workqueue.c 145.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131 132 133 134
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      sched-RCU for reads.
 *
135 136
 * WQ: wq->mutex protected.
 *
137
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138 139
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
140 141
 */

142
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
143

144
struct worker_pool {
145
	spinlock_t		lock;		/* the pool lock */
146
	int			cpu;		/* I: the associated cpu */
147
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
148
	int			id;		/* I: pool ID */
149
	unsigned int		flags;		/* X: flags */
150 151 152

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
153 154

	/* nr_idle includes the ones off idle_list for rebinding */
155 156 157 158 159 160
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

161
	/* a workers is either on busy_hash or idle_list, or the manager */
162 163 164
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

165
	/* see manage_workers() for details on the two manager mutexes */
166
	struct mutex		manager_arb;	/* manager arbitration */
167
	struct worker		*manager;	/* L: purely informational */
168 169
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
170
	struct completion	*detach_completion; /* all workers detached */
171

172
	struct ida		worker_ida;	/* worker IDs for task name */
173

T
Tejun Heo 已提交
174
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
175 176
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
177

178 179 180 181 182 183
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
184 185 186 187 188 189

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
190 191
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
192
/*
193 194 195 196
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
197
 */
198
struct pool_workqueue {
199
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
200
	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 202
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
203
	int			refcnt;		/* L: reference count */
204 205
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
206
	int			nr_active;	/* L: nr of active works */
207
	int			max_active;	/* L: max active works */
208
	struct list_head	delayed_works;	/* L: delayed works */
209
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
210
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
211 212 213 214 215

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
216
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
217 218 219
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
220
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
221

222 223 224 225
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
226 227
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
228 229 230
	struct completion	done;		/* flush completion */
};

231 232
struct wq_device;

L
Linus Torvalds 已提交
233
/*
234 235
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
236 237
 */
struct workqueue_struct {
238
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
239
	struct list_head	list;		/* PR: list of all workqueues */
240

241 242 243
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
244
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
245 246 247
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
248

249
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
250 251
	struct worker		*rescuer;	/* I: rescue worker */

252
	int			nr_drainers;	/* WQ: drain in progress */
253
	int			saved_max_active; /* WQ: saved pwq max_active */
254

255 256
	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
257

258 259 260
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
261
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
262
	struct lockdep_map	lockdep_map;
263
#endif
264
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
265

266 267 268 269 270 271 272
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

273 274 275
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
276
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
277 278
};

279 280
static struct kmem_cache *pwq_cache;

281 282 283
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

284 285 286
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

287 288 289 290 291 292 293 294 295
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

296 297
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

298 299 300
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

301
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
303

304
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
305
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
306

307
static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
308

309 310 311 312
/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

313
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
314

315
/* PL: hash of all unbound pools keyed by pool->attrs */
316 317
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

318
/* I: attributes used when instantiating standard unbound pools on demand */
319 320
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

321 322 323
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

324
struct workqueue_struct *system_wq __read_mostly;
325
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
326
struct workqueue_struct *system_highpri_wq __read_mostly;
327
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
328
struct workqueue_struct *system_long_wq __read_mostly;
329
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
330
struct workqueue_struct *system_unbound_wq __read_mostly;
331
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
332
struct workqueue_struct *system_freezable_wq __read_mostly;
333
EXPORT_SYMBOL_GPL(system_freezable_wq);
334 335 336 337
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
338

339
static int worker_thread(void *__worker);
340
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
341

342 343 344
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

345
#define assert_rcu_or_pool_mutex()					\
346
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
347 348
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
349

350
#define assert_rcu_or_wq_mutex(wq)					\
351
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
352
			   lockdep_is_held(&wq->mutex),			\
353
			   "sched RCU or wq->mutex should be held")
354

355 356 357 358 359 360
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&wq->mutex) ||		\
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU, wq->mutex or wq_pool_mutex should be held")

361 362 363
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
364
	     (pool)++)
365

T
Tejun Heo 已提交
366 367 368
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
369
 * @pi: integer used for iteration
370
 *
371 372 373
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
374 375 376
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
377
 */
378 379
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
380
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
381
		else
T
Tejun Heo 已提交
382

383 384 385 386 387
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
388
 * This must be called with @pool->attach_mutex.
389 390 391 392
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
393 394
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
395
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
396 397
		else

398 399 400 401
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
402
 *
403
 * This must be called either with wq->mutex held or sched RCU read locked.
404 405
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
406 407 408
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
409 410
 */
#define for_each_pwq(pwq, wq)						\
411
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
412
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
413
		else
414

415 416 417 418
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

419 420 421 422 423
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
459
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
495
	.debug_hint	= work_debug_hint,
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

526 527 528 529 530 531 532
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

533 534 535 536 537
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

538 539 540 541 542 543 544
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
545 546 547 548
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

549
	lockdep_assert_held(&wq_pool_mutex);
550

551 552
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
553
	if (ret >= 0) {
T
Tejun Heo 已提交
554
		pool->id = ret;
555 556
		return 0;
	}
557
	return ret;
558 559
}

560 561 562 563 564
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
565 566
 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 * read locked.
567 568
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
569 570
 *
 * Return: The unbound pool_workqueue for @node.
571 572 573 574
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
575
	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
576 577 578
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
594

595
/*
596 597
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
598
 * is cleared and the high bits contain OFFQ flags and pool ID.
599
 *
600 601
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
602 603
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
604
 *
605
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606
 * corresponding to a work.  Pool is available once the work has been
607
 * queued anywhere after initialization until it is sync canceled.  pwq is
608
 * available only while the work item is queued.
609
 *
610 611 612 613
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
614
 */
615 616
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
617
{
618
	WARN_ON_ONCE(!work_pending(work));
619 620
	atomic_long_set(&work->data, data | flags | work_static(work));
}
621

622
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 624
			 unsigned long extra_flags)
{
625 626
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 628
}

629 630 631 632 633 634 635
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

636 637
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
638
{
639 640 641 642 643 644 645
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
646
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647
}
648

649
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
650
{
651 652
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
653 654
}

655
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
656
{
657
	unsigned long data = atomic_long_read(&work->data);
658

659
	if (data & WORK_STRUCT_PWQ)
660 661 662
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
663 664
}

665 666 667 668
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
669 670 671
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
672 673 674 675 676
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
677 678
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
679 680
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
681
{
682
	unsigned long data = atomic_long_read(&work->data);
683
	int pool_id;
684

685
	assert_rcu_or_pool_mutex();
686

687 688
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
689
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
690

691 692
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
693 694
		return NULL;

695
	return idr_find(&worker_pool_idr, pool_id);
696 697 698 699 700 701
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
702
 * Return: The worker_pool ID @work was last associated with.
703 704 705 706
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
707 708
	unsigned long data = atomic_long_read(&work->data);

709 710
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
711
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
712

713
	return data >> WORK_OFFQ_POOL_SHIFT;
714 715
}

716 717
static void mark_work_canceling(struct work_struct *work)
{
718
	unsigned long pool_id = get_work_pool_id(work);
719

720 721
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
722 723 724 725 726 727
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

728
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
729 730
}

731
/*
732 733
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
734
 * they're being called with pool->lock held.
735 736
 */

737
static bool __need_more_worker(struct worker_pool *pool)
738
{
739
	return !atomic_read(&pool->nr_running);
740 741
}

742
/*
743 744
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
745 746
 *
 * Note that, because unbound workers never contribute to nr_running, this
747
 * function will always return %true for unbound pools as long as the
748
 * worklist isn't empty.
749
 */
750
static bool need_more_worker(struct worker_pool *pool)
751
{
752
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
753
}
754

755
/* Can I start working?  Called from busy but !running workers. */
756
static bool may_start_working(struct worker_pool *pool)
757
{
758
	return pool->nr_idle;
759 760 761
}

/* Do I need to keep working?  Called from currently running workers. */
762
static bool keep_working(struct worker_pool *pool)
763
{
764 765
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
766 767 768
}

/* Do we need a new worker?  Called from manager. */
769
static bool need_to_create_worker(struct worker_pool *pool)
770
{
771
	return need_more_worker(pool) && !may_start_working(pool);
772
}
773

774
/* Do we have too many workers and should some go away? */
775
static bool too_many_workers(struct worker_pool *pool)
776
{
777
	bool managing = mutex_is_locked(&pool->manager_arb);
778 779
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
780 781

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
782 783
}

784
/*
785 786 787
 * Wake up functions.
 */

788 789
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
790
{
791
	if (unlikely(list_empty(&pool->idle_list)))
792 793
		return NULL;

794
	return list_first_entry(&pool->idle_list, struct worker, entry);
795 796 797 798
}

/**
 * wake_up_worker - wake up an idle worker
799
 * @pool: worker pool to wake worker from
800
 *
801
 * Wake up the first idle worker of @pool.
802 803
 *
 * CONTEXT:
804
 * spin_lock_irq(pool->lock).
805
 */
806
static void wake_up_worker(struct worker_pool *pool)
807
{
808
	struct worker *worker = first_idle_worker(pool);
809 810 811 812 813

	if (likely(worker))
		wake_up_process(worker->task);
}

814
/**
815 816 817 818 819 820 821 822 823 824
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
825
void wq_worker_waking_up(struct task_struct *task, int cpu)
826 827 828
{
	struct worker *worker = kthread_data(task);

829
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
830
		WARN_ON_ONCE(worker->pool->cpu != cpu);
831
		atomic_inc(&worker->pool->nr_running);
832
	}
833 834 835 836 837 838 839 840 841 842 843 844 845 846
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
847
 * Return:
848 849
 * Worker task on @cpu to wake up, %NULL if none.
 */
850
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
851 852
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
853
	struct worker_pool *pool;
854

855 856 857 858 859
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
860
	if (worker->flags & WORKER_NOT_RUNNING)
861 862
		return NULL;

863 864
	pool = worker->pool;

865
	/* this can only happen on the local cpu */
866
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
867
		return NULL;
868 869 870 871 872 873

