workqueue.c 106.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44 45

#include "workqueue_sched.h"
L
Linus Torvalds 已提交
46

T
Tejun Heo 已提交
47
enum {
48
	/* global_cwq flags */
49 50 51 52 53
	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */

	/* pool flags */
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
54

T
Tejun Heo 已提交
55 56 57 58
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
59 60
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
61
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
62
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
63

64 65
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
				  WORKER_CPU_INTENSIVE,
66 67 68 69 70 71 72

	/* gcwq->trustee_state */
	TRUSTEE_START		= 0,		/* start */
	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
	TRUSTEE_RELEASE		= 3,		/* release workers */
	TRUSTEE_DONE		= 4,		/* trustee is done */
T
Tejun Heo 已提交
73

74
	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
75

T
Tejun Heo 已提交
76 77 78
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
79

80 81 82
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

83 84 85
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
86 87
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
88
	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
89 90 91 92 93 94

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
95
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
96
};
L
Linus Torvalds 已提交
97 98

/*
T
Tejun Heo 已提交
99 100
 * Structure fields follow one of the following exclusion rules.
 *
101 102
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
103
 *
104 105 106
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
107
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
108
 *
109 110 111
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
112
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
113
 *
114 115
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
116
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
117 118
 */

119
struct global_cwq;
120
struct worker_pool;
L
Linus Torvalds 已提交
121

122 123 124 125
/*
 * The poor guys doing the actual heavy lifting.  All on-duty workers
 * are either serving the manager role, on idle list or on busy hash.
 */
T
Tejun Heo 已提交
126
struct worker {
T
Tejun Heo 已提交
127 128 129 130 131
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};
L
Linus Torvalds 已提交
132

T
Tejun Heo 已提交
133
	struct work_struct	*current_work;	/* L: work being processed */
134
	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
135
	struct list_head	scheduled;	/* L: scheduled works */
T
Tejun Heo 已提交
136
	struct task_struct	*task;		/* I: worker task */
137
	struct worker_pool	*pool;		/* I: the associated pool */
138 139 140
	/* 64 bytes boundary on 64bit, 32 on 32bit */
	unsigned long		last_active;	/* L: last active timestamp */
	unsigned int		flags;		/* X: flags */
T
Tejun Heo 已提交
141
	int			id;		/* I: worker id */
142
	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
T
Tejun Heo 已提交
143 144
};

145 146
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
147
	unsigned int		flags;		/* X: flags */
148 149 150 151 152 153 154 155 156

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

157
	struct mutex		manager_mutex;	/* mutex manager should hold */
158 159 160 161
	struct ida		worker_ida;	/* L: for worker IDs */
	struct worker		*first_idle;	/* L: first idle worker */
};

162
/*
163 164 165
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
166 167 168 169
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
170
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
171

172
	/* workers are chained either in busy_hash or pool idle_list */
T
Tejun Heo 已提交
173 174 175
	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
						/* L: hash of busy workers */

176
	struct worker_pool	pools[2];	/* normal and highpri pools */
177 178 179 180

	struct task_struct	*trustee;	/* L: for gcwq shutdown */
	unsigned int		trustee_state;	/* L: trustee state */
	wait_queue_head_t	trustee_wait;	/* trustee wait */
181 182
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
183
/*
184
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
185 186
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
187 188
 */
struct cpu_workqueue_struct {
189
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
190
	struct workqueue_struct *wq;		/* I: the owning workqueue */
191 192 193 194
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
195
	int			nr_active;	/* L: nr of active works */
196
	int			max_active;	/* L: max active works */
197
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
198
};
L
Linus Torvalds 已提交
199

200 201 202 203 204 205 206 207 208
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

209 210 211 212 213 214 215 216 217 218
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
219
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
220 221 222 223 224 225 226 227 228
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
229 230 231 232 233 234

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
235
	unsigned int		flags;		/* W: WQ_* flags */
236 237 238 239 240
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
241
	struct list_head	list;		/* W: list of all workqueues */
242 243 244 245 246 247 248 249 250

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

251
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
252 253
	struct worker		*rescuer;	/* I: rescue worker */

254
	int			nr_drainers;	/* W: drain in progress */
255
	int			saved_max_active; /* W: saved cwq max_active */
256
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
257
	struct lockdep_map	lockdep_map;
258
#endif
259
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
260 261
};

262 263 264
struct workqueue_struct *system_wq __read_mostly;
struct workqueue_struct *system_long_wq __read_mostly;
struct workqueue_struct *system_nrt_wq __read_mostly;
265
struct workqueue_struct *system_unbound_wq __read_mostly;
266
struct workqueue_struct *system_freezable_wq __read_mostly;
267
struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
268 269 270
EXPORT_SYMBOL_GPL(system_wq);
EXPORT_SYMBOL_GPL(system_long_wq);
EXPORT_SYMBOL_GPL(system_nrt_wq);
271
EXPORT_SYMBOL_GPL(system_unbound_wq);
272
EXPORT_SYMBOL_GPL(system_freezable_wq);
273
EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
274

275 276 277
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

278
#define for_each_worker_pool(pool, gcwq)				\
279 280
	for ((pool) = &(gcwq)->pools[0];				\
	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
281

282 283 284 285
#define for_each_busy_worker(worker, i, pos, gcwq)			\
	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

307 308 309 310 311 312 313 314 315 316 317 318 319
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

335 336 337 338
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

339 340 341 342 343
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
379
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
415
	.debug_hint	= work_debug_hint,
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

451 452
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
453
static LIST_HEAD(workqueues);
454
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
455

456 457 458 459 460
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
461
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
462
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
463

464 465 466 467 468 469
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
470 471 472
static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
};
473

T
Tejun Heo 已提交
474
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
475

476 477 478 479 480
static int worker_pool_pri(struct worker_pool *pool)
{
	return pool - pool->gcwq->pools;
}

481 482
static struct global_cwq *get_gcwq(unsigned int cpu)
{
483 484 485 486
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
487 488
}

489
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
490
{
491
	int cpu = pool->gcwq->cpu;
492
	int idx = worker_pool_pri(pool);
493

494
	if (cpu != WORK_CPU_UNBOUND)
495
		return &per_cpu(pool_nr_running, cpu)[idx];
496
	else
497
		return &unbound_pool_nr_running[idx];
498 499
}

T
Tejun Heo 已提交
500 501
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
502
{
503
	if (!(wq->flags & WQ_UNBOUND)) {
504
		if (likely(cpu < nr_cpu_ids))
505 506 507 508
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
509 510
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
526

527
/*
528 529 530
 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
 * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
 * cleared and the work data contains the cpu number it was last on.
531 532 533 534 535 536 537 538 539
 *
 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
 * cwq, cpu or clear work->data.  These functions should only be
 * called while the work is owned - ie. while the PENDING bit is set.
 *
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
 * corresponding to a work.  gcwq is available once the work has been
 * queued anywhere after initialization.  cwq is available only from
 * queueing until execution starts.
540
 */
541 542
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
543
{
544
	BUG_ON(!work_pending(work));
545 546
	atomic_long_set(&work->data, data | flags | work_static(work));
}
547

548 549 550 551 552
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
553
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
554 555
}

556 557 558 559
static void set_work_cpu(struct work_struct *work, unsigned int cpu)
{
	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
}
560

561
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
562
{
563
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
564 565
}

566
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
567
{
568
	unsigned long data = atomic_long_read(&work->data);
569

570 571 572 573
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
574 575
}

576
static struct global_cwq *get_work_gcwq(struct work_struct *work)
577
{
578
	unsigned long data = atomic_long_read(&work->data);
579 580
	unsigned int cpu;

581 582
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
583
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
584 585

	cpu = data >> WORK_STRUCT_FLAG_BITS;
586
	if (cpu == WORK_CPU_NONE)
587 588
		return NULL;

589
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
590
	return get_gcwq(cpu);
591 592
}

593
/*
594 595 596
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
597 598
 */

599
static bool __need_more_worker(struct worker_pool *pool)
600
{
601
	return !atomic_read(get_pool_nr_running(pool));
602 603
}

604
/*
605 606
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
607 608 609 610
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
611
 */
612
static bool need_more_worker(struct worker_pool *pool)
613
{
614
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
615
}
616

617
/* Can I start working?  Called from busy but !running workers. */
618
static bool may_start_working(struct worker_pool *pool)
619
{
620
	return pool->nr_idle;
621 622 623
}

/* Do I need to keep working?  Called from currently running workers. */
624
static bool keep_working(struct worker_pool *pool)
625
{
626
	atomic_t *nr_running = get_pool_nr_running(pool);
627

628
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
629 630 631
}

/* Do we need a new worker?  Called from manager. */
632
static bool need_to_create_worker(struct worker_pool *pool)
633
{
634
	return need_more_worker(pool) && !may_start_working(pool);
635
}
636

