workqueue.c 140.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67 68
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74

T
Tejun Heo 已提交
75 76 77 78
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
79
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83

84 85
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
86

87
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88

89
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
90
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91

92 93 94
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

95 96 97
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
98 99 100 101 102 103 104 105
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
106
	HIGHPRI_NICE_LEVEL	= -20,
107 108

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
109
};
L
Linus Torvalds 已提交
110 111

/*
T
Tejun Heo 已提交
112 113
 * Structure fields follow one of the following exclusion rules.
 *
114 115
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
116
 *
117 118 119
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
120
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
121
 *
122 123 124 125
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
126
 *
127 128 129
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
130
 * PL: wq_pool_mutex protected.
131
 *
132
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
133
 *
134 135
 * WQ: wq->mutex protected.
 *
136
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
137 138
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
139 140
 */

141
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
142

143
struct worker_pool {
144
	spinlock_t		lock;		/* the pool lock */
145
	int			cpu;		/* I: the associated cpu */
146
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
147
	int			id;		/* I: pool ID */
148
	unsigned int		flags;		/* X: flags */
149 150 151

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
152 153

	/* nr_idle includes the ones off idle_list for rebinding */
154 155 156 157 158 159
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

160
	/* a workers is either on busy_hash or idle_list, or the manager */
161 162 163
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

164
	/* see manage_workers() for details on the two manager mutexes */
165
	struct mutex		manager_arb;	/* manager arbitration */
166
	struct mutex		manager_mutex;	/* manager exclusion */
167
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
168

T
Tejun Heo 已提交
169
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 171
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
172

173 174 175 176 177 178
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 180 181 182 183 184

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
185 186
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
187
/*
188 189 190 191
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
192
 */
193
struct pool_workqueue {
194
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
195
	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 197
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
198
	int			refcnt;		/* L: reference count */
199 200
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
201
	int			nr_active;	/* L: nr of active works */
202
	int			max_active;	/* L: max active works */
203
	struct list_head	delayed_works;	/* L: delayed works */
204
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
206 207 208 209 210

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
211
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
212 213 214
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
215
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
216

217 218 219 220
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
221 222
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
223 224 225
	struct completion	done;		/* flush completion */
};

226 227
struct wq_device;

L
Linus Torvalds 已提交
228
/*
229 230
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
231 232
 */
struct workqueue_struct {
233
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234
	struct list_head	list;		/* PL: list of all workqueues */
235

236 237 238
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
239
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 241 242
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243

244
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 246
	struct worker		*rescuer;	/* I: rescue worker */

247
	int			nr_drainers;	/* WQ: drain in progress */
248
	int			saved_max_active; /* WQ: saved pwq max_active */
249

250
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252

253 254 255
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
256
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
257
	struct lockdep_map	lockdep_map;
258
#endif
259
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 261 262 263

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
265 266
};

267 268
static struct kmem_cache *pwq_cache;

269 270 271 272
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

273 274 275
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

276 277 278 279 280 281 282 283 284
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

285 286
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

287 288 289
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

290
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292

293 294
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 296 297 298 299

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

300
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301

302
/* PL: hash of all unbound pools keyed by pool->attrs */
303 304
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

305
/* I: attributes used when instantiating standard unbound pools on demand */
306 307
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

308 309 310
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

311
struct workqueue_struct *system_wq __read_mostly;
312
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
313
struct workqueue_struct *system_highpri_wq __read_mostly;
314
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
315
struct workqueue_struct *system_long_wq __read_mostly;
316
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
317
struct workqueue_struct *system_unbound_wq __read_mostly;
318
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
319
struct workqueue_struct *system_freezable_wq __read_mostly;
320
EXPORT_SYMBOL_GPL(system_freezable_wq);
321 322 323 324
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325

326 327 328 329
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

330 331 332
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

333
#define assert_rcu_or_pool_mutex()					\
334
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
335 336
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
337

338
#define assert_rcu_or_wq_mutex(wq)					\
339
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340
			   lockdep_is_held(&wq->mutex),			\
341
			   "sched RCU or wq->mutex should be held")
342

343 344
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
345 346
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
347 348 349 350 351 352
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

353 354 355
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356
	     (pool)++)
357

T
Tejun Heo 已提交
358 359 360
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
361
 * @pi: integer used for iteration
362
 *
363 364 365
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
366 367 368
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
369
 */
370 371
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
372
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
373
		else
T
Tejun Heo 已提交
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

391 392 393 394
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
395
 *
396
 * This must be called either with wq->mutex held or sched RCU read locked.
397 398
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
399 400 401
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
402 403
 */
#define for_each_pwq(pwq, wq)						\
404
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
405
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
406
		else
407

408 409 410 411
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

412 413 414 415 416
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
452
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
488
	.debug_hint	= work_debug_hint,
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

T
Tejun Heo 已提交
524 525 526 527 528
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

529
	lockdep_assert_held(&wq_pool_mutex);
530

T
Tejun Heo 已提交
531
	ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
532
	if (ret >= 0) {
T
Tejun Heo 已提交
533
		pool->id = ret;
534 535
		return 0;
	}
536
	return ret;
537 538
}

539 540 541 542 543 544 545 546
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
547 548
 *
 * Return: The unbound pool_workqueue for @node.
549 550 551 552 553 554 555 556
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
572

573
/*
574 575
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
576
 * is cleared and the high bits contain OFFQ flags and pool ID.
577
 *
578 579
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
580 581
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
582
 *
583
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
584
 * corresponding to a work.  Pool is available once the work has been
585
 * queued anywhere after initialization until it is sync canceled.  pwq is
586
 * available only while the work item is queued.
587
 *
588 589 590 591
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
592
 */
593 594
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
595
{
596
	WARN_ON_ONCE(!work_pending(work));
597 598
	atomic_long_set(&work->data, data | flags | work_static(work));
}
599

600
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
601 602
			 unsigned long extra_flags)
{
603 604
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
605 606
}

607 608 609 610 611 612 613
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

614 615
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
616
{
617 618 619 620 621 622 623
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
624
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
625
}
626

627
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
628
{
629 630
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
631 632
}

633
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
634
{
635
	unsigned long data = atomic_long_read(&work->data);
636

637
	if (data & WORK_STRUCT_PWQ)
638 639 640
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
641 642
}

643 644 645 646
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
647 648 649
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
650 651 652 653 654
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
655 656
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
657 658
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
659
{
660
	unsigned long data = atomic_long_read(&work->data);
661
	int pool_id;
662

663
	assert_rcu_or_pool_mutex();
664

665 666
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
667
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
668

669 670
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
671 672
		return NULL;

673
	return idr_find(&worker_pool_idr, pool_id);
674 675 676 677 678 679
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
680
 * Return: The worker_pool ID @work was last associated with.
681 682 683 684
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
685 686
	unsigned long data = atomic_long_read(&work->data);

687 688
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
689
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
690

691
	return data >> WORK_OFFQ_POOL_SHIFT;
692 693
}

694 695
static void mark_work_canceling(struct work_struct *work)
{
696
	unsigned long pool_id = get_work_pool_id(work);
697

698 699
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
700 701 702 703 704 705
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

706
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
707 708
}

709
/*
710 711
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
712
 * they're being called with pool->lock held.
713 714
 */

715
static bool __need_more_worker(struct worker_pool *pool)
716
{
717
	return !atomic_read(&pool->nr_running);
718 719
}

720
/*
721 722
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
723 724
 *
 * Note that, because unbound workers never contribute to nr_running, this
725
 * function will always return %true for unbound pools as long as the
726
 * worklist isn't empty.
727
 */
728
static bool need_more_worker(struct worker_pool *pool)
729
{
730
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
731
}
732

733
/* Can I start working?  Called from busy but !running workers. */
734
static bool may_start_working(struct worker_pool *pool)
735
{
736
	return pool->nr_idle;
737 738 739
}

/* Do I need to keep working?  Called from currently running workers. */
740
static bool keep_working(struct worker_pool *pool)
741
{
742 743
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
744 745 746
}

/* Do we need a new worker?  Called from manager. */
747
static bool need_to_create_worker(struct worker_pool *pool)
748
{
749
	return need_more_worker(pool) && !may_start_working(pool);
750
}
751

752
/* Do I need to be the manager? */
753
static bool need_to_manage_workers(struct worker_pool *pool)
754
{
755
	return need_to_create_worker(pool) ||
756
		(pool->flags & POOL_MANAGE_WORKERS);
757 758 759
}

/* Do we have too many workers and should some go away? */
760
static bool too_many_workers(struct worker_pool *pool)
761
{
762
	bool managing = mutex_is_locked(&pool->manager_arb);
763 764
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
765

766 767 768 769 770 771 772
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

