
	if (worker->flags & WORKER_NOT_RUNNING)
889 890
		return NULL;

891 892
	pool = worker->pool;

893
	/* this can only happen on the local cpu */
894
	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
895
		return NULL;
896 897 898 899 900 901

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
902 903 904
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
905
	 * manipulating idle_list, so dereferencing idle_list without pool
906
	 * lock is safe.
907
	 */
908 909
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
910
		to_wakeup = first_idle_worker(pool);
911 912 913 914 915
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
916
 * @worker: self
917 918
 * @flags: flags to set
 *
919
 * Set @flags in @worker->flags and adjust nr_running accordingly.
920
 *
921
 * CONTEXT:
922
 * spin_lock_irq(pool->lock)
923
 */
924
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
925
{
926
	struct worker_pool *pool = worker->pool;
927

928 929
	WARN_ON_ONCE(worker->task != current);

930
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
931 932
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
933
		atomic_dec(&pool->nr_running);
934 935
	}

936 937 938 939
	worker->flags |= flags;
}

/**
940
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
941
 * @worker: self
942 943
 * @flags: flags to clear
 *
944
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
945
 *
946
 * CONTEXT:
947
 * spin_lock_irq(pool->lock)
948 949 950
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
951
	struct worker_pool *pool = worker->pool;
952 953
	unsigned int oflags = worker->flags;

954 955
	WARN_ON_ONCE(worker->task != current);

956
	worker->flags &= ~flags;
957

958 959 960 961 962
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
963 964
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
965
			atomic_inc(&pool->nr_running);
966 967
}

968 969
/**
 * find_worker_executing_work - find worker which is executing a work
970
 * @pool: pool of interest
971 972
 * @work: work to find worker for
 *
973 974
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
975 976 977 978 979 980 981 982 983 984 985 986
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
987 988 989 990 991 992
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
993 994
 *
 * CONTEXT:
995
 * spin_lock_irq(pool->lock).
996
 *
997 998
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
999
 * otherwise.
1000
 */
1001
static struct worker *find_worker_executing_work(struct worker_pool *pool,
1002
						 struct work_struct *work)
1003
{
1004 1005
	struct worker *worker;

1006
	hash_for_each_possible(pool->busy_hash, worker, hentry,
1007 1008 1009
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
1010 1011 1012
			return worker;

	return NULL;
1013 1014
}

1015 1016 1017 1018
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
1019
 * @nextp: out parameter for nested worklist walking
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1030
 * spin_lock_irq(pool->lock).
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1114
static void pwq_activate_delayed_work(struct work_struct *work)
1115
{
1116
	struct pool_workqueue *pwq = get_work_pwq(work);
1117 1118

	trace_workqueue_activate_work(work);
T
Tejun Heo 已提交
1119 1120
	if (list_empty(&pwq->pool->worklist))
		pwq->pool->watchdog_ts = jiffies;
1121
	move_linked_works(work, &pwq->pool->worklist, NULL);
1122
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1123
	pwq->nr_active++;
1124 1125
}

1126
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1127
{
1128
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1129 1130
						    struct work_struct, entry);

1131
	pwq_activate_delayed_work(work);
1132 1133
}

1134
/**
1135 1136
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1137 1138 1139
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1140
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1141 1142
 *
 * CONTEXT:
1143
 * spin_lock_irq(pool->lock).
1144
 */
1145
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1146
{
T
Tejun Heo 已提交
1147
	/* uncolored work items don't participate in flushing or nr_active */
1148
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1149
		goto out_put;
1150

1151
	pwq->nr_in_flight[color]--;
1152

1153 1154
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1155
		/* one down, submit a delayed one */
1156 1157
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1158 1159 1160
	}

	/* is flush in progress and are we at the flushing tip? */
1161
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1162
		goto out_put;
1163 1164

	/* are there still in-flight works? */
1165
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1166
		goto out_put;
1167

1168 1169
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1170 1171

	/*
1172
	 * If this was the last pwq, wake up the first flusher.  It
1173 1174
	 * will handle the rest.
	 */
1175 1176
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1177 1178
out_put:
	put_pwq(pwq);
1179 1180
}

1181
/**
1182
 * try_to_grab_pending - steal work item from worklist and disable irq
1183 1184
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1185
 * @flags: place to store irq state
1186 1187
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1188
 * stable state - idle, on timer or on worklist.
1189
 *
1190
 * Return:
1191 1192 1193
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1194 1195
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1196
 *
1197
 * Note:
1198
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1199 1200 1201
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1202 1203 1204 1205
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1206
 * This function is safe to call from any context including IRQ handler.
1207
 */
1208 1209
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1210
{
1211
	struct worker_pool *pool;
1212
	struct pool_workqueue *pwq;
1213

1214 1215
	local_irq_save(*flags);

1216 1217 1218 1219
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1220 1221 1222 1223 1224
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1225 1226 1227 1228 1229
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1230 1231 1232 1233 1234 1235 1236
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1237 1238
	pool = get_work_pool(work);
	if (!pool)
1239
		goto fail;
1240

1241
	spin_lock(&pool->lock);
1242
	/*
1243 1244 1245 1246 1247
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1248 1249
	 * item is currently queued on that pool.
	 */
1250 1251
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1252 1253 1254 1255 1256
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1257
		 * on the delayed_list, will confuse pwq->nr_active
1258 1259 1260 1261
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1262
			pwq_activate_delayed_work(work);
1263 1264

		list_del_init(&work->entry);
1265
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1266

1267
		/* work->data points to pwq iff queued, point to pool */
1268 1269 1270 1271
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1272
	}
1273
	spin_unlock(&pool->lock);
1274 1275 1276 1277 1278
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1279
	return -EAGAIN;
1280 1281
}

T
Tejun Heo 已提交
1282
/**
1283
 * insert_work - insert a work into a pool
1284
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1285 1286 1287 1288
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1289
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1290
 * work_struct flags.
T
Tejun Heo 已提交
1291 1292
 *
 * CONTEXT:
1293
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1294
 */
1295 1296
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1297
{
1298
	struct worker_pool *pool = pwq->pool;
1299

T
Tejun Heo 已提交
1300
	/* we own @work, set data and link */
1301
	set_work_pwq(work, pwq, extra_flags);
1302
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1303
	get_pwq(pwq);
1304 1305

	/*
1306 1307 1308
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1309 1310 1311
	 */
	smp_mb();

1312 1313
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1314 1315
}

1316 1317
/*
 * Test whether @work is being queued from another work executing on the
1318
 * same workqueue.
1319 1320 1321
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1322 1323 1324 1325 1326 1327 1328
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1329
	return worker && worker->current_pwq->wq == wq;
1330 1331
}

1332 1333 1334 1335 1336 1337 1338
/*
 * When queueing an unbound work item to a wq, prefer local CPU if allowed
 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
 * avoid perturbing sensitive tasks.
 */
static int wq_select_unbound_cpu(int cpu)
{
1339
	static bool printed_dbg_warning;
1340 1341
	int new_cpu;

1342 1343 1344 1345 1346 1347 1348 1349
	if (likely(!wq_debug_force_rr_cpu)) {
		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
			return cpu;
	} else if (!printed_dbg_warning) {
		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
		printed_dbg_warning = true;
	}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	if (cpumask_empty(wq_unbound_cpumask))
		return cpu;

	new_cpu = __this_cpu_read(wq_rr_cpu_last);
	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
	if (unlikely(new_cpu >= nr_cpu_ids)) {
		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
		if (unlikely(new_cpu >= nr_cpu_ids))
			return cpu;
	}
	__this_cpu_write(wq_rr_cpu_last, new_cpu);

	return new_cpu;
}

1365
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1366 1367
			 struct work_struct *work)
{
1368
	struct pool_workqueue *pwq;
1369
	struct worker_pool *last_pool;
1370
	struct list_head *worklist;
1371
	unsigned int work_flags;
1372
	unsigned int req_cpu = cpu;
1373 1374 1375 1376 1377 1378 1379

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
1380
	lockdep_assert_irqs_disabled();
L
Linus Torvalds 已提交
1381

1382
	debug_work_activate(work);
1383

1384
	/* if draining, only works from the same workqueue are allowed */
1385
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1386
	    WARN_ON_ONCE(!is_chained_work(wq)))
1387
		return;
1388
retry:
1389
	if (req_cpu == WORK_CPU_UNBOUND)
1390
		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1391

1392
	/* pwq which will be used unless @work is executing elsewhere */
1393
	if (!(wq->flags & WQ_UNBOUND))
1394
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1395 1396
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1397

1398 1399 1400 1401 1402 1403 1404 1405
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1406

1407
		spin_lock(&last_pool->lock);
1408

1409
		worker = find_worker_executing_work(last_pool, work);
1410

1411 1412
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1413
		} else {
1414 1415
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1416
			spin_lock(&pwq->pool->lock);
1417
		}
1418
	} else {
1419
		spin_lock(&pwq->pool->lock);
1420 1421
	}

1422 1423 1424 1425
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1426 1427
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1441 1442
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1443

1444
	if (WARN_ON(!list_empty(&work->entry))) {
1445
		spin_unlock(&pwq->pool->lock);
1446 1447
		return;
	}
1448

1449 1450
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1451

1452
	if (likely(pwq->nr_active < pwq->max_active)) {
1453
		trace_workqueue_activate_work(work);
1454 1455
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
T
Tejun Heo 已提交
1456 1457
		if (list_empty(worklist))
			pwq->pool->watchdog_ts = jiffies;
1458 1459
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1460
		worklist = &pwq->delayed_works;
1461
	}
1462

1463
	insert_work(pwq, work, worklist, work_flags);
1464

1465
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1466 1467
}

1468
/**
1469 1470
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1471 1472 1473
 * @wq: workqueue to use
 * @work: work to queue
 *
1474 1475
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1476 1477
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1478
 */
1479 1480
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1481
{
1482
	bool ret = false;
1483
	unsigned long flags;
1484

1485
	local_irq_save(flags);
1486

1487
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1488
		__queue_work(cpu, wq, work);
1489
		ret = true;
1490
	}
1491

1492
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1493 1494
	return ret;
}
1495
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1496

1497
void delayed_work_timer_fn(struct timer_list *t)
L
Linus Torvalds 已提交
1498
{
1499
	struct delayed_work *dwork = from_timer(dwork, t, timer);
L
Linus Torvalds 已提交
1500

1501
	/* should have been called from irqsafe timer with irq already off */
1502
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1503
}
1504
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1505

1506 1507
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1508
{
1509 1510 1511
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