637
/* Do I need to be the manager? */
638
static bool need_to_manage_workers(struct worker_pool *pool)
639
{
640
	return need_to_create_worker(pool) ||
641
		(pool->flags & POOL_MANAGE_WORKERS);
642 643 644
}

/* Do we have too many workers and should some go away? */
645
static bool too_many_workers(struct worker_pool *pool)
646
{
647
	bool managing = mutex_is_locked(&pool->manager_mutex);
648 649
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
650 651

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
652 653
}

654
/*
655 656 657
 * Wake up functions.
 */

658
/* Return the first worker.  Safe with preemption disabled */
659
static struct worker *first_worker(struct worker_pool *pool)
660
{
661
	if (unlikely(list_empty(&pool->idle_list)))
662 663
		return NULL;

664
	return list_first_entry(&pool->idle_list, struct worker, entry);
665 666 667 668
}

/**
 * wake_up_worker - wake up an idle worker
669
 * @pool: worker pool to wake worker from
670
 *
671
 * Wake up the first idle worker of @pool.
672 673 674 675
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
676
static void wake_up_worker(struct worker_pool *pool)
677
{
678
	struct worker *worker = first_worker(pool);
679 680 681 682 683

	if (likely(worker))
		wake_up_process(worker->task);
}

684
/**
685 686 687 688 689 690 691 692 693 694 695 696 697 698
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

699
	if (!(worker->flags & WORKER_NOT_RUNNING))
700
		atomic_inc(get_pool_nr_running(worker->pool));
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
722
	struct worker_pool *pool = worker->pool;
723
	atomic_t *nr_running = get_pool_nr_running(pool);
724

725
	if (worker->flags & WORKER_NOT_RUNNING)
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
		return NULL;

	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
	 * NOT_RUNNING is clear.  This means that trustee is not in
	 * charge and we're running on the local cpu w/ rq lock held
	 * and preemption disabled, which in turn means that none else
	 * could be manipulating idle_list, so dereferencing idle_list
	 * without gcwq lock is safe.
	 */
742
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
743
		to_wakeup = first_worker(pool);
744 745 746 747 748
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
749
 * @worker: self
750 751 752
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
753 754 755
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
756
 *
757 758
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
759 760 761 762
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
763
	struct worker_pool *pool = worker->pool;
764

765 766
	WARN_ON_ONCE(worker->task != current);

767 768 769 770 771 772 773
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
774
		atomic_t *nr_running = get_pool_nr_running(pool);
775 776 777

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
778
			    !list_empty(&pool->worklist))
779
				wake_up_worker(pool);
780 781 782 783
		} else
			atomic_dec(nr_running);
	}

784 785 786 787
	worker->flags |= flags;
}

/**
788
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
789
 * @worker: self
790 791
 * @flags: flags to clear
 *
792
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
793
 *
794 795
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
796 797 798
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
799
	struct worker_pool *pool = worker->pool;
800 801
	unsigned int oflags = worker->flags;

802 803
	WARN_ON_ONCE(worker->task != current);

804
	worker->flags &= ~flags;
805

806 807 808 809 810
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
811 812
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
813
			atomic_inc(get_pool_nr_running(pool));
814 815
}

T
Tejun Heo 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
/**
 * busy_worker_head - return the busy hash head for a work
 * @gcwq: gcwq of interest
 * @work: work to be hashed
 *
 * Return hash head of @gcwq for @work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to the hash head.
 */
static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
					   struct work_struct *work)
{
	const int base_shift = ilog2(sizeof(struct work_struct));
	unsigned long v = (unsigned long)work;

	/* simple shift and fold hash, do we need something better? */
	v >>= base_shift;
	v += v >> BUSY_WORKER_HASH_ORDER;
	v &= BUSY_WORKER_HASH_MASK;

	return &gcwq->busy_hash[v];
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/**
 * __find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @bwh: hash head as returned by busy_worker_head()
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  @bwh should be
 * the hash head obtained by calling busy_worker_head() with the same
 * work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
 */
static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
						   struct hlist_head *bwh,
						   struct work_struct *work)
{
	struct worker *worker;
	struct hlist_node *tmp;

	hlist_for_each_entry(worker, tmp, bwh, hentry)
		if (worker->current_work == work)
			return worker;
	return NULL;
}

/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  This function is
 * identical to __find_worker_executing_work() except that this
 * function calculates @bwh itself.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
888
 */
889 890
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
891
{
892 893
	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
					    work);
894 895
}

T
Tejun Heo 已提交
896
/**
897
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
898 899 900 901 902
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
903 904
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
905 906
 *
 * CONTEXT:
907
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
908
 */
O
Oleg Nesterov 已提交
909
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
910 911
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
912
{
913
	struct worker_pool *pool = cwq->pool;
914

T
Tejun Heo 已提交
915
	/* we own @work, set data and link */
916
	set_work_cwq(work, cwq, extra_flags);
917

918 919 920 921 922
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
923

924
	list_add_tail(&work->entry, head);
925 926 927 928 929 930 931 932

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

933 934
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
935 936
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
969
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
970 971
			 struct work_struct *work)
{
972 973
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
974
	struct list_head *worklist;
975
	unsigned int work_flags;
L
Linus Torvalds 已提交
976 977
	unsigned long flags;

978
	debug_work_activate(work);
979

980
	/* if dying, only works from the same workqueue are allowed */
981
	if (unlikely(wq->flags & WQ_DRAINING) &&
982
	    WARN_ON_ONCE(!is_chained_work(wq)))
983 984
		return;

985 986
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
987 988
		struct global_cwq *last_gcwq;

989 990 991
		if (unlikely(cpu == WORK_CPU_UNBOUND))
			cpu = raw_smp_processor_id();

992 993 994 995 996 997
		/*
		 * It's multi cpu.  If @wq is non-reentrant and @work
		 * was previously on a different cpu, it might still
		 * be running there, in which case the work needs to
		 * be queued on that cpu to guarantee non-reentrance.
		 */
998
		gcwq = get_gcwq(cpu);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		if (wq->flags & WQ_NON_REENTRANT &&
		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
			struct worker *worker;

			spin_lock_irqsave(&last_gcwq->lock, flags);

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
				spin_unlock_irqrestore(&last_gcwq->lock, flags);
				spin_lock_irqsave(&gcwq->lock, flags);
			}
		} else
			spin_lock_irqsave(&gcwq->lock, flags);
1016 1017 1018
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
		spin_lock_irqsave(&gcwq->lock, flags);
1019 1020 1021 1022
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1023
	trace_workqueue_queue_work(cpu, cwq, work);
1024

1025 1026 1027 1028
	if (WARN_ON(!list_empty(&work->entry))) {
		spin_unlock_irqrestore(&gcwq->lock, flags);
		return;
	}
1029

1030
	cwq->nr_in_flight[cwq->work_color]++;
1031
	work_flags = work_color_to_flags(cwq->work_color);
1032 1033

	if (likely(cwq->nr_active < cwq->max_active)) {
1034
		trace_workqueue_activate_work(work);
1035
		cwq->nr_active++;
1036
		worklist = &cwq->pool->worklist;
1037 1038
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1039
		worklist = &cwq->delayed_works;
1040
	}
1041

1042
	insert_work(cwq, work, worklist, work_flags);
1043

1044
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
1045 1046
}

1047 1048 1049 1050 1051
/**
 * queue_work - queue work on a workqueue
 * @wq: workqueue to use
 * @work: work to queue
 *
A
Alan Stern 已提交
1052
 * Returns 0 if @work was already on a queue, non-zero otherwise.
L
Linus Torvalds 已提交
1053
 *
1054 1055
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
L
Linus Torvalds 已提交
1056
 */
1057
int queue_work(struct workqueue_struct *wq, struct work_struct *work)
L
Linus Torvalds 已提交
1058
{
1059 1060 1061 1062 1063
	int ret;

	ret = queue_work_on(get_cpu(), wq, work);
	put_cpu();

L
Linus Torvalds 已提交
1064 1065
	return ret;
}
1066
EXPORT_SYMBOL_GPL(queue_work);
L
Linus Torvalds 已提交
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/**
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @work: work to queue
 *
 * Returns 0 if @work was already on a queue, non-zero otherwise.
 *
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
 */
int
queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
{
	int ret = 0;

1084
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1085
		__queue_work(cpu, wq, work);
1086 1087 1088 1089 1090 1091
		ret = 1;
	}
	return ret;
}
EXPORT_SYMBOL_GPL(queue_work_on);

1092
static void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1093
{
1094
	struct delayed_work *dwork = (struct delayed_work *)__data;
1095
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
L
Linus Torvalds 已提交
1096

T
Tejun Heo 已提交
1097
	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1098 1099
}

