workqueue.c 150.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131 132 133 134
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      sched-RCU for reads.
 *
135 136
 * WQ: wq->mutex protected.
 *
137
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138 139
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
140 141
 */

142
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
143

144
struct worker_pool {
145
	spinlock_t		lock;		/* the pool lock */
146
	int			cpu;		/* I: the associated cpu */
147
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
148
	int			id;		/* I: pool ID */
149
	unsigned int		flags;		/* X: flags */
150

T
Tejun Heo 已提交
151 152
	unsigned long		watchdog_ts;	/* L: watchdog timestamp */

153 154
	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
155 156

	/* nr_idle includes the ones off idle_list for rebinding */
157 158 159 160 161 162
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

163
	/* a workers is either on busy_hash or idle_list, or the manager */
164 165 166
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

167
	/* see manage_workers() for details on the two manager mutexes */
168
	struct mutex		manager_arb;	/* manager arbitration */
169
	struct worker		*manager;	/* L: purely informational */
170 171
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
172
	struct completion	*detach_completion; /* all workers detached */
173

174
	struct ida		worker_ida;	/* worker IDs for task name */
175

T
Tejun Heo 已提交
176
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 178
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
179

180 181 182 183 184 185
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 187 188 189 190 191

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
192 193
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
194
/*
195 196 197 198
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
199
 */
200
struct pool_workqueue {
201
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
202
	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 204
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
205
	int			refcnt;		/* L: reference count */
206 207
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
208
	int			nr_active;	/* L: nr of active works */
209
	int			max_active;	/* L: max active works */
210
	struct list_head	delayed_works;	/* L: delayed works */
211
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
213 214 215 216 217

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
218
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
219 220 221
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
222
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
223

224 225 226 227
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
228 229
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
230 231 232
	struct completion	done;		/* flush completion */
};

233 234
struct wq_device;

L
Linus Torvalds 已提交
235
/*
236 237
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
238 239
 */
struct workqueue_struct {
240
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241
	struct list_head	list;		/* PR: list of all workqueues */
242

243 244 245
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
246
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 248 249
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250

251
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 253
	struct worker		*rescuer;	/* I: rescue worker */

254
	int			nr_drainers;	/* WQ: drain in progress */
255
	int			saved_max_active; /* WQ: saved pwq max_active */
256

257 258
	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259

260 261 262
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
263
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
264
	struct lockdep_map	lockdep_map;
265
#endif
266
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267

268 269 270 271 272 273 274
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

275 276 277
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
279 280
};

281 282
static struct kmem_cache *pwq_cache;

283 284 285
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

286 287 288
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

289
/* see the comment above the definition of WQ_POWER_EFFICIENT */
290
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 292
module_param_named(power_efficient, wq_power_efficient, bool, 0444);

293 294
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

295 296 297
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

298
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
299
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
300

301
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
302
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
303

304
static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
305

306 307 308 309
/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

310
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
311

312
/* PL: hash of all unbound pools keyed by pool->attrs */
313 314
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

315
/* I: attributes used when instantiating standard unbound pools on demand */
316 317
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

318 319 320
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

321
struct workqueue_struct *system_wq __read_mostly;
322
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
323
struct workqueue_struct *system_highpri_wq __read_mostly;
324
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
325
struct workqueue_struct *system_long_wq __read_mostly;
326
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
327
struct workqueue_struct *system_unbound_wq __read_mostly;
328
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
329
struct workqueue_struct *system_freezable_wq __read_mostly;
330
EXPORT_SYMBOL_GPL(system_freezable_wq);
331 332 333 334
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
335

336
static int worker_thread(void *__worker);
337
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
338

339 340 341
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

342
#define assert_rcu_or_pool_mutex()					\
343 344 345
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU or wq_pool_mutex should be held")
346

347
#define assert_rcu_or_wq_mutex(wq)					\
348 349 350
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex),			\
			 "sched RCU or wq->mutex should be held")
351

352
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
353 354 355 356
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex) &&		\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
357

358 359 360
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
361
	     (pool)++)
362

T
Tejun Heo 已提交
363 364 365
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
366
 * @pi: integer used for iteration
367
 *
368 369 370
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
371 372 373
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
374
 */
375 376
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
377
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
378
		else
T
Tejun Heo 已提交
379

380 381 382 383 384
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
385
 * This must be called with @pool->attach_mutex.
386 387 388 389
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
390 391
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
392
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
393 394
		else

395 396 397 398
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
399
 *
400
 * This must be called either with wq->mutex held or sched RCU read locked.
401 402
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
403 404 405
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
406 407
 */
#define for_each_pwq(pwq, wq)						\
408
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
409
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
410
		else
411

412 413 414 415
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

416 417 418 419 420
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
456
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
492
	.debug_hint	= work_debug_hint,
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

523 524 525 526 527 528 529
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

530 531 532 533 534
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

535 536 537 538 539 540 541
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
542 543 544 545
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

546
	lockdep_assert_held(&wq_pool_mutex);
547

548 549
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
550
	if (ret >= 0) {
T
Tejun Heo 已提交
551
		pool->id = ret;
552 553
		return 0;
	}
554
	return ret;
555 556
}

557 558 559 560 561
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
562 563
 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 * read locked.
564 565
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
566 567
 *
 * Return: The unbound pool_workqueue for @node.
568 569 570 571
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
572
	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
573 574 575
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
591

592
/*
593 594
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
595
 * is cleared and the high bits contain OFFQ flags and pool ID.
596
 *
597 598
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
599 600
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
601
 *
602
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
603
 * corresponding to a work.  Pool is available once the work has been
604
 * queued anywhere after initialization until it is sync canceled.  pwq is
605
 * available only while the work item is queued.
606
 *
607 608 609 610
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
611
 */
612 613
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
614
{
615
	WARN_ON_ONCE(!work_pending(work));
616 617
	atomic_long_set(&work->data, data | flags | work_static(work));
}
618

619
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
620 621
			 unsigned long extra_flags)
{
622 623
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
624 625
}

626 627 628 629 630 631 632
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

633 634
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
635
{
636 637 638 639 640 641 642
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
643
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
644
}
645

646
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
647
{
648 649
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
650 651
}

652
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
653
{
654
	unsigned long data = atomic_long_read(&work->data);
655

656
	if (data & WORK_STRUCT_PWQ)
657 658 659
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
660 661
}

662 663 664 665
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
666 667 668
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
669 670 671 672 673
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
674 675
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
676 677
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
678
{
679
	unsigned long data = atomic_long_read(&work->data);
680
	int pool_id;
681

682
	assert_rcu_or_pool_mutex();
683

684 685
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
686
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
687

688 689
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
690 691
		return NULL;

692
	return idr_find(&worker_pool_idr, pool_id);
693 694 695 696 697 698
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
699
 * Return: The worker_pool ID @work was last associated with.
700 701 702 703
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
704 705
	unsigned long data = atomic_long_read(&work->data);

706 707
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
708
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
709

710
	return data >> WORK_OFFQ_POOL_SHIFT;
711 712
}

713 714
static void mark_work_canceling(struct work_struct *work)
{
715
	unsigned long pool_id = get_work_pool_id(work);
716

717 718
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
719 720 721 722 723 724
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

725
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
726 727
}

728
/*
729 730
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
731
 * they're being called with pool->lock held.
732 733
 */

734
static bool __need_more_worker(struct worker_pool *pool)
735
{
736
	return !atomic_read(&pool->nr_running);
737 738
}

739
/*
740 741
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
742 743
 *
 * Note that, because unbound workers never contribute to nr_running, this
744
 * function will always return %true for unbound pools as long as the
745
 * worklist isn't empty.
746
 */
747
static bool need_more_worker(struct worker_pool *pool)
748
{
749
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
750
}
751

752
/* Can I start working?  Called from busy but !running workers. */
753
static bool may_start_working(struct worker_pool *pool)
754
{
755
	return pool->nr_idle;
756 757 758
}

/* Do I need to keep working?  Called from currently running workers. */
759
static bool keep_working(struct worker_pool *pool)
760
{
761 762
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
763 764 765
}

/* Do we need a new worker?  Called from manager. */
766
static bool need_to_create_worker(struct worker_pool *pool)
767
{
768
	return need_more_worker(pool) && !may_start_working(pool);
769
}
770

771
/* Do we have too many workers and should some go away? */
772
static bool too_many_workers(struct worker_pool *pool)
773
{
774
	bool managing = mutex_is_locked(&pool->manager_arb);
775 776
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
777 778

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
779 780
}

781
/*
782 783 784
 * Wake up functions.
 */

785 786
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
787
{
788
	if (unlikely(list_empty(&pool->idle_list)))
789 790
		return NULL;

791
	return list_first_entry(&pool->idle_list, struct worker, entry);
792 793 794 795
}

/**
 * wake_up_worker - wake up an idle worker
796
 * @pool: worker pool to wake worker from
797
 *
798
 * Wake up the first idle worker of @pool.
799 800
 *
 * CONTEXT:
801
 * spin_lock_irq(pool->lock).
802
 */
803
static void wake_up_worker(struct worker_pool *pool)
804
{
805
	struct worker *worker = first_idle_worker(pool);
806 807 808 809 810

	if (likely(worker))
		wake_up_process(worker->task);
}

811
/**
812 813 814 815 816 817 818 819 820 821
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
822
void wq_worker_waking_up(struct task_struct *task, int cpu)
823 824 825
{
	struct worker *worker = kthread_data(task);

826
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
827
		WARN_ON_ONCE(worker->pool->cpu != cpu);
828
		atomic_inc(&worker->pool->nr_running);
829
	}
830 831 832 833 834 835 836 837 838 839 840 841 842 843
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
844
 * Return:
845 846
 * Worker task on @cpu to wake up, %NULL if none.
 */
847
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
848 849
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
850
	struct worker_pool *pool;
851

852 853 854 855 856
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
857
	if (worker->flags & WORKER_NOT_RUNNING)
858 859
		return NULL;

860 861
	pool = worker->pool;

862
	/* this can only happen on the local cpu */
863
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
864
		return NULL;
865 866 867 868 869 870

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
871 872 873
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
874
	 * manipulating idle_list, so dereferencing idle_list without pool
875
	 * lock is safe.
876
	 */
877 878
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
879
		to_wakeup = first_idle_worker(pool);
880 881 882 883 884
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
885
 * @worker: self
886 887
 * @flags: flags to set
 *
888
 * Set @flags in @worker->flags and adjust nr_running accordingly.
889
 *
890
 * CONTEXT:
891
 * spin_lock_irq(pool->lock)
892
 */
893
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
894
{
895
	struct worker_pool *pool = worker->pool;
896

897 898
	WARN_ON_ONCE(worker->task != current);