1512
	WARN_ON_ONCE(!wq);
1513
	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1514 1515
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1528
	dwork->wq = wq;
1529
	dwork->cpu = cpu;
1530 1531
	timer->expires = jiffies + delay;

1532 1533 1534 1535
	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1536 1537
}

1538 1539 1540 1541
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1542
 * @dwork: work to queue
1543 1544
 * @delay: number of jiffies to wait before queueing
 *
1545
 * Return: %false if @work was already on a queue, %true otherwise.  If
1546 1547
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1548
 */
1549 1550
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1551
{
1552
	struct work_struct *work = &dwork->work;
1553
	bool ret = false;
1554
	unsigned long flags;
1555

1556 1557
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1558

1559
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560
		__queue_delayed_work(cpu, wq, dwork, delay);
1561
		ret = true;
1562
	}
1563

1564
	local_irq_restore(flags);
1565 1566
	return ret;
}
1567
EXPORT_SYMBOL(queue_delayed_work_on);
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1581
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1582 1583
 * pending and its timer was modified.
 *
1584
 * This function is safe to call from any context including IRQ handler.
1585 1586 1587 1588 1589 1590 1591
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1592

1593 1594 1595
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1596

1597 1598 1599
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1600
	}
1601 1602

	/* -ENOENT from try_to_grab_pending() becomes %true */
1603 1604
	return ret;
}
1605 1606
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1607 1608 1609 1610 1611 1612 1613 1614
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1615
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1616 1617
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1618
{
1619
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1620

1621 1622 1623 1624
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1625

1626
	/* can't use worker_set_flags(), also called from create_worker() */
1627
	worker->flags |= WORKER_IDLE;
1628
	pool->nr_idle++;
1629
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1630 1631

	/* idle_list is LIFO */
1632
	list_add(&worker->entry, &pool->idle_list);
1633

1634 1635
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1636

1637
	/*
1638
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1639
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1640 1641
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1642
	 */
1643
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1644
		     pool->nr_workers == pool->nr_idle &&
1645
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1655
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1656 1657 1658
 */
static void worker_leave_idle(struct worker *worker)
{
1659
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1660

1661 1662
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1663
	worker_clr_flags(worker, WORKER_IDLE);
1664
	pool->nr_idle--;
T
Tejun Heo 已提交
1665 1666 1667
	list_del_init(&worker->entry);
}

1668
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1669 1670 1671
{
	struct worker *worker;

1672
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1673 1674
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1675
		INIT_LIST_HEAD(&worker->scheduled);
1676
		INIT_LIST_HEAD(&worker->node);
1677 1678
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1679
	}
T
Tejun Heo 已提交
1680 1681 1682
	return worker;
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1716 1717 1718 1719 1720
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1721 1722 1723
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1724 1725 1726 1727 1728 1729
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1730
	mutex_lock(&pool->attach_mutex);
1731 1732
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1733
		detach_completion = pool->detach_completion;
1734
	mutex_unlock(&pool->attach_mutex);
1735

1736 1737 1738
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1739 1740 1741 1742
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1743 1744
/**
 * create_worker - create a new workqueue worker
1745
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1746
 *
1747
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1748 1749 1750 1751
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1752
 * Return:
T
Tejun Heo 已提交
1753 1754
 * Pointer to the newly created worker.
 */
1755
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1756 1757
{
	struct worker *worker = NULL;
1758
	int id = -1;
1759
	char id_buf[16];
T
Tejun Heo 已提交
1760

1761 1762
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1763 1764
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1765

1766
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1767 1768 1769
	if (!worker)
		goto fail;

1770
	worker->pool = pool;
T
Tejun Heo 已提交
1771 1772
	worker->id = id;

1773
	if (pool->cpu >= 0)
1774 1775
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1776
	else
1777 1778
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1779
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1780
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1781 1782 1783
	if (IS_ERR(worker->task))
		goto fail;

1784
	set_user_nice(worker->task, pool->attrs->nice);
1785
	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1786

1787
	/* successful, attach the worker to the pool */
1788
	worker_attach_to_pool(worker, pool);
1789

1790 1791 1792 1793 1794 1795 1796
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1797
	return worker;
1798

T
Tejun Heo 已提交
1799
fail:
1800
	if (id >= 0)
1801
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1802 1803 1804 1805 1806 1807 1808 1809
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1810 1811
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1812 1813
 *
 * CONTEXT:
1814
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1815 1816 1817
 */
static void destroy_worker(struct worker *worker)
{
1818
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1819

1820 1821
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1822
	/* sanity check frenzy */
1823
	if (WARN_ON(worker->current_work) ||
1824 1825
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1826
		return;
T
Tejun Heo 已提交
1827

1828 1829
	pool->nr_workers--;
	pool->nr_idle--;
1830

T
Tejun Heo 已提交
1831
	list_del_init(&worker->entry);
1832
	worker->flags |= WORKER_DIE;
1833
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1834 1835
}

1836
static void idle_worker_timeout(struct timer_list *t)
1837
{
1838
	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1839

1840
	spin_lock_irq(&pool->lock);
1841

1842
	while (too_many_workers(pool)) {
1843 1844 1845 1846
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1847
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848 1849
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1850
		if (time_before(jiffies, expires)) {
1851
			mod_timer(&pool->idle_timer, expires);
1852
			break;
1853
		}
1854 1855

		destroy_worker(worker);
1856 1857
	}

1858
	spin_unlock_irq(&pool->lock);
1859
}
1860

1861
static void send_mayday(struct work_struct *work)
1862
{
1863 1864
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1865

1866
	lockdep_assert_held(&wq_mayday_lock);
1867

1868
	if (!wq->rescuer)
1869
		return;
1870 1871

	/* mayday mayday mayday */
1872
	if (list_empty(&pwq->mayday_node)) {
1873 1874 1875 1876 1877 1878
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1879
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1880
		wake_up_process(wq->rescuer->task);
1881
	}
1882 1883
}

1884
static void pool_mayday_timeout(struct timer_list *t)
1885
{
1886
	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1887 1888
	struct work_struct *work;

1889 1890
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1891

1892
	if (need_to_create_worker(pool)) {
1893 1894 1895 1896 1897 1898
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1899
		list_for_each_entry(work, &pool->worklist, entry)
1900
			send_mayday(work);
L
Linus Torvalds 已提交
1901
	}
1902

1903 1904
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1905

1906
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1907 1908
}

1909 1910
/**
 * maybe_create_worker - create a new worker if necessary
1911
 * @pool: pool to create a new worker for
1912
 *
1913
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1914 1915
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1916
 * sent to all rescuers with works scheduled on @pool to resolve
1917 1918
 * possible allocation deadlock.
 *
1919 1920
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1921 1922
 *
 * LOCKING:
1923
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1924 1925 1926
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1927
static void maybe_create_worker(struct worker_pool *pool)
1928 1929
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1930
{
1931
restart:
1932
	spin_unlock_irq(&pool->lock);
1933

1934
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1935
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1936 1937

	while (true) {
1938
		if (create_worker(pool) || !need_to_create_worker(pool))
1939
			break;
L
Linus Torvalds 已提交
1940

1941
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1942

1943
		if (!need_to_create_worker(pool))
1944 1945 1946
			break;
	}

1947
	del_timer_sync(&pool->mayday_timer);
1948
	spin_lock_irq(&pool->lock);
1949 1950 1951 1952 1953
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1954
	if (need_to_create_worker(pool))
1955 1956 1957
		goto restart;
}

1958
/**
1959 1960
 * manage_workers - manage worker pool
 * @worker: self
1961
 *
1962
 * Assume the manager role and manage the worker pool @worker belongs
1963
 * to.  At any given time, there can be only zero or one manager per
1964
 * pool.  The exclusion is handled automatically by this function.
1965 1966 1967 1968
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1969 1970
 *
 * CONTEXT:
1971
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1972 1973
 * multiple times.  Does GFP_KERNEL allocations.
 *
1974
 * Return:
1975 1976 1977 1978
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1979
 */
1980
static bool manage_workers(struct worker *worker)
1981
{
1982
	struct worker_pool *pool = worker->pool;
1983

1984
	if (pool->flags & POOL_MANAGER_ACTIVE)
1985
		return false;
1986 1987

	pool->flags |= POOL_MANAGER_ACTIVE;
1988
	pool->manager = worker;
1989

1990
	maybe_create_worker(pool);
1991

1992
	pool->manager = NULL;
1993 1994
	pool->flags &= ~POOL_MANAGER_ACTIVE;
	wake_up(&wq_manager_wait);
1995
	return true;
1996 1997
}

1998 1999
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2000
 * @worker: self
2001 2002 2003 2004 2005 2006 2007 2008 2009
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2010
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2011
 */
T
Tejun Heo 已提交
2012
static void process_one_work(struct worker *worker, struct work_struct *work)
2013 2014
__releases(&pool->lock)
__acquires(&pool->lock)
2015
{
2016
	struct pool_workqueue *pwq = get_work_pwq(work);
2017
	struct worker_pool *pool = worker->pool;
2018
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2019
	int work_color;
2020
	struct worker *collision;
2021 2022 2023 2024 2025 2026 2027 2028
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2029 2030 2031
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2032
#endif
2033
	/* ensure we're on the correct CPU */
2034
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2035
		     raw_smp_processor_id() != pool->cpu);
2036

2037 2038 2039 2040 2041 2042
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2043
	collision = find_worker_executing_work(pool, work);
2044 2045 2046 2047 2048
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2049
	/* claim and dequeue */
2050
	debug_work_deactivate(work);
2051
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2052
	worker->current_work = work;
2053
	worker->current_func = work->func;
2054
	worker->current_pwq = pwq;
2055
	work_color = get_work_color(work);
2056

2057 2058
	list_del_init(&work->entry);

2059
	/*
2060 2061 2062 2063
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
2064 2065
	 */
	if (unlikely(cpu_intensive))
2066
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2067

2068
	/*
2069 2070 2071 2072
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2073
	 * UNBOUND and CPU_INTENSIVE ones.
2074
	 */
2075
	if (need_more_worker(pool))
2076
		wake_up_worker(pool);
2077

2078
	/*
2079
	 * Record the last pool and clear PENDING which should be the last
2080
	 * update to @work.  Also, do this inside @pool->lock so that
2081 2082
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2083
	 */
2084
	set_work_pool_and_clear_pending(work, pool->id);
2085