1100 1101 1102
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
1103
 * @dwork: delayable work to queue
1104 1105
 * @delay: number of jiffies to wait before queueing
 *
A
Alan Stern 已提交
1106
 * Returns 0 if @work was already on a queue, non-zero otherwise.
1107
 */
1108
int queue_delayed_work(struct workqueue_struct *wq,
1109
			struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1110
{
1111
	if (delay == 0)
1112
		return queue_work(wq, &dwork->work);
L
Linus Torvalds 已提交
1113

1114
	return queue_delayed_work_on(-1, wq, dwork, delay);
L
Linus Torvalds 已提交
1115
}
1116
EXPORT_SYMBOL_GPL(queue_delayed_work);
L
Linus Torvalds 已提交
1117

1118 1119 1120 1121
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1122
 * @dwork: work to queue
1123 1124
 * @delay: number of jiffies to wait before queueing
 *
A
Alan Stern 已提交
1125
 * Returns 0 if @work was already on a queue, non-zero otherwise.
1126
 */
1127
int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1128
			struct delayed_work *dwork, unsigned long delay)
1129 1130
{
	int ret = 0;
1131 1132
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
1133

1134
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1135
		unsigned int lcpu;
1136

1137 1138 1139
		BUG_ON(timer_pending(timer));
		BUG_ON(!list_empty(&work->entry));

1140 1141
		timer_stats_timer_set_start_info(&dwork->timer);

1142 1143 1144 1145 1146
		/*
		 * This stores cwq for the moment, for the timer_fn.
		 * Note that the work's gcwq is preserved to allow
		 * reentrance detection for delayed works.
		 */
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		if (!(wq->flags & WQ_UNBOUND)) {
			struct global_cwq *gcwq = get_work_gcwq(work);

			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
				lcpu = gcwq->cpu;
			else
				lcpu = raw_smp_processor_id();
		} else
			lcpu = WORK_CPU_UNBOUND;

1157
		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1158

1159
		timer->expires = jiffies + delay;
1160
		timer->data = (unsigned long)dwork;
1161
		timer->function = delayed_work_timer_fn;
1162 1163 1164 1165 1166

		if (unlikely(cpu >= 0))
			add_timer_on(timer, cpu);
		else
			add_timer(timer);
1167 1168 1169 1170
		ret = 1;
	}
	return ret;
}
1171
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
L
Linus Torvalds 已提交
1172

T
Tejun Heo 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1184
{
1185 1186
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1187 1188 1189 1190 1191

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1192 1193
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1194
	pool->nr_idle++;
1195
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1196 1197

	/* idle_list is LIFO */
1198
	list_add(&worker->entry, &pool->idle_list);
1199

1200
	if (likely(gcwq->trustee_state != TRUSTEE_DONE)) {
1201
		if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1202
			mod_timer(&pool->idle_timer,
1203 1204
				  jiffies + IDLE_WORKER_TIMEOUT);
	} else
1205
		wake_up_all(&gcwq->trustee_wait);
1206

1207 1208
	/*
	 * Sanity check nr_running.  Because trustee releases gcwq->lock
1209
	 * between setting %WORKER_UNBOUND and zapping nr_running, the
1210 1211 1212
	 * warning may trigger spuriously.  Check iff trustee is idle.
	 */
	WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
1213
		     pool->nr_workers == pool->nr_idle &&
1214
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1228
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1229 1230

	BUG_ON(!(worker->flags & WORKER_IDLE));
1231
	worker_clr_flags(worker, WORKER_IDLE);
1232
	pool->nr_idle--;
T
Tejun Heo 已提交
1233 1234 1235
	list_del_init(&worker->entry);
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1252 1253 1254 1255 1256
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
 * binding against %GCWQ_DISASSOCIATED which is set during
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1267
__acquires(&gcwq->lock)
1268
{
1269
	struct global_cwq *gcwq = worker->pool->gcwq;
1270 1271 1272
	struct task_struct *task = worker->task;

	while (true) {
1273
		/*
1274 1275 1276 1277
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
1278
		 */
1279 1280
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1291 1292 1293 1294 1295 1296
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1297
		cpu_relax();
1298
		cond_resched();
1299 1300 1301 1302
	}
}

/*
1303 1304 1305 1306
 * Function for worker->rebind_work used to rebind unbound busy workers to
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1307 1308 1309 1310
 */
static void worker_rebind_fn(struct work_struct *work)
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1311
	struct global_cwq *gcwq = worker->pool->gcwq;
1312 1313 1314 1315 1316 1317 1318

	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_REBIND);

	spin_unlock_irq(&gcwq->lock);
}

T
Tejun Heo 已提交
1319 1320 1321 1322 1323
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1324 1325
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1326
		INIT_LIST_HEAD(&worker->scheduled);
1327 1328 1329
		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1330
	}
T
Tejun Heo 已提交
1331 1332 1333 1334 1335
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1336
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1337 1338
 * @bind: whether to set affinity to @cpu or not
 *
1339
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1349
static struct worker *create_worker(struct worker_pool *pool, bool bind)
T
Tejun Heo 已提交
1350
{
1351
	struct global_cwq *gcwq = pool->gcwq;
1352
	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1353
	const char *pri = worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1354
	struct worker *worker = NULL;
1355
	int id = -1;
T
Tejun Heo 已提交
1356

1357
	spin_lock_irq(&gcwq->lock);
1358
	while (ida_get_new(&pool->worker_ida, &id)) {
1359
		spin_unlock_irq(&gcwq->lock);
1360
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1361
			goto fail;
1362
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1363
	}
1364
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1365 1366 1367 1368 1369

	worker = alloc_worker();
	if (!worker)
		goto fail;

1370
	worker->pool = pool;
T
Tejun Heo 已提交
1371 1372
	worker->id = id;

1373
	if (!on_unbound_cpu)
1374
		worker->task = kthread_create_on_node(worker_thread,
1375 1376
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1377 1378
	else
		worker->task = kthread_create(worker_thread, worker,
1379
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1380 1381 1382
	if (IS_ERR(worker->task))
		goto fail;

1383 1384 1385
	if (worker_pool_pri(pool))
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1386
	/*
1387 1388
	 * An unbound worker will become a regular one if CPU comes online
	 * later on.  Make sure every worker has PF_THREAD_BOUND set.
1389
	 */
1390
	if (bind && !on_unbound_cpu)
1391
		kthread_bind(worker->task, gcwq->cpu);
1392
	else {
1393
		worker->task->flags |= PF_THREAD_BOUND;
1394 1395 1396
		if (on_unbound_cpu)
			worker->flags |= WORKER_UNBOUND;
	}
T
Tejun Heo 已提交
1397 1398 1399 1400

	return worker;
fail:
	if (id >= 0) {
1401
		spin_lock_irq(&gcwq->lock);
1402
		ida_remove(&pool->worker_ida, id);
1403
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1413
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1414 1415
 *
 * CONTEXT:
1416
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1417 1418 1419
 */
static void start_worker(struct worker *worker)
{
1420
	worker->flags |= WORKER_STARTED;
1421
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1422
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1423 1424 1425 1426 1427 1428 1429
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1430 1431 1432 1433
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1434 1435 1436
 */
static void destroy_worker(struct worker *worker)
{
1437 1438
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1439 1440 1441 1442
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1443
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1444

T
Tejun Heo 已提交
1445
	if (worker->flags & WORKER_STARTED)
1446
		pool->nr_workers--;
T
Tejun Heo 已提交
1447
	if (worker->flags & WORKER_IDLE)
1448
		pool->nr_idle--;
T
Tejun Heo 已提交
1449 1450

	list_del_init(&worker->entry);
1451
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1452 1453 1454

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1455 1456 1457
	kthread_stop(worker->task);
	kfree(worker);

1458
	spin_lock_irq(&gcwq->lock);
1459
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1460 1461
}

1462
static void idle_worker_timeout(unsigned long __pool)
1463
{
1464 1465
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1466 1467 1468

	spin_lock_irq(&gcwq->lock);

1469
	if (too_many_workers(pool)) {
1470 1471 1472 1473
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1474
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1475 1476 1477
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1478
			mod_timer(&pool->idle_timer, expires);
1479 1480
		else {
			/* it's been idle for too long, wake up manager */
1481
			pool->flags |= POOL_MANAGE_WORKERS;
1482
			wake_up_worker(pool);
1483
		}
1484 1485 1486 1487
	}

	spin_unlock_irq(&gcwq->lock);
}
1488

1489 1490 1491 1492
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1493
	unsigned int cpu;
1494 1495 1496 1497 1498

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1499
	cpu = cwq->pool->gcwq->cpu;
1500 1501 1502
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1503
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1504 1505 1506 1507
		wake_up_process(wq->rescuer->task);
	return true;
}