899
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
900 901
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
902
		atomic_dec(&pool->nr_running);
903 904
	}

905 906 907 908
	worker->flags |= flags;
}

/**
909
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
910
 * @worker: self
911 912
 * @flags: flags to clear
 *
913
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
914
 *
915
 * CONTEXT:
916
 * spin_lock_irq(pool->lock)
917 918 919
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
920
	struct worker_pool *pool = worker->pool;
921 922
	unsigned int oflags = worker->flags;

923 924
	WARN_ON_ONCE(worker->task != current);

925
	worker->flags &= ~flags;
926

927 928 929 930 931
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
932 933
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
934
			atomic_inc(&pool->nr_running);
935 936
}

937 938
/**
 * find_worker_executing_work - find worker which is executing a work
939
 * @pool: pool of interest
940 941
 * @work: work to find worker for
 *
942 943
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
944 945 946 947 948 949 950 951 952 953 954 955
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
956 957 958 959 960 961
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
962 963
 *
 * CONTEXT:
964
 * spin_lock_irq(pool->lock).
965
 *
966 967
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
968
 * otherwise.
969
 */
970
static struct worker *find_worker_executing_work(struct worker_pool *pool,
971
						 struct work_struct *work)
972
{
973 974
	struct worker *worker;

975
	hash_for_each_possible(pool->busy_hash, worker, hentry,
976 977 978
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
979 980 981
			return worker;

	return NULL;
982 983
}

984 985 986 987
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
988
 * @nextp: out parameter for nested worklist walking
989 990 991 992 993 994 995 996 997 998
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
999
 * spin_lock_irq(pool->lock).
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1083
static void pwq_activate_delayed_work(struct work_struct *work)
1084
{
1085
	struct pool_workqueue *pwq = get_work_pwq(work);
1086 1087

	trace_workqueue_activate_work(work);
T
Tejun Heo 已提交
1088 1089
	if (list_empty(&pwq->pool->worklist))
		pwq->pool->watchdog_ts = jiffies;
1090
	move_linked_works(work, &pwq->pool->worklist, NULL);
1091
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1092
	pwq->nr_active++;
1093 1094
}

1095
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1096
{
1097
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1098 1099
						    struct work_struct, entry);

1100
	pwq_activate_delayed_work(work);
1101 1102
}

1103
/**
1104 1105
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1106 1107 1108
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1109
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1110 1111
 *
 * CONTEXT:
1112
 * spin_lock_irq(pool->lock).
1113
 */
1114
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1115
{
T
Tejun Heo 已提交
1116
	/* uncolored work items don't participate in flushing or nr_active */
1117
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1118
		goto out_put;
1119

1120
	pwq->nr_in_flight[color]--;
1121

1122 1123
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1124
		/* one down, submit a delayed one */
1125 1126
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1127 1128 1129
	}

	/* is flush in progress and are we at the flushing tip? */
1130
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1131
		goto out_put;
1132 1133

	/* are there still in-flight works? */
1134
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1135
		goto out_put;
1136

1137 1138
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1139 1140

	/*
1141
	 * If this was the last pwq, wake up the first flusher.  It
1142 1143
	 * will handle the rest.
	 */
1144 1145
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1146 1147
out_put:
	put_pwq(pwq);
1148 1149
}

1150
/**
1151
 * try_to_grab_pending - steal work item from worklist and disable irq
1152 1153
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1154
 * @flags: place to store irq state
1155 1156
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1157
 * stable state - idle, on timer or on worklist.
1158
 *
1159
 * Return:
1160 1161 1162
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1163 1164
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1165
 *
1166
 * Note:
1167
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1168 1169 1170
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1171 1172 1173 1174
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1175
 * This function is safe to call from any context including IRQ handler.
1176
 */
1177 1178
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1179
{
1180
	struct worker_pool *pool;
1181
	struct pool_workqueue *pwq;
1182

1183 1184
	local_irq_save(*flags);

1185 1186 1187 1188
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1189 1190 1191 1192 1193
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1194 1195 1196 1197 1198
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1199 1200 1201 1202 1203 1204 1205
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1206 1207
	pool = get_work_pool(work);
	if (!pool)
1208
		goto fail;
1209

1210
	spin_lock(&pool->lock);
1211
	/*
1212 1213 1214 1215 1216
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1217 1218
	 * item is currently queued on that pool.
	 */
1219 1220
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1221 1222 1223 1224 1225
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1226
		 * on the delayed_list, will confuse pwq->nr_active
1227 1228 1229 1230
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1231
			pwq_activate_delayed_work(work);
1232 1233

		list_del_init(&work->entry);
1234
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1235

1236
		/* work->data points to pwq iff queued, point to pool */
1237 1238 1239 1240
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1241
	}
1242
	spin_unlock(&pool->lock);
1243 1244 1245 1246 1247
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1248
	return -EAGAIN;
1249 1250
}

T
Tejun Heo 已提交
1251
/**
1252
 * insert_work - insert a work into a pool
1253
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1254 1255 1256 1257
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1258
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1259
 * work_struct flags.
T
Tejun Heo 已提交
1260 1261
 *
 * CONTEXT:
1262
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1263
 */
1264 1265
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1266
{
1267
	struct worker_pool *pool = pwq->pool;
1268

T
Tejun Heo 已提交
1269
	/* we own @work, set data and link */
1270
	set_work_pwq(work, pwq, extra_flags);
1271
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1272
	get_pwq(pwq);
1273 1274

	/*
1275 1276 1277
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1278 1279 1280
	 */
	smp_mb();

1281 1282
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1283 1284
}

1285 1286
/*
 * Test whether @work is being queued from another work executing on the
1287
 * same workqueue.
1288 1289 1290
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1291 1292 1293 1294 1295 1296 1297
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1298
	return worker && worker->current_pwq->wq == wq;
1299 1300
}

1301
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1302 1303
			 struct work_struct *work)
{
1304
	struct pool_workqueue *pwq;
1305
	struct worker_pool *last_pool;
1306
	struct list_head *worklist;
1307
	unsigned int work_flags;
1308
	unsigned int req_cpu = cpu;
1309 1310 1311 1312 1313 1314 1315 1316

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1317

1318
	debug_work_activate(work);
1319

1320
	/* if draining, only works from the same workqueue are allowed */
1321
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1322
	    WARN_ON_ONCE(!is_chained_work(wq)))
1323
		return;
1324
retry:
1325 1326 1327
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1328
	/* pwq which will be used unless @work is executing elsewhere */
1329
	if (!(wq->flags & WQ_UNBOUND))
1330
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1331 1332
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1333

1334 1335 1336 1337 1338 1339 1340 1341
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1342

1343
		spin_lock(&last_pool->lock);
1344

1345
		worker = find_worker_executing_work(last_pool, work);
1346

1347 1348
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1349
		} else {
1350 1351
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1352
			spin_lock(&pwq->pool->lock);
1353
		}
1354
	} else {
1355
		spin_lock(&pwq->pool->lock);
1356 1357
	}

1358 1359 1360 1361
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1362 1363
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1377 1378
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1379

1380
	if (WARN_ON(!list_empty(&work->entry))) {
1381
		spin_unlock(&pwq->pool->lock);
1382 1383
		return;
	}
1384

1385 1386
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1387

1388
	if (likely(pwq->nr_active < pwq->max_active)) {
1389
		trace_workqueue_activate_work(work);
1390 1391
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
T
Tejun Heo 已提交
1392 1393
		if (list_empty(worklist))
			pwq->pool->watchdog_ts = jiffies;
1394 1395
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1396
		worklist = &pwq->delayed_works;
1397
	}
1398

1399
	insert_work(pwq, work, worklist, work_flags);
1400

1401
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1402 1403
}

1404
/**
1405 1406
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1407 1408 1409
 * @wq: workqueue to use
 * @work: work to queue
 *
1410 1411
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1412 1413
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1414
 */
1415 1416
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1417
{
1418
	bool ret = false;
1419
	unsigned long flags;
1420

1421
	local_irq_save(flags);
1422

1423
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1424
		__queue_work(cpu, wq, work);
1425
		ret = true;
1426
	}
1427

1428
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1429 1430
	return ret;
}
1431
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1432

1433
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1434
{
1435
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1436

1437
	/* should have been called from irqsafe timer with irq already off */
1438
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1439
}
1440
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1441

1442 1443
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1444
{
1445 1446 1447 1448 1449
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1450 1451
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1464
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1465

1466
	dwork->wq = wq;
1467
	dwork->cpu = cpu;
1468 1469
	timer->expires = jiffies + delay;

1470 1471 1472 1473
	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1474 1475
}

1476 1477 1478 1479
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1480
 * @dwork: work to queue
1481 1482
 * @delay: number of jiffies to wait before queueing
 *
1483
 * Return: %false if @work was already on a queue, %true otherwise.  If
1484 1485
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1486
 */
1487 1488
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1489
{
1490
	struct work_struct *work = &dwork->work;
1491
	bool ret = false;
1492
	unsigned long flags;
1493

1494 1495
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1496

1497
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1498
		__queue_delayed_work(cpu, wq, dwork, delay);
1499
		ret = true;
1500
	}
1501

1502
	local_irq_restore(flags);
1503 1504
	return ret;
}
1505
EXPORT_SYMBOL(queue_delayed_work_on);
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1519
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1520 1521
 * pending and its timer was modified.
 *
1522
 * This function is safe to call from any context including IRQ handler.
1523 1524 1525 1526 1527 1528 1529
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1530

1531 1532 1533
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1534

1535 1536 1537
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1538
	}
1539 1540

	/* -ENOENT from try_to_grab_pending() becomes %true */
1541 1542
	return ret;
}
1543 1544
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1545 1546 1547 1548 1549 1550 1551 1552
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1553
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1554 1555
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1556
{
1557
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1558

1559 1560 1561 1562
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1563

1564
	/* can't use worker_set_flags(), also called from create_worker() */
1565
	worker->flags |= WORKER_IDLE;
1566
	pool->nr_idle++;
1567
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1568 1569

	/* idle_list is LIFO */
1570
	list_add(&worker->entry, &pool->idle_list);
1571

1572 1573
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1574

1575
	/*
1576
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1577
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1578 1579
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1580
	 */
1581
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1582
		     pool->nr_workers == pool->nr_idle &&
1583
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1593
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1594 1595 1596
 */
static void worker_leave_idle(struct worker *worker)
{
1597
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1598

1599 1600
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1601
	worker_clr_flags(worker, WORKER_IDLE);
1602
	pool->nr_idle--;
T
Tejun Heo 已提交
1603 1604 1605
	list_del_init(&worker->entry);
}

1606
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1607 1608 1609
{
	struct worker *worker;