2086
	spin_unlock_irq(&pool->lock);
2087

2088
	lock_map_acquire(&pwq->wq->lockdep_map);
2089
	lock_map_acquire(&lockdep_map);
2090
	/*
2091 2092
	 * Strictly speaking we should mark the invariant state without holding
	 * any locks, that is, before these two lock_map_acquire()'s.
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	 *
	 * However, that would result in:
	 *
	 *   A(W1)
	 *   WFC(C)
	 *		A(W1)
	 *		C(C)
	 *
	 * Which would create W1->C->W1 dependencies, even though there is no
	 * actual deadlock possible. There are two solutions, using a
	 * read-recursive acquire on the work(queue) 'locks', but this will then
2104
	 * hit the lockdep limitation on recursive locks, or simply discard
2105 2106 2107 2108 2109 2110
	 * these locks.
	 *
	 * AFAICT there is no possible deadlock scenario between the
	 * flush_work() and complete() primitives (except for single-threaded
	 * workqueues), so hiding them isn't a problem.
	 */
2111
	lockdep_invariant_state(true);
2112
	trace_workqueue_execute_start(work);
2113
	worker->current_func(work);
2114 2115 2116 2117 2118
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2119
	lock_map_release(&lockdep_map);
2120
	lock_map_release(&pwq->wq->lockdep_map);
2121 2122

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2123 2124
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2125 2126
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2127 2128 2129 2130
		debug_show_held_locks(current);
		dump_stack();
	}

2131 2132 2133 2134 2135
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2136 2137
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2138
	 */
2139
	cond_resched_rcu_qs();
2140

2141
	spin_lock_irq(&pool->lock);
2142

2143 2144 2145 2146
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2147
	/* we're done with it, release */
2148
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2149
	worker->current_work = NULL;
2150
	worker->current_func = NULL;
2151
	worker->current_pwq = NULL;
2152
	worker->desc_valid = false;
2153
	pwq_dec_nr_in_flight(pwq, work_color);
2154 2155
}

2156 2157 2158 2159 2160 2161 2162 2163 2164
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2165
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2166 2167 2168
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2169
{
2170 2171
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2172
						struct work_struct, entry);
T
Tejun Heo 已提交
2173
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2174 2175 2176
	}
}

T
Tejun Heo 已提交
2177 2178
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2179
 * @__worker: self
T
Tejun Heo 已提交
2180
 *
2181 2182 2183 2184 2185
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2186 2187
 *
 * Return: 0
T
Tejun Heo 已提交
2188
 */
T
Tejun Heo 已提交
2189
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2190
{
T
Tejun Heo 已提交
2191
	struct worker *worker = __worker;
2192
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2193

2194 2195
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2196
woke_up:
2197
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2198

2199 2200
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2201
		spin_unlock_irq(&pool->lock);
2202 2203
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2204 2205

		set_task_comm(worker->task, "kworker/dying");
2206
		ida_simple_remove(&pool->worker_ida, worker->id);
2207 2208
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2209
		return 0;
T
Tejun Heo 已提交
2210
	}
2211

T
Tejun Heo 已提交
2212
	worker_leave_idle(worker);
2213
recheck:
2214
	/* no more worker necessary? */
2215
	if (!need_more_worker(pool))
2216 2217 2218
		goto sleep;

	/* do we need to manage? */
2219
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2220 2221
		goto recheck;

T
Tejun Heo 已提交
2222 2223 2224 2225 2226
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2227
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2228

2229
	/*
2230 2231 2232 2233 2234
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2235
	 */
2236
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2237 2238

	do {
T
Tejun Heo 已提交
2239
		struct work_struct *work =
2240
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2241 2242
					 struct work_struct, entry);

T
Tejun Heo 已提交
2243 2244
		pool->watchdog_ts = jiffies;

T
Tejun Heo 已提交
2245 2246 2247 2248
		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2249
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2250 2251 2252
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2253
		}
2254
	} while (keep_working(pool));
2255

2256
	worker_set_flags(worker, WORKER_PREP);
2257
sleep:
T
Tejun Heo 已提交
2258
	/*
2259 2260 2261 2262 2263
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2264 2265
	 */
	worker_enter_idle(worker);
P
Peter Zijlstra 已提交
2266
	__set_current_state(TASK_IDLE);
2267
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2268 2269
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2270 2271
}

2272 2273
/**
 * rescuer_thread - the rescuer thread function
2274
 * @__rescuer: self
2275 2276
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2277
 * workqueue which has WQ_MEM_RECLAIM set.
2278
 *
2279
 * Regular work processing on a pool may block trying to create a new
2280 2281 2282 2283 2284
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2285 2286
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2287 2288 2289
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2290 2291
 *
 * Return: 0
2292
 */
2293
static int rescuer_thread(void *__rescuer)
2294
{
2295 2296
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2297
	struct list_head *scheduled = &rescuer->scheduled;
2298
	bool should_stop;
2299 2300

	set_user_nice(current, RESCUER_NICE_LEVEL);
2301 2302 2303 2304 2305 2306

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2307
repeat:
P
Peter Zijlstra 已提交
2308
	set_current_state(TASK_IDLE);
2309

2310 2311 2312 2313 2314 2315 2316 2317 2318
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2319

2320
	/* see whether any pwq is asking for help */
2321
	spin_lock_irq(&wq_mayday_lock);
2322 2323 2324 2325

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2326
		struct worker_pool *pool = pwq->pool;
2327
		struct work_struct *work, *n;
T
Tejun Heo 已提交
2328
		bool first = true;
2329 2330

		__set_current_state(TASK_RUNNING);
2331 2332
		list_del_init(&pwq->mayday_node);

2333
		spin_unlock_irq(&wq_mayday_lock);
2334

2335 2336 2337
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2338
		rescuer->pool = pool;
2339 2340 2341 2342 2343

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2344
		WARN_ON_ONCE(!list_empty(scheduled));
T
Tejun Heo 已提交
2345 2346 2347 2348
		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
			if (get_work_pwq(work) == pwq) {
				if (first)
					pool->watchdog_ts = jiffies;
2349
				move_linked_works(work, scheduled, &n);
T
Tejun Heo 已提交
2350 2351 2352
			}
			first = false;
		}
2353

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2373

2374 2375
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2376
		 * go away while we're still attached to it.
2377 2378 2379
		 */
		put_pwq(pwq);

2380
		/*
2381
		 * Leave this pool.  If need_more_worker() is %true, notify a
2382 2383 2384
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2385
		if (need_more_worker(pool))
2386
			wake_up_worker(pool);
2387

2388
		rescuer->pool = NULL;
2389 2390 2391 2392 2393
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2394 2395
	}

2396
	spin_unlock_irq(&wq_mayday_lock);
2397

2398 2399 2400 2401 2402 2403
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2404 2405
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2406 2407
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2408 2409
}

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
/**
 * check_flush_dependency - check for flush dependency sanity
 * @target_wq: workqueue being flushed
 * @target_work: work item being flushed (NULL for workqueue flushes)
 *
 * %current is trying to flush the whole @target_wq or @target_work on it.
 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
 * reclaiming memory or running on a workqueue which doesn't have
 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
 * a deadlock.
 */
static void check_flush_dependency(struct workqueue_struct *target_wq,
				   struct work_struct *target_work)
{
	work_func_t target_func = target_work ? target_work->func : NULL;
	struct worker *worker;

	if (target_wq->flags & WQ_MEM_RECLAIM)
		return;

	worker = current_wq_worker();

	WARN_ONCE(current->flags & PF_MEMALLOC,
		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
		  current->pid, current->comm, target_wq->name, target_func);
2435 2436
	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2437 2438 2439 2440 2441
		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
		  worker->current_pwq->wq->name, worker->current_func,
		  target_wq->name, target_func);
}

O
Oleg Nesterov 已提交
2442 2443 2444
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
2445
	struct task_struct	*task;	/* purely informational */
O
Oleg Nesterov 已提交
2446 2447 2448 2449 2450 2451 2452 2453
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2454 2455
/**
 * insert_wq_barrier - insert a barrier work
2456
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2457
 * @barr: wq_barrier to insert
2458 2459
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2460
 *
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2473
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2474 2475
 *
 * CONTEXT:
2476
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2477
 */
2478
static void insert_wq_barrier(struct pool_workqueue *pwq,
2479 2480
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2481
{
2482 2483 2484
	struct list_head *head;
	unsigned int linked = 0;

2485
	/*
2486
	 * debugobject calls are safe here even with pool->lock locked
2487 2488 2489 2490
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2491
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2492
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2493

2494 2495
	init_completion_map(&barr->done, &target->lockdep_map);

2496
	barr->task = current;
2497

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2513
	debug_work_activate(&barr->work);
2514
	insert_work(pwq, &barr->work, head,
2515
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2516 2517
}

2518
/**
2519
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2520 2521 2522 2523
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2524
 * Prepare pwqs for workqueue flushing.
2525
 *
2526 2527 2528 2529 2530
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2531 2532 2533 2534 2535 2536 2537
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2538
 * If @work_color is non-negative, all pwqs should have the same
2539 2540 2541 2542
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2543
 * mutex_lock(wq->mutex).
2544
 *
2545
 * Return:
2546 2547 2548
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2549
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2550
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2551
{
2552
	bool wait = false;
2553
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2554

2555
	if (flush_color >= 0) {
2556
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2557
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2558
	}
2559

2560
	for_each_pwq(pwq, wq) {
2561
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2562

2563
		spin_lock_irq(&pool->lock);
2564

2565
		if (flush_color >= 0) {
2566
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2567

2568 2569 2570
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2571 2572 2573
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2574

2575
		if (work_color >= 0) {
2576
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2577
			pwq->work_color = work_color;
2578
		}
L
Linus Torvalds 已提交
2579

2580
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2581
	}
2582

2583
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2584
		complete(&wq->first_flusher->done);
2585

2586
	return wait;
L
Linus Torvalds 已提交
2587 2588
}

2589
/**
L
Linus Torvalds 已提交
2590
 * flush_workqueue - ensure that any scheduled work has run to completion.
2591
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2592
 *
2593 2594
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2595
 */
2596
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2597
{
2598 2599 2600
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
2601
		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2602 2603
	};
	int next_color;
L
Linus Torvalds 已提交
2604

2605 2606 2607
	if (WARN_ON(!wq_online))
		return;

2608
	mutex_lock(&wq->mutex);
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2621
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2622 2623 2624 2625 2626
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2627
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2628 2629 2630

			wq->first_flusher = &this_flusher;

2631
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2632 2633 2634 2635 2636 2637 2638 2639
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2640
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2641
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2642
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2653 2654
	check_flush_dependency(wq, NULL);

2655
	mutex_unlock(&wq->mutex);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2668
	mutex_lock(&wq->mutex);
2669

2670 2671 2672 2673
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2674 2675
	wq->first_flusher = NULL;

