workqueue.c 136.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131
 * WQ: wq->mutex protected.
 *
132
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133 134
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
135 136
 */

137
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
138

139
struct worker_pool {
140
	spinlock_t		lock;		/* the pool lock */
141
	int			cpu;		/* I: the associated cpu */
142
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
143
	int			id;		/* I: pool ID */
144
	unsigned int		flags;		/* X: flags */
145 146 147

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
148 149

	/* nr_idle includes the ones off idle_list for rebinding */
150 151 152 153 154 155
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

156
	/* a workers is either on busy_hash or idle_list, or the manager */
157 158 159
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

160
	/* see manage_workers() for details on the two manager mutexes */
161
	struct mutex		manager_arb;	/* manager arbitration */
162 163
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
164
	struct completion	*detach_completion; /* all workers detached */
165

166
	struct ida		worker_ida;	/* worker IDs for task name */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PL: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 260 261 262

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
264 265
};

266 267
static struct kmem_cache *pwq_cache;

268 269 270 271
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

272 273 274
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

275 276 277 278 279 280 281 282 283
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

284 285
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

286 287 288
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

289
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291

292 293
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 295 296 297 298

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

299
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300

301
/* PL: hash of all unbound pools keyed by pool->attrs */
302 303
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

304
/* I: attributes used when instantiating standard unbound pools on demand */
305 306
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

307 308 309
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

310
struct workqueue_struct *system_wq __read_mostly;
311
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
312
struct workqueue_struct *system_highpri_wq __read_mostly;
313
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
314
struct workqueue_struct *system_long_wq __read_mostly;
315
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
316
struct workqueue_struct *system_unbound_wq __read_mostly;
317
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
318
struct workqueue_struct *system_freezable_wq __read_mostly;
319
EXPORT_SYMBOL_GPL(system_freezable_wq);
320 321 322 323
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324

325 326 327 328
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

329 330 331
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

332
#define assert_rcu_or_pool_mutex()					\
333
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
334 335
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
336

337
#define assert_rcu_or_wq_mutex(wq)					\
338
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
339
			   lockdep_is_held(&wq->mutex),			\
340
			   "sched RCU or wq->mutex should be held")
341

342 343 344
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345
	     (pool)++)
346

T
Tejun Heo 已提交
347 348 349
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
350
 * @pi: integer used for iteration
351
 *
352 353 354
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
355 356 357
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
358
 */
359 360
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
361
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
362
		else
T
Tejun Heo 已提交
363

364 365 366 367 368
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
369
 * This must be called with @pool->attach_mutex.
370 371 372 373
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
374 375
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
376
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
377 378
		else

379 380 381 382
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
383
 *
384
 * This must be called either with wq->mutex held or sched RCU read locked.
385 386
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
387 388 389
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
390 391
 */
#define for_each_pwq(pwq, wq)						\
392
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
393
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
394
		else
395

396 397 398 399
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

400 401 402 403 404
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
440
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
476
	.debug_hint	= work_debug_hint,
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

507 508 509 510 511 512 513
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

514 515 516 517 518
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

519 520 521 522 523 524 525
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
526 527 528 529
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

530
	lockdep_assert_held(&wq_pool_mutex);
531

532 533
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
534
	if (ret >= 0) {
T
Tejun Heo 已提交
535
		pool->id = ret;
536 537
		return 0;
	}
538
	return ret;
539 540
}

541 542 543 544 545 546 547 548
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
549 550
 *
 * Return: The unbound pool_workqueue for @node.
551 552 553 554 555 556 557 558
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
574

575
/*
576 577
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
578
 * is cleared and the high bits contain OFFQ flags and pool ID.
579
 *
580 581
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
582 583
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
584
 *
585
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586
 * corresponding to a work.  Pool is available once the work has been
587
 * queued anywhere after initialization until it is sync canceled.  pwq is
588
 * available only while the work item is queued.
589
 *
590 591 592 593
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
594
 */
595 596
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
597
{
598
	WARN_ON_ONCE(!work_pending(work));
599 600
	atomic_long_set(&work->data, data | flags | work_static(work));
}
601