773
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
774 775
}

776
/*
777 778 779
 * Wake up functions.
 */

780
/* Return the first worker.  Safe with preemption disabled */
781
static struct worker *first_worker(struct worker_pool *pool)
782
{
783
	if (unlikely(list_empty(&pool->idle_list)))
784 785
		return NULL;

786
	return list_first_entry(&pool->idle_list, struct worker, entry);
787 788 789 790
}

/**
 * wake_up_worker - wake up an idle worker
791
 * @pool: worker pool to wake worker from
792
 *
793
 * Wake up the first idle worker of @pool.
794 795
 *
 * CONTEXT:
796
 * spin_lock_irq(pool->lock).
797
 */
798
static void wake_up_worker(struct worker_pool *pool)
799
{
800
	struct worker *worker = first_worker(pool);
801 802 803 804 805

	if (likely(worker))
		wake_up_process(worker->task);
}

806
/**
807 808 809 810 811 812 813 814 815 816
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
817
void wq_worker_waking_up(struct task_struct *task, int cpu)
818 819 820
{
	struct worker *worker = kthread_data(task);

821
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
822
		WARN_ON_ONCE(worker->pool->cpu != cpu);
823
		atomic_inc(&worker->pool->nr_running);
824
	}
825 826 827 828 829 830 831 832 833 834 835 836 837 838
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
839
 * Return:
840 841
 * Worker task on @cpu to wake up, %NULL if none.
 */
842
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
843 844
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
845
	struct worker_pool *pool;
846

847 848 849 850 851
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
852
	if (worker->flags & WORKER_NOT_RUNNING)
853 854
		return NULL;

855 856
	pool = worker->pool;

857
	/* this can only happen on the local cpu */
858 859
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
860 861 862 863 864 865

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
866 867 868
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
869
	 * manipulating idle_list, so dereferencing idle_list without pool
870
	 * lock is safe.
871
	 */
872 873
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
874
		to_wakeup = first_worker(pool);
875 876 877 878 879
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
880
 * @worker: self
881 882 883
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
884 885 886
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
887
 *
888
 * CONTEXT:
889
 * spin_lock_irq(pool->lock)
890 891 892 893
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
894
	struct worker_pool *pool = worker->pool;
895

896 897
	WARN_ON_ONCE(worker->task != current);

898 899 900 901 902 903 904 905
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
906
			if (atomic_dec_and_test(&pool->nr_running) &&
907
			    !list_empty(&pool->worklist))
908
				wake_up_worker(pool);
909
		} else
910
			atomic_dec(&pool->nr_running);
911 912
	}

913 914 915 916
	worker->flags |= flags;
}

/**
917
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
918
 * @worker: self
919 920
 * @flags: flags to clear
 *
921
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
922
 *
923
 * CONTEXT:
924
 * spin_lock_irq(pool->lock)
925 926 927
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
928
	struct worker_pool *pool = worker->pool;
929 930
	unsigned int oflags = worker->flags;

931 932
	WARN_ON_ONCE(worker->task != current);

933
	worker->flags &= ~flags;
934

935 936 937 938 939
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
940 941
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
942
			atomic_inc(&pool->nr_running);
943 944
}

945 946
/**
 * find_worker_executing_work - find worker which is executing a work
947
 * @pool: pool of interest
948 949
 * @work: work to find worker for
 *
950 951
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
952 953 954 955 956 957 958 959 960 961 962 963
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
964 965 966 967 968 969
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
970 971
 *
 * CONTEXT:
972
 * spin_lock_irq(pool->lock).
973
 *
974 975
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
976
 * otherwise.
977
 */
978
static struct worker *find_worker_executing_work(struct worker_pool *pool,
979
						 struct work_struct *work)
980
{
981 982
	struct worker *worker;

983
	hash_for_each_possible(pool->busy_hash, worker, hentry,
984 985 986
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
987 988 989
			return worker;

	return NULL;
990 991
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1007
 * spin_lock_irq(pool->lock).
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1091
static void pwq_activate_delayed_work(struct work_struct *work)
1092
{
1093
	struct pool_workqueue *pwq = get_work_pwq(work);
1094 1095

	trace_workqueue_activate_work(work);
1096
	move_linked_works(work, &pwq->pool->worklist, NULL);
1097
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1098
	pwq->nr_active++;
1099 1100
}

1101
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1102
{
1103
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1104 1105
						    struct work_struct, entry);

1106
	pwq_activate_delayed_work(work);
1107 1108
}

1109
/**
1110 1111
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1112 1113 1114
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1115
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1116 1117
 *
 * CONTEXT:
1118
 * spin_lock_irq(pool->lock).
1119
 */
1120
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1121
{
T
Tejun Heo 已提交
1122
	/* uncolored work items don't participate in flushing or nr_active */
1123
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1124
		goto out_put;
1125

1126
	pwq->nr_in_flight[color]--;
1127

1128 1129
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1130
		/* one down, submit a delayed one */
1131 1132
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1133 1134 1135
	}

	/* is flush in progress and are we at the flushing tip? */
1136
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1137
		goto out_put;
1138 1139

	/* are there still in-flight works? */
1140
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1141
		goto out_put;
1142

1143 1144
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1145 1146

	/*
1147
	 * If this was the last pwq, wake up the first flusher.  It
1148 1149
	 * will handle the rest.
	 */
1150 1151
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1152 1153
out_put:
	put_pwq(pwq);
1154 1155
}

1156
/**
1157
 * try_to_grab_pending - steal work item from worklist and disable irq
1158 1159
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1160
 * @flags: place to store irq state
1161 1162
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1163
 * stable state - idle, on timer or on worklist.
1164
 *
1165
 * Return:
1166 1167 1168
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1169 1170
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1171
 *
1172
 * Note:
1173
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1174 1175 1176
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1177 1178 1179 1180
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1181
 * This function is safe to call from any context including IRQ handler.
1182
 */
1183 1184
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1185
{
1186
	struct worker_pool *pool;
1187
	struct pool_workqueue *pwq;
1188

1189 1190
	local_irq_save(*flags);

1191 1192 1193 1194
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1195 1196 1197 1198 1199
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1200 1201 1202 1203 1204
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1205 1206 1207 1208 1209 1210 1211
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1212 1213
	pool = get_work_pool(work);
	if (!pool)
1214
		goto fail;
1215

1216
	spin_lock(&pool->lock);
1217
	/*
1218 1219 1220 1221 1222
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1223 1224
	 * item is currently queued on that pool.
	 */
1225 1226
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1227 1228 1229 1230 1231
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1232
		 * on the delayed_list, will confuse pwq->nr_active
1233 1234 1235 1236
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1237
			pwq_activate_delayed_work(work);
1238 1239

		list_del_init(&work->entry);
1240
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1241

1242
		/* work->data points to pwq iff queued, point to pool */
1243 1244 1245 1246
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1247
	}
1248
	spin_unlock(&pool->lock);
1249 1250 1251 1252 1253
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1254
	return -EAGAIN;
1255 1256
}

T
Tejun Heo 已提交
1257
/**
1258
 * insert_work - insert a work into a pool
1259
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1260 1261 1262 1263
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1264
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1265
 * work_struct flags.
T
Tejun Heo 已提交
1266 1267
 *
 * CONTEXT:
1268
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1269
 */
1270 1271
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1272
{
1273
	struct worker_pool *pool = pwq->pool;
1274

T
Tejun Heo 已提交
1275
	/* we own @work, set data and link */
1276
	set_work_pwq(work, pwq, extra_flags);
1277
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1278
	get_pwq(pwq);
1279 1280

	/*
1281 1282 1283
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1284 1285 1286
	 */
	smp_mb();

1287 1288
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1289 1290
}

1291 1292
/*
 * Test whether @work is being queued from another work executing on the
1293
 * same workqueue.
1294 1295 1296
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1297 1298 1299 1300 1301 1302 1303
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1304
	return worker && worker->current_pwq->wq == wq;
1305 1306
}

1307
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1308 1309
			 struct work_struct *work)
{
1310
	struct pool_workqueue *pwq;
1311
	struct worker_pool *last_pool;
1312
	struct list_head *worklist;
1313
	unsigned int work_flags;
1314
	unsigned int req_cpu = cpu;
1315 1316 1317 1318 1319 1320 1321 1322

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1323

1324
	debug_work_activate(work);
1325

1326
	/* if draining, only works from the same workqueue are allowed */
1327
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1328
	    WARN_ON_ONCE(!is_chained_work(wq)))
1329
		return;
1330
retry:
1331 1332 1333
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1334
	/* pwq which will be used unless @work is executing elsewhere */
1335
	if (!(wq->flags & WQ_UNBOUND))
1336
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1337 1338
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1339

1340 1341 1342 1343 1344 1345 1346 1347
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1348