2676 2677
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2690 2691
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2711
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2712 2713 2714
		}

		if (list_empty(&wq->flusher_queue)) {
2715
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2716 2717 2718 2719 2720
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2721
		 * the new first flusher and arm pwqs.
2722
		 */
2723 2724
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2725 2726 2727 2728

		list_del_init(&next->list);
		wq->first_flusher = next;

2729
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2740
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2741
}
2742
EXPORT_SYMBOL(flush_workqueue);
L
Linus Torvalds 已提交
2743

2744 2745 2746 2747 2748 2749 2750
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
C
Chen Hanxiao 已提交
2751
 * repeatedly until it becomes empty.  The number of flushing is determined
2752 2753 2754 2755 2756 2757
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2758
	struct pool_workqueue *pwq;
2759 2760 2761 2762

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2763
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2764
	 */
2765
	mutex_lock(&wq->mutex);
2766
	if (!wq->nr_drainers++)
2767
		wq->flags |= __WQ_DRAINING;
2768
	mutex_unlock(&wq->mutex);
2769 2770 2771
reflush:
	flush_workqueue(wq);

2772
	mutex_lock(&wq->mutex);
2773

2774
	for_each_pwq(pwq, wq) {
2775
		bool drained;
2776

2777
		spin_lock_irq(&pwq->pool->lock);
2778
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2779
		spin_unlock_irq(&pwq->pool->lock);
2780 2781

		if (drained)
2782 2783 2784 2785
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2786
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2787
				wq->name, flush_cnt);
2788

2789
		mutex_unlock(&wq->mutex);
2790 2791 2792 2793
		goto reflush;
	}

	if (!--wq->nr_drainers)
2794
		wq->flags &= ~__WQ_DRAINING;
2795
	mutex_unlock(&wq->mutex);
2796 2797 2798
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2799
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2800
{
2801
	struct worker *worker = NULL;
2802
	struct worker_pool *pool;
2803
	struct pool_workqueue *pwq;
2804 2805

	might_sleep();
2806 2807

	local_irq_disable();
2808
	pool = get_work_pool(work);
2809 2810
	if (!pool) {
		local_irq_enable();
2811
		return false;
2812
	}
2813

2814
	spin_lock(&pool->lock);
2815
	/* see the comment in try_to_grab_pending() with the same code */
2816 2817 2818
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2819
			goto already_gone;
2820
	} else {
2821
		worker = find_worker_executing_work(pool, work);
2822
		if (!worker)
T
Tejun Heo 已提交
2823
			goto already_gone;
2824
		pwq = worker->current_pwq;
2825
	}
2826

2827 2828
	check_flush_dependency(pwq->wq, work);

2829
	insert_wq_barrier(pwq, barr, work, worker);
2830
	spin_unlock_irq(&pool->lock);
2831

2832
	/*
2833 2834 2835 2836 2837 2838 2839
	 * Force a lock recursion deadlock when using flush_work() inside a
	 * single-threaded or rescuer equipped workqueue.
	 *
	 * For single threaded workqueues the deadlock happens when the work
	 * is after the work issuing the flush_work(). For rescuer equipped
	 * workqueues the deadlock happens when the rescuer stalls, blocking
	 * forward progress.
2840
	 */
2841
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2842
		lock_map_acquire(&pwq->wq->lockdep_map);
2843 2844
		lock_map_release(&pwq->wq->lockdep_map);
	}
2845

2846
	return true;
T
Tejun Heo 已提交
2847
already_gone:
2848
	spin_unlock_irq(&pool->lock);
2849
	return false;
2850
}
2851 2852 2853 2854 2855

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2856 2857
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2858
 *
2859
 * Return:
2860 2861 2862 2863 2864
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2865 2866
	struct wq_barrier barr;

2867 2868 2869
	if (WARN_ON(!wq_online))
		return false;

2870 2871 2872 2873 2874 2875 2876
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2877
}
2878
EXPORT_SYMBOL_GPL(flush_work);
2879

2880
struct cwt_wait {
2881
	wait_queue_entry_t		wait;
2882 2883 2884
	struct work_struct	*work;
};

2885
static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2886 2887 2888 2889 2890 2891 2892 2893
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2894
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2895
{
2896
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2897
	unsigned long flags;
2898 2899 2900
	int ret;

	do {
2901 2902
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2917
		 */
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2931 2932
	} while (unlikely(ret < 0));

2933 2934 2935 2936
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2937 2938 2939 2940 2941 2942 2943
	/*
	 * This allows canceling during early boot.  We know that @work
	 * isn't executing.
	 */
	if (wq_online)
		flush_work(work);

2944
	clear_work_data(work);
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2955 2956 2957
	return ret;
}

2958
/**
2959 2960
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2961
 *
2962 2963 2964 2965
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2966
 *
2967 2968
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2969
 *
2970
 * The caller must ensure that the workqueue on which @work was last
2971
 * queued can't be destroyed before this function returns.
2972
 *
2973
 * Return:
2974
 * %true if @work was pending, %false otherwise.
2975
 */
2976
bool cancel_work_sync(struct work_struct *work)
2977
{
2978
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2979
}
2980
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2981

2982
/**
2983 2984
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2985
 *
2986 2987 2988
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2989
 *
2990
 * Return:
2991 2992
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2993
 */
2994 2995
bool flush_delayed_work(struct delayed_work *dwork)
{
2996
	local_irq_disable();
2997
	if (del_timer_sync(&dwork->timer))
2998
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2999
	local_irq_enable();
3000 3001 3002 3003
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

J
Jens Axboe 已提交
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
static bool __cancel_work(struct work_struct *work, bool is_dwork)
{
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(work, is_dwork, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
	local_irq_restore(flags);
	return ret;
}

/*
 * See cancel_delayed_work()
 */
bool cancel_work(struct work_struct *work)
{
	return __cancel_work(work, false);
}

3029
/**
3030 3031
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
3032
 *
3033 3034 3035 3036 3037 3038 3039 3040 3041
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
3042
 *
3043
 * This function is safe to call from any context including IRQ handler.
3044
 */
3045
bool cancel_delayed_work(struct delayed_work *dwork)
3046
{
J
Jens Axboe 已提交
3047
	return __cancel_work(&dwork->work, true);
3048
}
3049
EXPORT_SYMBOL(cancel_delayed_work);
3050

3051 3052 3053 3054 3055 3056
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
3057
 * Return:
3058 3059 3060
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3061
{
3062
	return __cancel_work_timer(&dwork->work, true);
3063
}
3064
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3065

3066
/**
3067
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3068 3069
 * @func: the function to call
 *
3070 3071
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3072
 * schedule_on_each_cpu() is very slow.
3073
 *
3074
 * Return:
3075
 * 0 on success, -errno on failure.
3076
 */
3077
int schedule_on_each_cpu(work_func_t func)
3078 3079
{
	int cpu;
3080
	struct work_struct __percpu *works;
3081

3082 3083
	works = alloc_percpu(struct work_struct);
	if (!works)
3084
		return -ENOMEM;
3085

3086 3087
	get_online_cpus();

3088
	for_each_online_cpu(cpu) {
3089 3090 3091
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3092
		schedule_work_on(cpu, work);
3093
	}
3094 3095 3096 3097

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3098
	put_online_cpus();
3099
	free_percpu(works);
3100 3101 3102
	return 0;
}

3103 3104 3105 3106 3107 3108 3109 3110 3111
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3112
 * Return:	0 - function was executed
3113 3114
 *		1 - function was scheduled for execution
 */
3115
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3116 3117
{
	if (!in_interrupt()) {
3118
		fn(&ew->work);
3119 3120 3121
		return 0;
	}

3122
	INIT_WORK(&ew->work, fn);
3123 3124 3125 3126 3127 3128
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3129 3130 3131
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
3132
 *
3133
 * Undo alloc_workqueue_attrs().
3134
 */
3135
void free_workqueue_attrs(struct workqueue_attrs *attrs)
3136
{
3137 3138 3139 3140
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
3141 3142
}

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3153
{
3154
	struct workqueue_attrs *attrs;
3155

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_copy(attrs->cpumask, cpu_possible_mask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
3167 3168
}

3169 3170
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
3171
{
3172 3173 3174 3175 3176 3177 3178 3179
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3180 3181
}

3182 3183
/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3184
{
3185
	u32 hash = 0;
3186

3187 3188 3189 3190
	hash = jhash_1word(attrs->nice, hash);
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	return hash;
3191 3192
}

3193 3194 3195
/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
3196
{
3197 3198 3199 3200 3201
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
3202 3203
}

3204 3205 3206 3207
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
3208
 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3209 3210 3211 3212 3213 3214
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
 */
static int init_worker_pool(struct worker_pool *pool)
3215
{
3216 3217 3218 3219 3220
	spin_lock_init(&pool->lock);
	pool->id = -1;
	pool->cpu = -1;
	pool->node = NUMA_NO_NODE;
	pool->flags |= POOL_DISASSOCIATED;
T
Tejun Heo 已提交
3221
	pool->watchdog_ts = jiffies;
3222 3223 3224
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);
3225

3226
	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3227

3228
	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3229

3230 3231
	mutex_init(&pool->attach_mutex);
	INIT_LIST_HEAD(&pool->workers);
3232

3233 3234 3235
	ida_init(&pool->worker_ida);
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;
3236

3237 3238 3239 3240 3241
	/* shouldn't fail above this point */
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3242 3243
}

3244
static void rcu_free_wq(struct rcu_head *rcu)
3245
{
3246 3247
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);
3248

3249 3250
	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
3251
	else
3252
		free_workqueue_attrs(wq->unbound_attrs);
3253

3254 3255
	kfree(wq->rescuer);
	kfree(wq);
3256 3257
}

3258
static void rcu_free_pool(struct rcu_head *rcu)
3259
{
3260
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3261

3262 3263 3264
	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
3265 3266
}

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
 *
 * Should be called with wq_pool_mutex held.
 */
static void put_unbound_pool(struct worker_pool *pool)
3279
{
3280 3281
	DECLARE_COMPLETION_ONSTACK(detach_completion);
	struct worker *worker;
3282

3283
	lockdep_assert_held(&wq_pool_mutex);
3284

3285 3286
	if (--pool->refcnt)
		return;
3287

3288 3289 3290 3291
	/* sanity checks */
	if (WARN_ON(!(pool->cpu < 0)) ||
	    WARN_ON(!list_empty(&pool->worklist)))
		return;
3292

3293 3294 3295 3296
	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);
3297

3298
	/*
3299 3300 3301
	 * Become the manager and destroy all workers.  This prevents
	 * @pool's workers from blocking on attach_mutex.  We're the last
	 * manager and @pool gets freed with the flag set.
3302 3303
	 */
	spin_lock_irq(&pool->lock);
3304 3305 3306 3307
	wait_event_lock_irq(wq_manager_wait,
			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
	pool->flags |= POOL_MANAGER_ACTIVE;

