workqueue.c 108.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44 45

#include "workqueue_sched.h"
L
Linus Torvalds 已提交
46

T
Tejun Heo 已提交
47
enum {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	/*
	 * global_cwq flags
	 *
	 * A bound gcwq is either associated or disassociated with its CPU.
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
	 * be executing on any CPU.  The gcwq behaves as an unbound one.
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
	 * managership of all pools on the gcwq to avoid changing binding
	 * state while create_worker() is in progress.
	 */
64 65 66 67 68
	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */

	/* pool flags */
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75 76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79

80 81
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
				  WORKER_CPU_INTENSIVE,
82

83
	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
84

T
Tejun Heo 已提交
85 86 87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99 100 101 102
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
103
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
104
};
L
Linus Torvalds 已提交
105 106

/*
T
Tejun Heo 已提交
107 108
 * Structure fields follow one of the following exclusion rules.
 *
109 110
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
111
 *
112 113 114
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
115
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
116
 *
117 118 119
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
120
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
121
 *
122 123
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
124
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
125 126
 */

127
struct global_cwq;
128
struct worker_pool;
129
struct idle_rebind;
L
Linus Torvalds 已提交
130

131 132 133 134
/*
 * The poor guys doing the actual heavy lifting.  All on-duty workers
 * are either serving the manager role, on idle list or on busy hash.
 */
T
Tejun Heo 已提交
135
struct worker {
T
Tejun Heo 已提交
136 137 138 139 140
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};
L
Linus Torvalds 已提交
141

T
Tejun Heo 已提交
142
	struct work_struct	*current_work;	/* L: work being processed */
143
	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
144
	struct list_head	scheduled;	/* L: scheduled works */
T
Tejun Heo 已提交
145
	struct task_struct	*task;		/* I: worker task */
146
	struct worker_pool	*pool;		/* I: the associated pool */
147 148 149
	/* 64 bytes boundary on 64bit, 32 on 32bit */
	unsigned long		last_active;	/* L: last active timestamp */
	unsigned int		flags;		/* X: flags */
T
Tejun Heo 已提交
150
	int			id;		/* I: worker id */
151 152 153 154

	/* for rebinding worker to CPU */
	struct idle_rebind	*idle_rebind;	/* L: for idle worker */
	struct work_struct	rebind_work;	/* L: for busy worker */
T
Tejun Heo 已提交
155 156
};

157 158
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
159
	unsigned int		flags;		/* X: flags */
160 161 162 163 164 165 166 167 168

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

169
	struct mutex		manager_mutex;	/* mutex manager should hold */
170 171 172
	struct ida		worker_ida;	/* L: for worker IDs */
};

173
/*
174 175 176
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
177 178 179 180
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
181
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
182

183
	/* workers are chained either in busy_hash or pool idle_list */
T
Tejun Heo 已提交
184 185 186
	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
						/* L: hash of busy workers */

187 188
	struct worker_pool	pools[NR_WORKER_POOLS];
						/* normal and highpri pools */
189

190
	wait_queue_head_t	rebind_hold;	/* rebind hold wait */
191 192
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
193
/*
194
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
195 196
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
197 198
 */
struct cpu_workqueue_struct {
199
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
200
	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 202 203 204
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
205
	int			nr_active;	/* L: nr of active works */
206
	int			max_active;	/* L: max active works */
207
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
208
};
L
Linus Torvalds 已提交
209

210 211 212 213 214 215 216 217 218
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

219 220 221 222 223 224 225 226 227 228
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
229
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
230 231 232 233 234 235 236 237 238
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
239 240 241 242 243 244

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
245
	unsigned int		flags;		/* W: WQ_* flags */
246 247 248 249 250
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
251
	struct list_head	list;		/* W: list of all workqueues */
252 253 254 255 256 257 258 259 260

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

261
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
262 263
	struct worker		*rescuer;	/* I: rescue worker */

264
	int			nr_drainers;	/* W: drain in progress */
265
	int			saved_max_active; /* W: saved cwq max_active */
266
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
267
	struct lockdep_map	lockdep_map;
268
#endif
269
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
270 271
};

272 273
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
274
struct workqueue_struct *system_highpri_wq __read_mostly;
275
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
276
struct workqueue_struct *system_long_wq __read_mostly;
277
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
278
struct workqueue_struct *system_unbound_wq __read_mostly;
279
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
280
struct workqueue_struct *system_freezable_wq __read_mostly;
281
EXPORT_SYMBOL_GPL(system_freezable_wq);
282

283 284 285
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

286
#define for_each_worker_pool(pool, gcwq)				\
287 288
	for ((pool) = &(gcwq)->pools[0];				\
	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
289

290 291 292 293
#define for_each_busy_worker(worker, i, pos, gcwq)			\
	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

343 344 345 346
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

347 348 349 350 351
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
387
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
423
	.debug_hint	= work_debug_hint,
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

459 460
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
461
static LIST_HEAD(workqueues);
462
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
463

464 465 466 467 468
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
469
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
470
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
471

472 473 474 475 476 477
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
478 479 480
static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
};
481

T
Tejun Heo 已提交
482
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
483

484 485 486 487 488
static int worker_pool_pri(struct worker_pool *pool)
{
	return pool - pool->gcwq->pools;
}

489 490
static struct global_cwq *get_gcwq(unsigned int cpu)
{
491 492 493 494
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
495 496
}

497
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
498
{
499
	int cpu = pool->gcwq->cpu;
500
	int idx = worker_pool_pri(pool);
501

502
	if (cpu != WORK_CPU_UNBOUND)
503
		return &per_cpu(pool_nr_running, cpu)[idx];
504
	else
505
		return &unbound_pool_nr_running[idx];
506 507
}

T
Tejun Heo 已提交
508 509
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
510
{
511
	if (!(wq->flags & WQ_UNBOUND)) {
512
		if (likely(cpu < nr_cpu_ids))
513 514 515 516
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
517 518
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
534

535
/*
536 537 538
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
 * is cleared and the high bits contain OFFQ flags and CPU number.
539
 *
540 541 542 543 544 545 546 547 548 549 550 551 552 553
 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, cpu or clear
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
 *
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
 * a work.  gcwq is available once the work has been queued anywhere after
 * initialization until it is sync canceled.  cwq is available only while
 * the work item is queued.
 *
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
554
 */
555 556
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
557
{
558
	BUG_ON(!work_pending(work));
559 560
	atomic_long_set(&work->data, data | flags | work_static(work));
}
561

562 563 564 565 566
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
567
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
568 569
}

570 571
static void set_work_cpu_and_clear_pending(struct work_struct *work,
					   unsigned int cpu)
572
{
573 574 575 576 577 578 579
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
580
	set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
581
}
582

583
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
584
{
585
	smp_wmb();	/* see set_work_cpu_and_clear_pending() */
586
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
587 588
}

589
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
590
{
591
	unsigned long data = atomic_long_read(&work->data);
592

593 594 595 596
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
597 598
}

599
static struct global_cwq *get_work_gcwq(struct work_struct *work)
600
{
601
	unsigned long data = atomic_long_read(&work->data);
602 603
	unsigned int cpu;

604 605
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
606
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
607

608
	cpu = data >> WORK_OFFQ_CPU_SHIFT;
609
	if (cpu == WORK_CPU_NONE)
610 611
		return NULL;

612
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
613
	return get_gcwq(cpu);
614 615
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
static void mark_work_canceling(struct work_struct *work)
{
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;

	set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
		      WORK_STRUCT_PENDING);
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

632
/*
633 634 635
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
636 637
 */

638
static bool __need_more_worker(struct worker_pool *pool)
639
{
640
	return !atomic_read(get_pool_nr_running(pool));
641 642
}