602
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 604
			 unsigned long extra_flags)
{
605 606
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 608
}

609 610 611 612 613 614 615
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

616 617
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
618
{
619 620 621 622 623 624 625
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
626
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627
}
628

629
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
630
{
631 632
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
633 634
}

635
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636
{
637
	unsigned long data = atomic_long_read(&work->data);
638

639
	if (data & WORK_STRUCT_PWQ)
640 641 642
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
643 644
}

645 646 647 648
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
649 650 651
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
652 653 654 655 656
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
657 658
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
659 660
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
661
{
662
	unsigned long data = atomic_long_read(&work->data);
663
	int pool_id;
664

665
	assert_rcu_or_pool_mutex();
666

667 668
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
669
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670

671 672
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
673 674
		return NULL;

675
	return idr_find(&worker_pool_idr, pool_id);
676 677 678 679 680 681
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
682
 * Return: The worker_pool ID @work was last associated with.
683 684 685 686
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
687 688
	unsigned long data = atomic_long_read(&work->data);

689 690
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
691
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692

693
	return data >> WORK_OFFQ_POOL_SHIFT;
694 695
}

696 697
static void mark_work_canceling(struct work_struct *work)
{
698
	unsigned long pool_id = get_work_pool_id(work);
699

700 701
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 703 704 705 706 707
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

708
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 710
}

711
/*
712 713
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
714
 * they're being called with pool->lock held.
715 716
 */

717
static bool __need_more_worker(struct worker_pool *pool)
718
{
719
	return !atomic_read(&pool->nr_running);
720 721
}

722
/*
723 724
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
725 726
 *
 * Note that, because unbound workers never contribute to nr_running, this
727
 * function will always return %true for unbound pools as long as the
728
 * worklist isn't empty.
729
 */
730
static bool need_more_worker(struct worker_pool *pool)
731
{
732
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
733
}
734

735
/* Can I start working?  Called from busy but !running workers. */
736
static bool may_start_working(struct worker_pool *pool)
737
{
738
	return pool->nr_idle;
739 740 741
}

/* Do I need to keep working?  Called from currently running workers. */
742
static bool keep_working(struct worker_pool *pool)
743
{
744 745
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
746 747 748
}

/* Do we need a new worker?  Called from manager. */
749
static bool need_to_create_worker(struct worker_pool *pool)
750
{
751
	return need_more_worker(pool) && !may_start_working(pool);
752
}
753

754
/* Do we have too many workers and should some go away? */
755
static bool too_many_workers(struct worker_pool *pool)
756
{
757
	bool managing = mutex_is_locked(&pool->manager_arb);
758 759
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
760 761

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
762 763
}

764
/*
765 766 767
 * Wake up functions.
 */

768 769
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
770
{
771
	if (unlikely(list_empty(&pool->idle_list)))
772 773
		return NULL;

774
	return list_first_entry(&pool->idle_list, struct worker, entry);
775 776 777 778
}

/**
 * wake_up_worker - wake up an idle worker
779
 * @pool: worker pool to wake worker from
780
 *
781
 * Wake up the first idle worker of @pool.
782 783
 *
 * CONTEXT:
784
 * spin_lock_irq(pool->lock).
785
 */
786
static void wake_up_worker(struct worker_pool *pool)
787
{
788
	struct worker *worker = first_idle_worker(pool);
789 790 791 792 793

	if (likely(worker))
		wake_up_process(worker->task);
}

794
/**
795 796 797 798 799 800 801 802 803 804
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
805
void wq_worker_waking_up(struct task_struct *task, int cpu)
806 807 808
{
	struct worker *worker = kthread_data(task);

809
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
810
		WARN_ON_ONCE(worker->pool->cpu != cpu);
811
		atomic_inc(&worker->pool->nr_running);
812
	}
813 814 815 816 817 818 819 820 821 822 823 824 825 826
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
827
 * Return:
828 829
 * Worker task on @cpu to wake up, %NULL if none.
 */
830
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
831 832
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
833
	struct worker_pool *pool;
834