3308 3309 3310 3311
	while ((worker = first_idle_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3312

3313 3314 3315 3316
	mutex_lock(&pool->attach_mutex);
	if (!list_empty(&pool->workers))
		pool->detach_completion = &detach_completion;
	mutex_unlock(&pool->attach_mutex);
3317

3318 3319
	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);
3320

3321 3322 3323
	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);
3324

3325 3326
	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
3327 3328 3329
}

/**
3330 3331
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
3332
 *
3333 3334 3335 3336
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.
3337
 *
3338
 * Should be called with wq_pool_mutex held.
3339
 *
3340 3341
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3342
 */
3343
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3344
{
3345 3346 3347
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	int node;
3348
	int target_node = NUMA_NO_NODE;
3349

3350
	lockdep_assert_held(&wq_pool_mutex);
3351

3352 3353 3354 3355 3356 3357 3358
	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			return pool;
		}
	}
3359

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				target_node = node;
				break;
			}
		}
	}

3371
	/* nope, create a new one */
3372
	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3373 3374 3375 3376 3377
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
	copy_workqueue_attrs(pool->attrs, attrs);
3378
	pool->node = target_node;
3379 3380

	/*
3381 3382
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
3383
	 */
3384
	pool->attrs->no_numa = false;
3385

3386 3387
	if (worker_pool_assign_id(pool) < 0)
		goto fail;
3388

3389
	/* create and start the initial worker */
3390
	if (wq_online && !create_worker(pool))
3391
		goto fail;
3392

3393 3394
	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3395

3396 3397 3398 3399 3400
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
3401 3402
}

3403
static void rcu_free_pwq(struct rcu_head *rcu)
T
Tejun Heo 已提交
3404
{
3405 3406
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
T
Tejun Heo 已提交
3407 3408
}

3409 3410 3411
/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
T
Tejun Heo 已提交
3412
 */
3413
static void pwq_unbound_release_workfn(struct work_struct *work)
T
Tejun Heo 已提交
3414
{
3415 3416 3417 3418 3419
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	bool is_last;
T
Tejun Heo 已提交
3420

3421 3422
	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;
T
Tejun Heo 已提交
3423

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	mutex_lock(&wq->mutex);
	list_del_rcu(&pwq->pwqs_node);
	is_last = list_empty(&wq->pwqs);
	mutex_unlock(&wq->mutex);

	mutex_lock(&wq_pool_mutex);
	put_unbound_pool(pool);
	mutex_unlock(&wq_pool_mutex);

	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
T
Tejun Heo 已提交
3434

3435
	/*
3436 3437
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Schedule RCU free.
3438
	 */
3439 3440
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
3441 3442
}

T
Tejun Heo 已提交
3443
/**
3444 3445
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
 * @pwq: target pool_workqueue
3446
 *
3447 3448 3449
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
T
Tejun Heo 已提交
3450
 */
3451
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3452
{
3453 3454
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;
3455
	unsigned long flags;
3456

3457 3458
	/* for @wq->saved_max_active */
	lockdep_assert_held(&wq->mutex);
3459

3460 3461 3462
	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;
T
Tejun Heo 已提交
3463

3464 3465
	/* this function can be called during early boot w/ irq disabled */
	spin_lock_irqsave(&pwq->pool->lock, flags);
3466

3467 3468 3469 3470 3471 3472 3473
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
		pwq->max_active = wq->saved_max_active;
3474

3475 3476 3477
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3478

3479 3480 3481 3482 3483 3484 3485 3486
		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
	} else {
		pwq->max_active = 0;
	}
3487

3488
	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3489 3490
}

3491 3492 3493
/* initialize newly alloced @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3494
{
3495
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3496

3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	memset(pwq, 0, sizeof(*pwq));

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
	pwq->refcnt = 1;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->pwqs_node);
	INIT_LIST_HEAD(&pwq->mayday_node);
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3507 3508
}

3509 3510
/* sync @pwq with the current state of its associated wq and link it */
static void link_pwq(struct pool_workqueue *pwq)
3511
{
3512
	struct workqueue_struct *wq = pwq->wq;
3513

3514
	lockdep_assert_held(&wq->mutex);
3515

3516 3517
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
3518 3519
		return;

3520 3521
	/* set the matching work_color */
	pwq->work_color = wq->work_color;
3522

3523 3524
	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);
3525

3526 3527 3528
	/* link in @pwq */
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
}
3529

3530 3531 3532 3533 3534 3535
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;
3536

3537
	lockdep_assert_held(&wq_pool_mutex);
3538

3539 3540 3541
	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;
3542

3543 3544 3545 3546 3547
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
	}
3548

3549 3550 3551
	init_pwq(pwq, wq, pool);
	return pwq;
}
3552 3553

/**
3554
 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3555
 * @attrs: the wq_attrs of the default pwq of the target workqueue
3556 3557 3558
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
3559
 *
3560 3561 3562
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.
3563
 *
3564 3565 3566 3567
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
3568
 *
3569 3570 3571 3572 3573
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3574
 */
3575 3576
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
3577
{
3578 3579
	if (!wq_numa_enabled || attrs->no_numa)
		goto use_dfl;
3580

3581 3582 3583 3584
	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);
3585

3586 3587
	if (cpumask_empty(cpumask))
		goto use_dfl;
3588 3589 3590

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3591 3592 3593 3594 3595 3596 3597

	if (cpumask_empty(cpumask)) {
		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
				"possible intersect\n");
		return false;
	}

3598 3599 3600 3601 3602 3603 3604
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3605 3606 3607 3608 3609 3610 3611
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

3612
	lockdep_assert_held(&wq_pool_mutex);
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3623 3624 3625 3626
/* context to store the prepared attrs & pwqs before applying */
struct apply_wqattrs_ctx {
	struct workqueue_struct	*wq;		/* target workqueue */
	struct workqueue_attrs	*attrs;		/* attrs to apply */
3627
	struct list_head	list;		/* queued for batching commit */
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
	struct pool_workqueue	*dfl_pwq;
	struct pool_workqueue	*pwq_tbl[];
};

/* free the resources after success or abort */
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
{
	if (ctx) {
		int node;

		for_each_node(node)
			put_pwq_unlocked(ctx->pwq_tbl[node]);
		put_pwq_unlocked(ctx->dfl_pwq);

		free_workqueue_attrs(ctx->attrs);

		kfree(ctx);
	}
}

/* allocate the attrs and pwqs for later installation */
static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct *wq,
		      const struct workqueue_attrs *attrs)
3652
{
3653
	struct apply_wqattrs_ctx *ctx;
3654
	struct workqueue_attrs *new_attrs, *tmp_attrs;
3655
	int node;
3656

3657
	lockdep_assert_held(&wq_pool_mutex);
3658

3659 3660
	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
		      GFP_KERNEL);
3661

3662
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3663
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3664 3665
	if (!ctx || !new_attrs || !tmp_attrs)
		goto out_free;
3666

3667 3668 3669 3670 3671
	/*
	 * Calculate the attrs of the default pwq.
	 * If the user configured cpumask doesn't overlap with the
	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
	 */
3672
	copy_workqueue_attrs(new_attrs, attrs);
3673
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3674 3675
	if (unlikely(cpumask_empty(new_attrs->cpumask)))
		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3676

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
3689 3690 3691
	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!ctx->dfl_pwq)
		goto out_free;
3692 3693

	for_each_node(node) {
3694
		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3695 3696 3697
			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!ctx->pwq_tbl[node])
				goto out_free;
3698
		} else {
3699 3700
			ctx->dfl_pwq->refcnt++;
			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3701 3702 3703
		}
	}

3704 3705 3706
	/* save the user configured attrs and sanitize it. */
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3707
	ctx->attrs = new_attrs;
3708

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
	ctx->wq = wq;
	free_workqueue_attrs(tmp_attrs);
	return ctx;

out_free:
	free_workqueue_attrs(tmp_attrs);
	free_workqueue_attrs(new_attrs);
	apply_wqattrs_cleanup(ctx);
	return NULL;
}

/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
{
	int node;
3724

3725
	/* all pwqs have been created successfully, let's install'em */
3726
	mutex_lock(&ctx->wq->mutex);
3727

3728
	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3729 3730

	/* save the previous pwq and install the new one */
3731
	for_each_node(node)
3732 3733
		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
							  ctx->pwq_tbl[node]);
3734 3735

	/* @dfl_pwq might not have been used, ensure it's linked */
3736 3737
	link_pwq(ctx->dfl_pwq);
	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3738

3739 3740
	mutex_unlock(&ctx->wq->mutex);
}
3741

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
static void apply_wqattrs_lock(void)
{
	/* CPUs should stay stable across pwq creations and installations */
	get_online_cpus();
	mutex_lock(&wq_pool_mutex);
}

static void apply_wqattrs_unlock(void)
{
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
}

static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
3757 3758
{
	struct apply_wqattrs_ctx *ctx;
3759

3760 3761 3762
	/* only unbound workqueues can change attributes */
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;
3763

3764
	/* creating multiple pwqs breaks ordering guarantee */
3765 3766 3767 3768 3769 3770
	if (!list_empty(&wq->pwqs)) {
		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
			return -EINVAL;

		wq->flags &= ~__WQ_ORDERED;
	}
3771 3772

	ctx = apply_wqattrs_prepare(wq, attrs);
3773 3774
	if (!ctx)
		return -ENOMEM;
3775 3776

	/* the ctx has been prepared successfully, let's commit it */
3777
	apply_wqattrs_commit(ctx);
3778 3779
	apply_wqattrs_cleanup(ctx);

3780
	return 0;
3781 3782
}

3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	int ret;

	apply_wqattrs_lock();
	ret = apply_workqueue_attrs_locked(wq, attrs);
	apply_wqattrs_unlock();

	return ret;
}

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

3844 3845
	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
	    wq->unbound_attrs->no_numa)
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
3861 3862 3863
	 * different from the default pwq's, we need to compare it to @pwq's
	 * and create a new one if they don't match.  If the target cpumask
	 * equals the default pwq's, the default pwq should be used.
3864
	 */
3865
	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3866
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3867
			return;
3868
	} else {
3869
		goto use_dfl_pwq;
3870 3871 3872 3873 3874
	}

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3875 3876
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3877
		goto use_dfl_pwq;
3878 3879
	}