1610
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1611 1612
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1613
		INIT_LIST_HEAD(&worker->scheduled);
1614
		INIT_LIST_HEAD(&worker->node);
1615 1616
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1617
	}
T
Tejun Heo 已提交
1618 1619 1620
	return worker;
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1654 1655 1656 1657 1658
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1659 1660 1661
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1662 1663 1664 1665 1666 1667
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1668
	mutex_lock(&pool->attach_mutex);
1669 1670
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1671
		detach_completion = pool->detach_completion;
1672
	mutex_unlock(&pool->attach_mutex);
1673

1674 1675 1676
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1677 1678 1679 1680
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1681 1682
/**
 * create_worker - create a new workqueue worker
1683
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1684
 *
1685
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1686 1687 1688 1689
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1690
 * Return:
T
Tejun Heo 已提交
1691 1692
 * Pointer to the newly created worker.
 */
1693
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1694 1695
{
	struct worker *worker = NULL;
1696
	int id = -1;
1697
	char id_buf[16];
T
Tejun Heo 已提交
1698

1699 1700
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1701 1702
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1703

1704
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1705 1706 1707
	if (!worker)
		goto fail;

1708
	worker->pool = pool;
T
Tejun Heo 已提交
1709 1710
	worker->id = id;

1711
	if (pool->cpu >= 0)
1712 1713
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1714
	else
1715 1716
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1717
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1718
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1719 1720 1721
	if (IS_ERR(worker->task))
		goto fail;

1722
	set_user_nice(worker->task, pool->attrs->nice);
1723
	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1724

1725
	/* successful, attach the worker to the pool */
1726
	worker_attach_to_pool(worker, pool);
1727

1728 1729 1730 1731 1732 1733 1734
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1735
	return worker;
1736

T
Tejun Heo 已提交
1737
fail:
1738
	if (id >= 0)
1739
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1740 1741 1742 1743 1744 1745 1746 1747
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1748 1749
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1750 1751
 *
 * CONTEXT:
1752
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1753 1754 1755
 */
static void destroy_worker(struct worker *worker)
{
1756
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1757

1758 1759
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1760
	/* sanity check frenzy */
1761
	if (WARN_ON(worker->current_work) ||
1762 1763
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1764
		return;
T
Tejun Heo 已提交
1765

1766 1767
	pool->nr_workers--;
	pool->nr_idle--;
1768

T
Tejun Heo 已提交
1769
	list_del_init(&worker->entry);
1770
	worker->flags |= WORKER_DIE;
1771
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1772 1773
}

1774
static void idle_worker_timeout(unsigned long __pool)
1775
{
1776
	struct worker_pool *pool = (void *)__pool;
1777

1778
	spin_lock_irq(&pool->lock);
1779

1780
	while (too_many_workers(pool)) {
1781 1782 1783 1784
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1785
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1786 1787
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1788
		if (time_before(jiffies, expires)) {
1789
			mod_timer(&pool->idle_timer, expires);
1790
			break;
1791
		}
1792 1793

		destroy_worker(worker);
1794 1795
	}

1796
	spin_unlock_irq(&pool->lock);
1797
}
1798

1799
static void send_mayday(struct work_struct *work)
1800
{
1801 1802
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1803

1804
	lockdep_assert_held(&wq_mayday_lock);
1805

1806
	if (!wq->rescuer)
1807
		return;
1808 1809

	/* mayday mayday mayday */
1810
	if (list_empty(&pwq->mayday_node)) {
1811 1812 1813 1814 1815 1816
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1817
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1818
		wake_up_process(wq->rescuer->task);
1819
	}
1820 1821
}

1822
static void pool_mayday_timeout(unsigned long __pool)
1823
{
1824
	struct worker_pool *pool = (void *)__pool;
1825 1826
	struct work_struct *work;

1827 1828
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1829

1830
	if (need_to_create_worker(pool)) {
1831 1832 1833 1834 1835 1836
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1837
		list_for_each_entry(work, &pool->worklist, entry)
1838
			send_mayday(work);
L
Linus Torvalds 已提交
1839
	}
1840

1841 1842
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1843

1844
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1845 1846
}

1847 1848
/**
 * maybe_create_worker - create a new worker if necessary
1849
 * @pool: pool to create a new worker for
1850
 *
1851
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1852 1853
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1854
 * sent to all rescuers with works scheduled on @pool to resolve
1855 1856
 * possible allocation deadlock.
 *
1857 1858
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1859 1860
 *
 * LOCKING:
1861
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1862 1863 1864
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1865
static void maybe_create_worker(struct worker_pool *pool)
1866 1867
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1868
{
1869
restart:
1870
	spin_unlock_irq(&pool->lock);
1871

1872
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1873
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1874 1875

	while (true) {
1876
		if (create_worker(pool) || !need_to_create_worker(pool))
1877
			break;
L
Linus Torvalds 已提交
1878

1879
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1880

1881
		if (!need_to_create_worker(pool))
1882 1883 1884
			break;
	}

1885
	del_timer_sync(&pool->mayday_timer);
1886
	spin_lock_irq(&pool->lock);
1887 1888 1889 1890 1891
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1892
	if (need_to_create_worker(pool))
1893 1894 1895
		goto restart;
}

1896
/**
1897 1898
 * manage_workers - manage worker pool
 * @worker: self
1899
 *
1900
 * Assume the manager role and manage the worker pool @worker belongs
1901
 * to.  At any given time, there can be only zero or one manager per
1902
 * pool.  The exclusion is handled automatically by this function.
1903 1904 1905 1906
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1907 1908
 *
 * CONTEXT:
1909
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1910 1911
 * multiple times.  Does GFP_KERNEL allocations.
 *
1912
 * Return:
1913 1914 1915 1916
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1917
 */
1918
static bool manage_workers(struct worker *worker)
1919
{
1920
	struct worker_pool *pool = worker->pool;
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1932
	if (!mutex_trylock(&pool->manager_arb))
1933
		return false;
1934
	pool->manager = worker;
1935

1936
	maybe_create_worker(pool);
1937

1938
	pool->manager = NULL;
1939
	mutex_unlock(&pool->manager_arb);
1940
	return true;
1941 1942
}

1943 1944
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1945
 * @worker: self
1946 1947 1948 1949 1950 1951 1952 1953 1954
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1955
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1956
 */
T
Tejun Heo 已提交
1957
static void process_one_work(struct worker *worker, struct work_struct *work)
1958 1959
__releases(&pool->lock)
__acquires(&pool->lock)
1960
{
1961
	struct pool_workqueue *pwq = get_work_pwq(work);
1962
	struct worker_pool *pool = worker->pool;
1963
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1964
	int work_color;
1965
	struct worker *collision;
1966 1967 1968 1969 1970 1971 1972 1973
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1974 1975 1976
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1977
#endif
1978
	/* ensure we're on the correct CPU */
1979
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1980
		     raw_smp_processor_id() != pool->cpu);
1981

1982 1983 1984 1985 1986 1987
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
1988
	collision = find_worker_executing_work(pool, work);
1989 1990 1991 1992 1993
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1994
	/* claim and dequeue */
1995
	debug_work_deactivate(work);
1996
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
1997
	worker->current_work = work;
1998
	worker->current_func = work->func;
1999
	worker->current_pwq = pwq;
2000
	work_color = get_work_color(work);
2001

2002 2003
	list_del_init(&work->entry);

2004
	/*
2005 2006 2007 2008
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
2009 2010
	 */
	if (unlikely(cpu_intensive))
2011
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2012

2013
	/*
2014 2015 2016 2017
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2018
	 * UNBOUND and CPU_INTENSIVE ones.
2019
	 */
2020
	if (need_more_worker(pool))
2021
		wake_up_worker(pool);
2022

2023
	/*
2024
	 * Record the last pool and clear PENDING which should be the last
2025
	 * update to @work.  Also, do this inside @pool->lock so that
2026 2027
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2028
	 */
2029
	set_work_pool_and_clear_pending(work, pool->id);
2030

2031
	spin_unlock_irq(&pool->lock);
2032

2033
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2034
	lock_map_acquire(&lockdep_map);
2035
	trace_workqueue_execute_start(work);
2036
	worker->current_func(work);
2037 2038 2039 2040 2041
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2042
	lock_map_release(&lockdep_map);
2043
	lock_map_release(&pwq->wq->lockdep_map);
2044 2045

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2046 2047
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2048 2049
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2050 2051 2052 2053
		debug_show_held_locks(current);
		dump_stack();
	}

2054 2055 2056 2057 2058
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2059 2060
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2061
	 */
2062
	cond_resched_rcu_qs();
2063

2064
	spin_lock_irq(&pool->lock);
2065

2066 2067 2068 2069
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2070
	/* we're done with it, release */
2071
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2072
	worker->current_work = NULL;
2073
	worker->current_func = NULL;
2074
	worker->current_pwq = NULL;
2075
	worker->desc_valid = false;
2076
	pwq_dec_nr_in_flight(pwq, work_color);
2077 2078
}

2079 2080 2081 2082 2083 2084 2085 2086 2087
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2088
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2089 2090 2091
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2092
{
2093 2094
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2095
						struct work_struct, entry);
T
Tejun Heo 已提交
2096
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2097 2098 2099
	}
}

T
Tejun Heo 已提交
2100 2101
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2102
 * @__worker: self
T
Tejun Heo 已提交
2103
 *
2104 2105 2106 2107 2108
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2109 2110
 *
 * Return: 0
T
Tejun Heo 已提交
2111
 */
T
Tejun Heo 已提交
2112
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2113
{
T
Tejun Heo 已提交
2114
	struct worker *worker = __worker;
2115
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2116

2117 2118
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2119
woke_up:
2120
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2121

2122 2123
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2124
		spin_unlock_irq(&pool->lock);
2125 2126
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2127 2128

		set_task_comm(worker->task, "kworker/dying");
2129
		ida_simple_remove(&pool->worker_ida, worker->id);
2130 2131
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2132
		return 0;
T
Tejun Heo 已提交
2133
	}
2134

T
Tejun Heo 已提交
2135
	worker_leave_idle(worker);
2136
recheck:
2137
	/* no more worker necessary? */
2138
	if (!need_more_worker(pool))
2139 2140 2141
		goto sleep;

	/* do we need to manage? */
2142
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2143 2144
		goto recheck;

T
Tejun Heo 已提交
2145 2146 2147 2148 2149
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2150
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2151

2152
	/*
2153 2154 2155 2156 2157
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2158
	 */
2159
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2160 2161

	do {
T
Tejun Heo 已提交
2162
		struct work_struct *work =
2163
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2164 2165
					 struct work_struct, entry);

T
Tejun Heo 已提交
2166 2167
		pool->watchdog_ts = jiffies;

T
Tejun Heo 已提交
2168 2169 2170 2171
		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2172
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2173 2174 2175
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2176
		}
2177
	} while (keep_working(pool));
2178