835 836 837 838 839
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
840
	if (worker->flags & WORKER_NOT_RUNNING)
841 842
		return NULL;

843 844
	pool = worker->pool;

845
	/* this can only happen on the local cpu */
846
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
847
		return NULL;
848 849 850 851 852 853

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
854 855 856
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
857
	 * manipulating idle_list, so dereferencing idle_list without pool
858
	 * lock is safe.
859
	 */
860 861
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
862
		to_wakeup = first_idle_worker(pool);
863 864 865 866 867
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
868
 * @worker: self
869 870
 * @flags: flags to set
 *
871
 * Set @flags in @worker->flags and adjust nr_running accordingly.
872
 *
873
 * CONTEXT:
874
 * spin_lock_irq(pool->lock)
875
 */
876
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
877
{
878
	struct worker_pool *pool = worker->pool;
879

880 881
	WARN_ON_ONCE(worker->task != current);

882
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
883 884
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
885
		atomic_dec(&pool->nr_running);
886 887
	}

888 889 890 891
	worker->flags |= flags;
}

/**
892
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
893
 * @worker: self
894 895
 * @flags: flags to clear
 *
896
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
897
 *
898
 * CONTEXT:
899
 * spin_lock_irq(pool->lock)
900 901 902
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
903
	struct worker_pool *pool = worker->pool;
904 905
	unsigned int oflags = worker->flags;

906 907
	WARN_ON_ONCE(worker->task != current);

908
	worker->flags &= ~flags;
909

910 911 912 913 914
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
915 916
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
917
			atomic_inc(&pool->nr_running);
918 919
}

920 921
/**
 * find_worker_executing_work - find worker which is executing a work
922
 * @pool: pool of interest
923 924
 * @work: work to find worker for
 *
925 926
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
927 928 929 930 931 932 933 934 935 936 937 938
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
939 940 941 942 943 944
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
945 946
 *
 * CONTEXT:
947
 * spin_lock_irq(pool->lock).
948
 *
949 950
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
951
 * otherwise.
952
 */
953
static struct worker *find_worker_executing_work(struct worker_pool *pool,
954
						 struct work_struct *work)
955
{
956 957
	struct worker *worker;

958
	hash_for_each_possible(pool->busy_hash, worker, hentry,
959 960 961
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
962 963 964
			return worker;

	return NULL;
965 966
}

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
982
 * spin_lock_irq(pool->lock).
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1066
static void pwq_activate_delayed_work(struct work_struct *work)
1067
{
1068
	struct pool_workqueue *pwq = get_work_pwq(work);
1069 1070

	trace_workqueue_activate_work(work);
1071
	move_linked_works(work, &pwq->pool->worklist, NULL);
1072
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1073
	pwq->nr_active++;
1074 1075
}

1076
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1077
{
1078
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1079 1080
						    struct work_struct, entry);

1081
	pwq_activate_delayed_work(work);
1082 1083
}

1084
/**
1085 1086
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1087 1088 1089
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1090
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1091 1092
 *
 * CONTEXT:
1093
 * spin_lock_irq(pool->lock).
1094
 */
1095
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1096
{
T
Tejun Heo 已提交
1097
	/* uncolored work items don't participate in flushing or nr_active */
1098
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1099
		goto out_put;
1100

1101
	pwq->nr_in_flight[color]--;
1102

1103 1104
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1105
		/* one down, submit a delayed one */
1106 1107
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1108 1109 1110
	}

	/* is flush in progress and are we at the flushing tip? */
1111
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1112
		goto out_put;
1113 1114

	/* are there still in-flight works? */
1115
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1116
		goto out_put;
1117

1118 1119
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1120 1121

	/*
1122
	 * If this was the last pwq, wake up the first flusher.  It
1123 1124
	 * will handle the rest.
	 */
1125 1126
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1127 1128
out_put:
	put_pwq(pwq);
1129 1130
}