3880
	/* Install the new pwq. */
3881 3882 3883 3884 3885
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
3886
	mutex_lock(&wq->mutex);
3887 3888 3889 3890 3891 3892 3893 3894 3895
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3896
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3897
{
3898
	bool highpri = wq->flags & WQ_HIGHPRI;
3899
	int cpu, ret;
3900 3901

	if (!(wq->flags & WQ_UNBOUND)) {
3902 3903
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3904 3905 3906
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3907 3908
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3909
			struct worker_pool *cpu_pools =
3910
				per_cpu(cpu_worker_pools, cpu);
3911

3912 3913 3914
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3915
			link_pwq(pwq);
3916
			mutex_unlock(&wq->mutex);
3917
		}
3918
		return 0;
3919 3920 3921 3922 3923 3924 3925
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3926
	} else {
3927
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3928
	}
T
Tejun Heo 已提交
3929 3930
}

3931 3932
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3933
{
3934 3935 3936
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3937 3938
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3939

3940
	return clamp_val(max_active, 1, lim);
3941 3942
}

3943
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3944 3945 3946
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3947
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3948
{
3949
	size_t tbl_size = 0;
3950
	va_list args;
L
Linus Torvalds 已提交
3951
	struct workqueue_struct *wq;
3952
	struct pool_workqueue *pwq;
3953

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	/*
	 * Unbound && max_active == 1 used to imply ordered, which is no
	 * longer the case on NUMA machines due to per-node pools.  While
	 * alloc_ordered_workqueue() is the right way to create an ordered
	 * workqueue, keep the previous behavior to avoid subtle breakages
	 * on NUMA.
	 */
	if ((flags & WQ_UNBOUND) && max_active == 1)
		flags |= __WQ_ORDERED;

3964 3965 3966 3967
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

3968
	/* allocate wq and format name */
3969
	if (flags & WQ_UNBOUND)
3970
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3971 3972

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3973
	if (!wq)
3974
		return NULL;
3975

3976 3977 3978 3979 3980 3981
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

3982 3983
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3984
	va_end(args);
L
Linus Torvalds 已提交
3985

3986
	max_active = max_active ?: WQ_DFL_ACTIVE;
3987
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3988

3989
	/* init wq */
3990
	wq->flags = flags;
3991
	wq->saved_max_active = max_active;
3992
	mutex_init(&wq->mutex);
3993
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3994
	INIT_LIST_HEAD(&wq->pwqs);
3995 3996
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3997
	INIT_LIST_HEAD(&wq->maydays);
3998

3999
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4000
	INIT_LIST_HEAD(&wq->list);
4001

4002
	if (alloc_and_link_pwqs(wq) < 0)
4003
		goto err_free_wq;
T
Tejun Heo 已提交
4004

4005 4006 4007 4008 4009
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4010 4011
		struct worker *rescuer;

4012
		rescuer = alloc_worker(NUMA_NO_NODE);
4013
		if (!rescuer)
4014
			goto err_destroy;
4015

4016 4017
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4018
					       wq->name);
4019 4020 4021 4022
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4023

4024
		wq->rescuer = rescuer;
4025
		kthread_bind_mask(rescuer->task, cpu_possible_mask);
4026
		wake_up_process(rescuer->task);
4027 4028
	}

4029 4030 4031
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4032
	/*
4033 4034 4035
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4036
	 */
4037
	mutex_lock(&wq_pool_mutex);
4038

4039
	mutex_lock(&wq->mutex);
4040 4041
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4042
	mutex_unlock(&wq->mutex);
4043

4044
	list_add_tail_rcu(&wq->list, &workqueues);
4045

4046
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4047

4048
	return wq;
4049 4050

err_free_wq:
4051
	free_workqueue_attrs(wq->unbound_attrs);
4052 4053 4054 4055
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4056
	return NULL;
4057
}
4058
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4059

4060 4061 4062 4063 4064 4065 4066 4067
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4068
	struct pool_workqueue *pwq;
4069
	int node;
4070

4071 4072
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4073

4074
	/* sanity checks */
4075
	mutex_lock(&wq->mutex);
4076
	for_each_pwq(pwq, wq) {
4077 4078
		int i;

4079 4080
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4081
				mutex_unlock(&wq->mutex);
4082
				show_workqueue_state();
4083
				return;
4084 4085 4086
			}
		}

4087
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4088
		    WARN_ON(pwq->nr_active) ||
4089
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4090
			mutex_unlock(&wq->mutex);
4091
			show_workqueue_state();
4092
			return;
4093
		}
4094
	}
4095
	mutex_unlock(&wq->mutex);
4096

4097 4098 4099 4100
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4101
	mutex_lock(&wq_pool_mutex);
4102
	list_del_rcu(&wq->list);
4103
	mutex_unlock(&wq_pool_mutex);
4104

4105 4106
	workqueue_sysfs_unregister(wq);

4107
	if (wq->rescuer)
4108 4109
		kthread_stop(wq->rescuer->task);

T
Tejun Heo 已提交
4110 4111 4112
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
4113
		 * schedule RCU free.
T
Tejun Heo 已提交
4114
		 */
4115
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
4116 4117 4118
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4119 4120
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4121
		 */
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4134
		put_pwq_unlocked(pwq);
4135
	}
4136 4137 4138
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4151
	struct pool_workqueue *pwq;
4152

4153
	/* disallow meddling with max_active for ordered workqueues */
4154
	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4155 4156
		return;

4157
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4158

4159
	mutex_lock(&wq->mutex);
4160

4161
	wq->flags &= ~__WQ_ORDERED;
4162 4163
	wq->saved_max_active = max_active;

4164 4165
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4166

4167
	mutex_unlock(&wq->mutex);
4168
}
4169
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4170

4171 4172 4173 4174 4175
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4176 4177
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4178 4179 4180 4181 4182
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4183
	return worker && worker->rescue_wq;
4184 4185
}

4186
/**
4187 4188 4189
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4190
 *
4191 4192 4193
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4194
 *
4195 4196 4197 4198 4199 4200
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4201
 * Return:
4202
 * %true if congested, %false otherwise.
4203
 */
4204
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4205
{
4206
	struct pool_workqueue *pwq;
4207 4208
	bool ret;

4209
	rcu_read_lock_sched();
4210

4211 4212 4213
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4214 4215 4216
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4217
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4218

4219
	ret = !list_empty(&pwq->delayed_works);
4220
	rcu_read_unlock_sched();
4221 4222

	return ret;
L
Linus Torvalds 已提交
4223
}
4224
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4225

4226 4227 4228 4229 4230 4231 4232 4233
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4234
 * Return:
4235 4236 4237
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4238
{
4239
	struct worker_pool *pool;
4240 4241
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4242

4243 4244
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4245

4246 4247
	local_irq_save(flags);
	pool = get_work_pool(work);
4248
	if (pool) {
4249
		spin_lock(&pool->lock);
4250 4251
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4252
		spin_unlock(&pool->lock);
4253
	}
4254
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4255

4256
	return ret;
L
Linus Torvalds 已提交
4257
}
4258
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4259

4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
4313
	worker = kthread_probe_data(task);
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
static void pr_cont_pool_info(struct worker_pool *pool)
{
	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
	if (pool->node != NUMA_NO_NODE)
		pr_cont(" node=%d", pool->node);
	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
}

static void pr_cont_work(bool comma, struct work_struct *work)
{
	if (work->func == wq_barrier_func) {
		struct wq_barrier *barr;

		barr = container_of(work, struct wq_barrier, work);

		pr_cont("%s BAR(%d)", comma ? "," : "",
			task_pid_nr(barr->task));
	} else {
		pr_cont("%s %pf", comma ? "," : "", work->func);
	}
}

static void show_pwq(struct pool_workqueue *pwq)
{
	struct worker_pool *pool = pwq->pool;
	struct work_struct *work;
	struct worker *worker;
	bool has_in_flight = false, has_pending = false;
	int bkt;

	pr_info("  pwq %d:", pool->id);
	pr_cont_pool_info(pool);

	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (worker->current_pwq == pwq) {
			has_in_flight = true;
			break;
		}
	}
	if (has_in_flight) {
		bool comma = false;

		pr_info("    in-flight:");
		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
			if (worker->current_pwq != pwq)
				continue;

			pr_cont("%s %d%s:%pf", comma ? "," : "",
				task_pid_nr(worker->task),
				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
				worker->current_func);
			list_for_each_entry(work, &worker->scheduled, entry)
				pr_cont_work(false, work);
			comma = true;
		}
		pr_cont("\n");
	}

	list_for_each_entry(work, &pool->worklist, entry) {
		if (get_work_pwq(work) == pwq) {
			has_pending = true;
			break;
		}
	}
	if (has_pending) {
		bool comma = false;

		pr_info("    pending:");
		list_for_each_entry(work, &pool->worklist, entry) {
			if (get_work_pwq(work) != pwq)
				continue;

			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}

	if (!list_empty(&pwq->delayed_works)) {
		bool comma = false;

		pr_info("    delayed:");
		list_for_each_entry(work, &pwq->delayed_works, entry) {
			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}
}

/**
 * show_workqueue_state - dump workqueue state
 *
4433 4434
 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
 * all busy workqueues and pools.
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
 */
void show_workqueue_state(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	unsigned long flags;
	int pi;

	rcu_read_lock_sched();

	pr_info("Showing busy workqueues and worker pools:\n");

	list_for_each_entry_rcu(wq, &workqueues, list) {
		struct pool_workqueue *pwq;
		bool idle = true;

		for_each_pwq(pwq, wq) {
			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
				idle = false;
				break;
			}
		}
		if (idle)
			continue;

		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);

		for_each_pwq(pwq, wq) {
			spin_lock_irqsave(&pwq->pool->lock, flags);
			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
				show_pwq(pwq);
			spin_unlock_irqrestore(&pwq->pool->lock, flags);
		}
	}

	for_each_pool(pool, pi) {
		struct worker *worker;
		bool first = true;

		spin_lock_irqsave(&pool->lock, flags);
		if (pool->nr_workers == pool->nr_idle)
			goto next_pool;

		pr_info("pool %d:", pool->id);
		pr_cont_pool_info(pool);
T
Tejun Heo 已提交
4480 4481 4482
		pr_cont(" hung=%us workers=%d",
			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
			pool->nr_workers);
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
		if (pool->manager)
			pr_cont(" manager: %d",
				task_pid_nr(pool->manager->task));
		list_for_each_entry(worker, &pool->idle_list, entry) {
			pr_cont(" %s%d", first ? "idle: " : "",
				task_pid_nr(worker->task));
			first = false;
		}
		pr_cont("\n");
	next_pool:
		spin_unlock_irqrestore(&pool->lock, flags);
	}

	rcu_read_unlock_sched();
}

4499 4500 4501
/*
 * CPU hotplug.
 *
4502
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4503
 * are a lot of assumptions on strong associations among work, pwq and
4504
 * pool which make migrating pending and scheduled works very
4505
 * difficult to implement without impacting hot paths.  Secondly,
4506
 * worker pools serve mix of short, long and very long running works making
4507 4508
 * blocked draining impractical.
 *
4509
 * This is solved by allowing the pools to be disassociated from the CPU
4510 4511
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4512
 */
L
Linus Torvalds 已提交
4513