1349
		spin_lock(&last_pool->lock);
1350

1351
		worker = find_worker_executing_work(last_pool, work);
1352

1353 1354
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1355
		} else {
1356 1357
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1358
			spin_lock(&pwq->pool->lock);
1359
		}
1360
	} else {
1361
		spin_lock(&pwq->pool->lock);
1362 1363
	}

1364 1365 1366 1367
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1368 1369
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1383 1384
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1385

1386
	if (WARN_ON(!list_empty(&work->entry))) {
1387
		spin_unlock(&pwq->pool->lock);
1388 1389
		return;
	}
1390

1391 1392
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1393

1394
	if (likely(pwq->nr_active < pwq->max_active)) {
1395
		trace_workqueue_activate_work(work);
1396 1397
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1398 1399
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1400
		worklist = &pwq->delayed_works;
1401
	}
1402

1403
	insert_work(pwq, work, worklist, work_flags);
1404

1405
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1406 1407
}

1408
/**
1409 1410
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1411 1412 1413
 * @wq: workqueue to use
 * @work: work to queue
 *
1414 1415
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1416 1417
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1418
 */
1419 1420
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1421
{
1422
	bool ret = false;
1423
	unsigned long flags;
1424

1425
	local_irq_save(flags);
1426

1427
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1428
		__queue_work(cpu, wq, work);
1429
		ret = true;
1430
	}
1431

1432
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1433 1434
	return ret;
}
1435
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1436

1437
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1438
{
1439
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1440

1441
	/* should have been called from irqsafe timer with irq already off */
1442
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1443
}
1444
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1445

1446 1447
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1448
{
1449 1450 1451 1452 1453
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1454 1455
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1456

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1468
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1469

1470
	dwork->wq = wq;
1471
	dwork->cpu = cpu;
1472 1473 1474 1475 1476 1477
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1478 1479
}

1480 1481 1482 1483
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1484
 * @dwork: work to queue
1485 1486
 * @delay: number of jiffies to wait before queueing
 *
1487
 * Return: %false if @work was already on a queue, %true otherwise.  If
1488 1489
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1490
 */
1491 1492
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1493
{
1494
	struct work_struct *work = &dwork->work;
1495
	bool ret = false;
1496
	unsigned long flags;
1497

1498 1499
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1500

1501
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1502
		__queue_delayed_work(cpu, wq, dwork, delay);
1503
		ret = true;
1504
	}
1505

1506
	local_irq_restore(flags);
1507 1508
	return ret;
}
1509
EXPORT_SYMBOL(queue_delayed_work_on);
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1523
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1524 1525
 * pending and its timer was modified.
 *
1526
 * This function is safe to call from any context including IRQ handler.
1527 1528 1529 1530 1531 1532 1533
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1534

1535 1536 1537
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1538

1539 1540 1541
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1542
	}
1543 1544

	/* -ENOENT from try_to_grab_pending() becomes %true */
1545 1546
	return ret;
}
1547 1548
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1549 1550 1551 1552 1553 1554 1555 1556
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1557
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1558 1559
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1560
{
1561
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1562

1563 1564 1565 1566
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1567

1568 1569
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1570
	pool->nr_idle++;
1571
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1572 1573

	/* idle_list is LIFO */
1574
	list_add(&worker->entry, &pool->idle_list);
1575

1576 1577
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1578

1579
	/*
1580
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1581
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1582 1583
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1584
	 */
1585
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1586
		     pool->nr_workers == pool->nr_idle &&
1587
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1597
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1598 1599 1600
 */
static void worker_leave_idle(struct worker *worker)
{
1601
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1602

1603 1604
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1605
	worker_clr_flags(worker, WORKER_IDLE);
1606
	pool->nr_idle--;
T
Tejun Heo 已提交
1607 1608 1609
	list_del_init(&worker->entry);
}

1610
/**
1611 1612 1613 1614
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1615 1616 1617 1618 1619 1620
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1621
 * This function is to be used by unbound workers and rescuers to bind
1622 1623 1624
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1625
 * verbatim as it's best effort and blocking and pool may be
1626 1627
 * [dis]associated in the meantime.
 *
1628
 * This function tries set_cpus_allowed() and locks pool and verifies the
1629
 * binding against %POOL_DISASSOCIATED which is set during
1630 1631 1632
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1633 1634
 *
 * CONTEXT:
1635
 * Might sleep.  Called without any lock but returns with pool->lock
1636 1637
 * held.
 *
1638
 * Return:
1639
 * %true if the associated pool is online (@worker is successfully
1640 1641
 * bound), %false if offline.
 */
1642
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1643
__acquires(&pool->lock)
1644 1645
{
	while (true) {
1646
		/*
1647 1648 1649
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1650
		 * against POOL_DISASSOCIATED.
1651
		 */
1652
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1653
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1654

1655
		spin_lock_irq(&pool->lock);
1656
		if (pool->flags & POOL_DISASSOCIATED)
1657
			return false;
1658
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1659
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1660
			return true;
1661
		spin_unlock_irq(&pool->lock);
1662

1663 1664 1665 1666 1667 1668
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1669
		cpu_relax();
1670
		cond_resched();
1671 1672 1673
	}
}

T
Tejun Heo 已提交
1674 1675 1676 1677 1678
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1679 1680
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1681
		INIT_LIST_HEAD(&worker->scheduled);
1682 1683
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1684
	}
T
Tejun Heo 已提交
1685 1686 1687 1688 1689
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1690
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1691
 *
1692
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1693 1694 1695 1696 1697 1698
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1699
 * Return:
T
Tejun Heo 已提交
1700 1701
 * Pointer to the newly created worker.
 */
1702
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1703 1704
{
	struct worker *worker = NULL;
1705
	int id = -1;
1706
	char id_buf[16];
T
Tejun Heo 已提交
1707

1708 1709
	lockdep_assert_held(&pool->manager_mutex);

1710 1711 1712 1713 1714
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1715
	spin_lock_irq(&pool->lock);
1716 1717 1718

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1719
	spin_unlock_irq(&pool->lock);
1720 1721 1722
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1723 1724 1725 1726 1727

	worker = alloc_worker();
	if (!worker)
		goto fail;

1728
	worker->pool = pool;
T
Tejun Heo 已提交
1729 1730
	worker->id = id;

1731
	if (pool->cpu >= 0)
1732 1733
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1734
	else
1735 1736
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1737
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1738
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1739 1740 1741
	if (IS_ERR(worker->task))
		goto fail;

1742 1743 1744 1745 1746
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1747 1748 1749 1750
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1751
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1752

T
Tejun Heo 已提交
1753 1754 1755 1756 1757 1758
	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1759
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1760

1761 1762 1763 1764 1765
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1766
	return worker;
1767

T
Tejun Heo 已提交
1768 1769
fail:
	if (id >= 0) {
1770
		spin_lock_irq(&pool->lock);
1771
		idr_remove(&pool->worker_idr, id);
1772
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1782
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1783 1784
 *
 * CONTEXT:
1785
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1786 1787 1788
 */
static void start_worker(struct worker *worker)
{
1789
	worker->flags |= WORKER_STARTED;
1790
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1791
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1792 1793 1794
	wake_up_process(worker->task);
}

1795 1796 1797 1798
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1799
 * Grab the managership of @pool and create and start a new worker for it.
1800 1801
 *
 * Return: 0 on success. A negative error code otherwise.
1802 1803 1804 1805 1806
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1807 1808
	mutex_lock(&pool->manager_mutex);

1809 1810 1811 1812 1813 1814 1815
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1816 1817
	mutex_unlock(&pool->manager_mutex);

1818 1819 1820
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1821 1822 1823 1824
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1825
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1826 1827
 *
 * CONTEXT:
1828
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1829 1830 1831
 */
static void destroy_worker(struct worker *worker)
{
1832
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1833

1834 1835 1836
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1837
	/* sanity check frenzy */
1838 1839 1840
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1841

T
Tejun Heo 已提交
1842
	if (worker->flags & WORKER_STARTED)
1843
		pool->nr_workers--;
T
Tejun Heo 已提交
1844
	if (worker->flags & WORKER_IDLE)
1845
		pool->nr_idle--;
T
Tejun Heo 已提交
1846 1847

	list_del_init(&worker->entry);
1848
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1849

1850 1851
	idr_remove(&pool->worker_idr, worker->id);

1852
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1853

T
Tejun Heo 已提交
1854 1855 1856
	kthread_stop(worker->task);
	kfree(worker);

1857
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1858 1859
}

1860
static void idle_worker_timeout(unsigned long __pool)
1861
{
1862
	struct worker_pool *pool = (void *)__pool;
1863