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
874 875 876
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
877
	 * manipulating idle_list, so dereferencing idle_list without pool
878
	 * lock is safe.
879
	 */
880 881
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
882
		to_wakeup = first_idle_worker(pool);
883 884 885 886 887
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
888
 * @worker: self
889 890
 * @flags: flags to set
 *
891
 * Set @flags in @worker->flags and adjust nr_running accordingly.
892
 *
893
 * CONTEXT:
894
 * spin_lock_irq(pool->lock)
895
 */
896
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
897
{
898
	struct worker_pool *pool = worker->pool;
899

900 901
	WARN_ON_ONCE(worker->task != current);

902
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
903 904
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
905
		atomic_dec(&pool->nr_running);
906 907
	}

908 909 910 911
	worker->flags |= flags;
}

/**
912
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
913
 * @worker: self
914 915
 * @flags: flags to clear
 *
916
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
917
 *
918
 * CONTEXT:
919
 * spin_lock_irq(pool->lock)
920 921 922
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
923
	struct worker_pool *pool = worker->pool;
924 925
	unsigned int oflags = worker->flags;

926 927
	WARN_ON_ONCE(worker->task != current);

928
	worker->flags &= ~flags;
929

930 931 932 933 934
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
935 936
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
937
			atomic_inc(&pool->nr_running);
938 939
}

940 941
/**
 * find_worker_executing_work - find worker which is executing a work
942
 * @pool: pool of interest
943 944
 * @work: work to find worker for
 *
945 946
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
947 948 949 950 951 952 953 954 955 956 957 958
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
959 960 961 962 963 964
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
965 966
 *
 * CONTEXT:
967
 * spin_lock_irq(pool->lock).
968
 *
969 970
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
971
 * otherwise.
972
 */
973
static struct worker *find_worker_executing_work(struct worker_pool *pool,
974
						 struct work_struct *work)
975
{
976 977
	struct worker *worker;

978
	hash_for_each_possible(pool->busy_hash, worker, hentry,
979 980 981
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
982 983 984
			return worker;

	return NULL;
985 986
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1002
 * spin_lock_irq(pool->lock).
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1086
static void pwq_activate_delayed_work(struct work_struct *work)
1087
{
1088
	struct pool_workqueue *pwq = get_work_pwq(work);
1089 1090

	trace_workqueue_activate_work(work);
1091
	move_linked_works(work, &pwq->pool->worklist, NULL);
1092
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1093
	pwq->nr_active++;
1094 1095
}

1096
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1097
{
1098
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1099 1100
						    struct work_struct, entry);

1101
	pwq_activate_delayed_work(work);
1102 1103
}

1104
/**
1105 1106
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1107 1108 1109
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1110
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1111 1112
 *
 * CONTEXT:
1113
 * spin_lock_irq(pool->lock).
1114
 */
1115
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1116
{
T
Tejun Heo 已提交
1117
	/* uncolored work items don't participate in flushing or nr_active */
1118
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1119
		goto out_put;
1120

1121
	pwq->nr_in_flight[color]--;
1122

1123 1124
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1125
		/* one down, submit a delayed one */
1126 1127
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1128 1129 1130
	}

	/* is flush in progress and are we at the flushing tip? */
1131
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1132
		goto out_put;
1133 1134

	/* are there still in-flight works? */
1135
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1136
		goto out_put;
1137

1138 1139
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1140 1141

	/*
1142
	 * If this was the last pwq, wake up the first flusher.  It
1143 1144
	 * will handle the rest.
	 */
1145 1146
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1147 1148
out_put:
	put_pwq(pwq);
1149 1150
}

1151
/**
1152
 * try_to_grab_pending - steal work item from worklist and disable irq
1153 1154
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1155
 * @flags: place to store irq state
1156 1157
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1158
 * stable state - idle, on timer or on worklist.
1159
 *
1160
 * Return:
1161 1162 1163
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1164 1165
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1166
 *
1167
 * Note:
1168
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1169 1170 1171
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1172 1173 1174 1175
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1176
 * This function is safe to call from any context including IRQ handler.
1177
 */
1178 1179
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1180
{
1181
	struct worker_pool *pool;
1182
	struct pool_workqueue *pwq;
1183

1184 1185
	local_irq_save(*flags);

1186 1187 1188 1189
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1190 1191 1192 1193 1194
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1195 1196 1197 1198 1199
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1200 1201 1202 1203 1204 1205 1206
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1207 1208
	pool = get_work_pool(work);
	if (!pool)
1209
		goto fail;
1210

1211
	spin_lock(&pool->lock);
1212
	/*
1213 1214 1215 1216 1217
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1218 1219
	 * item is currently queued on that pool.
	 */
1220 1221
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1222 1223 1224 1225 1226
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1227
		 * on the delayed_list, will confuse pwq->nr_active
1228 1229 1230 1231
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1232
			pwq_activate_delayed_work(work);
1233 1234

		list_del_init(&work->entry);
1235
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1236

1237
		/* work->data points to pwq iff queued, point to pool */
1238 1239 1240 1241
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1242
	}
1243
	spin_unlock(&pool->lock);
1244 1245 1246 1247 1248
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1249
	return -EAGAIN;
1250 1251
}

T
Tejun Heo 已提交
1252
/**
1253
 * insert_work - insert a work into a pool
1254
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1255 1256 1257 1258
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1259
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1260
 * work_struct flags.
T
Tejun Heo 已提交
1261 1262
 *
 * CONTEXT:
1263
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1264
 */
1265 1266
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1267
{
1268
	struct worker_pool *pool = pwq->pool;
1269

T
Tejun Heo 已提交
1270
	/* we own @work, set data and link */
1271
	set_work_pwq(work, pwq, extra_flags);
1272
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1273
	get_pwq(pwq);
1274 1275

	/*
1276 1277 1278
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1279 1280 1281
	 */
	smp_mb();

1282 1283
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1284 1285
}

1286 1287
/*
 * Test whether @work is being queued from another work executing on the
1288
 * same workqueue.
1289 1290 1291
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1292 1293 1294 1295 1296 1297 1298
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1299
	return worker && worker->current_pwq->wq == wq;
1300 1301
}

1302
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1303 1304
			 struct work_struct *work)
{
1305
	struct pool_workqueue *pwq;
1306
	struct worker_pool *last_pool;
1307
	struct list_head *worklist;
1308
	unsigned int work_flags;
1309
	unsigned int req_cpu = cpu;
1310 1311 1312 1313 1314 1315 1316 1317

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1318

1319
	debug_work_activate(work);
1320

1321
	/* if draining, only works from the same workqueue are allowed */
1322
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1323
	    WARN_ON_ONCE(!is_chained_work(wq)))
1324
		return;
1325
retry:
1326 1327 1328
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1329
	/* pwq which will be used unless @work is executing elsewhere */
1330
	if (!(wq->flags & WQ_UNBOUND))
1331
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1332 1333
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1334

1335 1336 1337 1338 1339 1340 1341 1342
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1343

1344
		spin_lock(&last_pool->lock);
1345

1346
		worker = find_worker_executing_work(last_pool, work);
1347

1348 1349
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1350
		} else {
1351 1352
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1353
			spin_lock(&pwq->pool->lock);
1354
		}
1355
	} else {
1356
		spin_lock(&pwq->pool->lock);
1357 1358
	}

1359 1360 1361 1362
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1363 1364
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1378 1379
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1380

1381
	if (WARN_ON(!list_empty(&work->entry))) {
1382
		spin_unlock(&pwq->pool->lock);
1383 1384
		return;
	}
1385

1386 1387
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1388

1389
	if (likely(pwq->nr_active < pwq->max_active)) {
1390
		trace_workqueue_activate_work(work);
1391 1392
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1393 1394
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1395
		worklist = &pwq->delayed_works;
1396
	}
1397

1398
	insert_work(pwq, work, worklist, work_flags);
1399

1400
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1401 1402
}

1403
/**
1404 1405
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1406 1407 1408
 * @wq: workqueue to use
 * @work: work to queue
 *
1409 1410
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1411 1412
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1413
 */
1414 1415
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1416
{
1417
	bool ret = false;
1418
	unsigned long flags;
1419

1420
	local_irq_save(flags);
1421

1422
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1423
		__queue_work(cpu, wq, work);
1424
		ret = true;
1425
	}
1426

1427
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1428 1429
	return ret;
}
1430
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1431

1432
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1433
{
1434
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1435

1436
	/* should have been called from irqsafe timer with irq already off */
1437
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1438
}
1439
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1440

1441 1442
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1443
{
1444 1445 1446 1447 1448
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1449 1450
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1463
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1464

1465
	dwork->wq = wq;
1466
	dwork->cpu = cpu;
1467 1468 1469 1470 1471 1472
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1473 1474
}

1475 1476 1477 1478
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1479
 * @dwork: work to queue
1480 1481
 * @delay: number of jiffies to wait before queueing
 *
1482
 * Return: %false if @work was already on a queue, %true otherwise.  If
1483 1484
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1485
 */
1486 1487
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1488
{
1489
	struct work_struct *work = &dwork->work;
1490
	bool ret = false;
1491
	unsigned long flags;
1492

1493 1494
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1495

1496
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1497
		__queue_delayed_work(cpu, wq, dwork, delay);
1498
		ret = true;
1499
	}
1500

1501
	local_irq_restore(flags);
1502 1503
	return ret;
}
1504
EXPORT_SYMBOL(queue_delayed_work_on);
1505

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1518
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1519 1520
 * pending and its timer was modified.
 *
1521
 * This function is safe to call from any context including IRQ handler.
1522 1523 1524 1525 1526 1527 1528
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1529

1530 1531 1532
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1533

1534 1535 1536
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1537
	}
1538 1539

	/* -ENOENT from try_to_grab_pending() becomes %true */
1540 1541
	return ret;
}
1542 1543
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1544 1545 1546 1547 1548 1549 1550 1551
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1552
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1553 1554
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1555
{
1556
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1557

