workqueue.c 108.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44 45

#include "workqueue_sched.h"
L
Linus Torvalds 已提交
46

T
Tejun Heo 已提交
47
enum {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	/*
	 * global_cwq flags
	 *
	 * A bound gcwq is either associated or disassociated with its CPU.
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
	 * be executing on any CPU.  The gcwq behaves as an unbound one.
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
	 * managership of all pools on the gcwq to avoid changing binding
	 * state while create_worker() is in progress.
	 */
64 65 66 67 68
	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */

	/* pool flags */
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74 75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79 80
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
				  WORKER_CPU_INTENSIVE,
81

82
	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
83

T
Tejun Heo 已提交
84 85 86
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
87

88 89 90
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

91 92 93
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
94 95 96 97 98 99 100 101
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
102
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
103
};
L
Linus Torvalds 已提交
104 105

/*
T
Tejun Heo 已提交
106 107
 * Structure fields follow one of the following exclusion rules.
 *
108 109
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
110
 *
111 112 113
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
114
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
115
 *
116 117 118
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
119
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
120
 *
121 122
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
123
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
124 125
 */

126
struct global_cwq;
127
struct worker_pool;
128
struct idle_rebind;
L
Linus Torvalds 已提交
129

130 131 132 133
/*
 * The poor guys doing the actual heavy lifting.  All on-duty workers
 * are either serving the manager role, on idle list or on busy hash.
 */
T
Tejun Heo 已提交
134
struct worker {
T
Tejun Heo 已提交
135 136 137 138 139
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};
L
Linus Torvalds 已提交
140

T
Tejun Heo 已提交
141
	struct work_struct	*current_work;	/* L: work being processed */
142
	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
143
	struct list_head	scheduled;	/* L: scheduled works */
T
Tejun Heo 已提交
144
	struct task_struct	*task;		/* I: worker task */
145
	struct worker_pool	*pool;		/* I: the associated pool */
146 147 148
	/* 64 bytes boundary on 64bit, 32 on 32bit */
	unsigned long		last_active;	/* L: last active timestamp */
	unsigned int		flags;		/* X: flags */
T
Tejun Heo 已提交
149
	int			id;		/* I: worker id */
150 151 152 153

	/* for rebinding worker to CPU */
	struct idle_rebind	*idle_rebind;	/* L: for idle worker */
	struct work_struct	rebind_work;	/* L: for busy worker */
T
Tejun Heo 已提交
154 155
};

156 157
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
158
	unsigned int		flags;		/* X: flags */
159 160 161 162 163 164 165 166 167

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

168
	struct mutex		manager_mutex;	/* mutex manager should hold */
169 170 171
	struct ida		worker_ida;	/* L: for worker IDs */
};

172
/*
173 174 175
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
176 177 178 179
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
180
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
181

182
	/* workers are chained either in busy_hash or pool idle_list */
T
Tejun Heo 已提交
183 184 185
	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
						/* L: hash of busy workers */

186 187
	struct worker_pool	pools[NR_WORKER_POOLS];
						/* normal and highpri pools */
188

189
	wait_queue_head_t	rebind_hold;	/* rebind hold wait */
190 191
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
192
/*
193
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
194 195
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
196 197
 */
struct cpu_workqueue_struct {
198
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
199
	struct workqueue_struct *wq;		/* I: the owning workqueue */
200 201 202 203
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
204
	int			nr_active;	/* L: nr of active works */
205
	int			max_active;	/* L: max active works */
206
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
207
};
L
Linus Torvalds 已提交
208

209 210 211 212 213 214 215 216 217
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

218 219 220 221 222 223 224 225 226 227
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
228
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
229 230 231 232 233 234 235 236 237
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
238 239 240 241 242 243

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
244
	unsigned int		flags;		/* W: WQ_* flags */
245 246 247 248 249
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
250
	struct list_head	list;		/* W: list of all workqueues */
251 252 253 254 255 256 257 258 259

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

260
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
261 262
	struct worker		*rescuer;	/* I: rescue worker */

263
	int			nr_drainers;	/* W: drain in progress */
264
	int			saved_max_active; /* W: saved cwq max_active */
265
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
266
	struct lockdep_map	lockdep_map;
267
#endif
268
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
269 270
};

271
struct workqueue_struct *system_wq __read_mostly;
272
struct workqueue_struct *system_highpri_wq __read_mostly;
273 274
struct workqueue_struct *system_long_wq __read_mostly;
struct workqueue_struct *system_nrt_wq __read_mostly;
275
struct workqueue_struct *system_unbound_wq __read_mostly;
276
struct workqueue_struct *system_freezable_wq __read_mostly;
277
struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
278
EXPORT_SYMBOL_GPL(system_wq);
279
EXPORT_SYMBOL_GPL(system_highpri_wq);
280 281
EXPORT_SYMBOL_GPL(system_long_wq);
EXPORT_SYMBOL_GPL(system_nrt_wq);
282
EXPORT_SYMBOL_GPL(system_unbound_wq);
283
EXPORT_SYMBOL_GPL(system_freezable_wq);
284
EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
285

286 287 288
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

289
#define for_each_worker_pool(pool, gcwq)				\
290 291
	for ((pool) = &(gcwq)->pools[0];				\
	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
292

293 294 295 296
#define for_each_busy_worker(worker, i, pos, gcwq)			\
	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

318 319 320 321 322 323 324 325 326 327 328 329 330
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

346 347 348 349
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

350 351 352 353 354
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
390
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
426
	.debug_hint	= work_debug_hint,
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

462 463
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
464
static LIST_HEAD(workqueues);
465
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
466

467 468 469 470 471
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
472
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
473
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
474

475 476 477 478 479 480
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
481 482 483
static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
};
484

T
Tejun Heo 已提交
485
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
486

487 488 489 490 491
static int worker_pool_pri(struct worker_pool *pool)
{
	return pool - pool->gcwq->pools;
}

492 493
static struct global_cwq *get_gcwq(unsigned int cpu)
{
494 495 496 497
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
498 499
}

500
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
501
{
502
	int cpu = pool->gcwq->cpu;
503
	int idx = worker_pool_pri(pool);
504

505
	if (cpu != WORK_CPU_UNBOUND)
506
		return &per_cpu(pool_nr_running, cpu)[idx];
507
	else
508
		return &unbound_pool_nr_running[idx];
509 510
}

T
Tejun Heo 已提交
511 512
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
513
{
514
	if (!(wq->flags & WQ_UNBOUND)) {
515
		if (likely(cpu < nr_cpu_ids))
516 517 518 519
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
520 521
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
537

538
/*
539 540 541
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
 * is cleared and the high bits contain OFFQ flags and CPU number.
542
 *
543 544 545 546 547 548 549 550 551 552 553 554 555 556
 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, cpu or clear
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
 *
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
 * a work.  gcwq is available once the work has been queued anywhere after
 * initialization until it is sync canceled.  cwq is available only while
 * the work item is queued.
 *
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
557
 */
558 559
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
560
{
561
	BUG_ON(!work_pending(work));
562 563
	atomic_long_set(&work->data, data | flags | work_static(work));
}
564

565 566 567 568 569
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
570
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
571 572
}

573 574
static void set_work_cpu_and_clear_pending(struct work_struct *work,
					   unsigned int cpu)
575
{
576 577 578 579 580 581 582
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
583
	set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
584
}
585

586
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
587
{
588
	smp_wmb();	/* see set_work_cpu_and_clear_pending() */
589
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
590 591
}

592
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
593
{
594
	unsigned long data = atomic_long_read(&work->data);
595

596 597 598 599
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
600 601
}

602
static struct global_cwq *get_work_gcwq(struct work_struct *work)
603
{
604
	unsigned long data = atomic_long_read(&work->data);
605 606
	unsigned int cpu;