643
/*
644 645
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
646 647 648 649
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
650
 */
651
static bool need_more_worker(struct worker_pool *pool)
652
{
653
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
654
}
655

656
/* Can I start working?  Called from busy but !running workers. */
657
static bool may_start_working(struct worker_pool *pool)
658
{
659
	return pool->nr_idle;
660 661 662
}

/* Do I need to keep working?  Called from currently running workers. */
663
static bool keep_working(struct worker_pool *pool)
664
{
665
	atomic_t *nr_running = get_pool_nr_running(pool);
666

667
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
668 669 670
}

/* Do we need a new worker?  Called from manager. */
671
static bool need_to_create_worker(struct worker_pool *pool)
672
{
673
	return need_more_worker(pool) && !may_start_working(pool);
674
}
675

676
/* Do I need to be the manager? */
677
static bool need_to_manage_workers(struct worker_pool *pool)
678
{
679
	return need_to_create_worker(pool) ||
680
		(pool->flags & POOL_MANAGE_WORKERS);
681 682 683
}

/* Do we have too many workers and should some go away? */
684
static bool too_many_workers(struct worker_pool *pool)
685
{
686
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
687 688
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
689 690

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
691 692
}

693
/*
694 695 696
 * Wake up functions.
 */

697
/* Return the first worker.  Safe with preemption disabled */
698
static struct worker *first_worker(struct worker_pool *pool)
699
{
700
	if (unlikely(list_empty(&pool->idle_list)))
701 702
		return NULL;

703
	return list_first_entry(&pool->idle_list, struct worker, entry);
704 705 706 707
}

/**
 * wake_up_worker - wake up an idle worker
708
 * @pool: worker pool to wake worker from
709
 *
710
 * Wake up the first idle worker of @pool.
711 712 713 714
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
715
static void wake_up_worker(struct worker_pool *pool)
716
{
717
	struct worker *worker = first_worker(pool);
718 719 720 721 722

	if (likely(worker))
		wake_up_process(worker->task);
}

723
/**
724 725 726 727 728 729 730 731 732 733 734 735 736 737
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

738
	if (!(worker->flags & WORKER_NOT_RUNNING))
739
		atomic_inc(get_pool_nr_running(worker->pool));
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
761
	struct worker_pool *pool = worker->pool;
762
	atomic_t *nr_running = get_pool_nr_running(pool);
763

764
	if (worker->flags & WORKER_NOT_RUNNING)
765 766 767 768 769 770 771 772 773 774
		return NULL;

	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
775 776 777 778 779
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
780
	 */
781
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
782
		to_wakeup = first_worker(pool);
783 784 785 786 787
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
788
 * @worker: self
789 790 791
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
792 793 794
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
795
 *
796 797
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
798 799 800 801
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
802
	struct worker_pool *pool = worker->pool;
803

804 805
	WARN_ON_ONCE(worker->task != current);

806 807 808 809 810 811 812
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
813
		atomic_t *nr_running = get_pool_nr_running(pool);
814 815 816

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
817
			    !list_empty(&pool->worklist))
818
				wake_up_worker(pool);
819 820 821 822
		} else
			atomic_dec(nr_running);
	}

823 824 825 826
	worker->flags |= flags;
}

/**
827
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
828
 * @worker: self
829 830
 * @flags: flags to clear
 *
831
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
832
 *
833 834
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
835 836 837
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
838
	struct worker_pool *pool = worker->pool;
839 840
	unsigned int oflags = worker->flags;

841 842
	WARN_ON_ONCE(worker->task != current);

843
	worker->flags &= ~flags;
844

845 846 847 848 849
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
850 851
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
852
			atomic_inc(get_pool_nr_running(pool));
853 854
}

T
Tejun Heo 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/**
 * busy_worker_head - return the busy hash head for a work
 * @gcwq: gcwq of interest
 * @work: work to be hashed
 *
 * Return hash head of @gcwq for @work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to the hash head.
 */
static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
					   struct work_struct *work)
{
	const int base_shift = ilog2(sizeof(struct work_struct));
	unsigned long v = (unsigned long)work;

	/* simple shift and fold hash, do we need something better? */
	v >>= base_shift;
	v += v >> BUSY_WORKER_HASH_ORDER;
	v &= BUSY_WORKER_HASH_MASK;

	return &gcwq->busy_hash[v];
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
/**
 * __find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @bwh: hash head as returned by busy_worker_head()
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  @bwh should be
 * the hash head obtained by calling busy_worker_head() with the same
 * work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
 */
static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
						   struct hlist_head *bwh,
						   struct work_struct *work)
{
	struct worker *worker;
	struct hlist_node *tmp;

	hlist_for_each_entry(worker, tmp, bwh, hentry)
		if (worker->current_work == work)
			return worker;
	return NULL;
}

/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  This function is
 * identical to __find_worker_executing_work() except that this
 * function calculates @bwh itself.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
927
 */
928 929
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
930
{
931 932
	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
					    work);
933 934
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 * @delayed: for a delayed work
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
				 bool delayed)
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

	if (!delayed) {
		cwq->nr_active--;
		if (!list_empty(&cwq->delayed_works)) {
			/* one down, submit a delayed one */
			if (cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1036
/**
1037
 * try_to_grab_pending - steal work item from worklist and disable irq
1038 1039
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1040
 * @flags: place to store irq state
1041 1042 1043 1044 1045 1046 1047
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1048 1049
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1050
 *
1051
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1052 1053 1054
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1055 1056 1057 1058
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1059
 * This function is safe to call from any context including IRQ handler.
1060
 */
1061 1062
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1063 1064 1065
{
	struct global_cwq *gcwq;

1066 1067 1068 1069
	WARN_ON_ONCE(in_irq());

	local_irq_save(*flags);

1070 1071 1072 1073
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1074 1075 1076 1077 1078
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1079 1080 1081 1082 1083
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1084 1085 1086 1087 1088 1089 1090 1091 1092
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
	gcwq = get_work_gcwq(work);
	if (!gcwq)
1093
		goto fail;
1094

1095
	spin_lock(&gcwq->lock);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	if (!list_empty(&work->entry)) {
		/*
		 * This work is queued, but perhaps we locked the wrong gcwq.
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
		if (gcwq == get_work_gcwq(work)) {
			debug_work_deactivate(work);
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
				get_work_color(work),
				*work_data_bits(work) & WORK_STRUCT_DELAYED);
1109

1110
			spin_unlock(&gcwq->lock);
1111
			return 1;
1112 1113
		}
	}
1114 1115 1116 1117 1118 1119
	spin_unlock(&gcwq->lock);
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1120
	return -EAGAIN;
1121 1122
}

T
Tejun Heo 已提交
1123
/**
1124
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1125 1126 1127 1128 1129
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1130 1131
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1132 1133
 *
 * CONTEXT:
1134
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1135
 */
O
Oleg Nesterov 已提交
1136
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1137 1138
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1139
{
1140
	struct worker_pool *pool = cwq->pool;
1141

T
Tejun Heo 已提交
1142
	/* we own @work, set data and link */
1143
	set_work_cwq(work, cwq, extra_flags);
1144

1145 1146 1147 1148 1149
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1150

1151
	list_add_tail(&work->entry, head);
1152 1153 1154 1155 1156 1157 1158 1159

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1160 1161
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1162 1163
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
1196
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1197 1198
			 struct work_struct *work)
{
1199 1200
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
1201
	struct list_head *worklist;
1202
	unsigned int work_flags;
1203
	unsigned int req_cpu = cpu;
1204 1205 1206 1207 1208 1209 1210 1211