1558 1559 1560 1561
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1562

1563
	/* can't use worker_set_flags(), also called from create_worker() */
1564
	worker->flags |= WORKER_IDLE;
1565
	pool->nr_idle++;
1566
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1567 1568

	/* idle_list is LIFO */
1569
	list_add(&worker->entry, &pool->idle_list);
1570

1571 1572
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1573

1574
	/*
1575
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1576
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1577 1578
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1579
	 */
1580
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1581
		     pool->nr_workers == pool->nr_idle &&
1582
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1592
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1593 1594 1595
 */
static void worker_leave_idle(struct worker *worker)
{
1596
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1597

1598 1599
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1600
	worker_clr_flags(worker, WORKER_IDLE);
1601
	pool->nr_idle--;
T
Tejun Heo 已提交
1602 1603 1604
	list_del_init(&worker->entry);
}

1605
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1606 1607 1608
{
	struct worker *worker;

1609
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1610 1611
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1612
		INIT_LIST_HEAD(&worker->scheduled);
1613
		INIT_LIST_HEAD(&worker->node);
1614 1615
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1616
	}
T
Tejun Heo 已提交
1617 1618 1619
	return worker;
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1653 1654 1655 1656 1657
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1658 1659 1660
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1661 1662 1663 1664 1665 1666
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1667
	mutex_lock(&pool->attach_mutex);
1668 1669
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1670
		detach_completion = pool->detach_completion;
1671
	mutex_unlock(&pool->attach_mutex);
1672

1673 1674 1675
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1676 1677 1678 1679
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1680 1681
/**
 * create_worker - create a new workqueue worker
1682
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1683
 *
1684
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1685 1686 1687 1688
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1689
 * Return:
T
Tejun Heo 已提交
1690 1691
 * Pointer to the newly created worker.
 */
1692
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1693 1694
{
	struct worker *worker = NULL;
1695
	int id = -1;
1696
	char id_buf[16];
T
Tejun Heo 已提交
1697

1698 1699
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1700 1701
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1702

1703
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1704 1705 1706
	if (!worker)
		goto fail;

1707
	worker->pool = pool;
T
Tejun Heo 已提交
1708 1709
	worker->id = id;

1710
	if (pool->cpu >= 0)
1711 1712
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1713
	else
1714 1715
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1716
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1717
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1718 1719 1720
	if (IS_ERR(worker->task))
		goto fail;

1721 1722 1723 1724 1725
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1726
	/* successful, attach the worker to the pool */
1727
	worker_attach_to_pool(worker, pool);
1728

1729 1730 1731 1732 1733 1734 1735
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1736
	return worker;
1737

T
Tejun Heo 已提交
1738
fail:
1739
	if (id >= 0)
1740
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1741 1742 1743 1744 1745 1746 1747 1748
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1749 1750
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1751 1752
 *
 * CONTEXT:
1753
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1754 1755 1756
 */
static void destroy_worker(struct worker *worker)
{
1757
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1758

1759 1760
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1761
	/* sanity check frenzy */
1762
	if (WARN_ON(worker->current_work) ||
1763 1764
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1765
		return;
T
Tejun Heo 已提交
1766

1767 1768
	pool->nr_workers--;
	pool->nr_idle--;
1769

T
Tejun Heo 已提交
1770
	list_del_init(&worker->entry);
1771
	worker->flags |= WORKER_DIE;
1772
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1773 1774
}

1775
static void idle_worker_timeout(unsigned long __pool)
1776
{
1777
	struct worker_pool *pool = (void *)__pool;
1778

1779
	spin_lock_irq(&pool->lock);
1780

1781
	while (too_many_workers(pool)) {
1782 1783 1784 1785
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1786
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1787 1788
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1789
		if (time_before(jiffies, expires)) {
1790
			mod_timer(&pool->idle_timer, expires);
1791
			break;
1792
		}
1793 1794

		destroy_worker(worker);
1795 1796
	}

1797
	spin_unlock_irq(&pool->lock);
1798
}
1799

1800
static void send_mayday(struct work_struct *work)
1801
{
1802 1803
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1804

1805
	lockdep_assert_held(&wq_mayday_lock);
1806

1807
	if (!wq->rescuer)
1808
		return;
1809 1810

	/* mayday mayday mayday */
1811
	if (list_empty(&pwq->mayday_node)) {
1812 1813 1814 1815 1816 1817
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1818
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1819
		wake_up_process(wq->rescuer->task);
1820
	}
1821 1822
}

1823
static void pool_mayday_timeout(unsigned long __pool)
1824
{
1825
	struct worker_pool *pool = (void *)__pool;
1826 1827
	struct work_struct *work;

1828 1829
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1830

1831
	if (need_to_create_worker(pool)) {
1832 1833 1834 1835 1836 1837
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1838
		list_for_each_entry(work, &pool->worklist, entry)
1839
			send_mayday(work);
L
Linus Torvalds 已提交
1840
	}
1841

1842 1843
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1844

1845
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1846 1847
}

1848 1849
/**
 * maybe_create_worker - create a new worker if necessary
1850
 * @pool: pool to create a new worker for
1851
 *
1852
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1853 1854
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1855
 * sent to all rescuers with works scheduled on @pool to resolve
1856 1857
 * possible allocation deadlock.
 *
1858 1859
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1860 1861
 *
 * LOCKING:
1862
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1863 1864 1865
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1866
static void maybe_create_worker(struct worker_pool *pool)
1867 1868
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1869
{
1870
restart:
1871
	spin_unlock_irq(&pool->lock);
1872

1873
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1874
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1875 1876

	while (true) {
1877
		if (create_worker(pool) || !need_to_create_worker(pool))
1878
			break;
L
Linus Torvalds 已提交
1879

1880
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1881

1882
		if (!need_to_create_worker(pool))
1883 1884 1885
			break;
	}

1886
	del_timer_sync(&pool->mayday_timer);
1887
	spin_lock_irq(&pool->lock);
1888 1889 1890 1891 1892
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1893
	if (need_to_create_worker(pool))
1894 1895 1896
		goto restart;
}

1897
/**
1898 1899
 * manage_workers - manage worker pool
 * @worker: self
1900
 *
1901
 * Assume the manager role and manage the worker pool @worker belongs
1902
 * to.  At any given time, there can be only zero or one manager per
1903
 * pool.  The exclusion is handled automatically by this function.
1904 1905 1906 1907
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1908 1909
 *
 * CONTEXT:
1910
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1911 1912
 * multiple times.  Does GFP_KERNEL allocations.
 *
1913
 * Return:
1914 1915 1916 1917
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1918
 */
1919
static bool manage_workers(struct worker *worker)
1920
{
1921
	struct worker_pool *pool = worker->pool;
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1933
	if (!mutex_trylock(&pool->manager_arb))
1934
		return false;
1935
	pool->manager = worker;
1936

1937
	maybe_create_worker(pool);
1938

1939
	pool->manager = NULL;
1940
	mutex_unlock(&pool->manager_arb);
1941
	return true;
1942 1943
}

1944 1945
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1946
 * @worker: self
1947 1948 1949 1950 1951 1952 1953 1954 1955
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1956
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1957
 */
T
Tejun Heo 已提交
1958
static void process_one_work(struct worker *worker, struct work_struct *work)
1959 1960
__releases(&pool->lock)
__acquires(&pool->lock)
1961
{
1962
	struct pool_workqueue *pwq = get_work_pwq(work);
1963
	struct worker_pool *pool = worker->pool;
1964
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1965
	int work_color;
1966
	struct worker *collision;
1967 1968 1969 1970 1971 1972 1973 1974
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1975 1976 1977
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1978
#endif
1979
	/* ensure we're on the correct CPU */
1980
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1981
		     raw_smp_processor_id() != pool->cpu);
1982

1983 1984 1985 1986 1987 1988
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
1989
	collision = find_worker_executing_work(pool, work);
1990 1991 1992 1993 1994
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1995
	/* claim and dequeue */
1996
	debug_work_deactivate(work);
1997
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
1998
	worker->current_work = work;
1999
	worker->current_func = work->func;
2000
	worker->current_pwq = pwq;
2001
	work_color = get_work_color(work);
2002

2003 2004
	list_del_init(&work->entry);

2005
	/*
2006 2007 2008 2009
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
2010 2011
	 */
	if (unlikely(cpu_intensive))
2012
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2013

2014
	/*
2015 2016 2017 2018
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2019
	 * UNBOUND and CPU_INTENSIVE ones.
2020
	 */
2021
	if (need_more_worker(pool))
2022
		wake_up_worker(pool);
2023

2024
	/*
2025
	 * Record the last pool and clear PENDING which should be the last
2026
	 * update to @work.  Also, do this inside @pool->lock so that
2027 2028
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2029
	 */
2030
	set_work_pool_and_clear_pending(work, pool->id);
2031

2032
	spin_unlock_irq(&pool->lock);
2033

2034
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2035
	lock_map_acquire(&lockdep_map);
2036
	trace_workqueue_execute_start(work);
2037
	worker->current_func(work);
2038 2039 2040 2041 2042
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2043
	lock_map_release(&lockdep_map);
2044
	lock_map_release(&pwq->wq->lockdep_map);
2045 2046

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2047 2048
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2049 2050
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2051 2052 2053 2054
		debug_show_held_locks(current);
		dump_stack();
	}

2055 2056 2057 2058 2059
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2060 2061
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2062
	 */
2063
	cond_resched_rcu_qs();
2064

2065
	spin_lock_irq(&pool->lock);
2066

2067 2068 2069 2070
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2071
	/* we're done with it, release */
2072
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2073
	worker->current_work = NULL;
2074
	worker->current_func = NULL;
2075
	worker->current_pwq = NULL;
2076
	worker->desc_valid = false;
2077
	pwq_dec_nr_in_flight(pwq, work_color);
2078 2079
}