607 608
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
609
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
610

611
	cpu = data >> WORK_OFFQ_CPU_SHIFT;
612
	if (cpu == WORK_CPU_NONE)
613 614
		return NULL;

615
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
616
	return get_gcwq(cpu);
617 618
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
static void mark_work_canceling(struct work_struct *work)
{
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;

	set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
		      WORK_STRUCT_PENDING);
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

635
/*
636 637 638
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
639 640
 */

641
static bool __need_more_worker(struct worker_pool *pool)
642
{
643
	return !atomic_read(get_pool_nr_running(pool));
644 645
}

646
/*
647 648
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
649 650 651 652
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
653
 */
654
static bool need_more_worker(struct worker_pool *pool)
655
{
656
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
657
}
658

659
/* Can I start working?  Called from busy but !running workers. */
660
static bool may_start_working(struct worker_pool *pool)
661
{
662
	return pool->nr_idle;
663 664 665
}

/* Do I need to keep working?  Called from currently running workers. */
666
static bool keep_working(struct worker_pool *pool)
667
{
668
	atomic_t *nr_running = get_pool_nr_running(pool);
669

670
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
671 672 673
}

/* Do we need a new worker?  Called from manager. */
674
static bool need_to_create_worker(struct worker_pool *pool)
675
{
676
	return need_more_worker(pool) && !may_start_working(pool);
677
}
678

679
/* Do I need to be the manager? */
680
static bool need_to_manage_workers(struct worker_pool *pool)
681
{
682
	return need_to_create_worker(pool) ||
683
		(pool->flags & POOL_MANAGE_WORKERS);
684 685 686
}

/* Do we have too many workers and should some go away? */
687
static bool too_many_workers(struct worker_pool *pool)
688
{
689
	bool managing = mutex_is_locked(&pool->manager_mutex);
690 691
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
692 693

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
694 695
}

696
/*
697 698 699
 * Wake up functions.
 */

700
/* Return the first worker.  Safe with preemption disabled */
701
static struct worker *first_worker(struct worker_pool *pool)
702
{
703
	if (unlikely(list_empty(&pool->idle_list)))
704 705
		return NULL;

706
	return list_first_entry(&pool->idle_list, struct worker, entry);
707 708 709 710
}

/**
 * wake_up_worker - wake up an idle worker
711
 * @pool: worker pool to wake worker from
712
 *
713
 * Wake up the first idle worker of @pool.
714 715 716 717
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
718
static void wake_up_worker(struct worker_pool *pool)
719
{
720
	struct worker *worker = first_worker(pool);
721 722 723 724 725

	if (likely(worker))
		wake_up_process(worker->task);
}

726
/**
727 728 729 730 731 732 733 734 735 736 737 738 739 740
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

741
	if (!(worker->flags & WORKER_NOT_RUNNING))
742
		atomic_inc(get_pool_nr_running(worker->pool));
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
764
	struct worker_pool *pool = worker->pool;
765
	atomic_t *nr_running = get_pool_nr_running(pool);
766

767
	if (worker->flags & WORKER_NOT_RUNNING)
768 769 770 771 772 773 774 775 776 777
		return NULL;

	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
778 779 780 781 782
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
783
	 */
784
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
785
		to_wakeup = first_worker(pool);
786 787 788 789 790
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
791
 * @worker: self
792 793 794
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
795 796 797
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
798
 *
799 800
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
801 802 803 804
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
805
	struct worker_pool *pool = worker->pool;
806

807 808
	WARN_ON_ONCE(worker->task != current);

809 810 811 812 813 814 815
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
816
		atomic_t *nr_running = get_pool_nr_running(pool);
817 818 819

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
820
			    !list_empty(&pool->worklist))
821
				wake_up_worker(pool);
822 823 824 825
		} else
			atomic_dec(nr_running);
	}

826 827 828 829
	worker->flags |= flags;
}

/**
830
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
831
 * @worker: self
832 833
 * @flags: flags to clear
 *
834
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
835
 *
836 837
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
838 839 840
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
841
	struct worker_pool *pool = worker->pool;
842 843
	unsigned int oflags = worker->flags;

844 845
	WARN_ON_ONCE(worker->task != current);

846
	worker->flags &= ~flags;
847

848 849 850 851 852
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
853 854
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
855
			atomic_inc(get_pool_nr_running(pool));
856 857
}

T
Tejun Heo 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
/**
 * busy_worker_head - return the busy hash head for a work
 * @gcwq: gcwq of interest
 * @work: work to be hashed
 *
 * Return hash head of @gcwq for @work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to the hash head.
 */
static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
					   struct work_struct *work)
{
	const int base_shift = ilog2(sizeof(struct work_struct));
	unsigned long v = (unsigned long)work;

	/* simple shift and fold hash, do we need something better? */
	v >>= base_shift;
	v += v >> BUSY_WORKER_HASH_ORDER;
	v &= BUSY_WORKER_HASH_MASK;

	return &gcwq->busy_hash[v];
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
/**
 * __find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @bwh: hash head as returned by busy_worker_head()
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  @bwh should be
 * the hash head obtained by calling busy_worker_head() with the same
 * work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
 */
static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
						   struct hlist_head *bwh,
						   struct work_struct *work)
{
	struct worker *worker;
	struct hlist_node *tmp;

	hlist_for_each_entry(worker, tmp, bwh, hentry)
		if (worker->current_work == work)
			return worker;
	return NULL;
}

/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  This function is
 * identical to __find_worker_executing_work() except that this
 * function calculates @bwh itself.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
930
 */
931 932
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
933
{
934 935
	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
					    work);
936 937
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 * @delayed: for a delayed work
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
				 bool delayed)
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

	if (!delayed) {
		cwq->nr_active--;
		if (!list_empty(&cwq->delayed_works)) {
			/* one down, submit a delayed one */
			if (cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1039
/**
1040
 * try_to_grab_pending - steal work item from worklist and disable irq
1041 1042
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1043
 * @flags: place to store irq state
1044 1045 1046 1047 1048 1049 1050
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1051 1052
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1053
 *
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
 * preempted while holding PENDING and @work off queue, preemption must be
 * disabled on entry.  This ensures that we don't return -EAGAIN while
 * another task is preempted in this function.
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
 * This function is safe to call from any context other than IRQ handler.
 * An IRQ handler may run on top of delayed_work_timer_fn() which can make
 * this function return -EAGAIN perpetually.
1065
 */
1066 1067
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1068 1069 1070
{
	struct global_cwq *gcwq;

1071 1072 1073 1074
	WARN_ON_ONCE(in_irq());

	local_irq_save(*flags);

1075 1076 1077 1078 1079 1080 1081 1082 1083
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1084 1085 1086 1087 1088 1089 1090 1091 1092
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
	gcwq = get_work_gcwq(work);
	if (!gcwq)
1093
		goto fail;
1094

1095
	spin_lock(&gcwq->lock);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	if (!list_empty(&work->entry)) {
		/*
		 * This work is queued, but perhaps we locked the wrong gcwq.
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
		if (gcwq == get_work_gcwq(work)) {
			debug_work_deactivate(work);
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
				get_work_color(work),
				*work_data_bits(work) & WORK_STRUCT_DELAYED);
1109

1110
			spin_unlock(&gcwq->lock);
1111
			return 1;
1112 1113
		}
	}
1114 1115 1116 1117 1118 1119
	spin_unlock(&gcwq->lock);
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1120
	return -EAGAIN;
1121 1122
}

T
Tejun Heo 已提交
1123
/**
1124
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1125 1126 1127 1128 1129
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1130 1131
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1132 1133
 *
 * CONTEXT:
1134
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1135
 */
O
Oleg Nesterov 已提交
1136
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1137 1138
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1139
{
1140
	struct worker_pool *pool = cwq->pool;
1141