4514
static void wq_unbind_fn(struct work_struct *work)
4515
{
4516
	int cpu = smp_processor_id();
4517
	struct worker_pool *pool;
4518
	struct worker *worker;
4519

4520
	for_each_cpu_worker_pool(pool, cpu) {
4521
		mutex_lock(&pool->attach_mutex);
4522
		spin_lock_irq(&pool->lock);
4523

4524
		/*
4525
		 * We've blocked all attach/detach operations. Make all workers
4526 4527 4528 4529 4530
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4531
		for_each_pool_worker(worker, pool)
4532
			worker->flags |= WORKER_UNBOUND;
4533

4534
		pool->flags |= POOL_DISASSOCIATED;
4535

4536
		spin_unlock_irq(&pool->lock);
4537
		mutex_unlock(&pool->attach_mutex);
4538

4539 4540 4541 4542 4543 4544 4545
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4546

4547 4548 4549 4550 4551 4552 4553 4554
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4555
		atomic_set(&pool->nr_running, 0);
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4566 4567
}

T
Tejun Heo 已提交
4568 4569 4570 4571
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4572
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4573 4574 4575
 */
static void rebind_workers(struct worker_pool *pool)
{
4576
	struct worker *worker;
T
Tejun Heo 已提交
4577

4578
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4579

4580 4581 4582
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
4583
	 * wake-ups for concurrency management happen, restore CPU affinity
4584 4585 4586
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4587
	for_each_pool_worker(worker, pool)
4588 4589
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4590

4591
	spin_lock_irq(&pool->lock);
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602

	/*
	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
	 * being reworked and this can go away in time.
	 */
	if (!(pool->flags & POOL_DISASSOCIATED)) {
		spin_unlock_irq(&pool->lock);
		return;
	}

4603
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4604

4605
	for_each_pool_worker(worker, pool) {
4606
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4607 4608

		/*
4609 4610 4611 4612 4613 4614
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4615
		 */
4616 4617
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4618

4619 4620 4621 4622 4623 4624 4625 4626 4627
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
4628
		 * WRITE_ONCE() is necessary because @worker->flags may be
4629 4630 4631 4632 4633 4634 4635 4636
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
4637
		WRITE_ONCE(worker->flags, worker_flags);
T
Tejun Heo 已提交
4638
	}
4639 4640

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4641 4642
}

4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4658
	lockdep_assert_held(&pool->attach_mutex);
4659 4660 4661 4662 4663 4664 4665 4666

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4667
	for_each_pool_worker(worker, pool)
4668
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4669 4670
}

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
int workqueue_prepare_cpu(unsigned int cpu)
{
	struct worker_pool *pool;

	for_each_cpu_worker_pool(pool, cpu) {
		if (pool->nr_workers)
			continue;
		if (!create_worker(pool))
			return -ENOMEM;
	}
	return 0;
}

int workqueue_online_cpu(unsigned int cpu)
4685
{
4686
	struct worker_pool *pool;
4687
	struct workqueue_struct *wq;
4688
	int pi;
4689

4690
	mutex_lock(&wq_pool_mutex);
4691

4692 4693
	for_each_pool(pool, pi) {
		mutex_lock(&pool->attach_mutex);
4694

4695 4696 4697 4698
		if (pool->cpu == cpu)
			rebind_workers(pool);
		else if (pool->cpu < 0)
			restore_unbound_workers_cpumask(pool, cpu);
4699

4700 4701
		mutex_unlock(&pool->attach_mutex);
	}
4702

4703 4704 4705
	/* update NUMA affinity of unbound workqueues */
	list_for_each_entry(wq, &workqueues, list)
		wq_update_unbound_numa(wq, cpu, true);
4706

4707 4708
	mutex_unlock(&wq_pool_mutex);
	return 0;
4709 4710
}

4711
int workqueue_offline_cpu(unsigned int cpu)
4712 4713 4714 4715
{
	struct work_struct unbind_work;
	struct workqueue_struct *wq;

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
	/* unbinding per-cpu workers should happen on the local CPU */
	INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
	queue_work_on(cpu, system_highpri_wq, &unbind_work);

	/* update NUMA affinity of unbound workqueues */
	mutex_lock(&wq_pool_mutex);
	list_for_each_entry(wq, &workqueues, list)
		wq_update_unbound_numa(wq, cpu, false);
	mutex_unlock(&wq_pool_mutex);

	/* wait for per-cpu unbinding to finish */
	flush_work(&unbind_work);
	destroy_work_on_stack(&unbind_work);
	return 0;
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
}

#ifdef CONFIG_SMP

struct work_for_cpu {
	struct work_struct work;
	long (*fn)(void *);
	void *arg;
	long ret;
};

static void work_for_cpu_fn(struct work_struct *work)
{
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

	wfc->ret = wfc->fn(wfc->arg);
}

/**
4749
 * work_on_cpu - run a function in thread context on a particular cpu
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
 * It is up to the caller to ensure that the cpu doesn't go offline.
 * The caller must not hold any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
{
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };

	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
	destroy_work_on_stack(&wfc.work);
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792

/**
 * work_on_cpu_safe - run a function in thread context on a particular cpu
 * @cpu: the cpu to run on
 * @fn:  the function to run
 * @arg: the function argument
 *
 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
 * any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
{
	long ret = -ENODEV;

	get_online_cpus();
	if (cpu_online(cpu))
		ret = work_on_cpu(cpu, fn, arg);
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
#endif /* CONFIG_SMP */

#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their delayed_works list instead of
 * pool->worklist.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void freeze_workqueues_begin(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(workqueue_freezing);
	workqueue_freezing = true;

	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

	mutex_unlock(&wq_pool_mutex);
}

/**
 * freeze_workqueues_busy - are freezable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex.
 *
 * Return:
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(!workqueue_freezing);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		rcu_read_lock_sched();
		for_each_pwq(pwq, wq) {
			WARN_ON_ONCE(pwq->nr_active < 0);
			if (pwq->nr_active) {
				busy = true;
				rcu_read_unlock_sched();
				goto out_unlock;
			}
		}
		rcu_read_unlock_sched();
	}
out_unlock:
	mutex_unlock(&wq_pool_mutex);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
 * frozen works are transferred to their respective pool worklists.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void thaw_workqueues(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	if (!workqueue_freezing)
		goto out_unlock;

	workqueue_freezing = false;

	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

out_unlock:
	mutex_unlock(&wq_pool_mutex);
}
#endif /* CONFIG_FREEZER */

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
static int workqueue_apply_unbound_cpumask(void)
{
	LIST_HEAD(ctxs);
	int ret = 0;
	struct workqueue_struct *wq;
	struct apply_wqattrs_ctx *ctx, *n;

	lockdep_assert_held(&wq_pool_mutex);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_UNBOUND))
			continue;
		/* creating multiple pwqs breaks ordering guarantee */
		if (wq->flags & __WQ_ORDERED)
			continue;

		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
		if (!ctx) {
			ret = -ENOMEM;
			break;
		}

		list_add_tail(&ctx->list, &ctxs);
	}

	list_for_each_entry_safe(ctx, n, &ctxs, list) {
		if (!ret)
			apply_wqattrs_commit(ctx);
		apply_wqattrs_cleanup(ctx);
	}

	return ret;
}

/**
 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
 *  @cpumask: the cpumask to set
 *
 *  The low-level workqueues cpumask is a global cpumask that limits
 *  the affinity of all unbound workqueues.  This function check the @cpumask
 *  and apply it to all unbound workqueues and updates all pwqs of them.
 *
 *  Retun:	0	- Success
 *  		-EINVAL	- Invalid @cpumask
 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
 */
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
{
	int ret = -EINVAL;
	cpumask_var_t saved_cpumask;

	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
		return -ENOMEM;

4961 4962 4963 4964
	/*
	 * Not excluding isolated cpus on purpose.
	 * If the user wishes to include them, we allow that.
	 */
4965 4966
	cpumask_and(cpumask, cpumask, cpu_possible_mask);
	if (!cpumask_empty(cpumask)) {
4967
		apply_wqattrs_lock();
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979

		/* save the old wq_unbound_cpumask. */
		cpumask_copy(saved_cpumask, wq_unbound_cpumask);

		/* update wq_unbound_cpumask at first and apply it to wqs. */
		cpumask_copy(wq_unbound_cpumask, cpumask);
		ret = workqueue_apply_unbound_cpumask();

		/* restore the wq_unbound_cpumask when failed. */
		if (ret < 0)
			cpumask_copy(wq_unbound_cpumask, saved_cpumask);

4980
		apply_wqattrs_unlock();
4981 4982 4983 4984 4985 4986
	}

	free_cpumask_var(saved_cpumask);
	return ret;
}

4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
4998
 *  pool_ids	RO int	: the associated pool IDs for each node
4999 5000
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5001
 *  numa	RW bool	: whether enable NUMA affinity
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
static DEVICE_ATTR_RO(per_cpu);

static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
static DEVICE_ATTR_RW(max_active);

static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
};
ATTRIBUTE_GROUPS(wq_sysfs);

static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	const char *delim = "";
	int node, written = 0;

	rcu_read_lock_sched();
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

5092 5093
	lockdep_assert_held(&wq_pool_mutex);

5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5107 5108 5109
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5110 5111 5112

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5113
		goto out_unlock;
5114 5115 5116

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5117
		ret = apply_workqueue_attrs_locked(wq, attrs);
5118 5119 5120
	else
		ret = -EINVAL;

5121 5122
out_unlock:
	apply_wqattrs_unlock();
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
	mutex_unlock(&wq->mutex);
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5146 5147 5148
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5149 5150 5151

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5152
		goto out_unlock;
5153 5154 5155

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
5156
		ret = apply_workqueue_attrs_locked(wq, attrs);
5157

5158 5159
out_unlock:
	apply_wqattrs_unlock();
5160 5161 5162 5163 5164 5165 5166 5167 5168
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;
5169

5170 5171 5172 5173
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);
5174

5175
	return written;
5176 5177
}

5178 5179
static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
5180
{
5181 5182
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5183 5184 5185
	int v, ret = -ENOMEM;

	apply_wqattrs_lock();
5186

5187 5188
	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5189
		goto out_unlock;
5190