2080 2081 2082 2083 2084 2085 2086 2087 2088
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2089
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2090 2091 2092
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2093
{
2094 2095
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2096
						struct work_struct, entry);
T
Tejun Heo 已提交
2097
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2098 2099 2100
	}
}

T
Tejun Heo 已提交
2101 2102
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2103
 * @__worker: self
T
Tejun Heo 已提交
2104
 *
2105 2106 2107 2108 2109
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2110 2111
 *
 * Return: 0
T
Tejun Heo 已提交
2112
 */
T
Tejun Heo 已提交
2113
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2114
{
T
Tejun Heo 已提交
2115
	struct worker *worker = __worker;
2116
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2117

2118 2119
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2120
woke_up:
2121
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2122

2123 2124
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2125
		spin_unlock_irq(&pool->lock);
2126 2127
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2128 2129

		set_task_comm(worker->task, "kworker/dying");
2130
		ida_simple_remove(&pool->worker_ida, worker->id);
2131 2132
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2133
		return 0;
T
Tejun Heo 已提交
2134
	}
2135

T
Tejun Heo 已提交
2136
	worker_leave_idle(worker);
2137
recheck:
2138
	/* no more worker necessary? */
2139
	if (!need_more_worker(pool))
2140 2141 2142
		goto sleep;

	/* do we need to manage? */
2143
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2144 2145
		goto recheck;

T
Tejun Heo 已提交
2146 2147 2148 2149 2150
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2151
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2152

2153
	/*
2154 2155 2156 2157 2158
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2159
	 */
2160
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2161 2162

	do {
T
Tejun Heo 已提交
2163
		struct work_struct *work =
2164
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2165 2166 2167 2168 2169 2170
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2171
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2172 2173 2174
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2175
		}
2176
	} while (keep_working(pool));
2177

2178
	worker_set_flags(worker, WORKER_PREP);
2179
sleep:
T
Tejun Heo 已提交
2180
	/*
2181 2182 2183 2184 2185
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2186 2187 2188
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2189
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2190 2191
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2192 2193
}

2194 2195
/**
 * rescuer_thread - the rescuer thread function
2196
 * @__rescuer: self
2197 2198
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2199
 * workqueue which has WQ_MEM_RECLAIM set.
2200
 *
2201
 * Regular work processing on a pool may block trying to create a new
2202 2203 2204 2205 2206
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2207 2208
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2209 2210 2211
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2212 2213
 *
 * Return: 0
2214
 */
2215
static int rescuer_thread(void *__rescuer)
2216
{
2217 2218
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2219
	struct list_head *scheduled = &rescuer->scheduled;
2220
	bool should_stop;
2221 2222

	set_user_nice(current, RESCUER_NICE_LEVEL);
2223 2224 2225 2226 2227 2228

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2229 2230 2231
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2232 2233 2234 2235 2236 2237 2238 2239 2240
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2241

2242
	/* see whether any pwq is asking for help */
2243
	spin_lock_irq(&wq_mayday_lock);
2244 2245 2246 2247

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2248
		struct worker_pool *pool = pwq->pool;
2249 2250 2251
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2252 2253
		list_del_init(&pwq->mayday_node);

2254
		spin_unlock_irq(&wq_mayday_lock);
2255

2256 2257 2258
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2259
		rescuer->pool = pool;
2260 2261 2262 2263 2264

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2265
		WARN_ON_ONCE(!list_empty(scheduled));
2266
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2267
			if (get_work_pwq(work) == pwq)
2268 2269
				move_linked_works(work, scheduled, &n);

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2289

2290 2291
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2292
		 * go away while we're still attached to it.
2293 2294 2295
		 */
		put_pwq(pwq);

2296
		/*
2297
		 * Leave this pool.  If need_more_worker() is %true, notify a
2298 2299 2300
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2301
		if (need_more_worker(pool))
2302
			wake_up_worker(pool);
2303

2304
		rescuer->pool = NULL;
2305 2306 2307 2308 2309
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2310 2311
	}

2312
	spin_unlock_irq(&wq_mayday_lock);
2313

2314 2315 2316 2317 2318 2319
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2320 2321
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2322 2323
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2324 2325
}

O
Oleg Nesterov 已提交
2326 2327 2328
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
2329
	struct task_struct	*task;	/* purely informational */
O
Oleg Nesterov 已提交
2330 2331 2332 2333 2334 2335 2336 2337
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2338 2339
/**
 * insert_wq_barrier - insert a barrier work
2340
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2341
 * @barr: wq_barrier to insert
2342 2343
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2344
 *
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2357
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2358 2359
 *
 * CONTEXT:
2360
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2361
 */
2362
static void insert_wq_barrier(struct pool_workqueue *pwq,
2363 2364
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2365
{
2366 2367 2368
	struct list_head *head;
	unsigned int linked = 0;

2369
	/*
2370
	 * debugobject calls are safe here even with pool->lock locked
2371 2372 2373 2374
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2375
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2376
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2377
	init_completion(&barr->done);
2378
	barr->task = current;
2379

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2395
	debug_work_activate(&barr->work);
2396
	insert_work(pwq, &barr->work, head,
2397
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2398 2399
}

2400
/**
2401
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2402 2403 2404 2405
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2406
 * Prepare pwqs for workqueue flushing.
2407
 *
2408 2409 2410 2411 2412
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2413 2414 2415 2416 2417 2418 2419
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2420
 * If @work_color is non-negative, all pwqs should have the same
2421 2422 2423 2424
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2425
 * mutex_lock(wq->mutex).
2426
 *
2427
 * Return:
2428 2429 2430
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2431
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2432
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2433
{
2434
	bool wait = false;
2435
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2436

2437
	if (flush_color >= 0) {
2438
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2439
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2440
	}
2441

2442
	for_each_pwq(pwq, wq) {
2443
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2444

2445
		spin_lock_irq(&pool->lock);
2446

2447
		if (flush_color >= 0) {
2448
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2449

2450 2451 2452
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2453 2454 2455
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2456

2457
		if (work_color >= 0) {
2458
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2459
			pwq->work_color = work_color;
2460
		}
L
Linus Torvalds 已提交
2461

2462
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2463
	}
2464

2465
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2466
		complete(&wq->first_flusher->done);
2467

2468
	return wait;
L
Linus Torvalds 已提交
2469 2470
}

2471
/**
L
Linus Torvalds 已提交
2472
 * flush_workqueue - ensure that any scheduled work has run to completion.
2473
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2474
 *
2475 2476
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2477
 */
2478
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2479
{
2480 2481 2482 2483 2484 2485
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2486

2487 2488
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2489

2490
	mutex_lock(&wq->mutex);
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2503
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2504 2505 2506 2507 2508
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2509
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2510 2511 2512

			wq->first_flusher = &this_flusher;

2513
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2514 2515 2516 2517 2518 2519 2520 2521
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2522
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2523
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2524
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2535
	mutex_unlock(&wq->mutex);
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2548
	mutex_lock(&wq->mutex);
2549

2550 2551 2552 2553
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2554 2555
	wq->first_flusher = NULL;

2556 2557
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2570 2571
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2591
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2592 2593 2594
		}

		if (list_empty(&wq->flusher_queue)) {
2595
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2596 2597 2598 2599 2600
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2601
		 * the new first flusher and arm pwqs.
2602
		 */
2603 2604
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2605 2606 2607 2608

		list_del_init(&next->list);
		wq->first_flusher = next;

2609
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2620
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2621
}
2622
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2623

2624 2625 2626 2627 2628 2629 2630
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
C
Chen Hanxiao 已提交
2631
 * repeatedly until it becomes empty.  The number of flushing is determined
2632 2633 2634 2635 2636 2637
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2638
	struct pool_workqueue *pwq;
2639 2640 2641 2642

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2643
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2644
	 */
2645
	mutex_lock(&wq->mutex);
2646
	if (!wq->nr_drainers++)
2647
		wq->flags |= __WQ_DRAINING;
2648
	mutex_unlock(&wq->mutex);
2649 2650 2651
reflush:
	flush_workqueue(wq);

2652
	mutex_lock(&wq->mutex);
2653

2654
	for_each_pwq(pwq, wq) {
2655
		bool drained;
2656

2657
		spin_lock_irq(&pwq->pool->lock);
2658
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2659
		spin_unlock_irq(&pwq->pool->lock);
2660 2661

		if (drained)
2662 2663 2664 2665
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2666
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2667
				wq->name, flush_cnt);
2668

2669
		mutex_unlock(&wq->mutex);
2670 2671 2672 2673
		goto reflush;
	}

	if (!--wq->nr_drainers)
2674
		wq->flags &= ~__WQ_DRAINING;
2675
	mutex_unlock(&wq->mutex);
2676 2677 2678
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2679
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2680
{
2681
	struct worker *worker = NULL;
2682
	struct worker_pool *pool;
2683
	struct pool_workqueue *pwq;
2684 2685

	might_sleep();
2686 2687

	local_irq_disable();
2688
	pool = get_work_pool(work);
2689 2690
	if (!pool) {
		local_irq_enable();
2691
		return false;
2692
	}
2693

2694
	spin_lock(&pool->lock);
2695
	/* see the comment in try_to_grab_pending() with the same code */
2696 2697 2698
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2699
			goto already_gone;
2700
	} else {
2701
		worker = find_worker_executing_work(pool, work);
2702
		if (!worker)
T
Tejun Heo 已提交
2703
			goto already_gone;
2704
		pwq = worker->current_pwq;
2705
	}
2706

2707
	insert_wq_barrier(pwq, barr, work, worker);
2708
	spin_unlock_irq(&pool->lock);
2709

2710 2711 2712 2713 2714 2715
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2716
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2717
		lock_map_acquire(&pwq->wq->lockdep_map);
2718
	else
2719 2720
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2721

2722
	return true;
T
Tejun Heo 已提交
2723
already_gone:
2724
	spin_unlock_irq(&pool->lock);
2725
	return false;
2726
}
2727 2728 2729 2730 2731