T
Tejun Heo 已提交
1142
	/* we own @work, set data and link */
1143
	set_work_cwq(work, cwq, extra_flags);
1144

1145 1146 1147 1148 1149
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1150

1151
	list_add_tail(&work->entry, head);
1152 1153 1154 1155 1156 1157 1158 1159

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1160 1161
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1162 1163
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
1196
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1197 1198
			 struct work_struct *work)
{
1199 1200
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
1201
	struct list_head *worklist;
1202
	unsigned int work_flags;
1203
	unsigned int req_cpu = cpu;
1204 1205 1206 1207 1208 1209 1210 1211

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1212

1213
	debug_work_activate(work);
1214

1215
	/* if dying, only works from the same workqueue are allowed */
1216
	if (unlikely(wq->flags & WQ_DRAINING) &&
1217
	    WARN_ON_ONCE(!is_chained_work(wq)))
1218 1219
		return;

1220 1221
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
1222 1223
		struct global_cwq *last_gcwq;

1224
		if (cpu == WORK_CPU_UNBOUND)
1225 1226
			cpu = raw_smp_processor_id();

1227 1228 1229 1230 1231 1232
		/*
		 * It's multi cpu.  If @wq is non-reentrant and @work
		 * was previously on a different cpu, it might still
		 * be running there, in which case the work needs to
		 * be queued on that cpu to guarantee non-reentrance.
		 */
1233
		gcwq = get_gcwq(cpu);
1234 1235 1236 1237
		if (wq->flags & WQ_NON_REENTRANT &&
		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
			struct worker *worker;

1238
			spin_lock(&last_gcwq->lock);
1239 1240 1241 1242 1243 1244 1245

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
1246 1247
				spin_unlock(&last_gcwq->lock);
				spin_lock(&gcwq->lock);
1248
			}
1249 1250 1251
		} else {
			spin_lock(&gcwq->lock);
		}
1252 1253
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1254
		spin_lock(&gcwq->lock);
1255 1256 1257 1258
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1259
	trace_workqueue_queue_work(req_cpu, cwq, work);
1260

1261
	if (WARN_ON(!list_empty(&work->entry))) {
1262
		spin_unlock(&gcwq->lock);
1263 1264
		return;
	}
1265

1266
	cwq->nr_in_flight[cwq->work_color]++;
1267
	work_flags = work_color_to_flags(cwq->work_color);
1268 1269

	if (likely(cwq->nr_active < cwq->max_active)) {
1270
		trace_workqueue_activate_work(work);
1271
		cwq->nr_active++;
1272
		worklist = &cwq->pool->worklist;
1273 1274
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1275
		worklist = &cwq->delayed_works;
1276
	}
1277

1278
	insert_work(cwq, work, worklist, work_flags);
1279

1280
	spin_unlock(&gcwq->lock);
L
Linus Torvalds 已提交
1281 1282
}

1283 1284 1285 1286 1287 1288
/**
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @work: work to queue
 *
1289
 * Returns %false if @work was already on a queue, %true otherwise.
1290 1291 1292 1293
 *
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
 */
1294 1295
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
1296
{
1297
	bool ret = false;
1298 1299 1300
	unsigned long flags;

	local_irq_save(flags);
1301

1302
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1303
		__queue_work(cpu, wq, work);
1304
		ret = true;
1305
	}
1306 1307

	local_irq_restore(flags);
1308 1309 1310 1311
	return ret;
}
EXPORT_SYMBOL_GPL(queue_work_on);

1312
/**
1313
 * queue_work - queue work on a workqueue
1314
 * @wq: workqueue to use
1315
 * @work: work to queue
1316
 *
1317
 * Returns %false if @work was already on a queue, %true otherwise.
1318 1319 1320
 *
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1321
 */
1322
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
L
Linus Torvalds 已提交
1323
{
1324
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1325 1326 1327
}
EXPORT_SYMBOL_GPL(queue_work);

1328
void delayed_work_timer_fn(unsigned long __data)
1329 1330 1331 1332
{
	struct delayed_work *dwork = (struct delayed_work *)__data;
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);

1333
	local_irq_disable();
1334
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
1335
	local_irq_enable();
L
Linus Torvalds 已提交
1336
}
1337
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
{
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
	BUG_ON(timer_pending(timer));
	BUG_ON(!list_empty(&work->entry));

	timer_stats_timer_set_start_info(&dwork->timer);

	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
	 * work's gcwq is preserved to allow reentrance detection for
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
		struct global_cwq *gcwq = get_work_gcwq(work);

1361 1362 1363 1364 1365 1366 1367
		/*
		 * If we cannot get the last gcwq from @work directly,
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
		if (gcwq)
1368
			lcpu = gcwq->cpu;
1369
		if (lcpu == WORK_CPU_UNBOUND)
1370 1371 1372 1373 1374 1375 1376
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1377
	dwork->cpu = cpu;
1378 1379 1380 1381 1382 1383 1384 1385
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
}

1386 1387 1388 1389
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1390
 * @dwork: work to queue
1391 1392
 * @delay: number of jiffies to wait before queueing
 *
1393 1394 1395
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1396
 */
1397 1398
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1399
{
1400
	struct work_struct *work = &dwork->work;
1401
	bool ret = false;
1402 1403
	unsigned long flags;

1404 1405 1406
	if (!delay)
		return queue_work_on(cpu, wq, &dwork->work);

1407 1408
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1409

1410
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1411
		__queue_delayed_work(cpu, wq, dwork, delay);
1412
		ret = true;
1413
	}
1414 1415

	local_irq_restore(flags);
1416 1417
	return ret;
}
1418
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
L
Linus Torvalds 已提交
1419

1420 1421 1422 1423 1424 1425
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1426
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1427
 */
1428
bool queue_delayed_work(struct workqueue_struct *wq,
1429 1430
			struct delayed_work *dwork, unsigned long delay)
{
1431
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1432 1433 1434
}
EXPORT_SYMBOL_GPL(queue_delayed_work);

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
 * This function is safe to call from any context other than IRQ handler.
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
	}

	/* -ENOENT from try_to_grab_pending() becomes %true */
	return ret;
}
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);

T
Tejun Heo 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1499
{
1500 1501
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1502 1503 1504 1505 1506

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1507 1508
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1509
	pool->nr_idle++;
1510
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1511 1512

	/* idle_list is LIFO */
1513
	list_add(&worker->entry, &pool->idle_list);
1514

1515 1516
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1517

1518
	/*
1519 1520 1521 1522
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1523
	 */
1524
	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1525
		     pool->nr_workers == pool->nr_idle &&
1526
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1540
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1541 1542

	BUG_ON(!(worker->flags & WORKER_IDLE));
1543
	worker_clr_flags(worker, WORKER_IDLE);
1544
	pool->nr_idle--;
T
Tejun Heo 已提交
1545 1546 1547
	list_del_init(&worker->entry);
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1564 1565 1566 1567 1568
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
 * binding against %GCWQ_DISASSOCIATED which is set during
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1579
__acquires(&gcwq->lock)
1580
{
1581
	struct global_cwq *gcwq = worker->pool->gcwq;
1582 1583 1584
	struct task_struct *task = worker->task;

	while (true) {
1585
		/*
1586 1587 1588 1589
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
1590
		 */
1591 1592
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1603 1604 1605 1606 1607 1608
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1609
		cpu_relax();
1610
		cond_resched();
1611 1612 1613
	}
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
struct idle_rebind {
	int			cnt;		/* # workers to be rebound */
	struct completion	done;		/* all workers rebound */
};