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1212

1213
	debug_work_activate(work);
1214

1215
	/* if dying, only works from the same workqueue are allowed */
1216
	if (unlikely(wq->flags & WQ_DRAINING) &&
1217
	    WARN_ON_ONCE(!is_chained_work(wq)))
1218 1219
		return;

1220 1221
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
1222 1223
		struct global_cwq *last_gcwq;

1224
		if (cpu == WORK_CPU_UNBOUND)
1225 1226
			cpu = raw_smp_processor_id();

1227
		/*
1228 1229 1230 1231
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1232
		 */
1233
		gcwq = get_gcwq(cpu);
1234 1235 1236
		last_gcwq = get_work_gcwq(work);

		if (last_gcwq && last_gcwq != gcwq) {
1237 1238
			struct worker *worker;

1239
			spin_lock(&last_gcwq->lock);
1240 1241 1242 1243 1244 1245 1246

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
1247 1248
				spin_unlock(&last_gcwq->lock);
				spin_lock(&gcwq->lock);
1249
			}
1250 1251 1252
		} else {
			spin_lock(&gcwq->lock);
		}
1253 1254
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1255
		spin_lock(&gcwq->lock);
1256 1257 1258 1259
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1260
	trace_workqueue_queue_work(req_cpu, cwq, work);
1261

1262
	if (WARN_ON(!list_empty(&work->entry))) {
1263
		spin_unlock(&gcwq->lock);
1264 1265
		return;
	}
1266

1267
	cwq->nr_in_flight[cwq->work_color]++;
1268
	work_flags = work_color_to_flags(cwq->work_color);
1269 1270

	if (likely(cwq->nr_active < cwq->max_active)) {
1271
		trace_workqueue_activate_work(work);
1272
		cwq->nr_active++;
1273
		worklist = &cwq->pool->worklist;
1274 1275
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1276
		worklist = &cwq->delayed_works;
1277
	}
1278

1279
	insert_work(cwq, work, worklist, work_flags);
1280

1281
	spin_unlock(&gcwq->lock);
L
Linus Torvalds 已提交
1282 1283
}

1284 1285 1286 1287 1288 1289
/**
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @work: work to queue
 *
1290
 * Returns %false if @work was already on a queue, %true otherwise.
1291 1292 1293 1294
 *
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
 */
1295 1296
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
1297
{
1298
	bool ret = false;
1299 1300 1301
	unsigned long flags;

	local_irq_save(flags);
1302

1303
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1304
		__queue_work(cpu, wq, work);
1305
		ret = true;
1306
	}
1307 1308

	local_irq_restore(flags);
1309 1310 1311 1312
	return ret;
}
EXPORT_SYMBOL_GPL(queue_work_on);

1313
/**
1314
 * queue_work - queue work on a workqueue
1315
 * @wq: workqueue to use
1316
 * @work: work to queue
1317
 *
1318
 * Returns %false if @work was already on a queue, %true otherwise.
1319 1320 1321
 *
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1322
 */
1323
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
L
Linus Torvalds 已提交
1324
{
1325
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1326 1327 1328
}
EXPORT_SYMBOL_GPL(queue_work);

1329
void delayed_work_timer_fn(unsigned long __data)
1330 1331 1332 1333
{
	struct delayed_work *dwork = (struct delayed_work *)__data;
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);

1334
	/* should have been called from irqsafe timer with irq already off */
1335
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1336
}
1337
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
{
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
	BUG_ON(timer_pending(timer));
	BUG_ON(!list_empty(&work->entry));

	timer_stats_timer_set_start_info(&dwork->timer);

	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
	 * work's gcwq is preserved to allow reentrance detection for
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
		struct global_cwq *gcwq = get_work_gcwq(work);

1361 1362 1363 1364 1365 1366 1367
		/*
		 * If we cannot get the last gcwq from @work directly,
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
		if (gcwq)
1368
			lcpu = gcwq->cpu;
1369
		if (lcpu == WORK_CPU_UNBOUND)
1370 1371 1372 1373 1374 1375 1376
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1377
	dwork->cpu = cpu;
1378 1379 1380 1381 1382 1383 1384 1385
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
}

1386 1387 1388 1389
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1390
 * @dwork: work to queue
1391 1392
 * @delay: number of jiffies to wait before queueing
 *
1393 1394 1395
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1396
 */
1397 1398
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1399
{
1400
	struct work_struct *work = &dwork->work;
1401
	bool ret = false;
1402 1403
	unsigned long flags;

1404 1405 1406
	if (!delay)
		return queue_work_on(cpu, wq, &dwork->work);

1407 1408
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1409

1410
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1411
		__queue_delayed_work(cpu, wq, dwork, delay);
1412
		ret = true;
1413
	}
1414 1415

	local_irq_restore(flags);
1416 1417
	return ret;
}
1418
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
L
Linus Torvalds 已提交
1419

1420 1421 1422 1423 1424 1425
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1426
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1427
 */
1428
bool queue_delayed_work(struct workqueue_struct *wq,
1429 1430
			struct delayed_work *dwork, unsigned long delay)
{
1431
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1432 1433 1434
}
EXPORT_SYMBOL_GPL(queue_delayed_work);

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1450
 * This function is safe to call from any context including IRQ handler.
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
	}

	/* -ENOENT from try_to_grab_pending() becomes %true */
	return ret;
}
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);

T
Tejun Heo 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1499
{
1500 1501
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1502 1503 1504 1505 1506

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1507 1508
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1509
	pool->nr_idle++;
1510
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1511 1512

	/* idle_list is LIFO */
1513
	list_add(&worker->entry, &pool->idle_list);
1514

1515 1516
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1517

1518
	/*
1519 1520 1521 1522
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1523
	 */
1524
	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1525
		     pool->nr_workers == pool->nr_idle &&
1526
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1540
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1541 1542

	BUG_ON(!(worker->flags & WORKER_IDLE));
1543
	worker_clr_flags(worker, WORKER_IDLE);
1544
	pool->nr_idle--;
T
Tejun Heo 已提交
1545 1546 1547
	list_del_init(&worker->entry);
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1564 1565 1566 1567 1568
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
 * binding against %GCWQ_DISASSOCIATED which is set during
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1579
__acquires(&gcwq->lock)
1580
{
1581
	struct global_cwq *gcwq = worker->pool->gcwq;
1582 1583 1584
	struct task_struct *task = worker->task;

	while (true) {
1585
		/*
1586 1587 1588 1589
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
1590
		 */
1591 1592
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1603 1604 1605 1606 1607 1608
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1609
		cpu_relax();
1610
		cond_resched();
1611 1612 1613
	}
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
struct idle_rebind {
	int			cnt;		/* # workers to be rebound */
	struct completion	done;		/* all workers rebound */
};

/*
 * Rebind an idle @worker to its CPU.  During CPU onlining, this has to
 * happen synchronously for idle workers.  worker_thread() will test
 * %WORKER_REBIND before leaving idle and call this function.
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

	/* CPU must be online at this point */
	WARN_ON(!worker_maybe_bind_and_lock(worker));
	if (!--worker->idle_rebind->cnt)
		complete(&worker->idle_rebind->done);
	spin_unlock_irq(&worker->pool->gcwq->lock);

	/* we did our part, wait for rebind_workers() to finish up */
	wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1636 1637 1638 1639 1640 1641 1642 1643 1644

	/*
	 * rebind_workers() shouldn't finish until all workers passed the
	 * above WORKER_REBIND wait.  Tell it when done.
	 */
	spin_lock_irq(&worker->pool->gcwq->lock);
	if (!--worker->idle_rebind->cnt)
		complete(&worker->idle_rebind->done);
	spin_unlock_irq(&worker->pool->gcwq->lock);
1645 1646
}