1864
	spin_lock_irq(&pool->lock);
1865

1866
	if (too_many_workers(pool)) {
1867 1868 1869 1870
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1871
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1872 1873 1874
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1875
			mod_timer(&pool->idle_timer, expires);
1876 1877
		else {
			/* it's been idle for too long, wake up manager */
1878
			pool->flags |= POOL_MANAGE_WORKERS;
1879
			wake_up_worker(pool);
1880
		}
1881 1882
	}

1883
	spin_unlock_irq(&pool->lock);
1884
}
1885

1886
static void send_mayday(struct work_struct *work)
1887
{
1888 1889
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1890

1891
	lockdep_assert_held(&wq_mayday_lock);
1892

1893
	if (!wq->rescuer)
1894
		return;
1895 1896

	/* mayday mayday mayday */
1897 1898
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1899
		wake_up_process(wq->rescuer->task);
1900
	}
1901 1902
}

1903
static void pool_mayday_timeout(unsigned long __pool)
1904
{
1905
	struct worker_pool *pool = (void *)__pool;
1906 1907
	struct work_struct *work;

1908
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1909
	spin_lock(&pool->lock);
1910

1911
	if (need_to_create_worker(pool)) {
1912 1913 1914 1915 1916 1917
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1918
		list_for_each_entry(work, &pool->worklist, entry)
1919
			send_mayday(work);
L
Linus Torvalds 已提交
1920
	}
1921

1922
	spin_unlock(&pool->lock);
1923
	spin_unlock_irq(&wq_mayday_lock);
1924

1925
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1926 1927
}

1928 1929
/**
 * maybe_create_worker - create a new worker if necessary
1930
 * @pool: pool to create a new worker for
1931
 *
1932
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1933 1934
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1935
 * sent to all rescuers with works scheduled on @pool to resolve
1936 1937
 * possible allocation deadlock.
 *
1938 1939
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1940 1941
 *
 * LOCKING:
1942
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1943 1944 1945
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1946
 * Return:
1947
 * %false if no action was taken and pool->lock stayed locked, %true
1948 1949
 * otherwise.
 */
1950
static bool maybe_create_worker(struct worker_pool *pool)
1951 1952
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1953
{
1954
	if (!need_to_create_worker(pool))
1955 1956
		return false;
restart:
1957
	spin_unlock_irq(&pool->lock);
1958

1959
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1960
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1961 1962 1963 1964

	while (true) {
		struct worker *worker;

1965
		worker = create_worker(pool);
1966
		if (worker) {
1967
			del_timer_sync(&pool->mayday_timer);
1968
			spin_lock_irq(&pool->lock);
1969
			start_worker(worker);
1970 1971
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1972 1973 1974
			return true;
		}

1975
		if (!need_to_create_worker(pool))
1976
			break;
L
Linus Torvalds 已提交
1977

1978 1979
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1980

1981
		if (!need_to_create_worker(pool))
1982 1983 1984
			break;
	}

1985
	del_timer_sync(&pool->mayday_timer);
1986
	spin_lock_irq(&pool->lock);
1987
	if (need_to_create_worker(pool))
1988 1989 1990 1991 1992 1993
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1994
 * @pool: pool to destroy workers for
1995
 *
1996
 * Destroy @pool workers which have been idle for longer than
1997 1998 1999
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2000
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2001 2002
 * multiple times.  Called only from manager.
 *
2003
 * Return:
2004
 * %false if no action was taken and pool->lock stayed locked, %true
2005 2006
 * otherwise.
 */
2007
static bool maybe_destroy_workers(struct worker_pool *pool)
2008 2009
{
	bool ret = false;
L
Linus Torvalds 已提交
2010

2011
	while (too_many_workers(pool)) {
2012 2013
		struct worker *worker;
		unsigned long expires;
2014

2015
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2016
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2017

2018
		if (time_before(jiffies, expires)) {
2019
			mod_timer(&pool->idle_timer, expires);
2020
			break;
2021
		}
L
Linus Torvalds 已提交
2022

2023 2024
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2025
	}
2026

2027
	return ret;
2028 2029
}

2030
/**
2031 2032
 * manage_workers - manage worker pool
 * @worker: self
2033
 *
2034
 * Assume the manager role and manage the worker pool @worker belongs
2035
 * to.  At any given time, there can be only zero or one manager per
2036
 * pool.  The exclusion is handled automatically by this function.
2037 2038 2039 2040
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2041 2042
 *
 * CONTEXT:
2043
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2044 2045
 * multiple times.  Does GFP_KERNEL allocations.
 *
2046
 * Return:
2047 2048 2049 2050 2051
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2052
 */
2053
static bool manage_workers(struct worker *worker)
2054
{
2055
	struct worker_pool *pool = worker->pool;
2056
	bool ret = false;
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2079
	if (!mutex_trylock(&pool->manager_arb))
2080
		return ret;
2081

2082
	/*
2083 2084
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2085
	 */
2086
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2087
		spin_unlock_irq(&pool->lock);
2088
		mutex_lock(&pool->manager_mutex);
2089
		spin_lock_irq(&pool->lock);
2090 2091
		ret = true;
	}
2092

2093
	pool->flags &= ~POOL_MANAGE_WORKERS;
2094 2095

	/*
2096 2097
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2098
	 */
2099 2100
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2101

2102
	mutex_unlock(&pool->manager_mutex);
2103
	mutex_unlock(&pool->manager_arb);
2104
	return ret;
2105 2106
}

2107 2108
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2109
 * @worker: self
2110 2111 2112 2113 2114 2115 2116 2117 2118
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2119
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2120
 */
T
Tejun Heo 已提交
2121
static void process_one_work(struct worker *worker, struct work_struct *work)
2122 2123
__releases(&pool->lock)
__acquires(&pool->lock)
2124
{
2125
	struct pool_workqueue *pwq = get_work_pwq(work);
2126
	struct worker_pool *pool = worker->pool;
2127
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2128
	int work_color;
2129
	struct worker *collision;
2130 2131 2132 2133 2134 2135 2136 2137
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2138 2139 2140
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2141
#endif
2142 2143 2144
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2145
	 * unbound or a disassociated pool.
2146
	 */
2147
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2148
		     !(pool->flags & POOL_DISASSOCIATED) &&
2149
		     raw_smp_processor_id() != pool->cpu);
2150

2151 2152 2153 2154 2155 2156
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2157
	collision = find_worker_executing_work(pool, work);
2158 2159 2160 2161 2162
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2163
	/* claim and dequeue */
2164
	debug_work_deactivate(work);
2165
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2166
	worker->current_work = work;
2167
	worker->current_func = work->func;
2168
	worker->current_pwq = pwq;
2169
	work_color = get_work_color(work);
2170

2171 2172
	list_del_init(&work->entry);

2173 2174 2175 2176 2177 2178 2179
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2180
	/*
2181
	 * Unbound pool isn't concurrency managed and work items should be
2182 2183
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2184 2185
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2186

2187
	/*
2188
	 * Record the last pool and clear PENDING which should be the last
2189
	 * update to @work.  Also, do this inside @pool->lock so that
2190 2191
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2192
	 */
2193
	set_work_pool_and_clear_pending(work, pool->id);
2194

2195
	spin_unlock_irq(&pool->lock);
2196

2197
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2198
	lock_map_acquire(&lockdep_map);
2199
	trace_workqueue_execute_start(work);
2200
	worker->current_func(work);
2201 2202 2203 2204 2205
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2206
	lock_map_release(&lockdep_map);
2207
	lock_map_release(&pwq->wq->lockdep_map);
2208 2209

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2210 2211
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2212 2213
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2214 2215 2216 2217
		debug_show_held_locks(current);
		dump_stack();
	}

2218 2219 2220 2221 2222 2223 2224 2225 2226
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2227
	spin_lock_irq(&pool->lock);
2228

2229 2230 2231 2232
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2233
	/* we're done with it, release */
2234
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2235
	worker->current_work = NULL;
2236
	worker->current_func = NULL;
2237
	worker->current_pwq = NULL;
2238
	worker->desc_valid = false;
2239
	pwq_dec_nr_in_flight(pwq, work_color);
2240 2241
}

2242 2243 2244 2245 2246 2247 2248 2249 2250
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2251
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2252 2253 2254
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2255
{
2256 2257
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2258
						struct work_struct, entry);
T
Tejun Heo 已提交
2259
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2260 2261 2262
	}
}

T
Tejun Heo 已提交
2263 2264
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2265
 * @__worker: self
T
Tejun Heo 已提交
2266
 *
2267 2268 2269 2270 2271
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2272 2273
 *
 * Return: 0
T
Tejun Heo 已提交
2274
 */
T
Tejun Heo 已提交
2275
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2276
{
T
Tejun Heo 已提交
2277
	struct worker *worker = __worker;
2278
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2279