/*
 * Rebind an idle @worker to its CPU.  During CPU onlining, this has to
 * happen synchronously for idle workers.  worker_thread() will test
 * %WORKER_REBIND before leaving idle and call this function.
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

	/* CPU must be online at this point */
	WARN_ON(!worker_maybe_bind_and_lock(worker));
	if (!--worker->idle_rebind->cnt)
		complete(&worker->idle_rebind->done);
	spin_unlock_irq(&worker->pool->gcwq->lock);

	/* we did our part, wait for rebind_workers() to finish up */
	wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
}

1638
/*
1639
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1640 1641 1642
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1643
 */
1644
static void busy_worker_rebind_fn(struct work_struct *work)
1645 1646
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1647
	struct global_cwq *gcwq = worker->pool->gcwq;
1648 1649 1650 1651 1652 1653 1654

	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_REBIND);

	spin_unlock_irq(&gcwq->lock);
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
 * The idle ones should be rebound synchronously and idle rebinding should
 * be complete before any worker starts executing work items with
 * concurrency management enabled; otherwise, scheduler may oops trying to
 * wake up non-local idle worker from wq_worker_sleeping().
 *
 * This is achieved by repeatedly requesting rebinding until all idle
 * workers are known to have been rebound under @gcwq->lock and holding all
 * idle workers from becoming busy until idle rebinding is complete.
 *
 * Once idle workers are rebound, busy workers can be rebound as they
 * finish executing their current work items.  Queueing the rebind work at
 * the head of their scheduled lists is enough.  Note that nr_running will
 * be properbly bumped as busy workers rebind.
 *
 * On return, all workers are guaranteed to either be bound or have rebind
 * work item scheduled.
 */
static void rebind_workers(struct global_cwq *gcwq)
	__releases(&gcwq->lock) __acquires(&gcwq->lock)
{
	struct idle_rebind idle_rebind;
	struct worker_pool *pool;
	struct worker *worker;
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
		lockdep_assert_held(&pool->manager_mutex);

	/*
	 * Rebind idle workers.  Interlocked both ways.  We wait for
	 * workers to rebind via @idle_rebind.done.  Workers will wait for
	 * us to finish up by watching %WORKER_REBIND.
	 */
	init_completion(&idle_rebind.done);
retry:
	idle_rebind.cnt = 1;
	INIT_COMPLETION(idle_rebind.done);

	/* set REBIND and kick idle ones, we'll wait for these later */
	for_each_worker_pool(pool, gcwq) {
		list_for_each_entry(worker, &pool->idle_list, entry) {
			if (worker->flags & WORKER_REBIND)
				continue;

			/* morph UNBOUND to REBIND */
			worker->flags &= ~WORKER_UNBOUND;
			worker->flags |= WORKER_REBIND;

			idle_rebind.cnt++;
			worker->idle_rebind = &idle_rebind;

			/* worker_thread() will call idle_worker_rebind() */
			wake_up_process(worker->task);
		}
	}

	if (--idle_rebind.cnt) {
		spin_unlock_irq(&gcwq->lock);
		wait_for_completion(&idle_rebind.done);
		spin_lock_irq(&gcwq->lock);
		/* busy ones might have become idle while waiting, retry */
		goto retry;
	}

	/*
	 * All idle workers are rebound and waiting for %WORKER_REBIND to
	 * be cleared inside idle_worker_rebind().  Clear and release.
	 * Clearing %WORKER_REBIND from this foreign context is safe
	 * because these workers are still guaranteed to be idle.
	 */
	for_each_worker_pool(pool, gcwq)
		list_for_each_entry(worker, &pool->idle_list, entry)
			worker->flags &= ~WORKER_REBIND;

	wake_up_all(&gcwq->rebind_hold);

	/* rebind busy workers */
	for_each_busy_worker(worker, i, pos, gcwq) {
		struct work_struct *rebind_work = &worker->rebind_work;
1744
		struct workqueue_struct *wq;
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

		/* morph UNBOUND to REBIND */
		worker->flags &= ~WORKER_UNBOUND;
		worker->flags |= WORKER_REBIND;

		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		debug_work_activate(rebind_work);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

		insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
			worker->scheduled.next,
			work_color_to_flags(WORK_NO_COLOR));
1768 1769 1770
	}
}

T
Tejun Heo 已提交
1771 1772 1773 1774 1775
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1776 1777
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1778
		INIT_LIST_HEAD(&worker->scheduled);
1779
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1780 1781
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1782
	}
T
Tejun Heo 已提交
1783 1784 1785 1786 1787
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1788
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1789
 *
1790
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1800
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1801
{
1802
	struct global_cwq *gcwq = pool->gcwq;
1803
	const char *pri = worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1804
	struct worker *worker = NULL;
1805
	int id = -1;
T
Tejun Heo 已提交
1806

1807
	spin_lock_irq(&gcwq->lock);
1808
	while (ida_get_new(&pool->worker_ida, &id)) {
1809
		spin_unlock_irq(&gcwq->lock);
1810
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1811
			goto fail;
1812
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1813
	}
1814
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1815 1816 1817 1818 1819

	worker = alloc_worker();
	if (!worker)
		goto fail;

1820
	worker->pool = pool;
T
Tejun Heo 已提交
1821 1822
	worker->id = id;

1823
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1824
		worker->task = kthread_create_on_node(worker_thread,
1825 1826
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1827 1828
	else
		worker->task = kthread_create(worker_thread, worker,
1829
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1830 1831 1832
	if (IS_ERR(worker->task))
		goto fail;

1833 1834 1835
	if (worker_pool_pri(pool))
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1836
	/*
1837 1838 1839 1840 1841 1842 1843
	 * Determine CPU binding of the new worker depending on
	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1844
	 */
1845
	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1846
		kthread_bind(worker->task, gcwq->cpu);
1847
	} else {
1848
		worker->task->flags |= PF_THREAD_BOUND;
1849
		worker->flags |= WORKER_UNBOUND;
1850
	}
T
Tejun Heo 已提交
1851 1852 1853 1854

	return worker;
fail:
	if (id >= 0) {
1855
		spin_lock_irq(&gcwq->lock);
1856
		ida_remove(&pool->worker_ida, id);
1857
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1867
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1868 1869
 *
 * CONTEXT:
1870
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1871 1872 1873
 */
static void start_worker(struct worker *worker)
{
1874
	worker->flags |= WORKER_STARTED;
1875
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1876
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1877 1878 1879 1880 1881 1882 1883
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1884 1885 1886 1887
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1888 1889 1890
 */
static void destroy_worker(struct worker *worker)
{
1891 1892
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1893 1894 1895 1896
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1897
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1898

T
Tejun Heo 已提交
1899
	if (worker->flags & WORKER_STARTED)
1900
		pool->nr_workers--;
T
Tejun Heo 已提交
1901
	if (worker->flags & WORKER_IDLE)
1902
		pool->nr_idle--;
T
Tejun Heo 已提交
1903 1904

	list_del_init(&worker->entry);
1905
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1906 1907 1908

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1909 1910 1911
	kthread_stop(worker->task);
	kfree(worker);

1912
	spin_lock_irq(&gcwq->lock);
1913
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1914 1915
}

1916
static void idle_worker_timeout(unsigned long __pool)
1917
{
1918 1919
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1920 1921 1922

	spin_lock_irq(&gcwq->lock);

1923
	if (too_many_workers(pool)) {
1924 1925 1926 1927
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1928
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1929 1930 1931
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1932
			mod_timer(&pool->idle_timer, expires);
1933 1934
		else {
			/* it's been idle for too long, wake up manager */
1935
			pool->flags |= POOL_MANAGE_WORKERS;
1936
			wake_up_worker(pool);
1937
		}
1938 1939 1940 1941
	}

	spin_unlock_irq(&gcwq->lock);
}
1942

1943 1944 1945 1946
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1947
	unsigned int cpu;
1948 1949 1950 1951 1952