1647
/*
1648
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1649 1650 1651
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1652
 */
1653
static void busy_worker_rebind_fn(struct work_struct *work)
1654 1655
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1656
	struct global_cwq *gcwq = worker->pool->gcwq;
1657

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	worker_maybe_bind_and_lock(worker);

	/*
	 * %WORKER_REBIND must be cleared even if the above binding failed;
	 * otherwise, we may confuse the next CPU_UP cycle or oops / get
	 * stuck by calling idle_worker_rebind() prematurely.  If CPU went
	 * down again inbetween, %WORKER_UNBOUND would be set, so clearing
	 * %WORKER_REBIND is always safe.
	 */
	worker_clr_flags(worker, WORKER_REBIND);
1668 1669 1670 1671

	spin_unlock_irq(&gcwq->lock);
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
 * The idle ones should be rebound synchronously and idle rebinding should
 * be complete before any worker starts executing work items with
 * concurrency management enabled; otherwise, scheduler may oops trying to
 * wake up non-local idle worker from wq_worker_sleeping().
 *
 * This is achieved by repeatedly requesting rebinding until all idle
 * workers are known to have been rebound under @gcwq->lock and holding all
 * idle workers from becoming busy until idle rebinding is complete.
 *
 * Once idle workers are rebound, busy workers can be rebound as they
 * finish executing their current work items.  Queueing the rebind work at
 * the head of their scheduled lists is enough.  Note that nr_running will
 * be properbly bumped as busy workers rebind.
 *
 * On return, all workers are guaranteed to either be bound or have rebind
 * work item scheduled.
 */
static void rebind_workers(struct global_cwq *gcwq)
	__releases(&gcwq->lock) __acquires(&gcwq->lock)
{
	struct idle_rebind idle_rebind;
	struct worker_pool *pool;
	struct worker *worker;
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
		lockdep_assert_held(&pool->manager_mutex);

	/*
	 * Rebind idle workers.  Interlocked both ways.  We wait for
	 * workers to rebind via @idle_rebind.done.  Workers will wait for
	 * us to finish up by watching %WORKER_REBIND.
	 */
	init_completion(&idle_rebind.done);
retry:
	idle_rebind.cnt = 1;
	INIT_COMPLETION(idle_rebind.done);

	/* set REBIND and kick idle ones, we'll wait for these later */
	for_each_worker_pool(pool, gcwq) {
		list_for_each_entry(worker, &pool->idle_list, entry) {
1723 1724
			unsigned long worker_flags = worker->flags;

1725 1726 1727
			if (worker->flags & WORKER_REBIND)
				continue;

1728 1729 1730 1731
			/* morph UNBOUND to REBIND atomically */
			worker_flags &= ~WORKER_UNBOUND;
			worker_flags |= WORKER_REBIND;
			ACCESS_ONCE(worker->flags) = worker_flags;
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

			idle_rebind.cnt++;
			worker->idle_rebind = &idle_rebind;

			/* worker_thread() will call idle_worker_rebind() */
			wake_up_process(worker->task);
		}
	}

	if (--idle_rebind.cnt) {
		spin_unlock_irq(&gcwq->lock);
		wait_for_completion(&idle_rebind.done);
		spin_lock_irq(&gcwq->lock);
		/* busy ones might have become idle while waiting, retry */
		goto retry;
	}

1749
	/* all idle workers are rebound, rebind busy workers */
1750
	for_each_busy_worker(worker, i, pos, gcwq) {
1751
		unsigned long worker_flags = worker->flags;
1752
		struct work_struct *rebind_work = &worker->rebind_work;
1753
		struct workqueue_struct *wq;
1754

1755 1756 1757 1758
		/* morph UNBOUND to REBIND atomically */
		worker_flags &= ~WORKER_UNBOUND;
		worker_flags |= WORKER_REBIND;
		ACCESS_ONCE(worker->flags) = worker_flags;
1759 1760 1761 1762 1763 1764

		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		debug_work_activate(rebind_work);
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

		insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
			worker->scheduled.next,
			work_color_to_flags(WORK_NO_COLOR));
1778
	}
1779 1780 1781 1782 1783 1784

	/*
	 * All idle workers are rebound and waiting for %WORKER_REBIND to
	 * be cleared inside idle_worker_rebind().  Clear and release.
	 * Clearing %WORKER_REBIND from this foreign context is safe
	 * because these workers are still guaranteed to be idle.
1785 1786 1787 1788
	 *
	 * We need to make sure all idle workers passed WORKER_REBIND wait
	 * in idle_worker_rebind() before returning; otherwise, workers can
	 * get stuck at the wait if hotplug cycle repeats.
1789
	 */
1790 1791 1792 1793 1794
	idle_rebind.cnt = 1;
	INIT_COMPLETION(idle_rebind.done);

	for_each_worker_pool(pool, gcwq) {
		list_for_each_entry(worker, &pool->idle_list, entry) {
1795
			worker->flags &= ~WORKER_REBIND;
1796 1797 1798
			idle_rebind.cnt++;
		}
	}
1799 1800

	wake_up_all(&gcwq->rebind_hold);
1801 1802 1803 1804 1805 1806

	if (--idle_rebind.cnt) {
		spin_unlock_irq(&gcwq->lock);
		wait_for_completion(&idle_rebind.done);
		spin_lock_irq(&gcwq->lock);
	}
1807 1808
}

T
Tejun Heo 已提交
1809 1810 1811 1812 1813
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1814 1815
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1816
		INIT_LIST_HEAD(&worker->scheduled);
1817
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1818 1819
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1820
	}
T
Tejun Heo 已提交
1821 1822 1823 1824 1825
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1826
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1827
 *
1828
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1838
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1839
{
1840
	struct global_cwq *gcwq = pool->gcwq;
1841
	const char *pri = worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1842
	struct worker *worker = NULL;
1843
	int id = -1;
T
Tejun Heo 已提交
1844

1845
	spin_lock_irq(&gcwq->lock);
1846
	while (ida_get_new(&pool->worker_ida, &id)) {
1847
		spin_unlock_irq(&gcwq->lock);
1848
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1849
			goto fail;
1850
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1851
	}
1852
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1853 1854 1855 1856 1857

	worker = alloc_worker();
	if (!worker)
		goto fail;

1858
	worker->pool = pool;
T
Tejun Heo 已提交
1859 1860
	worker->id = id;

1861
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1862
		worker->task = kthread_create_on_node(worker_thread,
1863 1864
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1865 1866
	else
		worker->task = kthread_create(worker_thread, worker,
1867
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1868 1869 1870
	if (IS_ERR(worker->task))
		goto fail;

1871 1872 1873
	if (worker_pool_pri(pool))
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1874
	/*
1875 1876 1877 1878 1879 1880 1881
	 * Determine CPU binding of the new worker depending on
	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1882
	 */
1883
	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1884
		kthread_bind(worker->task, gcwq->cpu);
1885
	} else {
1886
		worker->task->flags |= PF_THREAD_BOUND;
1887
		worker->flags |= WORKER_UNBOUND;
1888
	}
T
Tejun Heo 已提交
1889 1890 1891 1892

	return worker;
fail:
	if (id >= 0) {
1893
		spin_lock_irq(&gcwq->lock);
1894
		ida_remove(&pool->worker_ida, id);
1895
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1905
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1906 1907
 *
 * CONTEXT:
1908
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1909 1910 1911
 */
static void start_worker(struct worker *worker)
{
1912
	worker->flags |= WORKER_STARTED;
1913
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1914
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1915 1916 1917 1918 1919 1920 1921
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1922 1923 1924 1925
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1926 1927 1928
 */
static void destroy_worker(struct worker *worker)
{
1929 1930
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1931 1932 1933 1934
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1935
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1936