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2732 2733
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2734
 *
2735
 * Return:
2736 2737 2738 2739 2740
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2741 2742
	struct wq_barrier barr;

2743 2744 2745
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2746 2747 2748 2749 2750 2751 2752
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2753
}
2754
EXPORT_SYMBOL_GPL(flush_work);
2755

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
struct cwt_wait {
	wait_queue_t		wait;
	struct work_struct	*work;
};

static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2770
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2771
{
2772
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2773
	unsigned long flags;
2774 2775 2776
	int ret;

	do {
2777 2778
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2793
		 */
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2807 2808
	} while (unlikely(ret < 0));

2809 2810 2811 2812
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2813
	flush_work(work);
2814
	clear_work_data(work);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2825 2826 2827
	return ret;
}

2828
/**
2829 2830
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2831
 *
2832 2833 2834 2835
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2836
 *
2837 2838
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2839
 *
2840
 * The caller must ensure that the workqueue on which @work was last
2841
 * queued can't be destroyed before this function returns.
2842
 *
2843
 * Return:
2844
 * %true if @work was pending, %false otherwise.
2845
 */
2846
bool cancel_work_sync(struct work_struct *work)
2847
{
2848
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2849
}
2850
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2851

2852
/**
2853 2854
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2855
 *
2856 2857 2858
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2859
 *
2860
 * Return:
2861 2862
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2863
 */
2864 2865
bool flush_delayed_work(struct delayed_work *dwork)
{
2866
	local_irq_disable();
2867
	if (del_timer_sync(&dwork->timer))
2868
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2869
	local_irq_enable();
2870 2871 2872 2873
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2874
/**
2875 2876
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2877
 *
2878 2879 2880 2881 2882 2883 2884 2885 2886
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2887
 *
2888
 * This function is safe to call from any context including IRQ handler.
2889
 */
2890
bool cancel_delayed_work(struct delayed_work *dwork)
2891
{
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2902 2903
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2904
	local_irq_restore(flags);
2905
	return ret;
2906
}
2907
EXPORT_SYMBOL(cancel_delayed_work);
2908

2909 2910 2911 2912 2913 2914
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2915
 * Return:
2916 2917 2918
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2919
{
2920
	return __cancel_work_timer(&dwork->work, true);
2921
}
2922
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2923

2924
/**
2925
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2926 2927
 * @func: the function to call
 *
2928 2929
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2930
 * schedule_on_each_cpu() is very slow.
2931
 *
2932
 * Return:
2933
 * 0 on success, -errno on failure.
2934
 */
2935
int schedule_on_each_cpu(work_func_t func)
2936 2937
{
	int cpu;
2938
	struct work_struct __percpu *works;
2939

2940 2941
	works = alloc_percpu(struct work_struct);
	if (!works)
2942
		return -ENOMEM;
2943

2944 2945
	get_online_cpus();

2946
	for_each_online_cpu(cpu) {
2947 2948 2949
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2950
		schedule_work_on(cpu, work);
2951
	}
2952 2953 2954 2955

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2956
	put_online_cpus();
2957
	free_percpu(works);
2958 2959 2960
	return 0;
}

2961 2962 2963 2964 2965 2966 2967 2968 2969
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2970
 * Return:	0 - function was executed
2971 2972
 *		1 - function was scheduled for execution
 */
2973
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2974 2975
{
	if (!in_interrupt()) {
2976
		fn(&ew->work);
2977 2978 2979
		return 0;
	}

2980
	INIT_WORK(&ew->work, fn);
2981 2982 2983 2984 2985 2986
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

2987 2988 2989
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
2990
 *
2991
 * Undo alloc_workqueue_attrs().
2992
 */
2993
void free_workqueue_attrs(struct workqueue_attrs *attrs)
2994
{
2995 2996 2997 2998
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
2999 3000
}

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3011
{
3012
	struct workqueue_attrs *attrs;
3013

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_copy(attrs->cpumask, cpu_possible_mask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
3025 3026
}

3027 3028
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
3029
{
3030 3031 3032 3033 3034 3035 3036 3037
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3038 3039
}

3040 3041
/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3042
{
3043
	u32 hash = 0;
3044

3045 3046 3047 3048
	hash = jhash_1word(attrs->nice, hash);
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	return hash;
3049 3050
}

3051 3052 3053
/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
3054
{
3055 3056 3057 3058 3059
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
3060 3061
}

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
 */
static int init_worker_pool(struct worker_pool *pool)
3073
{
3074 3075 3076 3077 3078 3079 3080 3081
	spin_lock_init(&pool->lock);
	pool->id = -1;
	pool->cpu = -1;
	pool->node = NUMA_NO_NODE;
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);
3082

3083 3084 3085
	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;
3086

3087 3088
	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);
3089

3090 3091 3092
	mutex_init(&pool->manager_arb);
	mutex_init(&pool->attach_mutex);
	INIT_LIST_HEAD(&pool->workers);
3093

3094 3095 3096
	ida_init(&pool->worker_ida);
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;
3097

3098 3099 3100 3101 3102
	/* shouldn't fail above this point */
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3103 3104
}

3105
static void rcu_free_wq(struct rcu_head *rcu)
3106
{
3107 3108
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);
3109

3110 3111
	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
3112
	else
3113
		free_workqueue_attrs(wq->unbound_attrs);
3114

3115 3116
	kfree(wq->rescuer);
	kfree(wq);
3117 3118
}

3119
static void rcu_free_pool(struct rcu_head *rcu)
3120
{
3121
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3122

3123 3124 3125
	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
3126 3127
}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
 *
 * Should be called with wq_pool_mutex held.
 */
static void put_unbound_pool(struct worker_pool *pool)
3140
{
3141 3142
	DECLARE_COMPLETION_ONSTACK(detach_completion);
	struct worker *worker;
3143

3144
	lockdep_assert_held(&wq_pool_mutex);
3145

3146 3147
	if (--pool->refcnt)
		return;
3148

3149 3150 3151 3152
	/* sanity checks */
	if (WARN_ON(!(pool->cpu < 0)) ||
	    WARN_ON(!list_empty(&pool->worklist)))
		return;
3153

3154 3155 3156 3157
	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);
3158

3159 3160 3161 3162 3163 3164
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * attach_mutex.
	 */
	mutex_lock(&pool->manager_arb);
3165

3166 3167 3168 3169 3170
	spin_lock_irq(&pool->lock);
	while ((worker = first_idle_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3171

3172 3173 3174 3175
	mutex_lock(&pool->attach_mutex);
	if (!list_empty(&pool->workers))
		pool->detach_completion = &detach_completion;
	mutex_unlock(&pool->attach_mutex);
3176

3177 3178
	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);
3179

3180
	mutex_unlock(&pool->manager_arb);
3181

3182 3183 3184
	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);
3185

3186 3187
	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
3188 3189 3190
}

/**
3191 3192
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
3193
 *
3194 3195 3196 3197
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.
3198
 *
3199
 * Should be called with wq_pool_mutex held.
3200
 *
3201 3202
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3203
 */
3204
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3205
{
3206 3207 3208
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	int node;
3209

3210
	lockdep_assert_held(&wq_pool_mutex);
3211

3212 3213 3214 3215 3216 3217 3218
	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			return pool;
		}
	}
3219

3220 3221 3222 3223 3224 3225 3226
	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
	copy_workqueue_attrs(pool->attrs, attrs);
3227 3228

	/*
3229 3230
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
3231
	 */
3232
	pool->attrs->no_numa = false;
3233

3234 3235 3236 3237 3238 3239 3240
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
3241 3242 3243 3244
			}
		}
	}

3245 3246
	if (worker_pool_assign_id(pool) < 0)
		goto fail;
3247

3248 3249 3250
	/* create and start the initial worker */
	if (!create_worker(pool))
		goto fail;
3251

3252 3253
	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3254

3255 3256 3257 3258 3259
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
3260 3261
}

3262
static void rcu_free_pwq(struct rcu_head *rcu)
T
Tejun Heo 已提交
3263
{
3264 3265
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
T
Tejun Heo 已提交
3266 3267
}

3268 3269 3270
/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
T
Tejun Heo 已提交
3271
 */
3272
static void pwq_unbound_release_workfn(struct work_struct *work)
T
Tejun Heo 已提交
3273
{
3274 3275 3276 3277 3278
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	bool is_last;
T
Tejun Heo 已提交
3279

3280 3281
	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;
T
Tejun Heo 已提交
3282

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
	mutex_lock(&wq->mutex);
	list_del_rcu(&pwq->pwqs_node);
	is_last = list_empty(&wq->pwqs);
	mutex_unlock(&wq->mutex);

	mutex_lock(&wq_pool_mutex);
	put_unbound_pool(pool);
	mutex_unlock(&wq_pool_mutex);

	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
T
Tejun Heo 已提交
3293

3294
	/*
3295 3296
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Schedule RCU free.
3297
	 */
3298 3299
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
3300 3301
}

T
Tejun Heo 已提交
3302
/**
3303 3304
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
 * @pwq: target pool_workqueue
3305
 *
3306 3307 3308
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
T
Tejun Heo 已提交
3309
 */
3310
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3311
{
3312 3313
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;
3314

3315 3316
	/* for @wq->saved_max_active */
	lockdep_assert_held(&wq->mutex);
3317

3318 3319 3320
	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;
T
Tejun Heo 已提交
3321

3322
	spin_lock_irq(&pwq->pool->lock);
3323

3324 3325 3326 3327 3328 3329 3330
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
		pwq->max_active = wq->saved_max_active;
3331

3332 3333 3334
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3335

3336 3337 3338 3339 3340 3341 3342 3343
		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
	} else {
		pwq->max_active = 0;
	}
3344

3345
	spin_unlock_irq(&pwq->pool->lock);
3346 3347
}

3348 3349 3350
/* initialize newly alloced @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3351
{
3352
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3353

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
	memset(pwq, 0, sizeof(*pwq));

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
	pwq->refcnt = 1;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->pwqs_node);
	INIT_LIST_HEAD(&pwq->mayday_node);
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3364 3365
}