1508
static void gcwq_mayday_timeout(unsigned long __pool)
1509
{
1510 1511
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1512 1513 1514 1515
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1516
	if (need_to_create_worker(pool)) {
1517 1518 1519 1520 1521 1522
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1523
		list_for_each_entry(work, &pool->worklist, entry)
1524
			send_mayday(work);
L
Linus Torvalds 已提交
1525
	}
1526 1527 1528

	spin_unlock_irq(&gcwq->lock);

1529
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1530 1531
}

1532 1533
/**
 * maybe_create_worker - create a new worker if necessary
1534
 * @pool: pool to create a new worker for
1535
 *
1536
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1537 1538
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1539
 * sent to all rescuers with works scheduled on @pool to resolve
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1554
static bool maybe_create_worker(struct worker_pool *pool)
1555 1556
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
1557
{
1558 1559 1560
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
1561 1562
		return false;
restart:
1563 1564
	spin_unlock_irq(&gcwq->lock);

1565
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1566
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1567 1568 1569 1570

	while (true) {
		struct worker *worker;

1571
		worker = create_worker(pool, true);
1572
		if (worker) {
1573
			del_timer_sync(&pool->mayday_timer);
1574 1575
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
1576
			BUG_ON(need_to_create_worker(pool));
1577 1578 1579
			return true;
		}

1580
		if (!need_to_create_worker(pool))
1581
			break;
L
Linus Torvalds 已提交
1582

1583 1584
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1585

1586
		if (!need_to_create_worker(pool))
1587 1588 1589
			break;
	}

1590
	del_timer_sync(&pool->mayday_timer);
1591
	spin_lock_irq(&gcwq->lock);
1592
	if (need_to_create_worker(pool))
1593 1594 1595 1596 1597 1598
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1599
 * @pool: pool to destroy workers for
1600
 *
1601
 * Destroy @pool workers which have been idle for longer than
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1612
static bool maybe_destroy_workers(struct worker_pool *pool)
1613 1614
{
	bool ret = false;
L
Linus Torvalds 已提交
1615

1616
	while (too_many_workers(pool)) {
1617 1618
		struct worker *worker;
		unsigned long expires;
1619

1620
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1621
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1622

1623
		if (time_before(jiffies, expires)) {
1624
			mod_timer(&pool->idle_timer, expires);
1625
			break;
1626
		}
L
Linus Torvalds 已提交
1627

1628 1629
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1630
	}
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	return ret;
}

/**
 * manage_workers - manage worker pool
 * @worker: self
 *
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
 */
static bool manage_workers(struct worker *worker)
{
1657
	struct worker_pool *pool = worker->pool;
1658 1659
	bool ret = false;

1660
	if (!mutex_trylock(&pool->manager_mutex))
1661 1662
		return ret;

1663
	pool->flags &= ~POOL_MANAGE_WORKERS;
1664 1665 1666 1667 1668

	/*
	 * Destroy and then create so that may_start_working() is true
	 * on return.
	 */
1669 1670
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
1671

1672
	mutex_unlock(&pool->manager_mutex);
1673 1674 1675
	return ret;
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1691
 * spin_lock_irq(gcwq->lock).
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

1717 1718 1719 1720 1721
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

1722
	trace_workqueue_activate_work(work);
1723
	move_linked_works(work, &cwq->pool->worklist, NULL);
1724
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1725 1726 1727
	cwq->nr_active++;
}

1728 1729 1730 1731
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
1732
 * @delayed: for a delayed work
1733 1734 1735 1736 1737
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
1738
 * spin_lock_irq(gcwq->lock).
1739
 */
1740 1741
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
				 bool delayed)
1742 1743 1744 1745 1746 1747
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;
1748

1749 1750 1751 1752 1753 1754 1755
	if (!delayed) {
		cwq->nr_active--;
		if (!list_empty(&cwq->delayed_works)) {
			/* one down, submit a delayed one */
			if (cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
1756
	}
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1777 1778
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1779
 * @worker: self
1780 1781 1782 1783 1784 1785 1786 1787 1788
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1789
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1790
 */
T
Tejun Heo 已提交
1791
static void process_one_work(struct worker *worker, struct work_struct *work)
1792 1793
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
1794
{
1795
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1796 1797
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1798
	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1799
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1800
	work_func_t f = work->func;
1801
	int work_color;
1802
	struct worker *collision;
1803 1804 1805 1806 1807 1808 1809 1810
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1811 1812 1813
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1814
#endif
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
	collision = __find_worker_executing_work(gcwq, bwh, work);
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1827 1828
	/* claim and process */
	debug_work_deactivate(work);
T
Tejun Heo 已提交
1829
	hlist_add_head(&worker->hentry, bwh);
T
Tejun Heo 已提交
1830
	worker->current_work = work;
1831
	worker->current_cwq = cwq;
1832
	work_color = get_work_color(work);
1833 1834 1835

	/* record the current cpu number in the work data and dequeue */
	set_work_cpu(work, gcwq->cpu);
1836 1837
	list_del_init(&work->entry);

1838 1839 1840 1841 1842 1843 1844
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

1845 1846 1847 1848
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
1849 1850
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
1851

1852
	spin_unlock_irq(&gcwq->lock);
1853 1854

	work_clear_pending(work);
1855
	lock_map_acquire_read(&cwq->wq->lockdep_map);
1856
	lock_map_acquire(&lockdep_map);
1857
	trace_workqueue_execute_start(work);
1858
	f(work);
1859 1860 1861 1862 1863
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
		       "%s/0x%08x/%d\n",
		       current->comm, preempt_count(), task_pid_nr(current));
		printk(KERN_ERR "    last function: ");
		print_symbol("%s\n", (unsigned long)f);
		debug_show_held_locks(current);
		dump_stack();
	}

1877
	spin_lock_irq(&gcwq->lock);
1878

1879 1880 1881 1882
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

1883
	/* we're done with it, release */
T
Tejun Heo 已提交
1884
	hlist_del_init(&worker->hentry);
T
Tejun Heo 已提交
1885
	worker->current_work = NULL;
1886
	worker->current_cwq = NULL;
1887
	cwq_dec_nr_in_flight(cwq, work_color, false);
1888 1889
}

1890 1891 1892 1893 1894 1895 1896 1897 1898
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
1899
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1900 1901 1902
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
1903
{
1904 1905
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
1906
						struct work_struct, entry);
T
Tejun Heo 已提交
1907
		process_one_work(worker, work);
L
Linus Torvalds 已提交
1908 1909 1910
	}
}

T
Tejun Heo 已提交
1911 1912
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
1913
 * @__worker: self
T
Tejun Heo 已提交
1914
 *
1915 1916 1917 1918 1919
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
1920
 */
T
Tejun Heo 已提交
1921
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
1922
{
T
Tejun Heo 已提交
1923
	struct worker *worker = __worker;
1924 1925
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
1926

1927 1928
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
1929 1930
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
1931

T
Tejun Heo 已提交
1932 1933 1934
	/* DIE can be set only while we're idle, checking here is enough */
	if (worker->flags & WORKER_DIE) {
		spin_unlock_irq(&gcwq->lock);
1935
		worker->task->flags &= ~PF_WQ_WORKER;
T
Tejun Heo 已提交
1936 1937
		return 0;
	}
1938

T
Tejun Heo 已提交
1939
	worker_leave_idle(worker);
1940
recheck:
1941
	/* no more worker necessary? */
1942
	if (!need_more_worker(pool))
1943 1944 1945
		goto sleep;

	/* do we need to manage? */
1946
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
1947 1948
		goto recheck;

T
Tejun Heo 已提交
1949 1950 1951 1952 1953 1954 1955
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

1956 1957 1958 1959 1960 1961 1962 1963
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
1964
		struct work_struct *work =
1965
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
1966 1967 1968 1969 1970 1971
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
1972
				process_scheduled_works(worker);
T
Tejun Heo 已提交
1973 1974 1975
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
1976
		}
1977
	} while (keep_working(pool));
1978 1979

	worker_set_flags(worker, WORKER_PREP, false);
1980
sleep:
1981
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
1982
		goto recheck;
1983

T
Tejun Heo 已提交
1984
	/*
1985 1986 1987 1988 1989
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
1990 1991 1992 1993 1994 1995
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
1996 1997
}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
/**
 * rescuer_thread - the rescuer thread function
 * @__wq: the associated workqueue
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
static int rescuer_thread(void *__wq)
{
	struct workqueue_struct *wq = __wq;
	struct worker *rescuer = wq->rescuer;
	struct list_head *scheduled = &rescuer->scheduled;
2022
	bool is_unbound = wq->flags & WQ_UNBOUND;
2023 2024 2025 2026 2027 2028 2029 2030 2031
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

	if (kthread_should_stop())
		return 0;

2032 2033 2034 2035
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2036
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2037 2038
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2039 2040
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2041 2042 2043
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2044
		mayday_clear_cpu(cpu, wq->mayday_mask);
2045 2046