T
Tejun Heo 已提交
1937
	if (worker->flags & WORKER_STARTED)
1938
		pool->nr_workers--;
T
Tejun Heo 已提交
1939
	if (worker->flags & WORKER_IDLE)
1940
		pool->nr_idle--;
T
Tejun Heo 已提交
1941 1942

	list_del_init(&worker->entry);
1943
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1944 1945 1946

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1947 1948 1949
	kthread_stop(worker->task);
	kfree(worker);

1950
	spin_lock_irq(&gcwq->lock);
1951
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1952 1953
}

1954
static void idle_worker_timeout(unsigned long __pool)
1955
{
1956 1957
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1958 1959 1960

	spin_lock_irq(&gcwq->lock);

1961
	if (too_many_workers(pool)) {
1962 1963 1964 1965
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1966
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1967 1968 1969
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1970
			mod_timer(&pool->idle_timer, expires);
1971 1972
		else {
			/* it's been idle for too long, wake up manager */
1973
			pool->flags |= POOL_MANAGE_WORKERS;
1974
			wake_up_worker(pool);
1975
		}
1976 1977 1978 1979
	}

	spin_unlock_irq(&gcwq->lock);
}
1980

1981 1982 1983 1984
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1985
	unsigned int cpu;
1986 1987 1988 1989 1990

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1991
	cpu = cwq->pool->gcwq->cpu;
1992 1993 1994
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1995
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1996 1997 1998 1999
		wake_up_process(wq->rescuer->task);
	return true;
}

2000
static void gcwq_mayday_timeout(unsigned long __pool)
2001
{
2002 2003
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
2004 2005 2006 2007
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

2008
	if (need_to_create_worker(pool)) {
2009 2010 2011 2012 2013 2014
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
2015
		list_for_each_entry(work, &pool->worklist, entry)
2016
			send_mayday(work);
L
Linus Torvalds 已提交
2017
	}
2018 2019 2020

	spin_unlock_irq(&gcwq->lock);

2021
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
2022 2023
}

2024 2025
/**
 * maybe_create_worker - create a new worker if necessary
2026
 * @pool: pool to create a new worker for
2027
 *
2028
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
2029 2030
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2031
 * sent to all rescuers with works scheduled on @pool to resolve
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
2046
static bool maybe_create_worker(struct worker_pool *pool)
2047 2048
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
2049
{
2050 2051 2052
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
2053 2054
		return false;
restart:
2055 2056
	spin_unlock_irq(&gcwq->lock);

2057
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2058
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2059 2060 2061 2062

	while (true) {
		struct worker *worker;

2063
		worker = create_worker(pool);
2064
		if (worker) {
2065
			del_timer_sync(&pool->mayday_timer);
2066 2067
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
2068
			BUG_ON(need_to_create_worker(pool));
2069 2070 2071
			return true;
		}

2072
		if (!need_to_create_worker(pool))
2073
			break;
L
Linus Torvalds 已提交
2074

2075 2076
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
2077

2078
		if (!need_to_create_worker(pool))
2079 2080 2081
			break;
	}

2082
	del_timer_sync(&pool->mayday_timer);
2083
	spin_lock_irq(&gcwq->lock);
2084
	if (need_to_create_worker(pool))
2085 2086 2087 2088 2089 2090
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2091
 * @pool: pool to destroy workers for
2092
 *
2093
 * Destroy @pool workers which have been idle for longer than
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
2104
static bool maybe_destroy_workers(struct worker_pool *pool)
2105 2106
{
	bool ret = false;
L
Linus Torvalds 已提交
2107

2108
	while (too_many_workers(pool)) {
2109 2110
		struct worker *worker;
		unsigned long expires;
2111

2112
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2113
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2114

2115
		if (time_before(jiffies, expires)) {
2116
			mod_timer(&pool->idle_timer, expires);
2117
			break;
2118
		}
L
Linus Torvalds 已提交
2119

2120 2121
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2122
	}
2123

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
	return ret;
}

/**
 * manage_workers - manage worker pool
 * @worker: self
 *
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
 */
static bool manage_workers(struct worker *worker)
{
2149
	struct worker_pool *pool = worker->pool;
2150 2151
	bool ret = false;

2152
	if (pool->flags & POOL_MANAGING_WORKERS)
2153 2154
		return ret;

2155
	pool->flags |= POOL_MANAGING_WORKERS;
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190

	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
	 * extreme circumstances.  Use @pool->manager_mutex to synchronize
	 * manager against CPU hotplug.
	 *
	 * manager_mutex would always be free unless CPU hotplug is in
	 * progress.  trylock first without dropping @gcwq->lock.
	 */
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
		spin_unlock_irq(&pool->gcwq->lock);
		mutex_lock(&pool->manager_mutex);
		/*
		 * CPU hotplug could have happened while we were waiting
		 * for manager_mutex.  Hotplug itself can't handle us
		 * because manager isn't either on idle or busy list, and
		 * @gcwq's state and ours could have deviated.
		 *
		 * As hotplug is now excluded via manager_mutex, we can
		 * simply try to bind.  It will succeed or fail depending
		 * on @gcwq's current state.  Try it and adjust
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;

		ret = true;
	}

2191
	pool->flags &= ~POOL_MANAGE_WORKERS;
2192 2193 2194 2195 2196

	/*
	 * Destroy and then create so that may_start_working() is true
	 * on return.
	 */
2197 2198
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2199

2200
	pool->flags &= ~POOL_MANAGING_WORKERS;
2201
	mutex_unlock(&pool->manager_mutex);
2202 2203 2204
	return ret;
}

2205 2206
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2207
 * @worker: self
2208 2209 2210 2211 2212 2213 2214 2215 2216
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2217
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2218
 */
T
Tejun Heo 已提交
2219
static void process_one_work(struct worker *worker, struct work_struct *work)
2220 2221
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
2222
{
2223
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2224 2225
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
2226
	struct hlist_head *bwh = busy_worker_head(gcwq, work);
2227
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2228
	work_func_t f = work->func;
2229
	int work_color;
2230
	struct worker *collision;
2231 2232 2233 2234 2235 2236 2237 2238
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2239 2240 2241
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2242
#endif
2243 2244 2245 2246 2247
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
	 * unbound or a disassociated gcwq.
	 */
2248
	WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
2249
		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2250 2251
		     raw_smp_processor_id() != gcwq->cpu);

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
	collision = __find_worker_executing_work(gcwq, bwh, work);
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2264
	/* claim and dequeue */
2265
	debug_work_deactivate(work);
T
Tejun Heo 已提交
2266
	hlist_add_head(&worker->hentry, bwh);
T
Tejun Heo 已提交
2267
	worker->current_work = work;
2268
	worker->current_cwq = cwq;
2269
	work_color = get_work_color(work);
2270

2271 2272
	list_del_init(&work->entry);

2273 2274 2275 2276 2277 2278 2279
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2280 2281 2282 2283
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2284 2285
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2286

2287
	/*
2288 2289 2290 2291
	 * Record the last CPU and clear PENDING which should be the last
	 * update to @work.  Also, do this inside @gcwq->lock so that
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2292 2293
	 */
	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2294

2295
	spin_unlock_irq(&gcwq->lock);
2296

2297
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2298
	lock_map_acquire(&lockdep_map);
2299
	trace_workqueue_execute_start(work);
2300
	f(work);
2301 2302 2303 2304 2305
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2306 2307 2308 2309
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2310 2311 2312
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
		       current->comm, preempt_count(), task_pid_nr(current), f);
2313 2314 2315 2316
		debug_show_held_locks(current);
		dump_stack();
	}