3366 3367
/* sync @pwq with the current state of its associated wq and link it */
static void link_pwq(struct pool_workqueue *pwq)
3368
{
3369
	struct workqueue_struct *wq = pwq->wq;
3370

3371
	lockdep_assert_held(&wq->mutex);
3372

3373 3374
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
3375 3376
		return;

3377 3378
	/* set the matching work_color */
	pwq->work_color = wq->work_color;
3379

3380 3381
	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);
3382

3383 3384 3385
	/* link in @pwq */
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
}
3386

3387 3388 3389 3390 3391 3392
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;
3393

3394
	lockdep_assert_held(&wq_pool_mutex);
3395

3396 3397 3398
	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;
3399

3400 3401 3402 3403 3404
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
	}
3405

3406 3407 3408
	init_pwq(pwq, wq, pool);
	return pwq;
}
3409 3410

/**
3411
 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3412
 * @attrs: the wq_attrs of the default pwq of the target workqueue
3413 3414 3415
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
3416
 *
3417 3418 3419
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.
3420
 *
3421 3422 3423 3424
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
3425
 *
3426 3427 3428 3429 3430
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3431
 */
3432 3433
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
3434
{
3435 3436
	if (!wq_numa_enabled || attrs->no_numa)
		goto use_dfl;
3437

3438 3439 3440 3441
	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);
3442

3443 3444
	if (cpumask_empty(cpumask))
		goto use_dfl;
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3455 3456 3457 3458 3459 3460 3461
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

3462
	lockdep_assert_held(&wq_pool_mutex);
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3473 3474 3475 3476
/* context to store the prepared attrs & pwqs before applying */
struct apply_wqattrs_ctx {
	struct workqueue_struct	*wq;		/* target workqueue */
	struct workqueue_attrs	*attrs;		/* attrs to apply */
3477
	struct list_head	list;		/* queued for batching commit */
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	struct pool_workqueue	*dfl_pwq;
	struct pool_workqueue	*pwq_tbl[];
};

/* free the resources after success or abort */
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
{
	if (ctx) {
		int node;

		for_each_node(node)
			put_pwq_unlocked(ctx->pwq_tbl[node]);
		put_pwq_unlocked(ctx->dfl_pwq);

		free_workqueue_attrs(ctx->attrs);

		kfree(ctx);
	}
}

/* allocate the attrs and pwqs for later installation */
static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct *wq,
		      const struct workqueue_attrs *attrs)
3502
{
3503
	struct apply_wqattrs_ctx *ctx;
3504
	struct workqueue_attrs *new_attrs, *tmp_attrs;
3505
	int node;
3506

3507
	lockdep_assert_held(&wq_pool_mutex);
3508

3509 3510
	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
		      GFP_KERNEL);
3511

3512
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3513
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3514 3515
	if (!ctx || !new_attrs || !tmp_attrs)
		goto out_free;
3516

3517 3518 3519 3520 3521
	/*
	 * Calculate the attrs of the default pwq.
	 * If the user configured cpumask doesn't overlap with the
	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
	 */
3522
	copy_workqueue_attrs(new_attrs, attrs);
3523
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3524 3525
	if (unlikely(cpumask_empty(new_attrs->cpumask)))
		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3526

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
3539 3540 3541
	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!ctx->dfl_pwq)
		goto out_free;
3542 3543

	for_each_node(node) {
3544
		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3545 3546 3547
			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!ctx->pwq_tbl[node])
				goto out_free;
3548
		} else {
3549 3550
			ctx->dfl_pwq->refcnt++;
			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3551 3552 3553
		}
	}

3554 3555 3556
	/* save the user configured attrs and sanitize it. */
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3557
	ctx->attrs = new_attrs;
3558

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
	ctx->wq = wq;
	free_workqueue_attrs(tmp_attrs);
	return ctx;

out_free:
	free_workqueue_attrs(tmp_attrs);
	free_workqueue_attrs(new_attrs);
	apply_wqattrs_cleanup(ctx);
	return NULL;
}

/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
{
	int node;
3574

3575
	/* all pwqs have been created successfully, let's install'em */
3576
	mutex_lock(&ctx->wq->mutex);
3577

3578
	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3579 3580

	/* save the previous pwq and install the new one */
3581
	for_each_node(node)
3582 3583
		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
							  ctx->pwq_tbl[node]);
3584 3585

	/* @dfl_pwq might not have been used, ensure it's linked */
3586 3587
	link_pwq(ctx->dfl_pwq);
	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3588

3589 3590
	mutex_unlock(&ctx->wq->mutex);
}
3591

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
static void apply_wqattrs_lock(void)
{
	/* CPUs should stay stable across pwq creations and installations */
	get_online_cpus();
	mutex_lock(&wq_pool_mutex);
}

static void apply_wqattrs_unlock(void)
{
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
}

static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
3607 3608 3609
{
	struct apply_wqattrs_ctx *ctx;
	int ret = -ENOMEM;
3610

3611 3612 3613
	/* only unbound workqueues can change attributes */
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;
3614

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

	ctx = apply_wqattrs_prepare(wq, attrs);

	/* the ctx has been prepared successfully, let's commit it */
	if (ctx) {
		apply_wqattrs_commit(ctx);
		ret = 0;
	}

	apply_wqattrs_cleanup(ctx);

	return ret;
3630 3631
}

3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	int ret;

	apply_wqattrs_lock();
	ret = apply_workqueue_attrs_locked(wq, attrs);
	apply_wqattrs_unlock();

	return ret;
}

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

3693 3694
	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
	    wq->unbound_attrs->no_numa)
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
3710 3711 3712
	 * different from the default pwq's, we need to compare it to @pwq's
	 * and create a new one if they don't match.  If the target cpumask
	 * equals the default pwq's, the default pwq should be used.
3713
	 */
3714
	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3715
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3716
			return;
3717
	} else {
3718
		goto use_dfl_pwq;
3719 3720 3721 3722 3723
	}

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3724 3725
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3726
		goto use_dfl_pwq;
3727 3728
	}

3729
	/* Install the new pwq. */
3730 3731 3732 3733 3734
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
3735
	mutex_lock(&wq->mutex);
3736 3737 3738 3739 3740 3741 3742 3743 3744
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3745
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3746
{
3747
	bool highpri = wq->flags & WQ_HIGHPRI;
3748
	int cpu, ret;
3749 3750

	if (!(wq->flags & WQ_UNBOUND)) {
3751 3752
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3753 3754 3755
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3756 3757
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3758
			struct worker_pool *cpu_pools =
3759
				per_cpu(cpu_worker_pools, cpu);
3760

3761 3762 3763
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3764
			link_pwq(pwq);
3765
			mutex_unlock(&wq->mutex);
3766
		}
3767
		return 0;
3768 3769 3770 3771 3772 3773 3774
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3775
	} else {
3776
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3777
	}
T
Tejun Heo 已提交
3778 3779
}

3780 3781
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3782
{
3783 3784 3785
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3786 3787
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3788

3789
	return clamp_val(max_active, 1, lim);
3790 3791
}

3792
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3793 3794 3795
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3796
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3797
{
3798
	size_t tbl_size = 0;
3799
	va_list args;
L
Linus Torvalds 已提交
3800
	struct workqueue_struct *wq;
3801
	struct pool_workqueue *pwq;
3802

3803 3804 3805 3806
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

3807
	/* allocate wq and format name */
3808
	if (flags & WQ_UNBOUND)
3809
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3810 3811

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3812
	if (!wq)
3813
		return NULL;
3814

3815 3816 3817 3818 3819 3820
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

3821 3822
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3823
	va_end(args);
L
Linus Torvalds 已提交
3824

3825
	max_active = max_active ?: WQ_DFL_ACTIVE;
3826
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3827

3828
	/* init wq */
3829
	wq->flags = flags;
3830
	wq->saved_max_active = max_active;
3831
	mutex_init(&wq->mutex);
3832
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3833
	INIT_LIST_HEAD(&wq->pwqs);
3834 3835
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3836
	INIT_LIST_HEAD(&wq->maydays);
3837

3838
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3839
	INIT_LIST_HEAD(&wq->list);
3840

3841
	if (alloc_and_link_pwqs(wq) < 0)
3842
		goto err_free_wq;
T
Tejun Heo 已提交
3843

3844 3845 3846 3847 3848
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3849 3850
		struct worker *rescuer;

3851
		rescuer = alloc_worker(NUMA_NO_NODE);
3852
		if (!rescuer)
3853
			goto err_destroy;
3854

3855 3856
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3857
					       wq->name);
3858 3859 3860 3861
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3862

3863
		wq->rescuer = rescuer;
3864
		rescuer->task->flags |= PF_NO_SETAFFINITY;
3865
		wake_up_process(rescuer->task);
3866 3867
	}

3868 3869 3870
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3871
	/*
3872 3873 3874
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
3875
	 */
3876
	mutex_lock(&wq_pool_mutex);
3877

3878
	mutex_lock(&wq->mutex);
3879 3880
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3881
	mutex_unlock(&wq->mutex);
3882

3883
	list_add_tail_rcu(&wq->list, &workqueues);
3884

3885
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
3886

3887
	return wq;
3888 3889

err_free_wq:
3890
	free_workqueue_attrs(wq->unbound_attrs);
3891 3892 3893 3894
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3895
	return NULL;
3896
}
3897
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3898

3899 3900 3901 3902 3903 3904 3905 3906
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3907
	struct pool_workqueue *pwq;
3908
	int node;
3909

3910 3911
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3912

3913
	/* sanity checks */
3914
	mutex_lock(&wq->mutex);
3915
	for_each_pwq(pwq, wq) {
3916 3917
		int i;

3918 3919
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
3920
				mutex_unlock(&wq->mutex);
3921
				return;
3922 3923 3924
			}
		}