		/* migrate to the target cpu if possible */
2047
		rescuer->pool = pool;
2048 2049 2050 2051 2052 2053 2054
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2055
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2056 2057 2058 2059
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2060 2061 2062 2063 2064 2065

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2066 2067
		if (keep_working(pool))
			wake_up_worker(pool);
2068

2069 2070 2071 2072 2073
		spin_unlock_irq(&gcwq->lock);
	}

	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2074 2075
}

O
Oleg Nesterov 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2087 2088 2089 2090
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2091 2092
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2093
 *
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2107 2108
 *
 * CONTEXT:
2109
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2110
 */
2111
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2112 2113
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2114
{
2115 2116 2117
	struct list_head *head;
	unsigned int linked = 0;

2118
	/*
2119
	 * debugobject calls are safe here even with gcwq->lock locked
2120 2121 2122 2123
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2124
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2125
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2126
	init_completion(&barr->done);
2127

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2143
	debug_work_activate(&barr->work);
2144 2145
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2146 2147
}

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2181
{
2182 2183
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2184

2185 2186 2187
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2188
	}
2189

2190
	for_each_cwq_cpu(cpu, wq) {
2191
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2192
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2193

2194
		spin_lock_irq(&gcwq->lock);
2195

2196 2197
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2198

2199 2200 2201 2202 2203 2204
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2205

2206 2207 2208 2209
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2210

2211
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2212
	}
2213

2214 2215
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2216

2217
	return wait;
L
Linus Torvalds 已提交
2218 2219
}

2220
/**
L
Linus Torvalds 已提交
2221
 * flush_workqueue - ensure that any scheduled work has run to completion.
2222
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2223 2224 2225 2226
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2227 2228
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2229
 */
2230
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2231
{
2232 2233 2234 2235 2236 2237
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2238

2239 2240
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2302 2303 2304 2305
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2373
}
2374
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2375

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2406
		bool drained;
2407

2408
		spin_lock_irq(&cwq->pool->gcwq->lock);
2409
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2410
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2411 2412

		if (drained)
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
			pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
				   wq->name, flush_cnt);
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2429 2430
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
			     bool wait_executing)
2431
{
2432
	struct worker *worker = NULL;
2433
	struct global_cwq *gcwq;
2434 2435 2436
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2437 2438
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2439
		return false;
2440

2441
	spin_lock_irq(&gcwq->lock);
2442 2443 2444
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2445 2446
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2447 2448
		 */
		smp_rmb();
2449
		cwq = get_work_cwq(work);
2450
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2451
			goto already_gone;
2452
	} else if (wait_executing) {
2453
		worker = find_worker_executing_work(gcwq, work);
2454
		if (!worker)
T
Tejun Heo 已提交
2455
			goto already_gone;
2456
		cwq = worker->current_cwq;
2457 2458
	} else
		goto already_gone;
2459

2460
	insert_wq_barrier(cwq, barr, work, worker);
2461
	spin_unlock_irq(&gcwq->lock);
2462

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2473
	lock_map_release(&cwq->wq->lockdep_map);
2474

2475
	return true;
T
Tejun Heo 已提交
2476
already_gone:
2477
	spin_unlock_irq(&gcwq->lock);
2478
	return false;
2479
}
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
 * Wait until @work has finished execution.  This function considers
 * only the last queueing instance of @work.  If @work has been
 * enqueued across different CPUs on a non-reentrant workqueue or on
 * multiple workqueues, @work might still be executing on return on
 * some of the CPUs from earlier queueing.
 *
 * If @work was queued only on a non-reentrant, ordered or unbound
 * workqueue, @work is guaranteed to be idle on return if it hasn't
 * been requeued since flush started.
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2503 2504 2505
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2506 2507 2508 2509 2510 2511 2512
	if (start_flush_work(work, &barr, true)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else
		return false;
}
2513 2514
EXPORT_SYMBOL_GPL(flush_work);

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
{
	struct wq_barrier barr;
	struct worker *worker;

	spin_lock_irq(&gcwq->lock);

	worker = find_worker_executing_work(gcwq, work);
	if (unlikely(worker))
		insert_wq_barrier(worker->current_cwq, &barr, work, worker);

	spin_unlock_irq(&gcwq->lock);

	if (unlikely(worker)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else
		return false;
}

static bool wait_on_work(struct work_struct *work)
{
	bool ret = false;
	int cpu;

	might_sleep();

	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

	for_each_gcwq_cpu(cpu)
		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
	return ret;
}

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
/**
 * flush_work_sync - wait until a work has finished execution
 * @work: the work to flush
 *
 * Wait until @work has finished execution.  On return, it's
 * guaranteed that all queueing instances of @work which happened
 * before this function is called are finished.  In other words, if
 * @work hasn't been requeued since this function was called, @work is
 * guaranteed to be idle on return.
 *
 * RETURNS:
 * %true if flush_work_sync() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work_sync(struct work_struct *work)
{
	struct wq_barrier barr;
	bool pending, waited;

	/* we'll wait for executions separately, queue barr only if pending */
	pending = start_flush_work(work, &barr, false);

	/* wait for executions to finish */
	waited = wait_on_work(work);

	/* wait for the pending one */
	if (pending) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
	}

	return pending || waited;
}
EXPORT_SYMBOL_GPL(flush_work_sync);

2586
/*
2587
 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2588 2589 2590 2591
 * so this work can't be re-armed in any way.
 */
static int try_to_grab_pending(struct work_struct *work)
{
2592
	struct global_cwq *gcwq;
2593
	int ret = -1;
2594

2595
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2596
		return 0;
2597 2598 2599 2600 2601

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
2602 2603
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2604 2605
		return ret;

2606
	spin_lock_irq(&gcwq->lock);
2607 2608
	if (!list_empty(&work->entry)) {
		/*
2609
		 * This work is queued, but perhaps we locked the wrong gcwq.
2610 2611 2612 2613
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
2614
		if (gcwq == get_work_gcwq(work)) {
2615
			debug_work_deactivate(work);
2616
			list_del_init(&work->entry);
2617
			cwq_dec_nr_in_flight(get_work_cwq(work),
2618 2619
				get_work_color(work),
				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2620 2621 2622
			ret = 1;
		}
	}
2623
	spin_unlock_irq(&gcwq->lock);
2624 2625 2626 2627

	return ret;
}

2628
static bool __cancel_work_timer(struct work_struct *work,
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
				struct timer_list* timer)
{
	int ret;

	do {
		ret = (timer && likely(del_timer(timer)));
		if (!ret)
			ret = try_to_grab_pending(work);
		wait_on_work(work);
	} while (unlikely(ret < 0));

2640
	clear_work_data(work);
2641 2642 2643
	return ret;
}

2644
/**
2645 2646
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2647
 *
2648 2649 2650 2651
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2652
 *
2653 2654
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2655
 *
2656
 * The caller must ensure that the workqueue on which @work was last
2657
 * queued can't be destroyed before this function returns.
2658 2659 2660
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2661
 */
2662
bool cancel_work_sync(struct work_struct *work)
2663
{
2664
	return __cancel_work_timer(work, NULL);
O
Oleg Nesterov 已提交
2665
}
2666
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2667

2668
/**
2669 2670
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2671
 *
2672 2673 2674
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2675
 *
2676 2677 2678
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2679
 */
2680 2681 2682 2683 2684 2685 2686 2687 2688
bool flush_delayed_work(struct delayed_work *dwork)
{
	if (del_timer_sync(&dwork->timer))
		__queue_work(raw_smp_processor_id(),
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/**
 * flush_delayed_work_sync - wait for a dwork to finish
 * @dwork: the delayed work to flush
 *
 * Delayed timer is cancelled and the pending work is queued for
 * execution immediately.  Other than timer handling, its behavior
 * is identical to flush_work_sync().
 *
 * RETURNS:
 * %true if flush_work_sync() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_delayed_work_sync(struct delayed_work *dwork)
{
	if (del_timer_sync(&dwork->timer))
		__queue_work(raw_smp_processor_id(),
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
	return flush_work_sync(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work_sync);

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2720
{
2721
	return __cancel_work_timer(&dwork->work, &dwork->timer);
2722
}
2723
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2724

2725 2726 2727 2728
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2729 2730 2731 2732 2733 2734
 * Returns zero if @work was already on the kernel-global workqueue and
 * non-zero otherwise.
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2735
 */
2736
int schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2737
{
2738
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2739
}
2740
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2741

2742 2743 2744 2745 2746 2747 2748 2749 2750
/*
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
int schedule_work_on(int cpu, struct work_struct *work)
{
2751
	return queue_work_on(cpu, system_wq, work);
2752 2753 2754
}
EXPORT_SYMBOL(schedule_work_on);