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1953
	cpu = cwq->pool->gcwq->cpu;
1954 1955 1956
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1957
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1958 1959 1960 1961
		wake_up_process(wq->rescuer->task);
	return true;
}

1962
static void gcwq_mayday_timeout(unsigned long __pool)
1963
{
1964 1965
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1966 1967 1968 1969
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1970
	if (need_to_create_worker(pool)) {
1971 1972 1973 1974 1975 1976
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1977
		list_for_each_entry(work, &pool->worklist, entry)
1978
			send_mayday(work);
L
Linus Torvalds 已提交
1979
	}
1980 1981 1982

	spin_unlock_irq(&gcwq->lock);

1983
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1984 1985
}

1986 1987
/**
 * maybe_create_worker - create a new worker if necessary
1988
 * @pool: pool to create a new worker for
1989
 *
1990
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1991 1992
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1993
 * sent to all rescuers with works scheduled on @pool to resolve
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
2008
static bool maybe_create_worker(struct worker_pool *pool)
2009 2010
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
2011
{
2012 2013 2014
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
2015 2016
		return false;
restart:
2017 2018
	spin_unlock_irq(&gcwq->lock);

2019
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2020
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2021 2022 2023 2024

	while (true) {
		struct worker *worker;

2025
		worker = create_worker(pool);
2026
		if (worker) {
2027
			del_timer_sync(&pool->mayday_timer);
2028 2029
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
2030
			BUG_ON(need_to_create_worker(pool));
2031 2032 2033
			return true;
		}

2034
		if (!need_to_create_worker(pool))
2035
			break;
L
Linus Torvalds 已提交
2036

2037 2038
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
2039

2040
		if (!need_to_create_worker(pool))
2041 2042 2043
			break;
	}

2044
	del_timer_sync(&pool->mayday_timer);
2045
	spin_lock_irq(&gcwq->lock);
2046
	if (need_to_create_worker(pool))
2047 2048 2049 2050 2051 2052
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2053
 * @pool: pool to destroy workers for
2054
 *
2055
 * Destroy @pool workers which have been idle for longer than
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
2066
static bool maybe_destroy_workers(struct worker_pool *pool)
2067 2068
{
	bool ret = false;
L
Linus Torvalds 已提交
2069

2070
	while (too_many_workers(pool)) {
2071 2072
		struct worker *worker;
		unsigned long expires;
2073

2074
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2075
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2076

2077
		if (time_before(jiffies, expires)) {
2078
			mod_timer(&pool->idle_timer, expires);
2079
			break;
2080
		}
L
Linus Torvalds 已提交
2081

2082 2083
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2084
	}
2085

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	return ret;
}

/**
 * manage_workers - manage worker pool
 * @worker: self
 *
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
 */
static bool manage_workers(struct worker *worker)
{
2111
	struct worker_pool *pool = worker->pool;
2112 2113
	bool ret = false;

2114
	if (!mutex_trylock(&pool->manager_mutex))
2115 2116
		return ret;

2117
	pool->flags &= ~POOL_MANAGE_WORKERS;
2118 2119 2120 2121 2122

	/*
	 * Destroy and then create so that may_start_working() is true
	 * on return.
	 */
2123 2124
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2125

2126
	mutex_unlock(&pool->manager_mutex);
2127 2128 2129
	return ret;
}

2130 2131
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2132
 * @worker: self
2133 2134 2135 2136 2137 2138 2139 2140 2141
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2142
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2143
 */
T
Tejun Heo 已提交
2144
static void process_one_work(struct worker *worker, struct work_struct *work)
2145 2146
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
2147
{
2148
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2149 2150
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
2151
	struct hlist_head *bwh = busy_worker_head(gcwq, work);
2152
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2153
	work_func_t f = work->func;
2154
	int work_color;
2155
	struct worker *collision;
2156 2157 2158 2159 2160 2161 2162 2163
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2164 2165 2166
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2167
#endif
2168 2169 2170 2171 2172
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
	 * unbound or a disassociated gcwq.
	 */
2173
	WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
2174
		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2175 2176
		     raw_smp_processor_id() != gcwq->cpu);

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
	collision = __find_worker_executing_work(gcwq, bwh, work);
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2189
	/* claim and dequeue */
2190
	debug_work_deactivate(work);
T
Tejun Heo 已提交
2191
	hlist_add_head(&worker->hentry, bwh);
T
Tejun Heo 已提交
2192
	worker->current_work = work;
2193
	worker->current_cwq = cwq;
2194
	work_color = get_work_color(work);
2195

2196 2197
	list_del_init(&work->entry);

2198 2199 2200 2201 2202 2203 2204
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2205 2206 2207 2208
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2209 2210
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2211

2212
	/*
2213 2214 2215 2216
	 * Record the last CPU and clear PENDING which should be the last
	 * update to @work.  Also, do this inside @gcwq->lock so that
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2217 2218
	 */
	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2219

2220
	spin_unlock_irq(&gcwq->lock);
2221

2222
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2223
	lock_map_acquire(&lockdep_map);
2224
	trace_workqueue_execute_start(work);
2225
	f(work);
2226 2227 2228 2229 2230
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
		       "%s/0x%08x/%d\n",
		       current->comm, preempt_count(), task_pid_nr(current));
		printk(KERN_ERR "    last function: ");
		print_symbol("%s\n", (unsigned long)f);
		debug_show_held_locks(current);
		dump_stack();
	}

2244
	spin_lock_irq(&gcwq->lock);
2245

2246 2247 2248 2249
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2250
	/* we're done with it, release */
T
Tejun Heo 已提交
2251
	hlist_del_init(&worker->hentry);
T
Tejun Heo 已提交
2252
	worker->current_work = NULL;
2253
	worker->current_cwq = NULL;
2254
	cwq_dec_nr_in_flight(cwq, work_color, false);
2255 2256
}

2257 2258 2259 2260 2261 2262 2263 2264 2265
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2266
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2267 2268 2269
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2270
{
2271 2272
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2273
						struct work_struct, entry);
T
Tejun Heo 已提交
2274
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2275 2276 2277
	}
}

T
Tejun Heo 已提交
2278 2279
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2280
 * @__worker: self
T
Tejun Heo 已提交
2281
 *
2282 2283 2284 2285 2286
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2287
 */
T
Tejun Heo 已提交
2288
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2289
{
T
Tejun Heo 已提交
2290
	struct worker *worker = __worker;
2291 2292
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2293

2294 2295
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2296 2297
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2298

2299 2300 2301 2302 2303
	/*
	 * DIE can be set only while idle and REBIND set while busy has
	 * @worker->rebind_work scheduled.  Checking here is enough.
	 */
	if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
T
Tejun Heo 已提交
2304
		spin_unlock_irq(&gcwq->lock);
2305 2306 2307 2308 2309 2310 2311 2312

		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2313
	}
2314

T
Tejun Heo 已提交
2315
	worker_leave_idle(worker);
2316
recheck:
2317
	/* no more worker necessary? */
2318
	if (!need_more_worker(pool))
2319 2320 2321
		goto sleep;

	/* do we need to manage? */
2322
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2323 2324
		goto recheck;

T
Tejun Heo 已提交
2325 2326 2327 2328 2329 2330 2331
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2332 2333 2334 2335 2336 2337 2338 2339
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2340
		struct work_struct *work =
2341
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2342 2343 2344 2345 2346 2347
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2348
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2349 2350 2351
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2352
		}
2353
	} while (keep_working(pool));
2354 2355

	worker_set_flags(worker, WORKER_PREP, false);
2356
sleep:
2357
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2358
		goto recheck;
2359