3925
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
3926
		    WARN_ON(pwq->nr_active) ||
3927
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3928
			mutex_unlock(&wq->mutex);
3929
			return;
3930
		}
3931
	}
3932
	mutex_unlock(&wq->mutex);
3933

3934 3935 3936 3937
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3938
	mutex_lock(&wq_pool_mutex);
3939
	list_del_rcu(&wq->list);
3940
	mutex_unlock(&wq_pool_mutex);
3941

3942 3943
	workqueue_sysfs_unregister(wq);

3944
	if (wq->rescuer)
3945 3946
		kthread_stop(wq->rescuer->task);

T
Tejun Heo 已提交
3947 3948 3949
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
3950
		 * schedule RCU free.
T
Tejun Heo 已提交
3951
		 */
3952
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
3953 3954 3955
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
3956 3957
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
3958
		 */
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
3971
		put_pwq_unlocked(pwq);
3972
	}
3973 3974 3975
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3988
	struct pool_workqueue *pwq;
3989

3990 3991 3992 3993
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

3994
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3995

3996
	mutex_lock(&wq->mutex);
3997 3998 3999

	wq->saved_max_active = max_active;

4000 4001
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4002

4003
	mutex_unlock(&wq->mutex);
4004
}
4005
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4006

4007 4008 4009 4010 4011
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4012 4013
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4014 4015 4016 4017 4018
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4019
	return worker && worker->rescue_wq;
4020 4021
}

4022
/**
4023 4024 4025
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4026
 *
4027 4028 4029
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4030
 *
4031 4032 4033 4034 4035 4036
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4037
 * Return:
4038
 * %true if congested, %false otherwise.
4039
 */
4040
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4041
{
4042
	struct pool_workqueue *pwq;
4043 4044
	bool ret;

4045
	rcu_read_lock_sched();
4046

4047 4048 4049
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4050 4051 4052
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4053
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4054

4055
	ret = !list_empty(&pwq->delayed_works);
4056
	rcu_read_unlock_sched();
4057 4058

	return ret;
L
Linus Torvalds 已提交
4059
}
4060
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4061

4062 4063 4064 4065 4066 4067 4068 4069
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4070
 * Return:
4071 4072 4073
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4074
{
4075
	struct worker_pool *pool;
4076 4077
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4078

4079 4080
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4081

4082 4083
	local_irq_save(flags);
	pool = get_work_pool(work);
4084
	if (pool) {
4085
		spin_lock(&pool->lock);
4086 4087
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4088
		spin_unlock(&pool->lock);
4089
	}
4090
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4091

4092
	return ret;
L
Linus Torvalds 已提交
4093
}
4094
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4095

4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
static void pr_cont_pool_info(struct worker_pool *pool)
{
	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
	if (pool->node != NUMA_NO_NODE)
		pr_cont(" node=%d", pool->node);
	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
}

static void pr_cont_work(bool comma, struct work_struct *work)
{
	if (work->func == wq_barrier_func) {
		struct wq_barrier *barr;

		barr = container_of(work, struct wq_barrier, work);

		pr_cont("%s BAR(%d)", comma ? "," : "",
			task_pid_nr(barr->task));
	} else {
		pr_cont("%s %pf", comma ? "," : "", work->func);
	}
}

static void show_pwq(struct pool_workqueue *pwq)
{
	struct worker_pool *pool = pwq->pool;
	struct work_struct *work;
	struct worker *worker;
	bool has_in_flight = false, has_pending = false;
	int bkt;

	pr_info("  pwq %d:", pool->id);
	pr_cont_pool_info(pool);

	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (worker->current_pwq == pwq) {
			has_in_flight = true;
			break;
		}
	}
	if (has_in_flight) {
		bool comma = false;

		pr_info("    in-flight:");
		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
			if (worker->current_pwq != pwq)
				continue;

			pr_cont("%s %d%s:%pf", comma ? "," : "",
				task_pid_nr(worker->task),
				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
				worker->current_func);
			list_for_each_entry(work, &worker->scheduled, entry)
				pr_cont_work(false, work);
			comma = true;
		}
		pr_cont("\n");
	}

	list_for_each_entry(work, &pool->worklist, entry) {
		if (get_work_pwq(work) == pwq) {
			has_pending = true;
			break;
		}
	}
	if (has_pending) {
		bool comma = false;

		pr_info("    pending:");
		list_for_each_entry(work, &pool->worklist, entry) {
			if (get_work_pwq(work) != pwq)
				continue;

			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}

	if (!list_empty(&pwq->delayed_works)) {
		bool comma = false;

		pr_info("    delayed:");
		list_for_each_entry(work, &pwq->delayed_works, entry) {
			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}
}

/**
 * show_workqueue_state - dump workqueue state
 *
 * Called from a sysrq handler and prints out all busy workqueues and
 * pools.
 */
void show_workqueue_state(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	unsigned long flags;
	int pi;

	rcu_read_lock_sched();

	pr_info("Showing busy workqueues and worker pools:\n");

	list_for_each_entry_rcu(wq, &workqueues, list) {
		struct pool_workqueue *pwq;
		bool idle = true;

		for_each_pwq(pwq, wq) {
			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
				idle = false;
				break;
			}
		}
		if (idle)
			continue;

		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);

		for_each_pwq(pwq, wq) {
			spin_lock_irqsave(&pwq->pool->lock, flags);
			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
				show_pwq(pwq);
			spin_unlock_irqrestore(&pwq->pool->lock, flags);
		}
	}

	for_each_pool(pool, pi) {
		struct worker *worker;
		bool first = true;

		spin_lock_irqsave(&pool->lock, flags);
		if (pool->nr_workers == pool->nr_idle)
			goto next_pool;

		pr_info("pool %d:", pool->id);
		pr_cont_pool_info(pool);
		pr_cont(" workers=%d", pool->nr_workers);
		if (pool->manager)
			pr_cont(" manager: %d",
				task_pid_nr(pool->manager->task));
		list_for_each_entry(worker, &pool->idle_list, entry) {
			pr_cont(" %s%d", first ? "idle: " : "",
				task_pid_nr(worker->task));
			first = false;
		}
		pr_cont("\n");
	next_pool:
		spin_unlock_irqrestore(&pool->lock, flags);
	}

	rcu_read_unlock_sched();
}

4333 4334 4335
/*
 * CPU hotplug.
 *
4336
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4337
 * are a lot of assumptions on strong associations among work, pwq and
4338
 * pool which make migrating pending and scheduled works very
4339
 * difficult to implement without impacting hot paths.  Secondly,
4340
 * worker pools serve mix of short, long and very long running works making
4341 4342
 * blocked draining impractical.
 *
4343
 * This is solved by allowing the pools to be disassociated from the CPU
4344 4345
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4346
 */
L
Linus Torvalds 已提交
4347

4348
static void wq_unbind_fn(struct work_struct *work)
4349
{
4350
	int cpu = smp_processor_id();
4351
	struct worker_pool *pool;
4352
	struct worker *worker;
4353

4354
	for_each_cpu_worker_pool(pool, cpu) {
4355
		mutex_lock(&pool->attach_mutex);
4356
		spin_lock_irq(&pool->lock);
4357

4358
		/*
4359
		 * We've blocked all attach/detach operations. Make all workers
4360 4361 4362 4363 4364
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4365
		for_each_pool_worker(worker, pool)
4366
			worker->flags |= WORKER_UNBOUND;
4367

4368
		pool->flags |= POOL_DISASSOCIATED;
4369

4370
		spin_unlock_irq(&pool->lock);
4371
		mutex_unlock(&pool->attach_mutex);
4372

4373 4374 4375 4376 4377 4378 4379
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4380

4381 4382 4383 4384 4385 4386 4387 4388
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4389
		atomic_set(&pool->nr_running, 0);
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4400 4401
}

T
Tejun Heo 已提交
4402 4403 4404 4405
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4406
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4407 4408 4409
 */
static void rebind_workers(struct worker_pool *pool)
{
4410
	struct worker *worker;
T
Tejun Heo 已提交
4411

4412
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4413

4414 4415 4416 4417 4418 4419 4420
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4421
	for_each_pool_worker(worker, pool)
4422 4423
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4424

4425
	spin_lock_irq(&pool->lock);
4426
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4427

4428
	for_each_pool_worker(worker, pool) {
4429
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4430 4431

		/*
4432 4433 4434 4435 4436 4437
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4438
		 */
4439 4440
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4441

4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4461
	}
4462 4463

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4464 4465
}

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4481
	lockdep_assert_held(&pool->attach_mutex);
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4493
	for_each_pool_worker(worker, pool)
4494 4495 4496 4497
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4498 4499 4500 4501
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4502
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4503 4504
					       unsigned long action,
					       void *hcpu)
4505
{
4506
	int cpu = (unsigned long)hcpu;
4507
	struct worker_pool *pool;
4508
	struct workqueue_struct *wq;
4509
	int pi;
4510

T
Tejun Heo 已提交
4511
	switch (action & ~CPU_TASKS_FROZEN) {
4512
	case CPU_UP_PREPARE:
4513
		for_each_cpu_worker_pool(pool, cpu) {
4514 4515
			if (pool->nr_workers)
				continue;
4516
			if (!create_worker(pool))
4517
				return NOTIFY_BAD;
4518
		}
T
Tejun Heo 已提交
4519
		break;
4520

4521 4522
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4523
		mutex_lock(&wq_pool_mutex);
4524 4525

		for_each_pool(pool, pi) {
4526
			mutex_lock(&pool->attach_mutex);
4527

4528
			if (pool->cpu == cpu)
4529
				rebind_workers(pool);
4530
			else if (pool->cpu < 0)
4531
				restore_unbound_workers_cpumask(pool, cpu);
4532

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
			mutex_unlock(&pool->attach_mutex);
		}

		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

		mutex_unlock(&wq_pool_mutex);
		break;
	}
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;
	struct workqueue_struct *wq;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/* unbinding per-cpu workers should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
		queue_work_on(cpu, system_highpri_wq, &unbind_work);