2755 2756
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2757 2758
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2759 2760 2761 2762
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2763
int schedule_delayed_work(struct delayed_work *dwork,
2764
					unsigned long delay)
L
Linus Torvalds 已提交
2765
{
2766
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2767
}
2768
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
2769

2770 2771 2772
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
2773
 * @dwork: job to be done
2774 2775 2776 2777 2778
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
L
Linus Torvalds 已提交
2779
int schedule_delayed_work_on(int cpu,
2780
			struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2781
{
2782
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
2783
}
2784
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
2785

2786
/**
2787
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2788 2789
 * @func: the function to call
 *
2790 2791
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2792
 * schedule_on_each_cpu() is very slow.
2793 2794 2795
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2796
 */
2797
int schedule_on_each_cpu(work_func_t func)
2798 2799
{
	int cpu;
2800
	struct work_struct __percpu *works;
2801

2802 2803
	works = alloc_percpu(struct work_struct);
	if (!works)
2804
		return -ENOMEM;
2805

2806 2807
	get_online_cpus();

2808
	for_each_online_cpu(cpu) {
2809 2810 2811
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2812
		schedule_work_on(cpu, work);
2813
	}
2814 2815 2816 2817

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2818
	put_online_cpus();
2819
	free_percpu(works);
2820 2821 2822
	return 0;
}

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2847 2848
void flush_scheduled_work(void)
{
2849
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2850
}
2851
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2852

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
2865
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2866 2867
{
	if (!in_interrupt()) {
2868
		fn(&ew->work);
2869 2870 2871
		return 0;
	}

2872
	INIT_WORK(&ew->work, fn);
2873 2874 2875 2876 2877 2878
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
2879 2880
int keventd_up(void)
{
2881
	return system_wq != NULL;
L
Linus Torvalds 已提交
2882 2883
}

2884
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
2885
{
2886
	/*
T
Tejun Heo 已提交
2887 2888 2889
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
2890
	 */
T
Tejun Heo 已提交
2891 2892 2893
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
2894

2895
	if (!(wq->flags & WQ_UNBOUND))
2896
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2897
	else {
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
2910
	}
2911

2912
	/* just in case, make sure it's actually aligned */
2913 2914
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
2915 2916
}

2917
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
2918
{
2919
	if (!(wq->flags & WQ_UNBOUND))
2920 2921 2922
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
2923
		kfree(*(void **)(wq->cpu_wq.single + 1));
2924
	}
T
Tejun Heo 已提交
2925 2926
}

2927 2928
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
2929
{
2930 2931 2932
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
2933 2934
		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
		       "is out of range, clamping between %d and %d\n",
2935
		       max_active, name, 1, lim);
2936

2937
	return clamp_val(max_active, 1, lim);
2938 2939
}

2940
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
2941 2942 2943
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
2944
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
2945
{
2946
	va_list args, args1;
L
Linus Torvalds 已提交
2947
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
2948
	unsigned int cpu;
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
2963

2964 2965 2966 2967 2968 2969 2970
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

2971
	max_active = max_active ?: WQ_DFL_ACTIVE;
2972
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
2973

2974
	/* init wq */
2975
	wq->flags = flags;
2976
	wq->saved_max_active = max_active;
2977 2978 2979 2980
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
2981

2982
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2983
	INIT_LIST_HEAD(&wq->list);
2984

2985 2986 2987
	if (alloc_cwqs(wq) < 0)
		goto err;

2988
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
2989
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2990
		struct global_cwq *gcwq = get_gcwq(cpu);
2991
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
2992

T
Tejun Heo 已提交
2993
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2994
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
2995
		cwq->wq = wq;
2996
		cwq->flush_color = -1;
2997 2998
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
2999
	}
T
Tejun Heo 已提交
3000

3001 3002 3003
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3004
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3005 3006 3007 3008 3009 3010
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3011 3012
		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
					       wq->name);
3013 3014 3015 3016 3017
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3018 3019
	}

3020 3021 3022 3023 3024
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3025
	spin_lock(&workqueue_lock);
3026

3027
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3028
		for_each_cwq_cpu(cpu, wq)
3029 3030
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3031
	list_add(&wq->list, &workqueues);
3032

T
Tejun Heo 已提交
3033 3034
	spin_unlock(&workqueue_lock);

3035
	return wq;
T
Tejun Heo 已提交
3036 3037
err:
	if (wq) {
3038
		free_cwqs(wq);
3039
		free_mayday_mask(wq->mayday_mask);
3040
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3041 3042 3043
		kfree(wq);
	}
	return NULL;
3044
}
3045
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3046

3047 3048 3049 3050 3051 3052 3053 3054
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3055
	unsigned int cpu;
3056

3057 3058
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3059

3060 3061 3062 3063
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3064
	spin_lock(&workqueue_lock);
3065
	list_del(&wq->list);
3066
	spin_unlock(&workqueue_lock);
3067

3068
	/* sanity check */
3069
	for_each_cwq_cpu(cpu, wq) {
3070 3071 3072 3073 3074
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3075 3076
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3077
	}
3078

3079 3080
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3081
		free_mayday_mask(wq->mayday_mask);
3082
		kfree(wq->rescuer);
3083 3084
	}

3085
	free_cwqs(wq);
3086 3087 3088 3089
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3104
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3105 3106 3107 3108 3109

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3110
	for_each_cwq_cpu(cpu, wq) {
3111 3112 3113 3114
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

3115
		if (!(wq->flags & WQ_FREEZABLE) ||
3116 3117
		    !(gcwq->flags & GCWQ_FREEZING))
			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3118

3119
		spin_unlock_irq(&gcwq->lock);
3120
	}
3121

3122
	spin_unlock(&workqueue_lock);
3123
}
3124
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3125

3126
/**
3127 3128 3129
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3130
 *
3131 3132 3133
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3134
 *
3135 3136
 * RETURNS:
 * %true if congested, %false otherwise.
3137
 */
3138
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3139
{
3140 3141 3142
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3143
}
3144
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3145

3146
/**
3147 3148
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3149
 *
3150
 * RETURNS:
3151
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3152
 */
3153
unsigned int work_cpu(struct work_struct *work)
3154
{
3155
	struct global_cwq *gcwq = get_work_gcwq(work);
3156

3157
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3158
}
3159
EXPORT_SYMBOL_GPL(work_cpu);
3160

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3175
{
3176 3177 3178
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3179

3180 3181
	if (!gcwq)
		return false;
L
Linus Torvalds 已提交
3182

3183
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3184

3185 3186 3187 3188
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3189

3190
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3191

3192
	return ret;
L
Linus Torvalds 已提交
3193
}
3194
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3195

3196 3197 3198
/*
 * CPU hotplug.
 *
3199 3200 3201 3202 3203 3204 3205
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3206 3207 3208 3209
 * This is solved by allowing a gcwq to be detached from CPU, running it
 * with unbound workers and allowing it to be reattached later if the cpu
 * comes back online.  A separate thread is created to govern a gcwq in
 * such state and is called the trustee of the gcwq.
3210 3211 3212 3213 3214 3215 3216
 *
 * Trustee states and their descriptions.
 *
 * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
 *		new trustee is started with this state.
 *
 * IN_CHARGE	Once started, trustee will enter this state after
3217 3218 3219 3220 3221 3222
 *		assuming the manager role and making all existing
 *		workers rogue.  DOWN_PREPARE waits for trustee to
 *		enter this state.  After reaching IN_CHARGE, trustee
 *		tries to execute the pending worklist until it's empty
 *		and the state is set to BUTCHER, or the state is set
 *		to RELEASE.
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
 *
 * BUTCHER	Command state which is set by the cpu callback after
 *		the cpu has went down.  Once this state is set trustee
 *		knows that there will be no new works on the worklist
 *		and once the worklist is empty it can proceed to
 *		killing idle workers.
 *
 * RELEASE	Command state which is set by the cpu callback if the
 *		cpu down has been canceled or it has come online
 *		again.  After recognizing this state, trustee stops
3233 3234 3235
 *		trying to drain or butcher and clears ROGUE, rebinds
 *		all remaining workers back to the cpu and releases
 *		manager role.
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
 *
 * DONE		Trustee will enter this state after BUTCHER or RELEASE
 *		is complete.
 *
 *          trustee                 CPU                draining
 *         took over                down               complete
 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
 *                        |                     |                  ^
 *                        | CPU is back online  v   return workers |
 *                         ----------------> RELEASE --------------
 */
L
Linus Torvalds 已提交
3247

3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
/* claim manager positions of all pools */
static void gcwq_claim_management(struct global_cwq *gcwq)
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
		mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
}

/* release manager positions */
static void gcwq_release_management(struct global_cwq *gcwq)
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
		mutex_unlock(&pool->manager_mutex);
}