2280 2281
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2282
woke_up:
2283
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2284

2285 2286
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2287
		spin_unlock_irq(&pool->lock);
2288 2289 2290
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2291
	}
2292

T
Tejun Heo 已提交
2293
	worker_leave_idle(worker);
2294
recheck:
2295
	/* no more worker necessary? */
2296
	if (!need_more_worker(pool))
2297 2298 2299
		goto sleep;

	/* do we need to manage? */
2300
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2301 2302
		goto recheck;

T
Tejun Heo 已提交
2303 2304 2305 2306 2307
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2308
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2309

2310
	/*
2311 2312 2313 2314 2315
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2316
	 */
2317
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2318 2319

	do {
T
Tejun Heo 已提交
2320
		struct work_struct *work =
2321
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2322 2323 2324 2325 2326 2327
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2328
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2329 2330 2331
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2332
		}
2333
	} while (keep_working(pool));
2334 2335

	worker_set_flags(worker, WORKER_PREP, false);
2336
sleep:
2337
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2338
		goto recheck;
2339

T
Tejun Heo 已提交
2340
	/*
2341 2342 2343 2344 2345
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2346 2347 2348
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2349
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2350 2351
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2352 2353
}

2354 2355
/**
 * rescuer_thread - the rescuer thread function
2356
 * @__rescuer: self
2357 2358
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2359
 * workqueue which has WQ_MEM_RECLAIM set.
2360
 *
2361
 * Regular work processing on a pool may block trying to create a new
2362 2363 2364 2365 2366
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2367 2368
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2369 2370 2371
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2372 2373
 *
 * Return: 0
2374
 */
2375
static int rescuer_thread(void *__rescuer)
2376
{
2377 2378
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2379 2380 2381
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2382 2383 2384 2385 2386 2387

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2388 2389 2390
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2391 2392
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2393
		rescuer->task->flags &= ~PF_WQ_WORKER;
2394
		return 0;
2395
	}
2396

2397
	/* see whether any pwq is asking for help */
2398
	spin_lock_irq(&wq_mayday_lock);
2399 2400 2401 2402

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2403
		struct worker_pool *pool = pwq->pool;
2404 2405 2406
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2407 2408
		list_del_init(&pwq->mayday_node);

2409
		spin_unlock_irq(&wq_mayday_lock);
2410 2411

		/* migrate to the target cpu if possible */
2412
		worker_maybe_bind_and_lock(pool);
2413
		rescuer->pool = pool;
2414 2415 2416 2417 2418

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2419
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2420
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2421
			if (get_work_pwq(work) == pwq)
2422 2423 2424
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2425 2426

		/*
2427
		 * Leave this pool.  If keep_working() is %true, notify a
2428 2429 2430
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2431 2432
		if (keep_working(pool))
			wake_up_worker(pool);
2433

2434
		rescuer->pool = NULL;
2435
		spin_unlock(&pool->lock);
2436
		spin_lock(&wq_mayday_lock);
2437 2438
	}

2439
	spin_unlock_irq(&wq_mayday_lock);
2440

2441 2442
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2443 2444
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2445 2446
}

O
Oleg Nesterov 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2458 2459
/**
 * insert_wq_barrier - insert a barrier work
2460
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2461
 * @barr: wq_barrier to insert
2462 2463
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2464
 *
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2477
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2478 2479
 *
 * CONTEXT:
2480
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2481
 */
2482
static void insert_wq_barrier(struct pool_workqueue *pwq,
2483 2484
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2485
{
2486 2487 2488
	struct list_head *head;
	unsigned int linked = 0;

2489
	/*
2490
	 * debugobject calls are safe here even with pool->lock locked
2491 2492 2493 2494
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2495
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2496
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2497
	init_completion(&barr->done);
2498

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2514
	debug_work_activate(&barr->work);
2515
	insert_work(pwq, &barr->work, head,
2516
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2517 2518
}

2519
/**
2520
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2521 2522 2523 2524
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2525
 * Prepare pwqs for workqueue flushing.
2526
 *
2527 2528 2529 2530 2531
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2532 2533 2534 2535 2536 2537 2538
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2539
 * If @work_color is non-negative, all pwqs should have the same
2540 2541 2542 2543
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2544
 * mutex_lock(wq->mutex).
2545
 *
2546
 * Return:
2547 2548 2549
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2550
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2551
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2552
{
2553
	bool wait = false;
2554
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2555

2556
	if (flush_color >= 0) {
2557
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2558
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2559
	}
2560

2561
	for_each_pwq(pwq, wq) {
2562
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2563

2564
		spin_lock_irq(&pool->lock);
2565

2566
		if (flush_color >= 0) {
2567
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2568

2569 2570 2571
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2572 2573 2574
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2575

2576
		if (work_color >= 0) {
2577
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2578
			pwq->work_color = work_color;
2579
		}
L
Linus Torvalds 已提交
2580

2581
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2582
	}
2583

2584
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2585
		complete(&wq->first_flusher->done);
2586

2587
	return wait;
L
Linus Torvalds 已提交
2588 2589
}

2590
/**
L
Linus Torvalds 已提交
2591
 * flush_workqueue - ensure that any scheduled work has run to completion.
2592
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2593
 *
2594 2595
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2596
 */
2597
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2598
{
2599 2600 2601 2602 2603 2604
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2605

2606 2607
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2608

2609
	mutex_lock(&wq->mutex);
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2622
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2623 2624 2625 2626 2627
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2628
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2629 2630 2631

			wq->first_flusher = &this_flusher;

2632
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2633 2634 2635 2636 2637 2638 2639 2640
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2641
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2642
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2643
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2654
	mutex_unlock(&wq->mutex);
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2667
	mutex_lock(&wq->mutex);
2668

2669 2670 2671 2672
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2673 2674
	wq->first_flusher = NULL;

2675 2676
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2689 2690
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2710
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2711 2712 2713
		}

		if (list_empty(&wq->flusher_queue)) {
2714
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2715 2716 2717 2718 2719
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2720
		 * the new first flusher and arm pwqs.
2721
		 */
2722 2723
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2724 2725 2726 2727

		list_del_init(&next->list);
		wq->first_flusher = next;

2728
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2739
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2740
}
2741
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2742

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2757
	struct pool_workqueue *pwq;
2758 2759 2760 2761

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2762
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2763
	 */
2764
	mutex_lock(&wq->mutex);
2765
	if (!wq->nr_drainers++)
2766
		wq->flags |= __WQ_DRAINING;
2767
	mutex_unlock(&wq->mutex);
2768 2769 2770
reflush:
	flush_workqueue(wq);

2771
	mutex_lock(&wq->mutex);
2772

2773
	for_each_pwq(pwq, wq) {
2774
		bool drained;
2775

2776
		spin_lock_irq(&pwq->pool->lock);
2777
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2778
		spin_unlock_irq(&pwq->pool->lock);
2779 2780

		if (drained)
2781 2782 2783 2784
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2785
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2786
				wq->name, flush_cnt);
2787

2788
		mutex_unlock(&wq->mutex);
2789 2790 2791 2792
		goto reflush;
	}

	if (!--wq->nr_drainers)
2793
		wq->flags &= ~__WQ_DRAINING;
2794
	mutex_unlock(&wq->mutex);
2795 2796 2797
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2798
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2799
{
2800
	struct worker *worker = NULL;
2801
	struct worker_pool *pool;
2802
	struct pool_workqueue *pwq;
2803 2804

	might_sleep();
2805 2806

	local_irq_disable();
2807
	pool = get_work_pool(work);
2808 2809
	if (!pool) {
		local_irq_enable();
2810
		return false;
2811
	}
2812

2813
	spin_lock(&pool->lock);
2814
	/* see the comment in try_to_grab_pending() with the same code */
2815 2816 2817
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2818
			goto already_gone;
2819
	} else {
2820
		worker = find_worker_executing_work(pool, work);
2821
		if (!worker)
T
Tejun Heo 已提交
2822
			goto already_gone;
2823
		pwq = worker->current_pwq;
2824
	}
2825

2826
	insert_wq_barrier(pwq, barr, work, worker);
2827
	spin_unlock_irq(&pool->lock);
2828

2829 2830 2831 2832 2833 2834
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2835
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2836
		lock_map_acquire(&pwq->wq->lockdep_map);
2837
	else
2838 2839
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2840

2841
	return true;
T
Tejun Heo 已提交
2842
already_gone:
2843
	spin_unlock_irq(&pool->lock);
2844
	return false;
2845
}
2846

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
static bool __flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
}

2860 2861 2862 2863
/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2864 2865
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2866
 *
2867
 * Return:
2868 2869 2870 2871 2872
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2873 2874 2875
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2876
	return __flush_work(work);
2877
}
2878
EXPORT_SYMBOL_GPL(flush_work);
2879