2179
	worker_set_flags(worker, WORKER_PREP);
2180
sleep:
T
Tejun Heo 已提交
2181
	/*
2182 2183 2184 2185 2186
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2187 2188 2189
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2190
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2191 2192
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2193 2194
}

2195 2196
/**
 * rescuer_thread - the rescuer thread function
2197
 * @__rescuer: self
2198 2199
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2200
 * workqueue which has WQ_MEM_RECLAIM set.
2201
 *
2202
 * Regular work processing on a pool may block trying to create a new
2203 2204 2205 2206 2207
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2208 2209
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2210 2211 2212
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2213 2214
 *
 * Return: 0
2215
 */
2216
static int rescuer_thread(void *__rescuer)
2217
{
2218 2219
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2220
	struct list_head *scheduled = &rescuer->scheduled;
2221
	bool should_stop;
2222 2223

	set_user_nice(current, RESCUER_NICE_LEVEL);
2224 2225 2226 2227 2228 2229

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2230 2231 2232
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2233 2234 2235 2236 2237 2238 2239 2240 2241
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2242

2243
	/* see whether any pwq is asking for help */
2244
	spin_lock_irq(&wq_mayday_lock);
2245 2246 2247 2248

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2249
		struct worker_pool *pool = pwq->pool;
2250
		struct work_struct *work, *n;
T
Tejun Heo 已提交
2251
		bool first = true;
2252 2253

		__set_current_state(TASK_RUNNING);
2254 2255
		list_del_init(&pwq->mayday_node);

2256
		spin_unlock_irq(&wq_mayday_lock);
2257

2258 2259 2260
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2261
		rescuer->pool = pool;
2262 2263 2264 2265 2266

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2267
		WARN_ON_ONCE(!list_empty(scheduled));
T
Tejun Heo 已提交
2268 2269 2270 2271
		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
			if (get_work_pwq(work) == pwq) {
				if (first)
					pool->watchdog_ts = jiffies;
2272
				move_linked_works(work, scheduled, &n);
T
Tejun Heo 已提交
2273 2274 2275
			}
			first = false;
		}
2276

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2296

2297 2298
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2299
		 * go away while we're still attached to it.
2300 2301 2302
		 */
		put_pwq(pwq);

2303
		/*
2304
		 * Leave this pool.  If need_more_worker() is %true, notify a
2305 2306 2307
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2308
		if (need_more_worker(pool))
2309
			wake_up_worker(pool);
2310

2311
		rescuer->pool = NULL;
2312 2313 2314 2315 2316
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2317 2318
	}

2319
	spin_unlock_irq(&wq_mayday_lock);
2320

2321 2322 2323 2324 2325 2326
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2327 2328
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2329 2330
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2331 2332
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
/**
 * check_flush_dependency - check for flush dependency sanity
 * @target_wq: workqueue being flushed
 * @target_work: work item being flushed (NULL for workqueue flushes)
 *
 * %current is trying to flush the whole @target_wq or @target_work on it.
 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
 * reclaiming memory or running on a workqueue which doesn't have
 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
 * a deadlock.
 */
static void check_flush_dependency(struct workqueue_struct *target_wq,
				   struct work_struct *target_work)
{
	work_func_t target_func = target_work ? target_work->func : NULL;
	struct worker *worker;

	if (target_wq->flags & WQ_MEM_RECLAIM)
		return;

	worker = current_wq_worker();

	WARN_ONCE(current->flags & PF_MEMALLOC,
		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
		  current->pid, current->comm, target_wq->name, target_func);
2358 2359
	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2360 2361 2362 2363 2364
		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
		  worker->current_pwq->wq->name, worker->current_func,
		  target_wq->name, target_func);
}

O
Oleg Nesterov 已提交
2365 2366 2367
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
2368
	struct task_struct	*task;	/* purely informational */
O
Oleg Nesterov 已提交
2369 2370 2371 2372 2373 2374 2375 2376
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2377 2378
/**
 * insert_wq_barrier - insert a barrier work
2379
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2380
 * @barr: wq_barrier to insert
2381 2382
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2383
 *
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2396
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2397 2398
 *
 * CONTEXT:
2399
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2400
 */
2401
static void insert_wq_barrier(struct pool_workqueue *pwq,
2402 2403
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2404
{
2405 2406 2407
	struct list_head *head;
	unsigned int linked = 0;

2408
	/*
2409
	 * debugobject calls are safe here even with pool->lock locked
2410 2411 2412 2413
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2414
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2415
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2416
	init_completion(&barr->done);
2417
	barr->task = current;
2418

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2434
	debug_work_activate(&barr->work);
2435
	insert_work(pwq, &barr->work, head,
2436
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2437 2438
}

2439
/**
2440
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2441 2442 2443 2444
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2445
 * Prepare pwqs for workqueue flushing.
2446
 *
2447 2448 2449 2450 2451
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2452 2453 2454 2455 2456 2457 2458
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2459
 * If @work_color is non-negative, all pwqs should have the same
2460 2461 2462 2463
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2464
 * mutex_lock(wq->mutex).
2465
 *
2466
 * Return:
2467 2468 2469
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2470
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2471
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2472
{
2473
	bool wait = false;
2474
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2475

2476
	if (flush_color >= 0) {
2477
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2478
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2479
	}
2480

2481
	for_each_pwq(pwq, wq) {
2482
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2483

2484
		spin_lock_irq(&pool->lock);
2485

2486
		if (flush_color >= 0) {
2487
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2488

2489 2490 2491
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2492 2493 2494
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2495

2496
		if (work_color >= 0) {
2497
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2498
			pwq->work_color = work_color;
2499
		}
L
Linus Torvalds 已提交
2500

2501
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2502
	}
2503

2504
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2505
		complete(&wq->first_flusher->done);
2506

2507
	return wait;
L
Linus Torvalds 已提交
2508 2509
}

2510
/**
L
Linus Torvalds 已提交
2511
 * flush_workqueue - ensure that any scheduled work has run to completion.
2512
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2513
 *
2514 2515
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2516
 */
2517
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2518
{
2519 2520 2521 2522 2523 2524
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2525

2526 2527
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2528

2529
	mutex_lock(&wq->mutex);
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2542
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2543 2544 2545 2546 2547
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2548
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2549 2550 2551

			wq->first_flusher = &this_flusher;

2552
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2553 2554 2555 2556 2557 2558 2559 2560
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2561
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2562
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2563
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2574 2575
	check_flush_dependency(wq, NULL);

2576
	mutex_unlock(&wq->mutex);
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2589
	mutex_lock(&wq->mutex);
2590

2591 2592 2593 2594
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2595 2596
	wq->first_flusher = NULL;

2597 2598
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2611 2612
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2632
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2633 2634 2635
		}

		if (list_empty(&wq->flusher_queue)) {
2636
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2637 2638 2639 2640 2641
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2642
		 * the new first flusher and arm pwqs.
2643
		 */
2644 2645
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2646 2647 2648 2649

		list_del_init(&next->list);
		wq->first_flusher = next;

2650
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2661
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2662
}
2663
EXPORT_SYMBOL(flush_workqueue);
L
Linus Torvalds 已提交
2664

2665 2666 2667 2668 2669 2670 2671
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
C
Chen Hanxiao 已提交
2672
 * repeatedly until it becomes empty.  The number of flushing is determined
2673 2674 2675 2676 2677 2678
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2679
	struct pool_workqueue *pwq;
2680 2681 2682 2683

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2684
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2685
	 */
2686
	mutex_lock(&wq->mutex);
2687
	if (!wq->nr_drainers++)
2688
		wq->flags |= __WQ_DRAINING;
2689
	mutex_unlock(&wq->mutex);
2690 2691 2692
reflush:
	flush_workqueue(wq);

2693
	mutex_lock(&wq->mutex);
2694

2695
	for_each_pwq(pwq, wq) {
2696
		bool drained;
2697

2698
		spin_lock_irq(&pwq->pool->lock);
2699
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2700
		spin_unlock_irq(&pwq->pool->lock);
2701 2702

		if (drained)
2703 2704 2705 2706
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2707
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2708
				wq->name, flush_cnt);
2709

2710
		mutex_unlock(&wq->mutex);
2711 2712 2713 2714
		goto reflush;
	}

	if (!--wq->nr_drainers)
2715
		wq->flags &= ~__WQ_DRAINING;
2716
	mutex_unlock(&wq->mutex);
2717 2718 2719
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2720
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2721
{
2722
	struct worker *worker = NULL;
2723
	struct worker_pool *pool;
2724
	struct pool_workqueue *pwq;
2725 2726

	might_sleep();
2727 2728

	local_irq_disable();
2729
	pool = get_work_pool(work);
2730 2731
	if (!pool) {
		local_irq_enable();
2732
		return false;
2733
	}
2734

2735
	spin_lock(&pool->lock);
2736
	/* see the comment in try_to_grab_pending() with the same code */
2737 2738 2739
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2740
			goto already_gone;
2741
	} else {
2742
		worker = find_worker_executing_work(pool, work);
2743
		if (!worker)
T
Tejun Heo 已提交
2744
			goto already_gone;
2745
		pwq = worker->current_pwq;
2746
	}
2747

2748 2749
	check_flush_dependency(pwq->wq, work);

2750
	insert_wq_barrier(pwq, barr, work, worker);
2751
	spin_unlock_irq(&pool->lock);
2752

2753 2754 2755 2756 2757 2758
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2759
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2760
		lock_map_acquire(&pwq->wq->lockdep_map);
2761
	else
2762 2763
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2764

2765
	return true;
T
Tejun Heo 已提交
2766
already_gone:
2767
	spin_unlock_irq(&pool->lock);
2768
	return false;
2769
}
2770 2771 2772 2773 2774

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2775 2776
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2777
 *
2778
 * Return:
2779 2780 2781 2782 2783
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2784 2785
	struct wq_barrier barr;

2786 2787 2788
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2789 2790 2791 2792 2793 2794 2795
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2796
}
2797
EXPORT_SYMBOL_GPL(flush_work);
2798

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
struct cwt_wait {
	wait_queue_t		wait;
	struct work_struct	*work;
};

static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2813
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2814
{
2815
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2816
	unsigned long flags;
2817 2818 2819
	int ret;

	do {
2820 2821
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2836
		 */
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2850 2851
	} while (unlikely(ret < 0));

2852 2853 2854 2855
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2856
	flush_work(work);
2857
	clear_work_data(work);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2868 2869 2870
	return ret;
}

2871
/**
2872 2873
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2874
 *
2875 2876 2877 2878
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2879
 *
2880 2881
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2882
 *
2883
 * The caller must ensure that the workqueue on which @work was last
2884
 * queued can't be destroyed before this function returns.
2885
 *
2886
 * Return:
2887
 * %true if @work was pending, %false otherwise.
2888
 */
2889
bool cancel_work_sync(struct work_struct *work)
2890
{
2891
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2892
}
2893
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2894