2317
	spin_lock_irq(&gcwq->lock);
2318

2319 2320 2321 2322
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2323
	/* we're done with it, release */
T
Tejun Heo 已提交
2324
	hlist_del_init(&worker->hentry);
T
Tejun Heo 已提交
2325
	worker->current_work = NULL;
2326
	worker->current_cwq = NULL;
2327
	cwq_dec_nr_in_flight(cwq, work_color, false);
2328 2329
}

2330 2331 2332 2333 2334 2335 2336 2337 2338
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2339
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2340 2341 2342
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2343
{
2344 2345
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2346
						struct work_struct, entry);
T
Tejun Heo 已提交
2347
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2348 2349 2350
	}
}

T
Tejun Heo 已提交
2351 2352
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2353
 * @__worker: self
T
Tejun Heo 已提交
2354
 *
2355 2356 2357 2358 2359
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2360
 */
T
Tejun Heo 已提交
2361
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2362
{
T
Tejun Heo 已提交
2363
	struct worker *worker = __worker;
2364 2365
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2366

2367 2368
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2369 2370
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2371

2372 2373 2374 2375 2376
	/*
	 * DIE can be set only while idle and REBIND set while busy has
	 * @worker->rebind_work scheduled.  Checking here is enough.
	 */
	if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
T
Tejun Heo 已提交
2377
		spin_unlock_irq(&gcwq->lock);
2378 2379 2380 2381 2382 2383 2384 2385

		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2386
	}
2387

T
Tejun Heo 已提交
2388
	worker_leave_idle(worker);
2389
recheck:
2390
	/* no more worker necessary? */
2391
	if (!need_more_worker(pool))
2392 2393 2394
		goto sleep;

	/* do we need to manage? */
2395
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2396 2397
		goto recheck;

T
Tejun Heo 已提交
2398 2399 2400 2401 2402 2403 2404
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2405 2406 2407 2408 2409 2410 2411 2412
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2413
		struct work_struct *work =
2414
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2415 2416 2417 2418 2419 2420
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2421
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2422 2423 2424
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2425
		}
2426
	} while (keep_working(pool));
2427 2428

	worker_set_flags(worker, WORKER_PREP, false);
2429
sleep:
2430
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2431
		goto recheck;
2432

T
Tejun Heo 已提交
2433
	/*
2434 2435 2436 2437 2438
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2439 2440 2441 2442 2443 2444
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2445 2446
}

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/**
 * rescuer_thread - the rescuer thread function
 * @__wq: the associated workqueue
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
static int rescuer_thread(void *__wq)
{
	struct workqueue_struct *wq = __wq;
	struct worker *rescuer = wq->rescuer;
	struct list_head *scheduled = &rescuer->scheduled;
2471
	bool is_unbound = wq->flags & WQ_UNBOUND;
2472 2473 2474 2475 2476 2477 2478 2479 2480
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

	if (kthread_should_stop())
		return 0;

2481 2482 2483 2484
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2485
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2486 2487
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2488 2489
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2490 2491 2492
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2493
		mayday_clear_cpu(cpu, wq->mayday_mask);
2494 2495

		/* migrate to the target cpu if possible */
2496
		rescuer->pool = pool;
2497 2498 2499 2500 2501 2502 2503
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2504
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2505 2506 2507 2508
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2509 2510 2511 2512 2513 2514

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2515 2516
		if (keep_working(pool))
			wake_up_worker(pool);
2517

2518 2519 2520 2521 2522
		spin_unlock_irq(&gcwq->lock);
	}

	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2523 2524
}

O
Oleg Nesterov 已提交
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2536 2537 2538 2539
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2540 2541
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2542
 *
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2556 2557
 *
 * CONTEXT:
2558
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2559
 */
2560
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2561 2562
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2563
{
2564 2565 2566
	struct list_head *head;
	unsigned int linked = 0;

2567
	/*
2568
	 * debugobject calls are safe here even with gcwq->lock locked
2569 2570 2571 2572
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2573
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2574
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2575
	init_completion(&barr->done);
2576

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2592
	debug_work_activate(&barr->work);
2593 2594
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2595 2596
}

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2630
{
2631 2632
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2633

2634 2635 2636
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2637
	}
2638

2639
	for_each_cwq_cpu(cpu, wq) {
2640
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2641
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2642

2643
		spin_lock_irq(&gcwq->lock);
2644

2645 2646
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2647

2648 2649 2650 2651 2652 2653
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2654

2655 2656 2657 2658
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2659

2660
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2661
	}
2662

2663 2664
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2665

2666
	return wait;
L
Linus Torvalds 已提交
2667 2668
}

2669
/**
L
Linus Torvalds 已提交
2670
 * flush_workqueue - ensure that any scheduled work has run to completion.
2671
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2672 2673 2674 2675
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2676 2677
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2678
 */
2679
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2680
{
2681 2682 2683 2684 2685 2686
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2687

2688 2689
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2751 2752 2753 2754
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2822
}
2823
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2824

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2855
		bool drained;
2856

2857
		spin_lock_irq(&cwq->pool->gcwq->lock);
2858
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2859
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2860 2861

		if (drained)
2862 2863 2864 2865
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2866 2867
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2878
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2879
{
2880
	struct worker *worker = NULL;
2881
	struct global_cwq *gcwq;
2882 2883 2884
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2885 2886
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2887
		return false;
2888

2889
	spin_lock_irq(&gcwq->lock);
2890 2891 2892
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2893 2894
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2895 2896
		 */
		smp_rmb();
2897
		cwq = get_work_cwq(work);
2898
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2899
			goto already_gone;
2900
	} else {
2901
		worker = find_worker_executing_work(gcwq, work);
2902
		if (!worker)
T
Tejun Heo 已提交
2903
			goto already_gone;
2904
		cwq = worker->current_cwq;
2905
	}
2906

2907
	insert_wq_barrier(cwq, barr, work, worker);
2908
	spin_unlock_irq(&gcwq->lock);
2909

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2920
	lock_map_release(&cwq->wq->lockdep_map);
2921

2922
	return true;
T
Tejun Heo 已提交
2923
already_gone:
2924
	spin_unlock_irq(&gcwq->lock);
2925
	return false;
2926
}
2927 2928 2929 2930 2931

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2932 2933
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2934 2935 2936 2937 2938 2939 2940 2941 2942
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2943 2944 2945
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2946
	if (start_flush_work(work, &barr)) {
2947 2948 2949
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2950
	} else {
2951
		return false;
2952 2953
	}
}
2954
EXPORT_SYMBOL_GPL(flush_work);
2955

2956
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2957
{
2958
	unsigned long flags;
2959 2960 2961
	int ret;

	do {
2962 2963 2964 2965 2966 2967
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2968
			flush_work(work);
2969 2970
	} while (unlikely(ret < 0));

2971 2972 2973 2974
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2975
	flush_work(work);
2976
	clear_work_data(work);
2977 2978 2979
	return ret;
}

2980
/**
2981 2982
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2983
 *
2984 2985 2986 2987
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2988
 *
2989 2990
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2991
 *
2992
 * The caller must ensure that the workqueue on which @work was last
2993
 * queued can't be destroyed before this function returns.
2994 2995 2996
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2997
 */
2998
bool cancel_work_sync(struct work_struct *work)
2999
{
3000
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
3001
}
3002
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
3003