2880
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2881
{
2882
	unsigned long flags;
2883 2884 2885
	int ret;

	do {
2886 2887 2888 2889 2890 2891
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2892
			flush_work(work);
2893 2894
	} while (unlikely(ret < 0));

2895 2896 2897 2898
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2899
	flush_work(work);
2900
	clear_work_data(work);
2901 2902 2903
	return ret;
}

2904
/**
2905 2906
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2907
 *
2908 2909 2910 2911
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2912
 *
2913 2914
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2915
 *
2916
 * The caller must ensure that the workqueue on which @work was last
2917
 * queued can't be destroyed before this function returns.
2918
 *
2919
 * Return:
2920
 * %true if @work was pending, %false otherwise.
2921
 */
2922
bool cancel_work_sync(struct work_struct *work)
2923
{
2924
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2925
}
2926
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2927

2928
/**
2929 2930
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2931
 *
2932 2933 2934
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2935
 *
2936
 * Return:
2937 2938
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2939
 */
2940 2941
bool flush_delayed_work(struct delayed_work *dwork)
{
2942
	local_irq_disable();
2943
	if (del_timer_sync(&dwork->timer))
2944
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2945
	local_irq_enable();
2946 2947 2948 2949
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2950
/**
2951 2952
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2953
 *
2954 2955 2956 2957 2958 2959 2960 2961 2962
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2963
 *
2964
 * This function is safe to call from any context including IRQ handler.
2965
 */
2966
bool cancel_delayed_work(struct delayed_work *dwork)
2967
{
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2978 2979
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2980
	local_irq_restore(flags);
2981
	return ret;
2982
}
2983
EXPORT_SYMBOL(cancel_delayed_work);
2984

2985 2986 2987 2988 2989 2990
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2991
 * Return:
2992 2993 2994
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2995
{
2996
	return __cancel_work_timer(&dwork->work, true);
2997
}
2998
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2999

3000
/**
3001
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3002 3003
 * @func: the function to call
 *
3004 3005
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3006
 * schedule_on_each_cpu() is very slow.
3007
 *
3008
 * Return:
3009
 * 0 on success, -errno on failure.
3010
 */
3011
int schedule_on_each_cpu(work_func_t func)
3012 3013
{
	int cpu;
3014
	struct work_struct __percpu *works;
3015

3016 3017
	works = alloc_percpu(struct work_struct);
	if (!works)
3018
		return -ENOMEM;
3019

3020 3021
	get_online_cpus();

3022
	for_each_online_cpu(cpu) {
3023 3024 3025
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3026
		schedule_work_on(cpu, work);
3027
	}
3028 3029 3030 3031

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3032
	put_online_cpus();
3033
	free_percpu(works);
3034 3035 3036
	return 0;
}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3061 3062
void flush_scheduled_work(void)
{
3063
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3064
}
3065
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3066

3067 3068 3069 3070 3071 3072 3073 3074 3075
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3076
 * Return:	0 - function was executed
3077 3078
 *		1 - function was scheduled for execution
 */
3079
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3080 3081
{
	if (!in_interrupt()) {
3082
		fn(&ew->work);
3083 3084 3085
		return 0;
	}

3086
	INIT_WORK(&ew->work, fn);
3087 3088 3089 3090 3091 3092
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3120 3121
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3122 3123 3124 3125 3126
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3127
static DEVICE_ATTR_RO(per_cpu);
3128

3129 3130
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3131 3132 3133 3134 3135 3136
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3137 3138 3139
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3150
static DEVICE_ATTR_RW(max_active);
3151

3152 3153 3154 3155
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3156
};
3157
ATTRIBUTE_GROUPS(wq_sysfs);
3158

3159 3160
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3161 3162
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3163 3164
	const char *delim = "";
	int node, written = 0;
3165 3166

	rcu_read_lock_sched();
3167 3168 3169 3170 3171 3172 3173
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3185 3186 3187
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3201 3202 3203
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3234 3235 3236
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3297
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3298
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3299 3300
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3301
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3302 3303 3304 3305 3306
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3307
	.dev_groups			= wq_sysfs_groups,
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3336
 * Return: 0 on success, -errno on failure.
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3429 3430 3431
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3443
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3444 3445 3446 3447 3448 3449
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3450 3451 3452 3453 3454
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3455 3456 3457 3458 3459 3460
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3461 3462 3463 3464 3465 3466 3467 3468
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3469 3470
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3485 3486 3487 3488 3489
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3490 3491
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3492 3493
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3494 3495
 */
static int init_worker_pool(struct worker_pool *pool)
3496 3497
{
	spin_lock_init(&pool->lock);
3498 3499
	pool->id = -1;
	pool->cpu = -1;
3500
	pool->node = NUMA_NO_NODE;
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3514
	mutex_init(&pool->manager_mutex);
3515
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3516

3517 3518 3519 3520
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3521 3522 3523 3524
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3525 3526
}

3527 3528 3529 3530
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3531
	idr_destroy(&pool->worker_idr);
3532 3533 3534 3535 3536 3537 3538 3539 3540
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3541 3542 3543
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3544 3545
 *
 * Should be called with wq_pool_mutex held.
3546 3547 3548 3549 3550
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3551 3552 3553
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3554 3555 3556 3557
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3558
	    WARN_ON(!list_empty(&pool->worklist)))
3559 3560 3561 3562 3563 3564 3565
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3566 3567 3568 3569 3570
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3571
	mutex_lock(&pool->manager_arb);
3572
	mutex_lock(&pool->manager_mutex);
3573 3574 3575 3576 3577 3578 3579
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3580
	mutex_unlock(&pool->manager_mutex);
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3598
 * create a new one.
3599 3600
 *
 * Should be called with wq_pool_mutex held.
3601 3602 3603
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3604 3605 3606 3607 3608
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3609
	int node;
3610

3611
	lockdep_assert_held(&wq_pool_mutex);
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3626 3627 3628
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3629
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3630 3631
	copy_workqueue_attrs(pool->attrs, attrs);

3632 3633 3634 3635 3636 3637
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3649 3650 3651 3652
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3653
	if (create_and_start_worker(pool) < 0)
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3682
	bool is_last;
T
Tejun Heo 已提交
3683 3684 3685 3686

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3687
	/*
3688
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3689 3690 3691
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3692
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3693
	list_del_rcu(&pwq->pwqs_node);
3694
	is_last = list_empty(&wq->pwqs);
3695
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3696

3697
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3698
	put_unbound_pool(pool);
3699 3700
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3701 3702 3703 3704 3705 3706
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3707 3708
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3709
		kfree(wq);
3710
	}
T
Tejun Heo 已提交
3711 3712
}

3713
/**
3714
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3715 3716
 * @pwq: target pool_workqueue
 *
3717 3718 3719
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3720
 */
3721
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3722
{
3723 3724 3725 3726
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3727
	lockdep_assert_held(&wq->mutex);
3728 3729 3730 3731 3732

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3733
	spin_lock_irq(&pwq->pool->lock);
3734 3735 3736

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3737

3738 3739 3740
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3741 3742 3743 3744 3745 3746

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3747 3748 3749 3750
	} else {
		pwq->max_active = 0;
	}

3751
	spin_unlock_irq(&pwq->pool->lock);
3752 3753
}

3754
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3755 3756
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3757 3758 3759
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3760 3761
	memset(pwq, 0, sizeof(*pwq));

3762 3763 3764
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3765
	pwq->refcnt = 1;
3766
	INIT_LIST_HEAD(&pwq->delayed_works);
3767
	INIT_LIST_HEAD(&pwq->pwqs_node);
3768
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3769
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3770
}
3771

3772
/* sync @pwq with the current state of its associated wq and link it */
3773
static void link_pwq(struct pool_workqueue *pwq)
3774 3775 3776 3777
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3778

3779 3780 3781 3782
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3783 3784
	/*
	 * Set the matching work_color.  This is synchronized with
3785
	 * wq->mutex to avoid confusing flush_workqueue().
3786
	 */
3787
	pwq->work_color = wq->work_color;
3788 3789 3790 3791 3792

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3793
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3794
}
3795

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3809
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3810 3811 3812
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3813
	}
3814

3815 3816
	init_pwq(pwq, wq, pool);
	return pwq;
3817 3818
}

3819 3820 3821 3822 3823 3824 3825
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3826
		kmem_cache_free(pwq_cache, pwq);
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3839
 * calculation.  The result is stored in @cpumask.
3840 3841 3842 3843 3844 3845 3846 3847
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3848 3849 3850
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3851 3852 3853 3854
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3855
	if (!wq_numa_enabled || attrs->no_numa)
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3892 3893 3894 3895 3896
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3897 3898 3899 3900 3901 3902
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3903
 *
3904 3905 3906
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3907 3908 3909 3910
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3911 3912
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3913
	int node, ret;
3914