2895
/**
2896 2897
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2898
 *
2899 2900 2901
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2902
 *
2903
 * Return:
2904 2905
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2906
 */
2907 2908
bool flush_delayed_work(struct delayed_work *dwork)
{
2909
	local_irq_disable();
2910
	if (del_timer_sync(&dwork->timer))
2911
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2912
	local_irq_enable();
2913 2914 2915 2916
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2917
/**
2918 2919
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2920
 *
2921 2922 2923 2924 2925 2926 2927 2928 2929
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2930
 *
2931
 * This function is safe to call from any context including IRQ handler.
2932
 */
2933
bool cancel_delayed_work(struct delayed_work *dwork)
2934
{
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2945 2946
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2947
	local_irq_restore(flags);
2948
	return ret;
2949
}
2950
EXPORT_SYMBOL(cancel_delayed_work);
2951

2952 2953 2954 2955 2956 2957
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2958
 * Return:
2959 2960 2961
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2962
{
2963
	return __cancel_work_timer(&dwork->work, true);
2964
}
2965
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2966

2967
/**
2968
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2969 2970
 * @func: the function to call
 *
2971 2972
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2973
 * schedule_on_each_cpu() is very slow.
2974
 *
2975
 * Return:
2976
 * 0 on success, -errno on failure.
2977
 */
2978
int schedule_on_each_cpu(work_func_t func)
2979 2980
{
	int cpu;
2981
	struct work_struct __percpu *works;
2982

2983 2984
	works = alloc_percpu(struct work_struct);
	if (!works)
2985
		return -ENOMEM;
2986

2987 2988
	get_online_cpus();

2989
	for_each_online_cpu(cpu) {
2990 2991 2992
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2993
		schedule_work_on(cpu, work);
2994
	}
2995 2996 2997 2998

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2999
	put_online_cpus();
3000
	free_percpu(works);
3001 3002 3003
	return 0;
}

3004 3005 3006 3007 3008 3009 3010 3011 3012
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3013
 * Return:	0 - function was executed
3014 3015
 *		1 - function was scheduled for execution
 */
3016
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3017 3018
{
	if (!in_interrupt()) {
3019
		fn(&ew->work);
3020 3021 3022
		return 0;
	}

3023
	INIT_WORK(&ew->work, fn);
3024 3025 3026 3027 3028 3029
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3030 3031 3032
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
3033
 *
3034
 * Undo alloc_workqueue_attrs().
3035
 */
3036
void free_workqueue_attrs(struct workqueue_attrs *attrs)
3037
{
3038 3039 3040 3041
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
3042 3043
}

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3054
{
3055
	struct workqueue_attrs *attrs;
3056

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_copy(attrs->cpumask, cpu_possible_mask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
3068 3069
}

3070 3071
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
3072
{
3073 3074 3075 3076 3077 3078 3079 3080
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3081 3082
}

3083 3084
/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3085
{
3086
	u32 hash = 0;
3087

3088 3089 3090 3091
	hash = jhash_1word(attrs->nice, hash);
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	return hash;
3092 3093
}

3094 3095 3096
/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
3097
{
3098 3099 3100 3101 3102
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
3103 3104
}

3105 3106 3107 3108
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
3109
 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3110 3111 3112 3113 3114 3115
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
 */
static int init_worker_pool(struct worker_pool *pool)
3116
{
3117 3118 3119 3120 3121
	spin_lock_init(&pool->lock);
	pool->id = -1;
	pool->cpu = -1;
	pool->node = NUMA_NO_NODE;
	pool->flags |= POOL_DISASSOCIATED;
T
Tejun Heo 已提交
3122
	pool->watchdog_ts = jiffies;
3123 3124 3125
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);
3126

3127 3128 3129
	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;
3130

3131 3132
	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);
3133

3134 3135 3136
	mutex_init(&pool->manager_arb);
	mutex_init(&pool->attach_mutex);
	INIT_LIST_HEAD(&pool->workers);
3137

3138 3139 3140
	ida_init(&pool->worker_ida);
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;
3141

3142 3143 3144 3145 3146
	/* shouldn't fail above this point */
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3147 3148
}

3149
static void rcu_free_wq(struct rcu_head *rcu)
3150
{
3151 3152
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);
3153

3154 3155
	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
3156
	else
3157
		free_workqueue_attrs(wq->unbound_attrs);
3158

3159 3160
	kfree(wq->rescuer);
	kfree(wq);
3161 3162
}

3163
static void rcu_free_pool(struct rcu_head *rcu)
3164
{
3165
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3166

3167 3168 3169
	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
3170 3171
}

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
 *
 * Should be called with wq_pool_mutex held.
 */
static void put_unbound_pool(struct worker_pool *pool)
3184
{
3185 3186
	DECLARE_COMPLETION_ONSTACK(detach_completion);
	struct worker *worker;
3187

3188
	lockdep_assert_held(&wq_pool_mutex);
3189

3190 3191
	if (--pool->refcnt)
		return;
3192

3193 3194 3195 3196
	/* sanity checks */
	if (WARN_ON(!(pool->cpu < 0)) ||
	    WARN_ON(!list_empty(&pool->worklist)))
		return;
3197

3198 3199 3200 3201
	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);
3202

3203 3204 3205 3206 3207 3208
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * attach_mutex.
	 */
	mutex_lock(&pool->manager_arb);
3209

3210 3211 3212 3213 3214
	spin_lock_irq(&pool->lock);
	while ((worker = first_idle_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3215

3216 3217 3218 3219
	mutex_lock(&pool->attach_mutex);
	if (!list_empty(&pool->workers))
		pool->detach_completion = &detach_completion;
	mutex_unlock(&pool->attach_mutex);
3220

3221 3222
	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);
3223

3224
	mutex_unlock(&pool->manager_arb);
3225

3226 3227 3228
	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);
3229

3230 3231
	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
3232 3233 3234
}

/**
3235 3236
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
3237
 *
3238 3239 3240 3241
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.
3242
 *
3243
 * Should be called with wq_pool_mutex held.
3244
 *
3245 3246
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3247
 */
3248
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3249
{
3250 3251 3252
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	int node;
3253
	int target_node = NUMA_NO_NODE;
3254

3255
	lockdep_assert_held(&wq_pool_mutex);
3256

3257 3258 3259 3260 3261 3262 3263
	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			return pool;
		}
	}
3264

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				target_node = node;
				break;
			}
		}
	}

3276
	/* nope, create a new one */
3277
	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3278 3279 3280 3281 3282
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
	copy_workqueue_attrs(pool->attrs, attrs);
3283
	pool->node = target_node;
3284 3285

	/*
3286 3287
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
3288
	 */
3289
	pool->attrs->no_numa = false;
3290

3291 3292
	if (worker_pool_assign_id(pool) < 0)
		goto fail;
3293

3294 3295 3296
	/* create and start the initial worker */
	if (!create_worker(pool))
		goto fail;
3297

3298 3299
	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3300

3301 3302 3303 3304 3305
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
3306 3307
}

3308
static void rcu_free_pwq(struct rcu_head *rcu)
T
Tejun Heo 已提交
3309
{
3310 3311
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
T
Tejun Heo 已提交
3312 3313
}

3314 3315 3316
/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
T
Tejun Heo 已提交
3317
 */
3318
static void pwq_unbound_release_workfn(struct work_struct *work)
T
Tejun Heo 已提交
3319
{
3320 3321 3322 3323 3324
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	bool is_last;
T
Tejun Heo 已提交
3325

3326 3327
	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;
T
Tejun Heo 已提交
3328

3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
	mutex_lock(&wq->mutex);
	list_del_rcu(&pwq->pwqs_node);
	is_last = list_empty(&wq->pwqs);
	mutex_unlock(&wq->mutex);

	mutex_lock(&wq_pool_mutex);
	put_unbound_pool(pool);
	mutex_unlock(&wq_pool_mutex);

	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
T
Tejun Heo 已提交
3339

3340
	/*
3341 3342
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Schedule RCU free.
3343
	 */
3344 3345
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
3346 3347
}

T
Tejun Heo 已提交
3348
/**
3349 3350
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
 * @pwq: target pool_workqueue
3351
 *
3352 3353 3354
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
T
Tejun Heo 已提交
3355
 */
3356
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3357
{
3358 3359
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;
3360

3361 3362
	/* for @wq->saved_max_active */
	lockdep_assert_held(&wq->mutex);
3363

3364 3365 3366
	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;
T
Tejun Heo 已提交
3367

3368
	spin_lock_irq(&pwq->pool->lock);
3369

3370 3371 3372 3373 3374 3375 3376
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
		pwq->max_active = wq->saved_max_active;
3377

3378 3379 3380
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3381

3382 3383 3384 3385 3386 3387 3388 3389
		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
	} else {
		pwq->max_active = 0;
	}
3390

3391
	spin_unlock_irq(&pwq->pool->lock);
3392 3393
}

3394 3395 3396
/* initialize newly alloced @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3397
{
3398
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3399

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
	memset(pwq, 0, sizeof(*pwq));

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
	pwq->refcnt = 1;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->pwqs_node);
	INIT_LIST_HEAD(&pwq->mayday_node);
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3410 3411
}

3412 3413
/* sync @pwq with the current state of its associated wq and link it */
static void link_pwq(struct pool_workqueue *pwq)
3414
{
3415
	struct workqueue_struct *wq = pwq->wq;
3416

3417
	lockdep_assert_held(&wq->mutex);
3418

3419 3420
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
3421 3422
		return;

3423 3424
	/* set the matching work_color */
	pwq->work_color = wq->work_color;
3425

3426 3427
	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);
3428

3429 3430 3431
	/* link in @pwq */
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
}
3432

3433 3434 3435 3436 3437 3438
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;
3439

3440
	lockdep_assert_held(&wq_pool_mutex);
3441

3442 3443 3444
	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;
3445

3446 3447 3448 3449 3450
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
	}
3451

3452 3453 3454
	init_pwq(pwq, wq, pool);
	return pwq;
}
3455 3456

/**
3457
 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3458
 * @attrs: the wq_attrs of the default pwq of the target workqueue
3459 3460 3461
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
3462
 *
3463 3464 3465
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.
3466
 *
3467 3468 3469 3470
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
3471
 *
3472 3473 3474 3475 3476
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3477
 */
3478 3479
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
3480
{
3481 3482
	if (!wq_numa_enabled || attrs->no_numa)
		goto use_dfl;
3483

3484 3485 3486 3487
	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);
3488

3489 3490
	if (cpumask_empty(cpumask))
		goto use_dfl;
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3501 3502 3503 3504 3505 3506 3507
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