3004
/**
3005 3006
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
3007
 *
3008 3009 3010
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
3011
 *
3012 3013 3014
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
3015
 */
3016 3017
bool flush_delayed_work(struct delayed_work *dwork)
{
3018
	local_irq_disable();
3019
	if (del_timer_sync(&dwork->timer))
3020
		__queue_work(dwork->cpu,
3021
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
3022
	local_irq_enable();
3023 3024 3025 3026
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
/**
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
 *
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
 *
 * This function is safe to call from any context including IRQ handler.
 */
bool cancel_delayed_work(struct delayed_work *dwork)
{
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

	set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
	local_irq_restore(flags);
	return true;
}
EXPORT_SYMBOL(cancel_delayed_work);

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3067
{
3068
	return __cancel_work_timer(&dwork->work, true);
3069
}
3070
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3071

3072
/**
3073 3074 3075 3076 3077 3078
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
3079
bool schedule_work_on(int cpu, struct work_struct *work)
3080 3081 3082 3083 3084
{
	return queue_work_on(cpu, system_wq, work);
}
EXPORT_SYMBOL(schedule_work_on);

3085 3086 3087 3088
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3089 3090
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3091 3092 3093 3094
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3095
 */
3096
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3097
{
3098
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3099
}
3100
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3101

3102 3103 3104 3105 3106
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
 * @dwork: job to be done
 * @delay: number of jiffies to wait
3107
 *
3108 3109
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
3110
 */
3111 3112
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
3113
{
3114
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3115
}
3116
EXPORT_SYMBOL(schedule_delayed_work_on);
3117

3118 3119
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3120 3121
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3122 3123 3124 3125
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3126
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3127
{
3128
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3129
}
3130
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3131

3132
/**
3133
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3134 3135
 * @func: the function to call
 *
3136 3137
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3138
 * schedule_on_each_cpu() is very slow.
3139 3140 3141
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3142
 */
3143
int schedule_on_each_cpu(work_func_t func)
3144 3145
{
	int cpu;
3146
	struct work_struct __percpu *works;
3147

3148 3149
	works = alloc_percpu(struct work_struct);
	if (!works)
3150
		return -ENOMEM;
3151

3152 3153
	get_online_cpus();

3154
	for_each_online_cpu(cpu) {
3155 3156 3157
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3158
		schedule_work_on(cpu, work);
3159
	}
3160 3161 3162 3163

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3164
	put_online_cpus();
3165
	free_percpu(works);
3166 3167 3168
	return 0;
}

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3193 3194
void flush_scheduled_work(void)
{
3195
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3196
}
3197
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3198

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3211
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3212 3213
{
	if (!in_interrupt()) {
3214
		fn(&ew->work);
3215 3216 3217
		return 0;
	}

3218
	INIT_WORK(&ew->work, fn);
3219 3220 3221 3222 3223 3224
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3225 3226
int keventd_up(void)
{
3227
	return system_wq != NULL;
L
Linus Torvalds 已提交
3228 3229
}

3230
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3231
{
3232
	/*
T
Tejun Heo 已提交
3233 3234 3235
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3236
	 */
T
Tejun Heo 已提交
3237 3238 3239
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3240

3241
	if (!(wq->flags & WQ_UNBOUND))
3242
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3243
	else {
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3256
	}
3257

3258
	/* just in case, make sure it's actually aligned */
3259 3260
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3261 3262
}

3263
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3264
{
3265
	if (!(wq->flags & WQ_UNBOUND))
3266 3267 3268
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3269
		kfree(*(void **)(wq->cpu_wq.single + 1));
3270
	}
T
Tejun Heo 已提交
3271 3272
}

3273 3274
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3275
{
3276 3277 3278
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3279 3280
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3281

3282
	return clamp_val(max_active, 1, lim);
3283 3284
}

3285
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3286 3287 3288
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3289
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3290
{
3291
	va_list args, args1;
L
Linus Torvalds 已提交
3292
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3293
	unsigned int cpu;
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3308

3309 3310 3311 3312 3313 3314 3315
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3316
	max_active = max_active ?: WQ_DFL_ACTIVE;
3317
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3318

3319
	/* init wq */
3320
	wq->flags = flags;
3321
	wq->saved_max_active = max_active;
3322 3323 3324 3325
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3326

3327
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3328
	INIT_LIST_HEAD(&wq->list);
3329

3330 3331 3332
	if (alloc_cwqs(wq) < 0)
		goto err;

3333
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3334
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3335
		struct global_cwq *gcwq = get_gcwq(cpu);
3336
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3337

T
Tejun Heo 已提交
3338
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3339
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3340
		cwq->wq = wq;
3341
		cwq->flush_color = -1;
3342 3343
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3344
	}
T
Tejun Heo 已提交
3345

3346 3347 3348
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3349
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3350 3351 3352 3353 3354 3355
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3356 3357
		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
					       wq->name);
3358 3359 3360 3361 3362
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3363 3364
	}

3365 3366 3367 3368 3369
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3370
	spin_lock(&workqueue_lock);
3371

3372
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3373
		for_each_cwq_cpu(cpu, wq)
3374 3375
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3376
	list_add(&wq->list, &workqueues);
3377

T
Tejun Heo 已提交
3378 3379
	spin_unlock(&workqueue_lock);

3380
	return wq;
T
Tejun Heo 已提交
3381 3382
err:
	if (wq) {
3383
		free_cwqs(wq);
3384
		free_mayday_mask(wq->mayday_mask);
3385
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3386 3387 3388
		kfree(wq);
	}
	return NULL;
3389
}
3390
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3391

3392 3393 3394 3395 3396 3397 3398 3399
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3400
	unsigned int cpu;
3401

3402 3403
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3404

3405 3406 3407 3408
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3409
	spin_lock(&workqueue_lock);
3410
	list_del(&wq->list);
3411
	spin_unlock(&workqueue_lock);
3412

3413
	/* sanity check */
3414
	for_each_cwq_cpu(cpu, wq) {
3415 3416 3417 3418 3419
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3420 3421
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3422
	}
3423

3424 3425
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3426
		free_mayday_mask(wq->mayday_mask);
3427
		kfree(wq->rescuer);
3428 3429
	}

3430
	free_cwqs(wq);
3431 3432 3433 3434
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3449
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3450 3451 3452 3453 3454

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3455
	for_each_cwq_cpu(cpu, wq) {
3456 3457 3458 3459
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

3460
		if (!(wq->flags & WQ_FREEZABLE) ||
3461 3462
		    !(gcwq->flags & GCWQ_FREEZING))
			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3463

3464
		spin_unlock_irq(&gcwq->lock);
3465
	}
3466

3467
	spin_unlock(&workqueue_lock);
3468
}
3469
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3470

3471
/**
3472 3473 3474
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3475
 *
3476 3477 3478
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3479
 *
3480 3481
 * RETURNS:
 * %true if congested, %false otherwise.
3482
 */
3483
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3484
{
3485 3486 3487
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3488
}
3489
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3490

3491
/**
3492 3493
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3494
 *
3495
 * RETURNS:
3496
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3497
 */
3498
unsigned int work_cpu(struct work_struct *work)
3499
{
3500
	struct global_cwq *gcwq = get_work_gcwq(work);
3501

3502
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3503
}
3504
EXPORT_SYMBOL_GPL(work_cpu);
3505

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3520
{
3521 3522 3523
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3524

3525 3526
	if (!gcwq)
		return false;
L
Linus Torvalds 已提交
3527

3528
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3529

3530 3531 3532 3533
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3534

3535
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3536

3537
	return ret;
L
Linus Torvalds 已提交
3538
}
3539
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3540

3541 3542 3543
/*
 * CPU hotplug.
 *
3544 3545 3546 3547 3548 3549 3550
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3551 3552 3553
 * This is solved by allowing a gcwq to be disassociated from the CPU
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3554
 */
L
Linus Torvalds 已提交
3555