3915
	/* only unbound workqueues can change attributes */
3916 3917 3918
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3919 3920 3921 3922
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3923
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3924
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3925 3926
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3927 3928
		goto enomem;

3929
	/* make a copy of @attrs and sanitize it */
3930 3931 3932
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3947
	mutex_lock(&wq_pool_mutex);
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3969
	mutex_unlock(&wq_pool_mutex);
3970

3971
	/* all pwqs have been created successfully, let's install'em */
3972
	mutex_lock(&wq->mutex);
3973

3974
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3975 3976

	/* save the previous pwq and install the new one */
3977
	for_each_node(node)
3978 3979 3980 3981 3982
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3983 3984

	mutex_unlock(&wq->mutex);
3985

3986 3987 3988 3989 3990 3991
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3992 3993 3994
	ret = 0;
	/* fall through */
out_free:
3995
	free_workqueue_attrs(tmp_attrs);
3996
	free_workqueue_attrs(new_attrs);
3997
	kfree(pwq_tbl);
3998
	return ret;
3999

4000 4001 4002 4003 4004 4005 4006
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
4007
enomem:
4008 4009
	ret = -ENOMEM;
	goto out_free;
4010 4011
}

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4057 4058
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
	 * wq's, the default pwq should be used.  If @pwq is already the
	 * default one, nothing to do; otherwise, install the default one.
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
		if (pwq == wq->dfl_pwq)
			goto out_unlock;
		else
			goto use_dfl_pwq;
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			   wq->name);
		goto out_unlock;
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4110
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4111
{
4112
	bool highpri = wq->flags & WQ_HIGHPRI;
4113
	int cpu, ret;
4114 4115

	if (!(wq->flags & WQ_UNBOUND)) {
4116 4117
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4118 4119 4120
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4121 4122
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4123
			struct worker_pool *cpu_pools =
4124
				per_cpu(cpu_worker_pools, cpu);
4125

4126 4127 4128
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4129
			link_pwq(pwq);
4130
			mutex_unlock(&wq->mutex);
4131
		}
4132
		return 0;
4133 4134 4135 4136 4137 4138 4139
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4140
	} else {
4141
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4142
	}
T
Tejun Heo 已提交
4143 4144
}

4145 4146
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4147
{
4148 4149 4150
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4151 4152
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4153

4154
	return clamp_val(max_active, 1, lim);
4155 4156
}

4157
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4158 4159 4160
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4161
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4162
{
4163
	size_t tbl_size = 0;
4164
	va_list args;
L
Linus Torvalds 已提交
4165
	struct workqueue_struct *wq;
4166
	struct pool_workqueue *pwq;
4167

4168 4169 4170 4171
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4172
	/* allocate wq and format name */
4173 4174 4175 4176
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4177
	if (!wq)
4178
		return NULL;
4179

4180 4181 4182 4183 4184 4185
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4186 4187
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4188
	va_end(args);
L
Linus Torvalds 已提交
4189

4190
	max_active = max_active ?: WQ_DFL_ACTIVE;
4191
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4192

4193
	/* init wq */
4194
	wq->flags = flags;
4195
	wq->saved_max_active = max_active;
4196
	mutex_init(&wq->mutex);
4197
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4198
	INIT_LIST_HEAD(&wq->pwqs);
4199 4200
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4201
	INIT_LIST_HEAD(&wq->maydays);
4202

4203
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4204
	INIT_LIST_HEAD(&wq->list);
4205

4206
	if (alloc_and_link_pwqs(wq) < 0)
4207
		goto err_free_wq;
T
Tejun Heo 已提交
4208

4209 4210 4211 4212 4213
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4214 4215
		struct worker *rescuer;

4216
		rescuer = alloc_worker();
4217
		if (!rescuer)
4218
			goto err_destroy;
4219

4220 4221
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4222
					       wq->name);
4223 4224 4225 4226
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4227

4228
		wq->rescuer = rescuer;
4229
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4230
		wake_up_process(rescuer->task);
4231 4232
	}

4233 4234 4235
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4236
	/*
4237 4238 4239
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4240
	 */
4241
	mutex_lock(&wq_pool_mutex);
4242

4243
	mutex_lock(&wq->mutex);
4244 4245
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4246
	mutex_unlock(&wq->mutex);
4247

T
Tejun Heo 已提交
4248
	list_add(&wq->list, &workqueues);
4249

4250
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4251

4252
	return wq;
4253 4254

err_free_wq:
4255
	free_workqueue_attrs(wq->unbound_attrs);
4256 4257 4258 4259
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4260
	return NULL;
4261
}
4262
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4263

4264 4265 4266 4267 4268 4269 4270 4271
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4272
	struct pool_workqueue *pwq;
4273
	int node;
4274

4275 4276
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4277

4278
	/* sanity checks */
4279
	mutex_lock(&wq->mutex);
4280
	for_each_pwq(pwq, wq) {
4281 4282
		int i;

4283 4284
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4285
				mutex_unlock(&wq->mutex);
4286
				return;
4287 4288 4289
			}
		}

4290
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4291
		    WARN_ON(pwq->nr_active) ||
4292
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4293
			mutex_unlock(&wq->mutex);
4294
			return;
4295
		}
4296
	}
4297
	mutex_unlock(&wq->mutex);
4298

4299 4300 4301 4302
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4303
	mutex_lock(&wq_pool_mutex);
4304
	list_del_init(&wq->list);
4305
	mutex_unlock(&wq_pool_mutex);
4306

4307 4308
	workqueue_sysfs_unregister(wq);

4309
	if (wq->rescuer) {
4310
		kthread_stop(wq->rescuer->task);
4311
		kfree(wq->rescuer);
4312
		wq->rescuer = NULL;
4313 4314
	}

T
Tejun Heo 已提交
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4325 4326
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4327
		 */
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4340
		put_pwq_unlocked(pwq);
4341
	}
4342 4343 4344
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4357
	struct pool_workqueue *pwq;
4358

4359 4360 4361 4362
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4363
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4364

4365
	mutex_lock(&wq->mutex);
4366 4367 4368

	wq->saved_max_active = max_active;

4369 4370
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4371

4372
	mutex_unlock(&wq->mutex);
4373
}
4374
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4375

4376 4377 4378 4379 4380
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4381 4382
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4383 4384 4385 4386 4387
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4388
	return worker && worker->rescue_wq;
4389 4390
}

4391
/**
4392 4393 4394
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4395
 *
4396 4397 4398
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4399
 *
4400 4401 4402 4403 4404 4405
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4406
 * Return:
4407
 * %true if congested, %false otherwise.
4408
 */
4409
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4410
{
4411
	struct pool_workqueue *pwq;
4412 4413
	bool ret;

4414
	rcu_read_lock_sched();
4415

4416 4417 4418
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4419 4420 4421
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4422
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4423

4424
	ret = !list_empty(&pwq->delayed_works);
4425
	rcu_read_unlock_sched();
4426 4427

	return ret;
L
Linus Torvalds 已提交
4428
}
4429
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4430

4431 4432 4433 4434 4435 4436 4437 4438
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4439
 * Return:
4440 4441 4442
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4443
{
4444
	struct worker_pool *pool;
4445 4446
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4447

4448 4449
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4450

4451 4452
	local_irq_save(flags);
	pool = get_work_pool(work);
4453
	if (pool) {
4454
		spin_lock(&pool->lock);
4455 4456
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4457
		spin_unlock(&pool->lock);
4458
	}
4459
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4460

4461
	return ret;
L
Linus Torvalds 已提交
4462
}
4463
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4464

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4542 4543 4544
/*
 * CPU hotplug.
 *
4545
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4546
 * are a lot of assumptions on strong associations among work, pwq and
4547
 * pool which make migrating pending and scheduled works very
4548
 * difficult to implement without impacting hot paths.  Secondly,
4549
 * worker pools serve mix of short, long and very long running works making
4550 4551
 * blocked draining impractical.
 *
4552
 * This is solved by allowing the pools to be disassociated from the CPU
4553 4554
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4555
 */
L
Linus Torvalds 已提交
4556

4557
static void wq_unbind_fn(struct work_struct *work)
4558
{
4559
	int cpu = smp_processor_id();
4560
	struct worker_pool *pool;
4561
	struct worker *worker;
4562
	int wi;
4563

4564
	for_each_cpu_worker_pool(pool, cpu) {
4565
		WARN_ON_ONCE(cpu != smp_processor_id());
4566