3508
	lockdep_assert_held(&wq_pool_mutex);
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3519 3520 3521 3522
/* context to store the prepared attrs & pwqs before applying */
struct apply_wqattrs_ctx {
	struct workqueue_struct	*wq;		/* target workqueue */
	struct workqueue_attrs	*attrs;		/* attrs to apply */
3523
	struct list_head	list;		/* queued for batching commit */
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	struct pool_workqueue	*dfl_pwq;
	struct pool_workqueue	*pwq_tbl[];
};

/* free the resources after success or abort */
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
{
	if (ctx) {
		int node;

		for_each_node(node)
			put_pwq_unlocked(ctx->pwq_tbl[node]);
		put_pwq_unlocked(ctx->dfl_pwq);

		free_workqueue_attrs(ctx->attrs);

		kfree(ctx);
	}
}

/* allocate the attrs and pwqs for later installation */
static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct *wq,
		      const struct workqueue_attrs *attrs)
3548
{
3549
	struct apply_wqattrs_ctx *ctx;
3550
	struct workqueue_attrs *new_attrs, *tmp_attrs;
3551
	int node;
3552

3553
	lockdep_assert_held(&wq_pool_mutex);
3554

3555 3556
	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
		      GFP_KERNEL);
3557

3558
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3559
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3560 3561
	if (!ctx || !new_attrs || !tmp_attrs)
		goto out_free;
3562

3563 3564 3565 3566 3567
	/*
	 * Calculate the attrs of the default pwq.
	 * If the user configured cpumask doesn't overlap with the
	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
	 */
3568
	copy_workqueue_attrs(new_attrs, attrs);
3569
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3570 3571
	if (unlikely(cpumask_empty(new_attrs->cpumask)))
		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3572

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
3585 3586 3587
	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!ctx->dfl_pwq)
		goto out_free;
3588 3589

	for_each_node(node) {
3590
		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3591 3592 3593
			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!ctx->pwq_tbl[node])
				goto out_free;
3594
		} else {
3595 3596
			ctx->dfl_pwq->refcnt++;
			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3597 3598 3599
		}
	}

3600 3601 3602
	/* save the user configured attrs and sanitize it. */
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3603
	ctx->attrs = new_attrs;
3604

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	ctx->wq = wq;
	free_workqueue_attrs(tmp_attrs);
	return ctx;

out_free:
	free_workqueue_attrs(tmp_attrs);
	free_workqueue_attrs(new_attrs);
	apply_wqattrs_cleanup(ctx);
	return NULL;
}

/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
{
	int node;
3620

3621
	/* all pwqs have been created successfully, let's install'em */
3622
	mutex_lock(&ctx->wq->mutex);
3623

3624
	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3625 3626

	/* save the previous pwq and install the new one */
3627
	for_each_node(node)
3628 3629
		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
							  ctx->pwq_tbl[node]);
3630 3631

	/* @dfl_pwq might not have been used, ensure it's linked */
3632 3633
	link_pwq(ctx->dfl_pwq);
	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3634

3635 3636
	mutex_unlock(&ctx->wq->mutex);
}
3637

3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
static void apply_wqattrs_lock(void)
{
	/* CPUs should stay stable across pwq creations and installations */
	get_online_cpus();
	mutex_lock(&wq_pool_mutex);
}

static void apply_wqattrs_unlock(void)
{
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
}

static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
3653 3654
{
	struct apply_wqattrs_ctx *ctx;
3655

3656 3657 3658
	/* only unbound workqueues can change attributes */
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;
3659

3660 3661 3662 3663 3664
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

	ctx = apply_wqattrs_prepare(wq, attrs);
3665 3666
	if (!ctx)
		return -ENOMEM;
3667 3668

	/* the ctx has been prepared successfully, let's commit it */
3669
	apply_wqattrs_commit(ctx);
3670 3671
	apply_wqattrs_cleanup(ctx);

3672
	return 0;
3673 3674
}

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	int ret;

	apply_wqattrs_lock();
	ret = apply_workqueue_attrs_locked(wq, attrs);
	apply_wqattrs_unlock();

	return ret;
}

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

3736 3737
	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
	    wq->unbound_attrs->no_numa)
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
3753 3754 3755
	 * different from the default pwq's, we need to compare it to @pwq's
	 * and create a new one if they don't match.  If the target cpumask
	 * equals the default pwq's, the default pwq should be used.
3756
	 */
3757
	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3758
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3759
			return;
3760
	} else {
3761
		goto use_dfl_pwq;
3762 3763 3764 3765 3766
	}

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3767 3768
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3769
		goto use_dfl_pwq;
3770 3771
	}

3772
	/* Install the new pwq. */
3773 3774 3775 3776 3777
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
3778
	mutex_lock(&wq->mutex);
3779 3780 3781 3782 3783 3784 3785 3786 3787
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3788
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3789
{
3790
	bool highpri = wq->flags & WQ_HIGHPRI;
3791
	int cpu, ret;
3792 3793

	if (!(wq->flags & WQ_UNBOUND)) {
3794 3795
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3796 3797 3798
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3799 3800
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3801
			struct worker_pool *cpu_pools =
3802
				per_cpu(cpu_worker_pools, cpu);
3803

3804 3805 3806
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3807
			link_pwq(pwq);
3808
			mutex_unlock(&wq->mutex);
3809
		}
3810
		return 0;
3811 3812 3813 3814 3815 3816 3817
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3818
	} else {
3819
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3820
	}
T
Tejun Heo 已提交
3821 3822
}

3823 3824
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3825
{
3826 3827 3828
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3829 3830
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3831

3832
	return clamp_val(max_active, 1, lim);
3833 3834
}

3835
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3836 3837 3838
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3839
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3840
{
3841
	size_t tbl_size = 0;
3842
	va_list args;
L
Linus Torvalds 已提交
3843
	struct workqueue_struct *wq;
3844
	struct pool_workqueue *pwq;
3845

3846 3847 3848 3849
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

3850
	/* allocate wq and format name */
3851
	if (flags & WQ_UNBOUND)
3852
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3853 3854

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3855
	if (!wq)
3856
		return NULL;
3857

3858 3859 3860 3861 3862 3863
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

3864 3865
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3866
	va_end(args);
L
Linus Torvalds 已提交
3867

3868
	max_active = max_active ?: WQ_DFL_ACTIVE;
3869
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3870

3871
	/* init wq */
3872
	wq->flags = flags;
3873
	wq->saved_max_active = max_active;
3874
	mutex_init(&wq->mutex);
3875
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3876
	INIT_LIST_HEAD(&wq->pwqs);
3877 3878
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3879
	INIT_LIST_HEAD(&wq->maydays);
3880

3881
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3882
	INIT_LIST_HEAD(&wq->list);
3883

3884
	if (alloc_and_link_pwqs(wq) < 0)
3885
		goto err_free_wq;
T
Tejun Heo 已提交
3886

3887 3888 3889 3890 3891
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3892 3893
		struct worker *rescuer;

3894
		rescuer = alloc_worker(NUMA_NO_NODE);
3895
		if (!rescuer)
3896
			goto err_destroy;
3897

3898 3899
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3900
					       wq->name);
3901 3902 3903 3904
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3905

3906
		wq->rescuer = rescuer;
3907
		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3908
		wake_up_process(rescuer->task);
3909 3910
	}

3911 3912 3913
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3914
	/*
3915 3916 3917
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
3918
	 */
3919
	mutex_lock(&wq_pool_mutex);
3920

3921
	mutex_lock(&wq->mutex);
3922 3923
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3924
	mutex_unlock(&wq->mutex);
3925

3926
	list_add_tail_rcu(&wq->list, &workqueues);
3927

3928
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
3929

3930
	return wq;
3931 3932

err_free_wq:
3933
	free_workqueue_attrs(wq->unbound_attrs);
3934 3935 3936 3937
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3938
	return NULL;
3939
}
3940
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3941

3942 3943 3944 3945 3946 3947 3948 3949
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3950
	struct pool_workqueue *pwq;
3951
	int node;
3952

3953 3954
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3955

3956
	/* sanity checks */
3957
	mutex_lock(&wq->mutex);
3958
	for_each_pwq(pwq, wq) {
3959 3960
		int i;

3961 3962
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
3963
				mutex_unlock(&wq->mutex);
3964
				return;
3965 3966 3967
			}
		}

3968
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
3969
		    WARN_ON(pwq->nr_active) ||
3970
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3971
			mutex_unlock(&wq->mutex);
3972
			return;
3973
		}
3974
	}
3975
	mutex_unlock(&wq->mutex);
3976

3977 3978 3979 3980
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3981
	mutex_lock(&wq_pool_mutex);
3982
	list_del_rcu(&wq->list);
3983
	mutex_unlock(&wq_pool_mutex);
3984

3985 3986
	workqueue_sysfs_unregister(wq);

3987
	if (wq->rescuer)
3988 3989
		kthread_stop(wq->rescuer->task);

T
Tejun Heo 已提交
3990 3991 3992
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
3993
		 * schedule RCU free.
T
Tejun Heo 已提交
3994
		 */
3995
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
3996 3997 3998
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
3999 4000
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4001
		 */
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4014
		put_pwq_unlocked(pwq);
4015
	}
4016 4017 4018
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4031
	struct pool_workqueue *pwq;
4032

4033 4034 4035 4036
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4037
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4038

4039
	mutex_lock(&wq->mutex);
4040 4041 4042

	wq->saved_max_active = max_active;

4043 4044
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4045

4046
	mutex_unlock(&wq->mutex);
4047
}
4048
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4049

4050 4051 4052 4053 4054
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4055 4056
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4057 4058 4059 4060 4061
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4062
	return worker && worker->rescue_wq;
4063 4064
}

4065
/**
4066 4067 4068
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4069
 *
4070 4071 4072
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4073
 *
4074 4075 4076 4077 4078 4079
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4080
 * Return:
4081
 * %true if congested, %false otherwise.
4082
 */
4083
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4084
{
4085
	struct pool_workqueue *pwq;
4086 4087
	bool ret;

4088
	rcu_read_lock_sched();
4089

4090 4091 4092
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4093 4094 4095
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4096
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4097

4098
	ret = !list_empty(&pwq->delayed_works);
4099
	rcu_read_unlock_sched();
4100 4101

	return ret;
L
Linus Torvalds 已提交
4102
}
4103
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4104

4105 4106 4107 4108 4109 4110 4111 4112
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4113
 * Return:
4114 4115 4116
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4117
{
4118
	struct worker_pool *pool;
4119 4120
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4121

4122 4123
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4124

4125 4126
	local_irq_save(flags);
	pool = get_work_pool(work);
4127
	if (pool) {
4128
		spin_lock(&pool->lock);
4129 4130
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4131
		spin_unlock(&pool->lock);
4132
	}
4133
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4134