T
Tejun Heo 已提交
2360
	/*
2361 2362 2363 2364 2365
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2366 2367 2368 2369 2370 2371
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2372 2373
}

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
/**
 * rescuer_thread - the rescuer thread function
 * @__wq: the associated workqueue
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
static int rescuer_thread(void *__wq)
{
	struct workqueue_struct *wq = __wq;
	struct worker *rescuer = wq->rescuer;
	struct list_head *scheduled = &rescuer->scheduled;
2398
	bool is_unbound = wq->flags & WQ_UNBOUND;
2399 2400 2401 2402 2403 2404 2405 2406 2407
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

	if (kthread_should_stop())
		return 0;

2408 2409 2410 2411
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2412
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2413 2414
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2415 2416
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2417 2418 2419
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2420
		mayday_clear_cpu(cpu, wq->mayday_mask);
2421 2422

		/* migrate to the target cpu if possible */
2423
		rescuer->pool = pool;
2424 2425 2426 2427 2428 2429 2430
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2431
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2432 2433 2434 2435
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2436 2437 2438 2439 2440 2441

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2442 2443
		if (keep_working(pool))
			wake_up_worker(pool);
2444

2445 2446 2447 2448 2449
		spin_unlock_irq(&gcwq->lock);
	}

	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2450 2451
}

O
Oleg Nesterov 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2463 2464 2465 2466
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2467 2468
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2469
 *
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2483 2484
 *
 * CONTEXT:
2485
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2486
 */
2487
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2488 2489
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2490
{
2491 2492 2493
	struct list_head *head;
	unsigned int linked = 0;

2494
	/*
2495
	 * debugobject calls are safe here even with gcwq->lock locked
2496 2497 2498 2499
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2500
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2501
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2502
	init_completion(&barr->done);
2503

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2519
	debug_work_activate(&barr->work);
2520 2521
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2522 2523
}

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2557
{
2558 2559
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2560

2561 2562 2563
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2564
	}
2565

2566
	for_each_cwq_cpu(cpu, wq) {
2567
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2568
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2569

2570
		spin_lock_irq(&gcwq->lock);
2571

2572 2573
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2574

2575 2576 2577 2578 2579 2580
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2581

2582 2583 2584 2585
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2586

2587
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2588
	}
2589

2590 2591
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2592

2593
	return wait;
L
Linus Torvalds 已提交
2594 2595
}

2596
/**
L
Linus Torvalds 已提交
2597
 * flush_workqueue - ensure that any scheduled work has run to completion.
2598
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2599 2600 2601 2602
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2603 2604
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2605
 */
2606
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2607
{
2608 2609 2610 2611 2612 2613
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2614

2615 2616
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2678 2679 2680 2681
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2749
}
2750
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2751

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2782
		bool drained;
2783

2784
		spin_lock_irq(&cwq->pool->gcwq->lock);
2785
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2786
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2787 2788

		if (drained)
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
			pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
				   wq->name, flush_cnt);
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2805 2806
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
			     bool wait_executing)
2807
{
2808
	struct worker *worker = NULL;
2809
	struct global_cwq *gcwq;
2810 2811 2812
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2813 2814
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2815
		return false;
2816

2817
	spin_lock_irq(&gcwq->lock);
2818 2819 2820
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2821 2822
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2823 2824
		 */
		smp_rmb();
2825
		cwq = get_work_cwq(work);
2826
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2827
			goto already_gone;
2828
	} else if (wait_executing) {
2829
		worker = find_worker_executing_work(gcwq, work);
2830
		if (!worker)
T
Tejun Heo 已提交
2831
			goto already_gone;
2832
		cwq = worker->current_cwq;
2833 2834
	} else
		goto already_gone;
2835

2836
	insert_wq_barrier(cwq, barr, work, worker);
2837
	spin_unlock_irq(&gcwq->lock);
2838

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2849
	lock_map_release(&cwq->wq->lockdep_map);
2850

2851
	return true;
T
Tejun Heo 已提交
2852
already_gone:
2853
	spin_unlock_irq(&gcwq->lock);
2854
	return false;
2855
}
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
 * Wait until @work has finished execution.  This function considers
 * only the last queueing instance of @work.  If @work has been
 * enqueued across different CPUs on a non-reentrant workqueue or on
 * multiple workqueues, @work might still be executing on return on
 * some of the CPUs from earlier queueing.
 *
 * If @work was queued only on a non-reentrant, ordered or unbound
 * workqueue, @work is guaranteed to be idle on return if it hasn't
 * been requeued since flush started.
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2879 2880 2881
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2882 2883 2884 2885 2886 2887 2888
	if (start_flush_work(work, &barr, true)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else
		return false;
}
2889 2890
EXPORT_SYMBOL_GPL(flush_work);

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
{
	struct wq_barrier barr;
	struct worker *worker;

	spin_lock_irq(&gcwq->lock);

	worker = find_worker_executing_work(gcwq, work);
	if (unlikely(worker))
		insert_wq_barrier(worker->current_cwq, &barr, work, worker);

	spin_unlock_irq(&gcwq->lock);

	if (unlikely(worker)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else
		return false;
}

static bool wait_on_work(struct work_struct *work)
{
	bool ret = false;
	int cpu;

	might_sleep();

	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

	for_each_gcwq_cpu(cpu)
		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
	return ret;
}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
/**
 * flush_work_sync - wait until a work has finished execution
 * @work: the work to flush
 *
 * Wait until @work has finished execution.  On return, it's
 * guaranteed that all queueing instances of @work which happened
 * before this function is called are finished.  In other words, if
 * @work hasn't been requeued since this function was called, @work is
 * guaranteed to be idle on return.
 *
 * RETURNS:
 * %true if flush_work_sync() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work_sync(struct work_struct *work)
{
	struct wq_barrier barr;
	bool pending, waited;

	/* we'll wait for executions separately, queue barr only if pending */
	pending = start_flush_work(work, &barr, false);

	/* wait for executions to finish */
	waited = wait_on_work(work);

	/* wait for the pending one */
	if (pending) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
	}

	return pending || waited;
}
EXPORT_SYMBOL_GPL(flush_work_sync);

2962
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2963
{
2964
	unsigned long flags;
2965 2966 2967
	int ret;

	do {
2968 2969 2970 2971 2972 2973 2974
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
			wait_on_work(work);
2975 2976
	} while (unlikely(ret < 0));

2977 2978 2979 2980 2981
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

	wait_on_work(work);
2982
	clear_work_data(work);
2983 2984 2985
	return ret;
}

2986
/**
2987 2988
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2989
 *
2990 2991 2992 2993
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2994
 *
2995 2996
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2997
 *
2998
 * The caller must ensure that the workqueue on which @work was last
2999
 * queued can't be destroyed before this function returns.
3000 3001 3002
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
3003
 */
3004
bool cancel_work_sync(struct work_struct *work)
3005
{
3006
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
3007
}
3008
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
3009

3010
/**
3011 3012
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
3013
 *
3014 3015 3016
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
3017
 *
3018 3019 3020
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
3021
 */
3022 3023
bool flush_delayed_work(struct delayed_work *dwork)
{
3024
	local_irq_disable();
3025
	if (del_timer_sync(&dwork->timer))
3026
		__queue_work(dwork->cpu,
3027
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
3028
	local_irq_enable();
3029 3030 3031 3032
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
/**
 * flush_delayed_work_sync - wait for a dwork to finish
 * @dwork: the delayed work to flush
 *
 * Delayed timer is cancelled and the pending work is queued for
 * execution immediately.  Other than timer handling, its behavior
 * is identical to flush_work_sync().
 *
 * RETURNS:
 * %true if flush_work_sync() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_delayed_work_sync(struct delayed_work *dwork)
{
3047
	local_irq_disable();
3048
	if (del_timer_sync(&dwork->timer))
3049
		__queue_work(dwork->cpu,
3050
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
3051
	local_irq_enable();
3052 3053 3054 3055
	return flush_work_sync(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work_sync);