3556
/* claim manager positions of all pools */
T
Tejun Heo 已提交
3557
static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3558 3559 3560 3561 3562
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
		mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3563
	spin_lock_irq(&gcwq->lock);
3564 3565 3566
}

/* release manager positions */
T
Tejun Heo 已提交
3567
static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3568 3569 3570
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3571
	spin_unlock_irq(&gcwq->lock);
3572 3573 3574 3575
	for_each_worker_pool(pool, gcwq)
		mutex_unlock(&pool->manager_mutex);
}

3576
static void gcwq_unbind_fn(struct work_struct *work)
3577
{
3578
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3579
	struct worker_pool *pool;
3580 3581 3582
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3583

3584 3585
	BUG_ON(gcwq->cpu != smp_processor_id());

T
Tejun Heo 已提交
3586
	gcwq_claim_management_and_lock(gcwq);
3587

3588 3589 3590 3591 3592 3593
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3594
	for_each_worker_pool(pool, gcwq)
3595
		list_for_each_entry(worker, &pool->idle_list, entry)
3596
			worker->flags |= WORKER_UNBOUND;
3597

3598
	for_each_busy_worker(worker, i, pos, gcwq)
3599
		worker->flags |= WORKER_UNBOUND;
3600

3601 3602
	gcwq->flags |= GCWQ_DISASSOCIATED;

T
Tejun Heo 已提交
3603
	gcwq_release_management_and_unlock(gcwq);
3604

3605
	/*
3606
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3607 3608
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3609 3610
	 */
	schedule();
3611

3612
	/*
3613 3614 3615 3616 3617 3618 3619 3620 3621
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3622
	 */
3623 3624
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3625 3626
}

T
Tejun Heo 已提交
3627 3628 3629 3630 3631 3632 3633
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
					       unsigned long action,
					       void *hcpu)
3634 3635
{
	unsigned int cpu = (unsigned long)hcpu;
3636
	struct global_cwq *gcwq = get_gcwq(cpu);
3637
	struct worker_pool *pool;
3638

T
Tejun Heo 已提交
3639
	switch (action & ~CPU_TASKS_FROZEN) {
3640
	case CPU_UP_PREPARE:
3641
		for_each_worker_pool(pool, gcwq) {
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3654
		}
T
Tejun Heo 已提交
3655
		break;
3656

3657 3658
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
T
Tejun Heo 已提交
3659
		gcwq_claim_management_and_lock(gcwq);
3660
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3661
		rebind_workers(gcwq);
T
Tejun Heo 已提交
3662
		gcwq_release_management_and_unlock(gcwq);
3663
		break;
3664
	}
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3676 3677 3678
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3679 3680
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3681 3682
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3683
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3684 3685
		flush_work(&unbind_work);
		break;
3686 3687 3688 3689
	}
	return NOTIFY_OK;
}

3690
#ifdef CONFIG_SMP
3691

3692
struct work_for_cpu {
3693
	struct completion completion;
3694 3695 3696 3697 3698
	long (*fn)(void *);
	void *arg;
	long ret;
};

3699
static int do_work_for_cpu(void *_wfc)
3700
{
3701
	struct work_for_cpu *wfc = _wfc;
3702
	wfc->ret = wfc->fn(wfc->arg);
3703 3704
	complete(&wfc->completion);
	return 0;
3705 3706 3707 3708 3709 3710 3711 3712
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3713 3714
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3715
 * The caller must not hold any locks which would prevent @fn from completing.
3716 3717 3718
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	struct task_struct *sub_thread;
	struct work_for_cpu wfc = {
		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
		.fn = fn,
		.arg = arg,
	};

	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
	if (IS_ERR(sub_thread))
		return PTR_ERR(sub_thread);
	kthread_bind(sub_thread, cpu);
	wake_up_process(sub_thread);
	wait_for_completion(&wfc.completion);
3732 3733 3734 3735 3736
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3737 3738 3739 3740 3741
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3742 3743 3744
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3745 3746
 *
 * CONTEXT:
3747
 * Grabs and releases workqueue_lock and gcwq->lock's.
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3758
	for_each_gcwq_cpu(cpu) {
3759
		struct global_cwq *gcwq = get_gcwq(cpu);
3760
		struct workqueue_struct *wq;
3761 3762 3763

		spin_lock_irq(&gcwq->lock);

3764 3765 3766
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3767 3768 3769
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3770
			if (cwq && wq->flags & WQ_FREEZABLE)
3771 3772
				cwq->max_active = 0;
		}
3773 3774

		spin_unlock_irq(&gcwq->lock);
3775 3776 3777 3778 3779 3780
	}

	spin_unlock(&workqueue_lock);
}

/**
3781
 * freeze_workqueues_busy - are freezable workqueues still busy?
3782 3783 3784 3785 3786 3787 3788 3789
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3790 3791
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3802
	for_each_gcwq_cpu(cpu) {
3803
		struct workqueue_struct *wq;
3804 3805 3806 3807 3808 3809 3810
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3811
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3830
 * frozen works are transferred to their respective gcwq worklists.
3831 3832
 *
 * CONTEXT:
3833
 * Grabs and releases workqueue_lock and gcwq->lock's.
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3844
	for_each_gcwq_cpu(cpu) {
3845
		struct global_cwq *gcwq = get_gcwq(cpu);
3846
		struct worker_pool *pool;
3847
		struct workqueue_struct *wq;
3848 3849 3850

		spin_lock_irq(&gcwq->lock);

3851 3852 3853
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3854 3855 3856
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3857
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3858 3859 3860 3861 3862 3863 3864 3865 3866
				continue;

			/* restore max_active and repopulate worklist */
			cwq->max_active = wq->saved_max_active;

			while (!list_empty(&cwq->delayed_works) &&
			       cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
3867

3868 3869
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3870

3871
		spin_unlock_irq(&gcwq->lock);
3872 3873 3874 3875 3876 3877 3878 3879
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3880
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3881
{
T
Tejun Heo 已提交
3882
	unsigned int cpu;
T
Tejun Heo 已提交
3883
	int i;
T
Tejun Heo 已提交
3884

3885 3886 3887 3888
	/* make sure we have enough bits for OFFQ CPU number */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
		     WORK_CPU_LAST);

3889 3890
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
	cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3891 3892

	/* initialize gcwqs */
3893
	for_each_gcwq_cpu(cpu) {
3894
		struct global_cwq *gcwq = get_gcwq(cpu);
3895
		struct worker_pool *pool;
3896 3897 3898

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;
3899
		gcwq->flags |= GCWQ_DISASSOCIATED;
3900

T
Tejun Heo 已提交
3901 3902 3903
		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);

3904 3905 3906 3907
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3908

3909 3910 3911
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3912

3913 3914 3915
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3916
			mutex_init(&pool->manager_mutex);
3917 3918
			ida_init(&pool->worker_ida);
		}
3919

3920
		init_waitqueue_head(&gcwq->rebind_hold);
3921 3922
	}

3923
	/* create the initial worker */
3924
	for_each_online_gcwq_cpu(cpu) {
3925
		struct global_cwq *gcwq = get_gcwq(cpu);
3926
		struct worker_pool *pool;
3927

3928 3929
		if (cpu != WORK_CPU_UNBOUND)
			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3930 3931 3932 3933

		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3934
			worker = create_worker(pool);
3935 3936 3937 3938 3939
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3940 3941
	}

3942
	system_wq = alloc_workqueue("events", 0, 0);
3943
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3944
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3945 3946
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3947 3948
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3949
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3950
	       !system_unbound_wq || !system_freezable_wq);
3951
	return 0;
L
Linus Torvalds 已提交
3952
}
3953
early_initcall(init_workqueues);