4135
	return ret;
L
Linus Torvalds 已提交
4136
}
4137
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4138

4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
static void pr_cont_pool_info(struct worker_pool *pool)
{
	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
	if (pool->node != NUMA_NO_NODE)
		pr_cont(" node=%d", pool->node);
	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
}

static void pr_cont_work(bool comma, struct work_struct *work)
{
	if (work->func == wq_barrier_func) {
		struct wq_barrier *barr;

		barr = container_of(work, struct wq_barrier, work);

		pr_cont("%s BAR(%d)", comma ? "," : "",
			task_pid_nr(barr->task));
	} else {
		pr_cont("%s %pf", comma ? "," : "", work->func);
	}
}

static void show_pwq(struct pool_workqueue *pwq)
{
	struct worker_pool *pool = pwq->pool;
	struct work_struct *work;
	struct worker *worker;
	bool has_in_flight = false, has_pending = false;
	int bkt;

	pr_info("  pwq %d:", pool->id);
	pr_cont_pool_info(pool);

	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (worker->current_pwq == pwq) {
			has_in_flight = true;
			break;
		}
	}
	if (has_in_flight) {
		bool comma = false;

		pr_info("    in-flight:");
		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
			if (worker->current_pwq != pwq)
				continue;

			pr_cont("%s %d%s:%pf", comma ? "," : "",
				task_pid_nr(worker->task),
				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
				worker->current_func);
			list_for_each_entry(work, &worker->scheduled, entry)
				pr_cont_work(false, work);
			comma = true;
		}
		pr_cont("\n");
	}

	list_for_each_entry(work, &pool->worklist, entry) {
		if (get_work_pwq(work) == pwq) {
			has_pending = true;
			break;
		}
	}
	if (has_pending) {
		bool comma = false;

		pr_info("    pending:");
		list_for_each_entry(work, &pool->worklist, entry) {
			if (get_work_pwq(work) != pwq)
				continue;

			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}

	if (!list_empty(&pwq->delayed_works)) {
		bool comma = false;

		pr_info("    delayed:");
		list_for_each_entry(work, &pwq->delayed_works, entry) {
			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}
}

/**
 * show_workqueue_state - dump workqueue state
 *
 * Called from a sysrq handler and prints out all busy workqueues and
 * pools.
 */
void show_workqueue_state(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	unsigned long flags;
	int pi;

	rcu_read_lock_sched();

	pr_info("Showing busy workqueues and worker pools:\n");

	list_for_each_entry_rcu(wq, &workqueues, list) {
		struct pool_workqueue *pwq;
		bool idle = true;

		for_each_pwq(pwq, wq) {
			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
				idle = false;
				break;
			}
		}
		if (idle)
			continue;

		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);

		for_each_pwq(pwq, wq) {
			spin_lock_irqsave(&pwq->pool->lock, flags);
			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
				show_pwq(pwq);
			spin_unlock_irqrestore(&pwq->pool->lock, flags);
		}
	}

	for_each_pool(pool, pi) {
		struct worker *worker;
		bool first = true;

		spin_lock_irqsave(&pool->lock, flags);
		if (pool->nr_workers == pool->nr_idle)
			goto next_pool;

		pr_info("pool %d:", pool->id);
		pr_cont_pool_info(pool);
T
Tejun Heo 已提交
4359 4360 4361
		pr_cont(" hung=%us workers=%d",
			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
			pool->nr_workers);
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
		if (pool->manager)
			pr_cont(" manager: %d",
				task_pid_nr(pool->manager->task));
		list_for_each_entry(worker, &pool->idle_list, entry) {
			pr_cont(" %s%d", first ? "idle: " : "",
				task_pid_nr(worker->task));
			first = false;
		}
		pr_cont("\n");
	next_pool:
		spin_unlock_irqrestore(&pool->lock, flags);
	}

	rcu_read_unlock_sched();
}

4378 4379 4380
/*
 * CPU hotplug.
 *
4381
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4382
 * are a lot of assumptions on strong associations among work, pwq and
4383
 * pool which make migrating pending and scheduled works very
4384
 * difficult to implement without impacting hot paths.  Secondly,
4385
 * worker pools serve mix of short, long and very long running works making
4386 4387
 * blocked draining impractical.
 *
4388
 * This is solved by allowing the pools to be disassociated from the CPU
4389 4390
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4391
 */
L
Linus Torvalds 已提交
4392

4393
static void wq_unbind_fn(struct work_struct *work)
4394
{
4395
	int cpu = smp_processor_id();
4396
	struct worker_pool *pool;
4397
	struct worker *worker;
4398

4399
	for_each_cpu_worker_pool(pool, cpu) {
4400
		mutex_lock(&pool->attach_mutex);
4401
		spin_lock_irq(&pool->lock);
4402

4403
		/*
4404
		 * We've blocked all attach/detach operations. Make all workers
4405 4406 4407 4408 4409
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4410
		for_each_pool_worker(worker, pool)
4411
			worker->flags |= WORKER_UNBOUND;
4412

4413
		pool->flags |= POOL_DISASSOCIATED;
4414

4415
		spin_unlock_irq(&pool->lock);
4416
		mutex_unlock(&pool->attach_mutex);
4417

4418 4419 4420 4421 4422 4423 4424
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4425

4426 4427 4428 4429 4430 4431 4432 4433
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4434
		atomic_set(&pool->nr_running, 0);
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4445 4446
}

T
Tejun Heo 已提交
4447 4448 4449 4450
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4451
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4452 4453 4454
 */
static void rebind_workers(struct worker_pool *pool)
{
4455
	struct worker *worker;
T
Tejun Heo 已提交
4456

4457
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4458

4459 4460 4461
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
4462
	 * wake-ups for concurrency management happen, restore CPU affinity
4463 4464 4465
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4466
	for_each_pool_worker(worker, pool)
4467 4468
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4469

4470
	spin_lock_irq(&pool->lock);
4471
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4472

4473
	for_each_pool_worker(worker, pool) {
4474
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4475 4476

		/*
4477 4478 4479 4480 4481 4482
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4483
		 */
4484 4485
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4486

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4506
	}
4507 4508

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4509 4510
}

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4526
	lockdep_assert_held(&pool->attach_mutex);
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4538
	for_each_pool_worker(worker, pool)
4539 4540 4541 4542
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4543 4544 4545 4546
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4547
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4548 4549
					       unsigned long action,
					       void *hcpu)
4550
{
4551
	int cpu = (unsigned long)hcpu;
4552
	struct worker_pool *pool;
4553
	struct workqueue_struct *wq;
4554
	int pi;
4555

T
Tejun Heo 已提交
4556
	switch (action & ~CPU_TASKS_FROZEN) {
4557
	case CPU_UP_PREPARE:
4558
		for_each_cpu_worker_pool(pool, cpu) {
4559 4560
			if (pool->nr_workers)
				continue;
4561
			if (!create_worker(pool))
4562
				return NOTIFY_BAD;
4563
		}
T
Tejun Heo 已提交
4564
		break;
4565

4566 4567
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4568
		mutex_lock(&wq_pool_mutex);
4569 4570

		for_each_pool(pool, pi) {
4571
			mutex_lock(&pool->attach_mutex);
4572

4573
			if (pool->cpu == cpu)
4574
				rebind_workers(pool);
4575
			else if (pool->cpu < 0)
4576
				restore_unbound_workers_cpumask(pool, cpu);
4577

4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
			mutex_unlock(&pool->attach_mutex);
		}

		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

		mutex_unlock(&wq_pool_mutex);
		break;
	}
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;
	struct workqueue_struct *wq;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/* unbinding per-cpu workers should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
		queue_work_on(cpu, system_highpri_wq, &unbind_work);

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
		flush_work(&unbind_work);
		destroy_work_on_stack(&unbind_work);
		break;
	}
	return NOTIFY_OK;
}

#ifdef CONFIG_SMP

struct work_for_cpu {
	struct work_struct work;
	long (*fn)(void *);
	void *arg;
	long ret;
};

static void work_for_cpu_fn(struct work_struct *work)
{
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
 * It is up to the caller to ensure that the cpu doesn't go offline.
 * The caller must not hold any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
{
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };

	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
	destroy_work_on_stack(&wfc.work);
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their delayed_works list instead of
 * pool->worklist.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void freeze_workqueues_begin(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(workqueue_freezing);
	workqueue_freezing = true;

	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

	mutex_unlock(&wq_pool_mutex);
}

/**
 * freeze_workqueues_busy - are freezable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex.
 *
 * Return:
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(!workqueue_freezing);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		rcu_read_lock_sched();
		for_each_pwq(pwq, wq) {
			WARN_ON_ONCE(pwq->nr_active < 0);
			if (pwq->nr_active) {
				busy = true;
				rcu_read_unlock_sched();
				goto out_unlock;
			}
		}
		rcu_read_unlock_sched();
	}
out_unlock:
	mutex_unlock(&wq_pool_mutex);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
 * frozen works are transferred to their respective pool worklists.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void thaw_workqueues(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	if (!workqueue_freezing)
		goto out_unlock;

	workqueue_freezing = false;

	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

out_unlock:
	mutex_unlock(&wq_pool_mutex);
}
#endif /* CONFIG_FREEZER */

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
static int workqueue_apply_unbound_cpumask(void)
{
	LIST_HEAD(ctxs);
	int ret = 0;
	struct workqueue_struct *wq;
	struct apply_wqattrs_ctx *ctx, *n;

	lockdep_assert_held(&wq_pool_mutex);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_UNBOUND))
			continue;
		/* creating multiple pwqs breaks ordering guarantee */
		if (wq->flags & __WQ_ORDERED)
			continue;

		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
		if (!ctx) {
			ret = -ENOMEM;
			break;
		}

		list_add_tail(&ctx->list, &ctxs);
	}

	list_for_each_entry_safe(ctx, n, &ctxs, list) {
		if (!ret)
			apply_wqattrs_commit(ctx);
		apply_wqattrs_cleanup(ctx);
	}

	return ret;
}

/**
 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
 *  @cpumask: the cpumask to set
 *
 *  The low-level workqueues cpumask is a global cpumask that limits
 *  the affinity of all unbound workqueues.  This function check the @cpumask
 *  and apply it to all unbound workqueues and updates all pwqs of them.
 *
 *  Retun:	0	- Success
 *  		-EINVAL	- Invalid @cpumask
 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
 */
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
{
	int ret = -EINVAL;
	cpumask_var_t saved_cpumask;

	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
		return -ENOMEM;

	cpumask_and(cpumask, cpumask, cpu_possible_mask);
	if (!cpumask_empty(cpumask)) {
4831
		apply_wqattrs_lock();
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843