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3066
{
3067
	return __cancel_work_timer(&dwork->work, true);
3068
}
3069
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3070

3071
/**
3072 3073 3074 3075 3076 3077
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
3078
bool schedule_work_on(int cpu, struct work_struct *work)
3079 3080 3081 3082 3083
{
	return queue_work_on(cpu, system_wq, work);
}
EXPORT_SYMBOL(schedule_work_on);

3084 3085 3086 3087
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3088 3089
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3090 3091 3092 3093
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3094
 */
3095
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3096
{
3097
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3098
}
3099
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3100

3101 3102 3103 3104 3105
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
 * @dwork: job to be done
 * @delay: number of jiffies to wait
3106
 *
3107 3108
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
3109
 */
3110 3111
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
3112
{
3113
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3114
}
3115
EXPORT_SYMBOL(schedule_delayed_work_on);
3116

3117 3118
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3119 3120
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3121 3122 3123 3124
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3125
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3126
{
3127
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3128
}
3129
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3130

3131
/**
3132
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3133 3134
 * @func: the function to call
 *
3135 3136
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3137
 * schedule_on_each_cpu() is very slow.
3138 3139 3140
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3141
 */
3142
int schedule_on_each_cpu(work_func_t func)
3143 3144
{
	int cpu;
3145
	struct work_struct __percpu *works;
3146

3147 3148
	works = alloc_percpu(struct work_struct);
	if (!works)
3149
		return -ENOMEM;
3150

3151 3152
	get_online_cpus();

3153
	for_each_online_cpu(cpu) {
3154 3155 3156
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3157
		schedule_work_on(cpu, work);
3158
	}
3159 3160 3161 3162

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3163
	put_online_cpus();
3164
	free_percpu(works);
3165 3166 3167
	return 0;
}

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3192 3193
void flush_scheduled_work(void)
{
3194
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3195
}
3196
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3197

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3210
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3211 3212
{
	if (!in_interrupt()) {
3213
		fn(&ew->work);
3214 3215 3216
		return 0;
	}

3217
	INIT_WORK(&ew->work, fn);
3218 3219 3220 3221 3222 3223
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3224 3225
int keventd_up(void)
{
3226
	return system_wq != NULL;
L
Linus Torvalds 已提交
3227 3228
}

3229
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3230
{
3231
	/*
T
Tejun Heo 已提交
3232 3233 3234
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3235
	 */
T
Tejun Heo 已提交
3236 3237 3238
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3239

3240
	if (!(wq->flags & WQ_UNBOUND))
3241
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3242
	else {
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3255
	}
3256

3257
	/* just in case, make sure it's actually aligned */
3258 3259
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3260 3261
}

3262
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3263
{
3264
	if (!(wq->flags & WQ_UNBOUND))
3265 3266 3267
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3268
		kfree(*(void **)(wq->cpu_wq.single + 1));
3269
	}
T
Tejun Heo 已提交
3270 3271
}

3272 3273
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3274
{
3275 3276 3277
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
3278 3279
		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
		       "is out of range, clamping between %d and %d\n",
3280
		       max_active, name, 1, lim);
3281

3282
	return clamp_val(max_active, 1, lim);
3283 3284
}

3285
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3286 3287 3288
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3289
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3290
{
3291
	va_list args, args1;
L
Linus Torvalds 已提交
3292
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3293
	unsigned int cpu;
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3308

3309 3310 3311 3312 3313 3314 3315
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3316
	max_active = max_active ?: WQ_DFL_ACTIVE;
3317
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3318

3319
	/* init wq */
3320
	wq->flags = flags;
3321
	wq->saved_max_active = max_active;
3322 3323 3324 3325
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3326

3327
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3328
	INIT_LIST_HEAD(&wq->list);
3329

3330 3331 3332
	if (alloc_cwqs(wq) < 0)
		goto err;

3333
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3334
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3335
		struct global_cwq *gcwq = get_gcwq(cpu);
3336
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3337

T
Tejun Heo 已提交
3338
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3339
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3340
		cwq->wq = wq;
3341
		cwq->flush_color = -1;
3342 3343
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3344
	}
T
Tejun Heo 已提交
3345

3346 3347 3348
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3349
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3350 3351 3352 3353 3354 3355
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3356 3357
		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
					       wq->name);
3358 3359 3360 3361 3362
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3363 3364
	}

3365 3366 3367 3368 3369
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3370
	spin_lock(&workqueue_lock);
3371

3372
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3373
		for_each_cwq_cpu(cpu, wq)
3374 3375
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3376
	list_add(&wq->list, &workqueues);
3377

T
Tejun Heo 已提交
3378 3379
	spin_unlock(&workqueue_lock);

3380
	return wq;
T
Tejun Heo 已提交
3381 3382
err:
	if (wq) {
3383
		free_cwqs(wq);
3384
		free_mayday_mask(wq->mayday_mask);
3385
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3386 3387 3388
		kfree(wq);
	}
	return NULL;
3389
}
3390
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3391

3392 3393 3394 3395 3396 3397 3398 3399
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3400
	unsigned int cpu;
3401

3402 3403
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3404

3405 3406 3407 3408
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3409
	spin_lock(&workqueue_lock);
3410
	list_del(&wq->list);
3411
	spin_unlock(&workqueue_lock);
3412

3413
	/* sanity check */
3414
	for_each_cwq_cpu(cpu, wq) {
3415 3416 3417 3418 3419
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3420 3421
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3422
	}
3423

3424 3425
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3426
		free_mayday_mask(wq->mayday_mask);
3427
		kfree(wq->rescuer);
3428 3429
	}

3430
	free_cwqs(wq);
3431 3432 3433 3434
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3449
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3450 3451 3452 3453 3454

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3455
	for_each_cwq_cpu(cpu, wq) {
3456 3457 3458 3459
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

3460
		if (!(wq->flags & WQ_FREEZABLE) ||
3461 3462
		    !(gcwq->flags & GCWQ_FREEZING))
			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3463

3464
		spin_unlock_irq(&gcwq->lock);
3465
	}
3466

3467
	spin_unlock(&workqueue_lock);
3468
}
3469
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3470

3471
/**
3472 3473 3474
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3475
 *
3476 3477 3478
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3479
 *
3480 3481
 * RETURNS:
 * %true if congested, %false otherwise.
3482
 */
3483
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3484
{
3485 3486 3487
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3488
}
3489
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3490

3491
/**
3492 3493
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3494
 *
3495
 * RETURNS:
3496
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3497
 */
3498
unsigned int work_cpu(struct work_struct *work)
3499
{
3500
	struct global_cwq *gcwq = get_work_gcwq(work);
3501

3502
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3503
}
3504
EXPORT_SYMBOL_GPL(work_cpu);
3505

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3520
{
3521 3522 3523
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3524

3525 3526
	if (!gcwq)
		return false;
L
Linus Torvalds 已提交
3527

3528
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3529

3530 3531 3532 3533
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3534

3535
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3536

3537
	return ret;
L
Linus Torvalds 已提交
3538
}
3539
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3540

3541 3542 3543
/*
 * CPU hotplug.
 *
3544 3545 3546 3547 3548 3549 3550
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3551 3552 3553
 * This is solved by allowing a gcwq to be disassociated from the CPU
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3554
 */
L
Linus Torvalds 已提交
3555

3556
/* claim manager positions of all pools */
T
Tejun Heo 已提交
3557
static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3558 3559 3560 3561 3562
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
		mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3563
	spin_lock_irq(&gcwq->lock);
3564 3565 3566
}