4567
		mutex_lock(&pool->manager_mutex);
4568
		spin_lock_irq(&pool->lock);
4569

4570
		/*
4571
		 * We've blocked all manager operations.  Make all workers
4572 4573 4574 4575 4576
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4577
		for_each_pool_worker(worker, wi, pool)
4578
			worker->flags |= WORKER_UNBOUND;
4579

4580
		pool->flags |= POOL_DISASSOCIATED;
4581

4582
		spin_unlock_irq(&pool->lock);
4583
		mutex_unlock(&pool->manager_mutex);
4584

4585 4586 4587 4588 4589 4590 4591
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4592

4593 4594 4595 4596 4597 4598 4599 4600
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4601
		atomic_set(&pool->nr_running, 0);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4612 4613
}

T
Tejun Heo 已提交
4614 4615 4616 4617
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4618
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4619 4620 4621
 */
static void rebind_workers(struct worker_pool *pool)
{
4622 4623
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4624 4625 4626

	lockdep_assert_held(&pool->manager_mutex);

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4637

4638
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4639

4640 4641
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4642 4643

		/*
4644 4645 4646 4647 4648 4649
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4650
		 */
4651 4652
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4653

4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4673
	}
4674 4675

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4676 4677
}

4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4711 4712 4713 4714
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4715
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4716 4717
					       unsigned long action,
					       void *hcpu)
4718
{
4719
	int cpu = (unsigned long)hcpu;
4720
	struct worker_pool *pool;
4721
	struct workqueue_struct *wq;
4722
	int pi;
4723

T
Tejun Heo 已提交
4724
	switch (action & ~CPU_TASKS_FROZEN) {
4725
	case CPU_UP_PREPARE:
4726
		for_each_cpu_worker_pool(pool, cpu) {
4727 4728
			if (pool->nr_workers)
				continue;
4729
			if (create_and_start_worker(pool) < 0)
4730
				return NOTIFY_BAD;
4731
		}
T
Tejun Heo 已提交
4732
		break;
4733

4734 4735
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4736
		mutex_lock(&wq_pool_mutex);
4737 4738

		for_each_pool(pool, pi) {
4739
			mutex_lock(&pool->manager_mutex);
4740

4741 4742 4743 4744
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4745

4746 4747 4748 4749
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4750

4751
			mutex_unlock(&pool->manager_mutex);
4752
		}
4753

4754 4755 4756 4757
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4758
		mutex_unlock(&wq_pool_mutex);
4759
		break;
4760
	}
4761 4762 4763 4764 4765 4766 4767
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4768
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4769 4770 4771
						 unsigned long action,
						 void *hcpu)
{
4772
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4773
	struct work_struct unbind_work;
4774
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4775

4776 4777
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4778
		/* unbinding per-cpu workers should happen on the local CPU */
4779
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4780
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4781 4782 4783 4784 4785 4786 4787 4788

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4789 4790
		flush_work(&unbind_work);
		break;
4791 4792 4793 4794
	}
	return NOTIFY_OK;
}

4795
#ifdef CONFIG_SMP
4796

4797
struct work_for_cpu {
4798
	struct work_struct work;
4799 4800 4801 4802 4803
	long (*fn)(void *);
	void *arg;
	long ret;
};

4804
static void work_for_cpu_fn(struct work_struct *work)
4805
{
4806 4807
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4808 4809 4810 4811 4812 4813 4814 4815 4816
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4817
 * It is up to the caller to ensure that the cpu doesn't go offline.
4818
 * The caller must not hold any locks which would prevent @fn from completing.
4819 4820
 *
 * Return: The value @fn returns.
4821
 */
4822
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4823
{
4824
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4825

4826 4827
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4828 4829 4830 4831 4832 4833 4834 4835

	/*
	 * The work item is on-stack and can't lead to deadlock through
	 * flushing.  Use __flush_work() to avoid spurious lockdep warnings
	 * when work_on_cpu()s are nested.
	 */
	__flush_work(&wfc.work);

4836 4837 4838 4839 4840
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4841 4842 4843 4844 4845
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4846
 * Start freezing workqueues.  After this function returns, all freezable
4847
 * workqueues will queue new works to their delayed_works list instead of
4848
 * pool->worklist.
4849 4850
 *
 * CONTEXT:
4851
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4852 4853 4854
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4855
	struct worker_pool *pool;
4856 4857
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4858
	int pi;
4859

4860
	mutex_lock(&wq_pool_mutex);
4861

4862
	WARN_ON_ONCE(workqueue_freezing);
4863 4864
	workqueue_freezing = true;

4865
	/* set FREEZING */
4866
	for_each_pool(pool, pi) {
4867
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4868 4869
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4870
		spin_unlock_irq(&pool->lock);
4871
	}
4872

4873
	list_for_each_entry(wq, &workqueues, list) {
4874
		mutex_lock(&wq->mutex);
4875 4876
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4877
		mutex_unlock(&wq->mutex);
4878
	}
4879

4880
	mutex_unlock(&wq_pool_mutex);
4881 4882 4883
}

/**
4884
 * freeze_workqueues_busy - are freezable workqueues still busy?
4885 4886 4887 4888 4889
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4890
 * Grabs and releases wq_pool_mutex.
4891
 *
4892
 * Return:
4893 4894
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4895 4896 4897 4898
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4899 4900
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4901

4902
	mutex_lock(&wq_pool_mutex);
4903

4904
	WARN_ON_ONCE(!workqueue_freezing);
4905

4906 4907 4908
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4909 4910 4911 4912
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4913
		rcu_read_lock_sched();
4914
		for_each_pwq(pwq, wq) {
4915
			WARN_ON_ONCE(pwq->nr_active < 0);
4916
			if (pwq->nr_active) {
4917
				busy = true;
4918
				rcu_read_unlock_sched();
4919 4920 4921
				goto out_unlock;
			}
		}
4922
		rcu_read_unlock_sched();
4923 4924
	}
out_unlock:
4925
	mutex_unlock(&wq_pool_mutex);
4926 4927 4928 4929 4930 4931 4932
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4933
 * frozen works are transferred to their respective pool worklists.
4934 4935
 *
 * CONTEXT:
4936
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4937 4938 4939
 */
void thaw_workqueues(void)
{
4940 4941 4942
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4943
	int pi;
4944

4945
	mutex_lock(&wq_pool_mutex);
4946 4947 4948 4949

	if (!workqueue_freezing)
		goto out_unlock;

4950
	/* clear FREEZING */
4951
	for_each_pool(pool, pi) {
4952
		spin_lock_irq(&pool->lock);
4953 4954
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4955
		spin_unlock_irq(&pool->lock);
4956
	}
4957

4958 4959
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4960
		mutex_lock(&wq->mutex);
4961 4962
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4963
		mutex_unlock(&wq->mutex);
4964 4965 4966 4967
	}

	workqueue_freezing = false;
out_unlock:
4968
	mutex_unlock(&wq_pool_mutex);
4969 4970 4971
}
#endif /* CONFIG_FREEZER */

4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4984 4985 4986 4987 4988
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4989 4990 4991
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4992 4993 4994 4995 4996 4997 4998 4999 5000
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
5001 5002
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5018
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5019
{
T
Tejun Heo 已提交
5020 5021
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5022

5023 5024
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
5025
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
5026

5027 5028 5029 5030
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5031
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5032
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5033

5034 5035
	wq_numa_init();

5036
	/* initialize CPU pools */
5037
	for_each_possible_cpu(cpu) {
5038
		struct worker_pool *pool;
5039

T
Tejun Heo 已提交
5040
		i = 0;
5041
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5042
			BUG_ON(init_worker_pool(pool));
5043
			pool->cpu = cpu;
5044
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5045
			pool->attrs->nice = std_nice[i++];
5046
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5047

T
Tejun Heo 已提交
5048
			/* alloc pool ID */
5049
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5050
			BUG_ON(worker_pool_assign_id(pool));
5051
			mutex_unlock(&wq_pool_mutex);
5052
		}
5053 5054
	}

5055
	/* create the initial worker */
5056
	for_each_online_cpu(cpu) {
5057
		struct worker_pool *pool;
5058

5059
		for_each_cpu_worker_pool(pool, cpu) {
5060
			pool->flags &= ~POOL_DISASSOCIATED;
5061
			BUG_ON(create_and_start_worker(pool) < 0);
5062
		}
5063 5064
	}

5065
	/* create default unbound and ordered wq attrs */
5066 5067 5068 5069 5070 5071
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5082 5083
	}

5084
	system_wq = alloc_workqueue("events", 0, 0);
5085
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5086
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5087 5088
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5089 5090
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5091 5092 5093 5094 5095
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5096
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5097 5098 5099
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5100
	return 0;
L
Linus Torvalds 已提交
5101
}
5102
early_initcall(init_workqueues);