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
		flush_work(&unbind_work);
		destroy_work_on_stack(&unbind_work);
		break;
	}
	return NOTIFY_OK;
}

#ifdef CONFIG_SMP

struct work_for_cpu {
	struct work_struct work;
	long (*fn)(void *);
	void *arg;
	long ret;
};

static void work_for_cpu_fn(struct work_struct *work)
{
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
 * It is up to the caller to ensure that the cpu doesn't go offline.
 * The caller must not hold any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
{
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };

	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
	destroy_work_on_stack(&wfc.work);
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their delayed_works list instead of
 * pool->worklist.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void freeze_workqueues_begin(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(workqueue_freezing);
	workqueue_freezing = true;

	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

	mutex_unlock(&wq_pool_mutex);
}

/**
 * freeze_workqueues_busy - are freezable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex.
 *
 * Return:
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(!workqueue_freezing);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		rcu_read_lock_sched();
		for_each_pwq(pwq, wq) {
			WARN_ON_ONCE(pwq->nr_active < 0);
			if (pwq->nr_active) {
				busy = true;
				rcu_read_unlock_sched();
				goto out_unlock;
			}
		}
		rcu_read_unlock_sched();
	}
out_unlock:
	mutex_unlock(&wq_pool_mutex);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
 * frozen works are transferred to their respective pool worklists.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void thaw_workqueues(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	if (!workqueue_freezing)
		goto out_unlock;

	workqueue_freezing = false;

	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

out_unlock:
	mutex_unlock(&wq_pool_mutex);
}
#endif /* CONFIG_FREEZER */

4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
static int workqueue_apply_unbound_cpumask(void)
{
	LIST_HEAD(ctxs);
	int ret = 0;
	struct workqueue_struct *wq;
	struct apply_wqattrs_ctx *ctx, *n;

	lockdep_assert_held(&wq_pool_mutex);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_UNBOUND))
			continue;
		/* creating multiple pwqs breaks ordering guarantee */
		if (wq->flags & __WQ_ORDERED)
			continue;

		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
		if (!ctx) {
			ret = -ENOMEM;
			break;
		}

		list_add_tail(&ctx->list, &ctxs);
	}

	list_for_each_entry_safe(ctx, n, &ctxs, list) {
		if (!ret)
			apply_wqattrs_commit(ctx);
		apply_wqattrs_cleanup(ctx);
	}

	return ret;
}

/**
 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
 *  @cpumask: the cpumask to set
 *
 *  The low-level workqueues cpumask is a global cpumask that limits
 *  the affinity of all unbound workqueues.  This function check the @cpumask
 *  and apply it to all unbound workqueues and updates all pwqs of them.
 *
 *  Retun:	0	- Success
 *  		-EINVAL	- Invalid @cpumask
 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
 */
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
{
	int ret = -EINVAL;
	cpumask_var_t saved_cpumask;

	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
		return -ENOMEM;

	cpumask_and(cpumask, cpumask, cpu_possible_mask);
	if (!cpumask_empty(cpumask)) {
4786
		apply_wqattrs_lock();
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798

		/* save the old wq_unbound_cpumask. */
		cpumask_copy(saved_cpumask, wq_unbound_cpumask);

		/* update wq_unbound_cpumask at first and apply it to wqs. */
		cpumask_copy(wq_unbound_cpumask, cpumask);
		ret = workqueue_apply_unbound_cpumask();

		/* restore the wq_unbound_cpumask when failed. */
		if (ret < 0)
			cpumask_copy(wq_unbound_cpumask, saved_cpumask);

4799
		apply_wqattrs_unlock();
4800 4801 4802 4803 4804 4805
	}

	free_cpumask_var(saved_cpumask);
	return ret;
}

4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
static DEVICE_ATTR_RO(per_cpu);

static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
static DEVICE_ATTR_RW(max_active);

static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
};
ATTRIBUTE_GROUPS(wq_sysfs);

static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	const char *delim = "";
	int node, written = 0;

	rcu_read_lock_sched();
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

4910 4911
	lockdep_assert_held(&wq_pool_mutex);

4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
4925 4926 4927
	int ret = -ENOMEM;

	apply_wqattrs_lock();
4928 4929 4930

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
4931
		goto out_unlock;
4932 4933 4934

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
4935
		ret = apply_workqueue_attrs_locked(wq, attrs);
4936 4937 4938
	else
		ret = -EINVAL;

4939 4940
out_unlock:
	apply_wqattrs_unlock();
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
	mutex_unlock(&wq->mutex);
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
4964 4965 4966
	int ret = -ENOMEM;

	apply_wqattrs_lock();
4967 4968 4969

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
4970
		goto out_unlock;
4971 4972 4973

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
4974
		ret = apply_workqueue_attrs_locked(wq, attrs);
4975

4976 4977
out_unlock:
	apply_wqattrs_unlock();
4978 4979 4980 4981 4982 4983 4984 4985 4986
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;
4987

4988 4989 4990 4991
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);
4992

4993
	return written;
4994 4995
}

4996 4997
static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
4998
{
4999 5000
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5001 5002 5003
	int v, ret = -ENOMEM;

	apply_wqattrs_lock();
5004

5005 5006
	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5007
		goto out_unlock;
5008

5009 5010 5011
	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
5012
		ret = apply_workqueue_attrs_locked(wq, attrs);
5013
	}
5014

5015 5016
out_unlock:
	apply_wqattrs_unlock();
5017 5018
	free_workqueue_attrs(attrs);
	return ret ?: count;
5019 5020
}

5021 5022 5023 5024 5025 5026 5027
static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
	__ATTR_NULL,
};
5028

5029 5030 5031
static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_groups			= wq_sysfs_groups,
5032 5033
};

5034 5035 5036 5037 5038
static ssize_t wq_unbound_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int written;

5039
	mutex_lock(&wq_pool_mutex);
5040 5041
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq_unbound_cpumask));
5042
	mutex_unlock(&wq_pool_mutex);
5043 5044 5045 5046

	return written;
}

5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
static ssize_t wq_unbound_cpumask_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	cpumask_var_t cpumask;
	int ret;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	ret = cpumask_parse(buf, cpumask);
	if (!ret)
		ret = workqueue_set_unbound_cpumask(cpumask);

	free_cpumask_var(cpumask);
	return ret ? ret : count;
}

5064
static struct device_attribute wq_sysfs_cpumask_attr =
5065 5066
	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
	       wq_unbound_cpumask_store);
5067

5068
static int __init wq_sysfs_init(void)
5069
{
5070 5071 5072 5073 5074 5075 5076
	int err;

	err = subsys_virtual_register(&wq_subsys, NULL);
	if (err)
		return err;

	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5077
}
5078
core_initcall(wq_sysfs_init);
5079

5080
static void wq_device_release(struct device *dev)
5081
{
5082
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5083

5084
	kfree(wq_dev);
5085
}
5086 5087

/**
5088 5089
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
5090
 *
5091 5092 5093
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
5094
 *
5095 5096 5097 5098 5099 5100
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Return: 0 on success, -errno on failure.
5101
 */
5102
int workqueue_sysfs_register(struct workqueue_struct *wq)
5103
{
5104 5105
	struct wq_device *wq_dev;
	int ret;
5106

5107 5108 5109 5110 5111 5112 5113
	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;
5114

5115 5116 5117
	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;
5118

5119 5120 5121 5122
	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;
5123

5124 5125 5126 5127 5128
	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);
5129

5130 5131 5132 5133 5134 5135
	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}
5136

5137 5138
	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;
5139

5140 5141 5142 5143 5144 5145
		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
5146 5147 5148
			}
		}
	}
5149 5150 5151 5152

	dev_set_uevent_suppress(&wq_dev->dev, false);
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
5153 5154 5155
}

/**
5156 5157
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
5158
 *
5159
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5160
 */
5161
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5162
{
5163
	struct wq_device *wq_dev = wq->wq_dev;
5164

5165 5166
	if (!wq->wq_dev)
		return;
5167

5168 5169
	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
5170
}
5171 5172 5173
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */
5174

5175 5176 5177 5178 5179 5180 5181 5182
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

5183 5184 5185 5186 5187
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5188 5189 5190
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5191 5192 5193 5194 5195
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
5196
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5197 5198 5199
	BUG_ON(!tbl);

	for_each_node(node)
5200
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5201
				node_online(node) ? node : NUMA_NO_NODE));
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5217
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5218
{
T
Tejun Heo 已提交
5219 5220
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5221

5222 5223
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

5224 5225 5226
	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);

5227 5228
	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5229
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5230
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5231

5232 5233
	wq_numa_init();

5234
	/* initialize CPU pools */
5235
	for_each_possible_cpu(cpu) {
5236
		struct worker_pool *pool;
5237

T
Tejun Heo 已提交
5238
		i = 0;
5239
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5240
			BUG_ON(init_worker_pool(pool));
5241
			pool->cpu = cpu;
5242
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5243
			pool->attrs->nice = std_nice[i++];
5244
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5245

T
Tejun Heo 已提交
5246
			/* alloc pool ID */
5247
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5248
			BUG_ON(worker_pool_assign_id(pool));
5249
			mutex_unlock(&wq_pool_mutex);
5250
		}
5251 5252
	}

5253
	/* create the initial worker */
5254
	for_each_online_cpu(cpu) {
5255
		struct worker_pool *pool;
5256

5257
		for_each_cpu_worker_pool(pool, cpu) {
5258
			pool->flags &= ~POOL_DISASSOCIATED;
5259
			BUG_ON(!create_worker(pool));
5260
		}
5261 5262
	}

5263
	/* create default unbound and ordered wq attrs */
5264 5265 5266 5267 5268 5269
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5280 5281
	}

5282
	system_wq = alloc_workqueue("events", 0, 0);
5283
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5284
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5285 5286
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5287 5288
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5289 5290 5291 5292 5293
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5294
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5295 5296 5297
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5298
	return 0;
L
Linus Torvalds 已提交
5299
}
5300
early_initcall(init_workqueues);