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
/**
 * trustee_wait_event_timeout - timed event wait for trustee
 * @cond: condition to wait for
 * @timeout: timeout in jiffies
 *
 * wait_event_timeout() for trustee to use.  Handles locking and
 * checks for RELEASE request.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  To be used by trustee.
 *
 * RETURNS:
 * Positive indicating left time if @cond is satisfied, 0 if timed
 * out, -1 if canceled.
 */
#define trustee_wait_event_timeout(cond, timeout) ({			\
	long __ret = (timeout);						\
	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
	       __ret) {							\
		spin_unlock_irq(&gcwq->lock);				\
		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
			__ret);						\
		spin_lock_irq(&gcwq->lock);				\
	}								\
	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
})
3294

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
/**
 * trustee_wait_event - event wait for trustee
 * @cond: condition to wait for
 *
 * wait_event() for trustee to use.  Automatically handles locking and
 * checks for CANCEL request.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  To be used by trustee.
 *
 * RETURNS:
 * 0 if @cond is satisfied, -1 if canceled.
 */
#define trustee_wait_event(cond) ({					\
	long __ret1;							\
	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
	__ret1 < 0 ? -1 : 0;						\
})
L
Linus Torvalds 已提交
3314

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
static bool gcwq_has_idle_workers(struct global_cwq *gcwq)
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
		if (!list_empty(&pool->idle_list))
			return true;
	return false;
}

3325
static int __cpuinit trustee_thread(void *__gcwq)
3326
{
3327
	struct global_cwq *gcwq = __gcwq;
3328
	struct worker_pool *pool;
3329
	struct worker *worker;
3330
	struct work_struct *work;
3331
	struct hlist_node *pos;
3332
	long rc;
3333
	int i;
3334

3335 3336
	BUG_ON(gcwq->cpu != smp_processor_id());

3337
	gcwq_claim_management(gcwq);
3338
	spin_lock_irq(&gcwq->lock);
3339

3340 3341 3342 3343 3344 3345
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3346
	for_each_worker_pool(pool, gcwq)
3347
		list_for_each_entry(worker, &pool->idle_list, entry)
3348
			worker->flags |= WORKER_UNBOUND;
3349

3350
	for_each_busy_worker(worker, i, pos, gcwq)
3351
		worker->flags |= WORKER_UNBOUND;
3352

3353 3354
	gcwq->flags |= GCWQ_DISASSOCIATED;

3355
	/*
3356 3357 3358
	 * Call schedule() so that we cross rq->lock and thus can guarantee
	 * sched callbacks see the unbound flag.  This is necessary as
	 * scheduler callbacks may be invoked from other cpus.
3359 3360 3361 3362
	 */
	spin_unlock_irq(&gcwq->lock);
	schedule();
	spin_lock_irq(&gcwq->lock);
3363

3364
	/*
3365 3366 3367 3368
	 * Sched callbacks are disabled now.  Zap nr_running.  After
	 * this, nr_running stays zero and need_more_worker() and
	 * keep_working() are always true as long as the worklist is
	 * not empty.
3369
	 */
3370 3371
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
L
Linus Torvalds 已提交
3372

3373
	spin_unlock_irq(&gcwq->lock);
3374 3375
	for_each_worker_pool(pool, gcwq)
		del_timer_sync(&pool->idle_timer);
3376
	spin_lock_irq(&gcwq->lock);
3377

3378 3379 3380 3381 3382 3383 3384 3385
	/*
	 * We're now in charge.  Notify and proceed to drain.  We need
	 * to keep the gcwq running during the whole CPU down
	 * procedure as other cpu hotunplug callbacks may need to
	 * flush currently running tasks.
	 */
	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
	wake_up_all(&gcwq->trustee_wait);
3386

3387 3388 3389
	/*
	 * The original cpu is in the process of dying and may go away
	 * anytime now.  When that happens, we and all workers would
3390 3391 3392 3393
	 * be migrated to other cpus.  Try draining any left work.  We
	 * want to get it over with ASAP - spam rescuers, wake up as
	 * many idlers as necessary and create new ones till the
	 * worklist is empty.  Note that if the gcwq is frozen, there
3394
	 * may be frozen works in freezable cwqs.  Don't declare
3395
	 * completion while frozen.
3396
	 */
3397 3398
	while (true) {
		bool busy = false;
3399

3400 3401
		for_each_worker_pool(pool, gcwq)
			busy |= pool->nr_workers != pool->nr_idle;
3402

3403 3404 3405
		if (!busy && !(gcwq->flags & GCWQ_FREEZING) &&
		    gcwq->trustee_state != TRUSTEE_IN_CHARGE)
			break;
3406

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
		for_each_worker_pool(pool, gcwq) {
			int nr_works = 0;

			list_for_each_entry(work, &pool->worklist, entry) {
				send_mayday(work);
				nr_works++;
			}

			list_for_each_entry(worker, &pool->idle_list, entry) {
				if (!nr_works--)
					break;
				wake_up_process(worker->task);
			}

			if (need_to_create_worker(pool)) {
				spin_unlock_irq(&gcwq->lock);
				worker = create_worker(pool, false);
				spin_lock_irq(&gcwq->lock);
				if (worker) {
3426
					worker->flags |= WORKER_UNBOUND;
3427 3428
					start_worker(worker);
				}
3429
			}
L
Linus Torvalds 已提交
3430
		}
3431

3432 3433 3434
		/* give a breather */
		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
			break;
3435
	}
L
Linus Torvalds 已提交
3436

3437
	/*
3438 3439 3440
	 * Either all works have been scheduled and cpu is down, or
	 * cpu down has already been canceled.  Wait for and butcher
	 * all workers till we're canceled.
3441
	 */
3442
	do {
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
		rc = trustee_wait_event(gcwq_has_idle_workers(gcwq));

		i = 0;
		for_each_worker_pool(pool, gcwq) {
			while (!list_empty(&pool->idle_list)) {
				worker = list_first_entry(&pool->idle_list,
							  struct worker, entry);
				destroy_worker(worker);
			}
			i |= pool->nr_workers;
		}
	} while (i && rc >= 0);
3455

3456
	/*
3457 3458 3459 3460 3461
	 * At this point, either draining has completed and no worker
	 * is left, or cpu down has been canceled or the cpu is being
	 * brought back up.  There shouldn't be any idle one left.
	 * Tell the remaining busy ones to rebind once it finishes the
	 * currently scheduled works by scheduling the rebind_work.
3462
	 */
3463 3464
	for_each_worker_pool(pool, gcwq)
		WARN_ON(!list_empty(&pool->idle_list));
3465 3466 3467 3468 3469 3470 3471 3472 3473

	for_each_busy_worker(worker, i, pos, gcwq) {
		struct work_struct *rebind_work = &worker->rebind_work;

		/*
		 * Rebind_work may race with future cpu hotplug
		 * operations.  Use a separate flag to mark that
		 * rebinding is scheduled.
		 */
3474
		worker->flags |= WORKER_REBIND;
3475
		worker->flags &= ~WORKER_UNBOUND;
3476 3477 3478 3479 3480 3481 3482

		/* queue rebind_work, wq doesn't matter, use the default one */
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		debug_work_activate(rebind_work);
3483
		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3484 3485 3486 3487
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
	}

3488
	gcwq_release_management(gcwq);
3489

3490 3491 3492 3493 3494 3495
	/* notify completion */
	gcwq->trustee = NULL;
	gcwq->trustee_state = TRUSTEE_DONE;
	wake_up_all(&gcwq->trustee_wait);
	spin_unlock_irq(&gcwq->lock);
	return 0;
3496 3497 3498
}

/**
3499 3500 3501
 * wait_trustee_state - wait for trustee to enter the specified state
 * @gcwq: gcwq the trustee of interest belongs to
 * @state: target state to wait for
3502
 *
3503 3504 3505 3506 3507
 * Wait for the trustee to reach @state.  DONE is already matched.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  To be used by cpu_callback.
3508
 */
3509
static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3510 3511
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
3512
{
3513 3514 3515 3516 3517 3518 3519 3520
	if (!(gcwq->trustee_state == state ||
	      gcwq->trustee_state == TRUSTEE_DONE)) {
		spin_unlock_irq(&gcwq->lock);
		__wait_event(gcwq->trustee_wait,
			     gcwq->trustee_state == state ||
			     gcwq->trustee_state == TRUSTEE_DONE);
		spin_lock_irq(&gcwq->lock);
	}
3521 3522 3523 3524 3525 3526 3527
}

static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
						unsigned long action,
						void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;
3528 3529
	struct global_cwq *gcwq = get_gcwq(cpu);
	struct task_struct *new_trustee = NULL;
3530 3531
	struct worker *new_workers[NR_WORKER_POOLS] = { };
	struct worker_pool *pool;
3532
	unsigned long flags;
3533
	int i;
3534