		/* save the old wq_unbound_cpumask. */
		cpumask_copy(saved_cpumask, wq_unbound_cpumask);

		/* update wq_unbound_cpumask at first and apply it to wqs. */
		cpumask_copy(wq_unbound_cpumask, cpumask);
		ret = workqueue_apply_unbound_cpumask();

		/* restore the wq_unbound_cpumask when failed. */
		if (ret < 0)
			cpumask_copy(wq_unbound_cpumask, saved_cpumask);

4844
		apply_wqattrs_unlock();
4845 4846 4847 4848 4849 4850
	}

	free_cpumask_var(saved_cpumask);
	return ret;
}

4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
static DEVICE_ATTR_RO(per_cpu);

static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
static DEVICE_ATTR_RW(max_active);

static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
};
ATTRIBUTE_GROUPS(wq_sysfs);

static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	const char *delim = "";
	int node, written = 0;

	rcu_read_lock_sched();
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

4955 4956
	lockdep_assert_held(&wq_pool_mutex);

4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
4970 4971 4972
	int ret = -ENOMEM;

	apply_wqattrs_lock();
4973 4974 4975

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
4976
		goto out_unlock;
4977 4978 4979

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
4980
		ret = apply_workqueue_attrs_locked(wq, attrs);
4981 4982 4983
	else
		ret = -EINVAL;

4984 4985
out_unlock:
	apply_wqattrs_unlock();
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
	mutex_unlock(&wq->mutex);
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5009 5010 5011
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5012 5013 5014

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5015
		goto out_unlock;
5016 5017 5018

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
5019
		ret = apply_workqueue_attrs_locked(wq, attrs);
5020

5021 5022
out_unlock:
	apply_wqattrs_unlock();
5023 5024 5025 5026 5027 5028 5029 5030 5031
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;
5032

5033 5034 5035 5036
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);
5037

5038
	return written;
5039 5040
}

5041 5042
static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
5043
{
5044 5045
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5046 5047 5048
	int v, ret = -ENOMEM;

	apply_wqattrs_lock();
5049

5050 5051
	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5052
		goto out_unlock;
5053

5054 5055 5056
	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
5057
		ret = apply_workqueue_attrs_locked(wq, attrs);
5058
	}
5059

5060 5061
out_unlock:
	apply_wqattrs_unlock();
5062 5063
	free_workqueue_attrs(attrs);
	return ret ?: count;
5064 5065
}

5066 5067 5068 5069 5070 5071 5072
static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
	__ATTR_NULL,
};
5073

5074 5075 5076
static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_groups			= wq_sysfs_groups,
5077 5078
};

5079 5080 5081 5082 5083
static ssize_t wq_unbound_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int written;

5084
	mutex_lock(&wq_pool_mutex);
5085 5086
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq_unbound_cpumask));
5087
	mutex_unlock(&wq_pool_mutex);
5088 5089 5090 5091

	return written;
}

5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
static ssize_t wq_unbound_cpumask_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	cpumask_var_t cpumask;
	int ret;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	ret = cpumask_parse(buf, cpumask);
	if (!ret)
		ret = workqueue_set_unbound_cpumask(cpumask);

	free_cpumask_var(cpumask);
	return ret ? ret : count;
}

5109
static struct device_attribute wq_sysfs_cpumask_attr =
5110 5111
	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
	       wq_unbound_cpumask_store);
5112

5113
static int __init wq_sysfs_init(void)
5114
{
5115 5116 5117 5118 5119 5120 5121
	int err;

	err = subsys_virtual_register(&wq_subsys, NULL);
	if (err)
		return err;

	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5122
}
5123
core_initcall(wq_sysfs_init);
5124

5125
static void wq_device_release(struct device *dev)
5126
{
5127
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5128

5129
	kfree(wq_dev);
5130
}
5131 5132

/**
5133 5134
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
5135
 *
5136 5137 5138
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
5139
 *
5140 5141 5142 5143 5144 5145
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Return: 0 on success, -errno on failure.
5146
 */
5147
int workqueue_sysfs_register(struct workqueue_struct *wq)
5148
{
5149 5150
	struct wq_device *wq_dev;
	int ret;
5151

5152
	/*
5153
	 * Adjusting max_active or creating new pwqs by applying
5154 5155 5156 5157 5158
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;
5159

5160 5161 5162
	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;
5163

5164 5165 5166 5167
	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;
5168

5169 5170 5171 5172 5173
	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);
5174

5175 5176 5177 5178 5179 5180
	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}
5181

5182 5183
	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;
5184

5185 5186 5187 5188 5189 5190
		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
5191 5192 5193
			}
		}
	}
5194 5195 5196 5197

	dev_set_uevent_suppress(&wq_dev->dev, false);
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
5198 5199 5200
}

/**
5201 5202
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
5203
 *
5204
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5205
 */
5206
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5207
{
5208
	struct wq_device *wq_dev = wq->wq_dev;
5209

5210 5211
	if (!wq->wq_dev)
		return;
5212

5213 5214
	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
5215
}
5216 5217 5218
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */
5219

T
Tejun Heo 已提交
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
/*
 * Workqueue watchdog.
 *
 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
 * flush dependency, a concurrency managed work item which stays RUNNING
 * indefinitely.  Workqueue stalls can be very difficult to debug as the
 * usual warning mechanisms don't trigger and internal workqueue state is
 * largely opaque.
 *
 * Workqueue watchdog monitors all worker pools periodically and dumps
 * state if some pools failed to make forward progress for a while where
 * forward progress is defined as the first item on ->worklist changing.
 *
 * This mechanism is controlled through the kernel parameter
 * "workqueue.watchdog_thresh" which can be updated at runtime through the
 * corresponding sysfs parameter file.
 */
#ifdef CONFIG_WQ_WATCHDOG

static void wq_watchdog_timer_fn(unsigned long data);

static unsigned long wq_watchdog_thresh = 30;
static struct timer_list wq_watchdog_timer =
	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);

static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;

static void wq_watchdog_reset_touched(void)
{
	int cpu;

	wq_watchdog_touched = jiffies;
	for_each_possible_cpu(cpu)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
}

static void wq_watchdog_timer_fn(unsigned long data)
{
	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
	bool lockup_detected = false;
	struct worker_pool *pool;
	int pi;

	if (!thresh)
		return;

	rcu_read_lock();

	for_each_pool(pool, pi) {
		unsigned long pool_ts, touched, ts;

		if (list_empty(&pool->worklist))
			continue;

		/* get the latest of pool and touched timestamps */
		pool_ts = READ_ONCE(pool->watchdog_ts);
		touched = READ_ONCE(wq_watchdog_touched);

		if (time_after(pool_ts, touched))
			ts = pool_ts;
		else
			ts = touched;

		if (pool->cpu >= 0) {
			unsigned long cpu_touched =
				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
						  pool->cpu));
			if (time_after(cpu_touched, ts))
				ts = cpu_touched;
		}

		/* did we stall? */
		if (time_after(jiffies, ts + thresh)) {
			lockup_detected = true;
			pr_emerg("BUG: workqueue lockup - pool");
			pr_cont_pool_info(pool);
			pr_cont(" stuck for %us!\n",
				jiffies_to_msecs(jiffies - pool_ts) / 1000);
		}
	}

	rcu_read_unlock();

	if (lockup_detected)
		show_workqueue_state();

	wq_watchdog_reset_touched();
	mod_timer(&wq_watchdog_timer, jiffies + thresh);
}

void wq_watchdog_touch(int cpu)
{
	if (cpu >= 0)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
	else
		wq_watchdog_touched = jiffies;
}

static void wq_watchdog_set_thresh(unsigned long thresh)
{
	wq_watchdog_thresh = 0;
	del_timer_sync(&wq_watchdog_timer);

	if (thresh) {
		wq_watchdog_thresh = thresh;
		wq_watchdog_reset_touched();
		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
	}
}

static int wq_watchdog_param_set_thresh(const char *val,
					const struct kernel_param *kp)
{
	unsigned long thresh;
	int ret;

	ret = kstrtoul(val, 0, &thresh);
	if (ret)
		return ret;

	if (system_wq)
		wq_watchdog_set_thresh(thresh);
	else
		wq_watchdog_thresh = thresh;

	return 0;
}

static const struct kernel_param_ops wq_watchdog_thresh_ops = {
	.set	= wq_watchdog_param_set_thresh,
	.get	= param_get_ulong,
};

module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
		0644);

static void wq_watchdog_init(void)
{
	wq_watchdog_set_thresh(wq_watchdog_thresh);
}

#else	/* CONFIG_WQ_WATCHDOG */

static inline void wq_watchdog_init(void) { }

#endif	/* CONFIG_WQ_WATCHDOG */

5368 5369 5370 5371 5372 5373 5374 5375
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

5376 5377 5378 5379 5380
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5381 5382 5383
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5384 5385 5386 5387 5388
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
5389
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5390 5391 5392
	BUG_ON(!tbl);

	for_each_node(node)
5393
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5394
				node_online(node) ? node : NUMA_NO_NODE));
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5410
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5411
{
T
Tejun Heo 已提交
5412 5413
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5414

5415 5416
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

5417 5418 5419
	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);

5420 5421
	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5422
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5423
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5424

5425 5426
	wq_numa_init();

5427
	/* initialize CPU pools */
5428
	for_each_possible_cpu(cpu) {
5429
		struct worker_pool *pool;
5430

T
Tejun Heo 已提交
5431
		i = 0;
5432
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5433
			BUG_ON(init_worker_pool(pool));
5434
			pool->cpu = cpu;
5435
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5436
			pool->attrs->nice = std_nice[i++];
5437
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5438

T
Tejun Heo 已提交
5439
			/* alloc pool ID */
5440
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5441
			BUG_ON(worker_pool_assign_id(pool));
5442
			mutex_unlock(&wq_pool_mutex);
5443
		}
5444 5445
	}

5446
	/* create the initial worker */
5447
	for_each_online_cpu(cpu) {
5448
		struct worker_pool *pool;
5449

5450
		for_each_cpu_worker_pool(pool, cpu) {
5451
			pool->flags &= ~POOL_DISASSOCIATED;
5452
			BUG_ON(!create_worker(pool));
5453
		}
5454 5455
	}

5456
	/* create default unbound and ordered wq attrs */
5457 5458 5459 5460 5461 5462
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5473 5474
	}

5475
	system_wq = alloc_workqueue("events", 0, 0);
5476
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5477
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5478 5479
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5480 5481
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5482 5483 5484 5485 5486
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5487
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5488 5489 5490
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
T
Tejun Heo 已提交
5491 5492 5493

	wq_watchdog_init();

5494
	return 0;
L
Linus Torvalds 已提交
5495
}
5496
early_initcall(init_workqueues);