5191 5192 5193
	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
5194
		ret = apply_workqueue_attrs_locked(wq, attrs);
5195
	}
5196

5197 5198
out_unlock:
	apply_wqattrs_unlock();
5199 5200
	free_workqueue_attrs(attrs);
	return ret ?: count;
5201 5202
}

5203 5204 5205 5206 5207 5208 5209
static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
	__ATTR_NULL,
};
5210

5211 5212 5213
static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_groups			= wq_sysfs_groups,
5214 5215
};

5216 5217 5218 5219 5220
static ssize_t wq_unbound_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int written;

5221
	mutex_lock(&wq_pool_mutex);
5222 5223
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq_unbound_cpumask));
5224
	mutex_unlock(&wq_pool_mutex);
5225 5226 5227 5228

	return written;
}

5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
static ssize_t wq_unbound_cpumask_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	cpumask_var_t cpumask;
	int ret;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	ret = cpumask_parse(buf, cpumask);
	if (!ret)
		ret = workqueue_set_unbound_cpumask(cpumask);

	free_cpumask_var(cpumask);
	return ret ? ret : count;
}

5246
static struct device_attribute wq_sysfs_cpumask_attr =
5247 5248
	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
	       wq_unbound_cpumask_store);
5249

5250
static int __init wq_sysfs_init(void)
5251
{
5252 5253 5254 5255 5256 5257 5258
	int err;

	err = subsys_virtual_register(&wq_subsys, NULL);
	if (err)
		return err;

	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5259
}
5260
core_initcall(wq_sysfs_init);
5261

5262
static void wq_device_release(struct device *dev)
5263
{
5264
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5265

5266
	kfree(wq_dev);
5267
}
5268 5269

/**
5270 5271
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
5272
 *
5273 5274 5275
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
5276
 *
5277 5278 5279 5280 5281 5282
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Return: 0 on success, -errno on failure.
5283
 */
5284
int workqueue_sysfs_register(struct workqueue_struct *wq)
5285
{
5286 5287
	struct wq_device *wq_dev;
	int ret;
5288

5289
	/*
5290
	 * Adjusting max_active or creating new pwqs by applying
5291 5292 5293
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
5294
	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5295
		return -EINVAL;
5296

5297 5298 5299
	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;
5300

5301 5302 5303
	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.release = wq_device_release;
5304
	dev_set_name(&wq_dev->dev, "%s", wq->name);
5305

5306 5307 5308 5309 5310
	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);
5311

5312 5313 5314 5315 5316 5317
	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}
5318

5319 5320
	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;
5321

5322 5323 5324 5325 5326 5327
		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
5328 5329 5330
			}
		}
	}
5331 5332 5333 5334

	dev_set_uevent_suppress(&wq_dev->dev, false);
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
5335 5336 5337
}

/**
5338 5339
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
5340
 *
5341
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5342
 */
5343
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5344
{
5345
	struct wq_device *wq_dev = wq->wq_dev;
5346

5347 5348
	if (!wq->wq_dev)
		return;
5349

5350 5351
	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
5352
}
5353 5354 5355
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */
5356

T
Tejun Heo 已提交
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
/*
 * Workqueue watchdog.
 *
 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
 * flush dependency, a concurrency managed work item which stays RUNNING
 * indefinitely.  Workqueue stalls can be very difficult to debug as the
 * usual warning mechanisms don't trigger and internal workqueue state is
 * largely opaque.
 *
 * Workqueue watchdog monitors all worker pools periodically and dumps
 * state if some pools failed to make forward progress for a while where
 * forward progress is defined as the first item on ->worklist changing.
 *
 * This mechanism is controlled through the kernel parameter
 * "workqueue.watchdog_thresh" which can be updated at runtime through the
 * corresponding sysfs parameter file.
 */
#ifdef CONFIG_WQ_WATCHDOG

static unsigned long wq_watchdog_thresh = 30;
5377
static struct timer_list wq_watchdog_timer;
T
Tejun Heo 已提交
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390

static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;

static void wq_watchdog_reset_touched(void)
{
	int cpu;

	wq_watchdog_touched = jiffies;
	for_each_possible_cpu(cpu)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
}

5391
static void wq_watchdog_timer_fn(struct timer_list *unused)
T
Tejun Heo 已提交
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
{
	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
	bool lockup_detected = false;
	struct worker_pool *pool;
	int pi;

	if (!thresh)
		return;

	rcu_read_lock();

	for_each_pool(pool, pi) {
		unsigned long pool_ts, touched, ts;

		if (list_empty(&pool->worklist))
			continue;

		/* get the latest of pool and touched timestamps */
		pool_ts = READ_ONCE(pool->watchdog_ts);
		touched = READ_ONCE(wq_watchdog_touched);

		if (time_after(pool_ts, touched))
			ts = pool_ts;
		else
			ts = touched;

		if (pool->cpu >= 0) {
			unsigned long cpu_touched =
				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
						  pool->cpu));
			if (time_after(cpu_touched, ts))
				ts = cpu_touched;
		}

		/* did we stall? */
		if (time_after(jiffies, ts + thresh)) {
			lockup_detected = true;
			pr_emerg("BUG: workqueue lockup - pool");
			pr_cont_pool_info(pool);
			pr_cont(" stuck for %us!\n",
				jiffies_to_msecs(jiffies - pool_ts) / 1000);
		}
	}

	rcu_read_unlock();

	if (lockup_detected)
		show_workqueue_state();

	wq_watchdog_reset_touched();
	mod_timer(&wq_watchdog_timer, jiffies + thresh);
}

void wq_watchdog_touch(int cpu)
{
	if (cpu >= 0)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
	else
		wq_watchdog_touched = jiffies;
}

static void wq_watchdog_set_thresh(unsigned long thresh)
{
	wq_watchdog_thresh = 0;
	del_timer_sync(&wq_watchdog_timer);

	if (thresh) {
		wq_watchdog_thresh = thresh;
		wq_watchdog_reset_touched();
		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
	}
}

static int wq_watchdog_param_set_thresh(const char *val,
					const struct kernel_param *kp)
{
	unsigned long thresh;
	int ret;

	ret = kstrtoul(val, 0, &thresh);
	if (ret)
		return ret;

	if (system_wq)
		wq_watchdog_set_thresh(thresh);
	else
		wq_watchdog_thresh = thresh;

	return 0;
}

static const struct kernel_param_ops wq_watchdog_thresh_ops = {
	.set	= wq_watchdog_param_set_thresh,
	.get	= param_get_ulong,
};

module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
		0644);

static void wq_watchdog_init(void)
{
5493
	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
T
Tejun Heo 已提交
5494 5495 5496 5497 5498 5499 5500 5501 5502
	wq_watchdog_set_thresh(wq_watchdog_thresh);
}

#else	/* CONFIG_WQ_WATCHDOG */

static inline void wq_watchdog_init(void) { }

#endif	/* CONFIG_WQ_WATCHDOG */

5503 5504 5505 5506 5507 5508 5509 5510
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

5511 5512 5513 5514 5515
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5516 5517 5518
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5519 5520 5521 5522 5523
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
5524
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5525 5526 5527
	BUG_ON(!tbl);

	for_each_node(node)
5528
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5529
				node_online(node) ? node : NUMA_NO_NODE));
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
/**
 * workqueue_init_early - early init for workqueue subsystem
 *
 * This is the first half of two-staged workqueue subsystem initialization
 * and invoked as soon as the bare basics - memory allocation, cpumasks and
 * idr are up.  It sets up all the data structures and system workqueues
 * and allows early boot code to create workqueues and queue/cancel work
 * items.  Actual work item execution starts only after kthreads can be
 * created and scheduled right before early initcalls.
 */
int __init workqueue_init_early(void)
L
Linus Torvalds 已提交
5556
{
T
Tejun Heo 已提交
5557 5558
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5559

5560 5561
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

5562
	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5563
	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_FLAG_DOMAIN));
5564

5565 5566
	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5567
	/* initialize CPU pools */
5568
	for_each_possible_cpu(cpu) {
5569
		struct worker_pool *pool;
5570

T
Tejun Heo 已提交
5571
		i = 0;
5572
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5573
			BUG_ON(init_worker_pool(pool));
5574
			pool->cpu = cpu;
5575
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5576
			pool->attrs->nice = std_nice[i++];
5577
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5578

T
Tejun Heo 已提交
5579
			/* alloc pool ID */
5580
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5581
			BUG_ON(worker_pool_assign_id(pool));
5582
			mutex_unlock(&wq_pool_mutex);
5583
		}
5584 5585
	}

5586
	/* create default unbound and ordered wq attrs */
5587 5588 5589 5590 5591 5592
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5593 5594 5595 5596 5597 5598 5599 5600 5601 5602

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5603 5604
	}

5605
	system_wq = alloc_workqueue("events", 0, 0);
5606
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5607
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5608 5609
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5610 5611
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5612 5613 5614 5615 5616
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5617
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5618 5619 5620
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
T
Tejun Heo 已提交
5621

5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
	return 0;
}

/**
 * workqueue_init - bring workqueue subsystem fully online
 *
 * This is the latter half of two-staged workqueue subsystem initialization
 * and invoked as soon as kthreads can be created and scheduled.
 * Workqueues have been created and work items queued on them, but there
 * are no kworkers executing the work items yet.  Populate the worker pools
 * with the initial workers and enable future kworker creations.
 */
int __init workqueue_init(void)
{
5636
	struct workqueue_struct *wq;
5637 5638 5639
	struct worker_pool *pool;
	int cpu, bkt;

5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
	/*
	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
	 * CPU to node mapping may not be available that early on some
	 * archs such as power and arm64.  As per-cpu pools created
	 * previously could be missing node hint and unbound pools NUMA
	 * affinity, fix them up.
	 */
	wq_numa_init();

	mutex_lock(&wq_pool_mutex);

	for_each_possible_cpu(cpu) {
		for_each_cpu_worker_pool(pool, cpu) {
			pool->node = cpu_to_node(cpu);
		}
	}

	list_for_each_entry(wq, &workqueues, list)
		wq_update_unbound_numa(wq, smp_processor_id(), true);

	mutex_unlock(&wq_pool_mutex);

5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
	/* create the initial workers */
	for_each_online_cpu(cpu) {
		for_each_cpu_worker_pool(pool, cpu) {
			pool->flags &= ~POOL_DISASSOCIATED;
			BUG_ON(!create_worker(pool));
		}
	}

	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
		BUG_ON(!create_worker(pool));

	wq_online = true;
T
Tejun Heo 已提交
5674 5675
	wq_watchdog_init();

5676
	return 0;
L
Linus Torvalds 已提交
5677
}