/* release manager positions */
T
Tejun Heo 已提交
3567
static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3568 3569 3570
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3571
	spin_unlock_irq(&gcwq->lock);
3572 3573 3574 3575
	for_each_worker_pool(pool, gcwq)
		mutex_unlock(&pool->manager_mutex);
}

3576
static void gcwq_unbind_fn(struct work_struct *work)
3577
{
3578
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3579
	struct worker_pool *pool;
3580 3581 3582
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3583

3584 3585
	BUG_ON(gcwq->cpu != smp_processor_id());

T
Tejun Heo 已提交
3586
	gcwq_claim_management_and_lock(gcwq);
3587

3588 3589 3590 3591 3592 3593
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3594
	for_each_worker_pool(pool, gcwq)
3595
		list_for_each_entry(worker, &pool->idle_list, entry)
3596
			worker->flags |= WORKER_UNBOUND;
3597

3598
	for_each_busy_worker(worker, i, pos, gcwq)
3599
		worker->flags |= WORKER_UNBOUND;
3600

3601 3602
	gcwq->flags |= GCWQ_DISASSOCIATED;

T
Tejun Heo 已提交
3603
	gcwq_release_management_and_unlock(gcwq);
3604

3605
	/*
3606
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3607 3608
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3609 3610
	 */
	schedule();
3611

3612
	/*
3613 3614 3615 3616 3617 3618 3619 3620 3621
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3622
	 */
3623 3624
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3625 3626
}

T
Tejun Heo 已提交
3627 3628 3629 3630 3631 3632 3633
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
					       unsigned long action,
					       void *hcpu)
3634 3635
{
	unsigned int cpu = (unsigned long)hcpu;
3636
	struct global_cwq *gcwq = get_gcwq(cpu);
3637
	struct worker_pool *pool;
3638

T
Tejun Heo 已提交
3639
	switch (action & ~CPU_TASKS_FROZEN) {
3640
	case CPU_UP_PREPARE:
3641
		for_each_worker_pool(pool, gcwq) {
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3654
		}
T
Tejun Heo 已提交
3655
		break;
3656

3657 3658
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
T
Tejun Heo 已提交
3659
		gcwq_claim_management_and_lock(gcwq);
3660
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3661
		rebind_workers(gcwq);
T
Tejun Heo 已提交
3662
		gcwq_release_management_and_unlock(gcwq);
3663
		break;
3664
	}
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3676 3677 3678
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3679 3680
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3681 3682
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3683
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3684 3685
		flush_work(&unbind_work);
		break;
3686 3687 3688 3689
	}
	return NOTIFY_OK;
}

3690
#ifdef CONFIG_SMP
3691

3692
struct work_for_cpu {
3693
	struct completion completion;
3694 3695 3696 3697 3698
	long (*fn)(void *);
	void *arg;
	long ret;
};

3699
static int do_work_for_cpu(void *_wfc)
3700
{
3701
	struct work_for_cpu *wfc = _wfc;
3702
	wfc->ret = wfc->fn(wfc->arg);
3703 3704
	complete(&wfc->completion);
	return 0;
3705 3706 3707 3708 3709 3710 3711 3712
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3713 3714
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3715
 * The caller must not hold any locks which would prevent @fn from completing.
3716 3717 3718
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	struct task_struct *sub_thread;
	struct work_for_cpu wfc = {
		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
		.fn = fn,
		.arg = arg,
	};

	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
	if (IS_ERR(sub_thread))
		return PTR_ERR(sub_thread);
	kthread_bind(sub_thread, cpu);
	wake_up_process(sub_thread);
	wait_for_completion(&wfc.completion);
3732 3733 3734 3735 3736
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3737 3738 3739 3740 3741
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3742 3743 3744
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3745 3746
 *
 * CONTEXT:
3747
 * Grabs and releases workqueue_lock and gcwq->lock's.
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3758
	for_each_gcwq_cpu(cpu) {
3759
		struct global_cwq *gcwq = get_gcwq(cpu);
3760
		struct workqueue_struct *wq;
3761 3762 3763

		spin_lock_irq(&gcwq->lock);

3764 3765 3766
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3767 3768 3769
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3770
			if (cwq && wq->flags & WQ_FREEZABLE)
3771 3772
				cwq->max_active = 0;
		}
3773 3774

		spin_unlock_irq(&gcwq->lock);
3775 3776 3777 3778 3779 3780
	}

	spin_unlock(&workqueue_lock);
}

/**
3781
 * freeze_workqueues_busy - are freezable workqueues still busy?
3782 3783 3784 3785 3786 3787 3788 3789
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3790 3791
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3802
	for_each_gcwq_cpu(cpu) {
3803
		struct workqueue_struct *wq;
3804 3805 3806 3807 3808 3809 3810
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3811
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3830
 * frozen works are transferred to their respective gcwq worklists.
3831 3832
 *
 * CONTEXT:
3833
 * Grabs and releases workqueue_lock and gcwq->lock's.
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3844
	for_each_gcwq_cpu(cpu) {
3845
		struct global_cwq *gcwq = get_gcwq(cpu);
3846
		struct worker_pool *pool;
3847
		struct workqueue_struct *wq;
3848 3849 3850

		spin_lock_irq(&gcwq->lock);

3851 3852 3853
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3854 3855 3856
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3857
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3858 3859 3860 3861 3862 3863 3864 3865 3866
				continue;

			/* restore max_active and repopulate worklist */
			cwq->max_active = wq->saved_max_active;

			while (!list_empty(&cwq->delayed_works) &&
			       cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
3867

3868 3869
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3870

3871
		spin_unlock_irq(&gcwq->lock);
3872 3873 3874 3875 3876 3877 3878 3879
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3880
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3881
{
T
Tejun Heo 已提交
3882
	unsigned int cpu;
T
Tejun Heo 已提交
3883
	int i;
T
Tejun Heo 已提交
3884

3885 3886 3887 3888
	/* make sure we have enough bits for OFFQ CPU number */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
		     WORK_CPU_LAST);

3889 3890
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
	cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3891 3892

	/* initialize gcwqs */
3893
	for_each_gcwq_cpu(cpu) {
3894
		struct global_cwq *gcwq = get_gcwq(cpu);
3895
		struct worker_pool *pool;
3896 3897 3898

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;
3899
		gcwq->flags |= GCWQ_DISASSOCIATED;
3900

T
Tejun Heo 已提交
3901 3902 3903
		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);

3904 3905 3906 3907
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3908

3909 3910 3911
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3912

3913 3914 3915
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3916
			mutex_init(&pool->manager_mutex);
3917 3918
			ida_init(&pool->worker_ida);
		}
3919

3920
		init_waitqueue_head(&gcwq->rebind_hold);
3921 3922
	}

3923
	/* create the initial worker */
3924
	for_each_online_gcwq_cpu(cpu) {
3925
		struct global_cwq *gcwq = get_gcwq(cpu);
3926
		struct worker_pool *pool;
3927

3928 3929
		if (cpu != WORK_CPU_UNBOUND)
			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3930 3931 3932 3933

		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3934
			worker = create_worker(pool);
3935 3936 3937 3938 3939
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3940 3941
	}

3942
	system_wq = alloc_workqueue("events", 0, 0);
3943
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3944 3945
	system_long_wq = alloc_workqueue("events_long", 0, 0);
	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3946 3947
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3948 3949
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3950 3951
	system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
			WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3952 3953 3954
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
	       !system_nrt_wq || !system_unbound_wq || !system_freezable_wq ||
	       !system_nrt_freezable_wq);
3955
	return 0;
L
Linus Torvalds 已提交
3956
}
3957
early_initcall(init_workqueues);