3535 3536
	action &= ~CPU_TASKS_FROZEN;

3537
	switch (action) {
3538 3539 3540 3541 3542 3543
	case CPU_DOWN_PREPARE:
		new_trustee = kthread_create(trustee_thread, gcwq,
					     "workqueue_trustee/%d\n", cpu);
		if (IS_ERR(new_trustee))
			return notifier_from_errno(PTR_ERR(new_trustee));
		kthread_bind(new_trustee, cpu);
3544
		/* fall through */
3545
	case CPU_UP_PREPARE:
3546 3547 3548 3549 3550 3551
		i = 0;
		for_each_worker_pool(pool, gcwq) {
			BUG_ON(pool->first_idle);
			new_workers[i] = create_worker(pool, false);
			if (!new_workers[i++])
				goto err_destroy;
3552
		}
L
Linus Torvalds 已提交
3553 3554
	}

3555 3556
	/* some are called w/ irq disabled, don't disturb irq status */
	spin_lock_irqsave(&gcwq->lock, flags);
3557

3558
	switch (action) {
3559 3560 3561 3562 3563 3564 3565
	case CPU_DOWN_PREPARE:
		/* initialize trustee and tell it to acquire the gcwq */
		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
		gcwq->trustee = new_trustee;
		gcwq->trustee_state = TRUSTEE_START;
		wake_up_process(gcwq->trustee);
		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3566 3567
		/* fall through */
	case CPU_UP_PREPARE:
3568 3569 3570 3571 3572
		i = 0;
		for_each_worker_pool(pool, gcwq) {
			BUG_ON(pool->first_idle);
			pool->first_idle = new_workers[i++];
		}
3573 3574
		break;

3575
	case CPU_POST_DEAD:
3576
		gcwq->trustee_state = TRUSTEE_BUTCHER;
3577 3578
		/* fall through */
	case CPU_UP_CANCELED:
3579 3580 3581 3582
		for_each_worker_pool(pool, gcwq) {
			destroy_worker(pool->first_idle);
			pool->first_idle = NULL;
		}
3583 3584 3585 3586
		break;

	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3587
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3588 3589 3590 3591
		if (gcwq->trustee_state != TRUSTEE_DONE) {
			gcwq->trustee_state = TRUSTEE_RELEASE;
			wake_up_process(gcwq->trustee);
			wait_trustee_state(gcwq, TRUSTEE_DONE);
3592
		}
3593

3594 3595 3596 3597 3598
		/*
		 * Trustee is done and there might be no worker left.
		 * Put the first_idle in and request a real manager to
		 * take a look.
		 */
3599 3600 3601 3602 3603 3604 3605 3606
		for_each_worker_pool(pool, gcwq) {
			spin_unlock_irq(&gcwq->lock);
			kthread_bind(pool->first_idle->task, cpu);
			spin_lock_irq(&gcwq->lock);
			pool->flags |= POOL_MANAGE_WORKERS;
			start_worker(pool->first_idle);
			pool->first_idle = NULL;
		}
3607
		break;
3608 3609
	}

3610 3611
	spin_unlock_irqrestore(&gcwq->lock, flags);

T
Tejun Heo 已提交
3612
	return notifier_from_errno(0);
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624

err_destroy:
	if (new_trustee)
		kthread_stop(new_trustee);

	spin_lock_irqsave(&gcwq->lock, flags);
	for (i = 0; i < NR_WORKER_POOLS; i++)
		if (new_workers[i])
			destroy_worker(new_workers[i]);
	spin_unlock_irqrestore(&gcwq->lock, flags);

	return NOTIFY_BAD;
L
Linus Torvalds 已提交
3625 3626
}

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
					       unsigned long action,
					       void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
	case CPU_UP_CANCELED:
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
		return workqueue_cpu_callback(nfb, action, hcpu);
	}
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
	case CPU_POST_DEAD:
		return workqueue_cpu_callback(nfb, action, hcpu);
	}
	return NOTIFY_OK;
}

3661
#ifdef CONFIG_SMP
3662

3663
struct work_for_cpu {
3664
	struct completion completion;
3665 3666 3667 3668 3669
	long (*fn)(void *);
	void *arg;
	long ret;
};

3670
static int do_work_for_cpu(void *_wfc)
3671
{
3672
	struct work_for_cpu *wfc = _wfc;
3673
	wfc->ret = wfc->fn(wfc->arg);
3674 3675
	complete(&wfc->completion);
	return 0;
3676 3677 3678 3679 3680 3681 3682 3683
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3684 3685
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3686
 * The caller must not hold any locks which would prevent @fn from completing.
3687 3688 3689
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
	struct task_struct *sub_thread;
	struct work_for_cpu wfc = {
		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
		.fn = fn,
		.arg = arg,
	};

	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
	if (IS_ERR(sub_thread))
		return PTR_ERR(sub_thread);
	kthread_bind(sub_thread, cpu);
	wake_up_process(sub_thread);
	wait_for_completion(&wfc.completion);
3703 3704 3705 3706 3707
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3708 3709 3710 3711 3712
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3713 3714 3715
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3716 3717
 *
 * CONTEXT:
3718
 * Grabs and releases workqueue_lock and gcwq->lock's.
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3729
	for_each_gcwq_cpu(cpu) {
3730
		struct global_cwq *gcwq = get_gcwq(cpu);
3731
		struct workqueue_struct *wq;
3732 3733 3734

		spin_lock_irq(&gcwq->lock);

3735 3736 3737
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3738 3739 3740
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3741
			if (cwq && wq->flags & WQ_FREEZABLE)
3742 3743
				cwq->max_active = 0;
		}
3744 3745

		spin_unlock_irq(&gcwq->lock);
3746 3747 3748 3749 3750 3751
	}

	spin_unlock(&workqueue_lock);
}

/**
3752
 * freeze_workqueues_busy - are freezable workqueues still busy?
3753 3754 3755 3756 3757 3758 3759 3760
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3761 3762
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3773
	for_each_gcwq_cpu(cpu) {
3774
		struct workqueue_struct *wq;
3775 3776 3777 3778 3779 3780 3781
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3782
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3801
 * frozen works are transferred to their respective gcwq worklists.
3802 3803
 *
 * CONTEXT:
3804
 * Grabs and releases workqueue_lock and gcwq->lock's.
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3815
	for_each_gcwq_cpu(cpu) {
3816
		struct global_cwq *gcwq = get_gcwq(cpu);
3817
		struct worker_pool *pool;
3818
		struct workqueue_struct *wq;
3819 3820 3821

		spin_lock_irq(&gcwq->lock);

3822 3823 3824
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3825 3826 3827
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3828
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3829 3830 3831 3832 3833 3834 3835 3836 3837
				continue;

			/* restore max_active and repopulate worklist */
			cwq->max_active = wq->saved_max_active;

			while (!list_empty(&cwq->delayed_works) &&
			       cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
3838

3839 3840
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3841

3842
		spin_unlock_irq(&gcwq->lock);
3843 3844 3845 3846 3847 3848 3849 3850
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3851
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3852
{
T
Tejun Heo 已提交
3853
	unsigned int cpu;
T
Tejun Heo 已提交
3854
	int i;
T
Tejun Heo 已提交
3855

3856 3857
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
	cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3858 3859

	/* initialize gcwqs */
3860
	for_each_gcwq_cpu(cpu) {
3861
		struct global_cwq *gcwq = get_gcwq(cpu);
3862
		struct worker_pool *pool;
3863 3864 3865

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;
3866
		gcwq->flags |= GCWQ_DISASSOCIATED;
3867

T
Tejun Heo 已提交
3868 3869 3870
		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);

3871 3872 3873 3874
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3875

3876 3877 3878
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3879

3880 3881 3882
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3883
			mutex_init(&pool->manager_mutex);
3884 3885
			ida_init(&pool->worker_ida);
		}
3886 3887 3888

		gcwq->trustee_state = TRUSTEE_DONE;
		init_waitqueue_head(&gcwq->trustee_wait);
3889 3890
	}

3891
	/* create the initial worker */
3892
	for_each_online_gcwq_cpu(cpu) {
3893
		struct global_cwq *gcwq = get_gcwq(cpu);
3894
		struct worker_pool *pool;
3895

3896 3897
		if (cpu != WORK_CPU_UNBOUND)
			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907

		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

			worker = create_worker(pool, true);
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3908 3909
	}

3910 3911 3912
	system_wq = alloc_workqueue("events", 0, 0);
	system_long_wq = alloc_workqueue("events_long", 0, 0);
	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3913 3914
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3915 3916
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3917 3918
	system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
			WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3919
	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3920 3921
	       !system_unbound_wq || !system_freezable_wq ||
		!system_nrt_freezable_wq);
3922
	return 0;
L
Linus Torvalds 已提交
3923
}
3924
early_initcall(init_workqueues);