1131
/**
1132
 * try_to_grab_pending - steal work item from worklist and disable irq
1133 1134
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1135
 * @flags: place to store irq state
1136 1137
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1138
 * stable state - idle, on timer or on worklist.
1139
 *
1140
 * Return:
1141 1142 1143
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1144 1145
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1146
 *
1147
 * Note:
1148
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1149 1150 1151
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1152 1153 1154 1155
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1156
 * This function is safe to call from any context including IRQ handler.
1157
 */
1158 1159
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1160
{
1161
	struct worker_pool *pool;
1162
	struct pool_workqueue *pwq;
1163

1164 1165
	local_irq_save(*flags);

1166 1167 1168 1169
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1170 1171 1172 1173 1174
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1175 1176 1177 1178 1179
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1180 1181 1182 1183 1184 1185 1186
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1187 1188
	pool = get_work_pool(work);
	if (!pool)
1189
		goto fail;
1190

1191
	spin_lock(&pool->lock);
1192
	/*
1193 1194 1195 1196 1197
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1198 1199
	 * item is currently queued on that pool.
	 */
1200 1201
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1202 1203 1204 1205 1206
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1207
		 * on the delayed_list, will confuse pwq->nr_active
1208 1209 1210 1211
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1212
			pwq_activate_delayed_work(work);
1213 1214

		list_del_init(&work->entry);
1215
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1216

1217
		/* work->data points to pwq iff queued, point to pool */
1218 1219 1220 1221
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1222
	}
1223
	spin_unlock(&pool->lock);
1224 1225 1226 1227 1228
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1229
	return -EAGAIN;
1230 1231
}

T
Tejun Heo 已提交
1232
/**
1233
 * insert_work - insert a work into a pool
1234
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1235 1236 1237 1238
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1239
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1240
 * work_struct flags.
T
Tejun Heo 已提交
1241 1242
 *
 * CONTEXT:
1243
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1244
 */
1245 1246
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1247
{
1248
	struct worker_pool *pool = pwq->pool;
1249

T
Tejun Heo 已提交
1250
	/* we own @work, set data and link */
1251
	set_work_pwq(work, pwq, extra_flags);
1252
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1253
	get_pwq(pwq);
1254 1255

	/*
1256 1257 1258
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1259 1260 1261
	 */
	smp_mb();

1262 1263
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1264 1265
}

1266 1267
/*
 * Test whether @work is being queued from another work executing on the
1268
 * same workqueue.
1269 1270 1271
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1272 1273 1274 1275 1276 1277 1278
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1279
	return worker && worker->current_pwq->wq == wq;
1280 1281
}

1282
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1283 1284
			 struct work_struct *work)
{
1285
	struct pool_workqueue *pwq;
1286
	struct worker_pool *last_pool;
1287
	struct list_head *worklist;
1288
	unsigned int work_flags;
1289
	unsigned int req_cpu = cpu;
1290 1291 1292 1293 1294 1295 1296 1297

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1298

1299
	debug_work_activate(work);
1300

1301
	/* if draining, only works from the same workqueue are allowed */
1302
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1303
	    WARN_ON_ONCE(!is_chained_work(wq)))
1304
		return;
1305
retry:
1306 1307 1308
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1309
	/* pwq which will be used unless @work is executing elsewhere */
1310
	if (!(wq->flags & WQ_UNBOUND))
1311
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1312 1313
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1314

1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1323

1324
		spin_lock(&last_pool->lock);
1325

1326
		worker = find_worker_executing_work(last_pool, work);
1327

1328 1329
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1330
		} else {
1331 1332
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1333
			spin_lock(&pwq->pool->lock);
1334
		}
1335
	} else {
1336
		spin_lock(&pwq->pool->lock);
1337 1338
	}

1339 1340 1341 1342
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1343 1344
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1358 1359
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1360

1361
	if (WARN_ON(!list_empty(&work->entry))) {
1362
		spin_unlock(&pwq->pool->lock);
1363 1364
		return;
	}
1365

1366 1367
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1368

1369
	if (likely(pwq->nr_active < pwq->max_active)) {
1370
		trace_workqueue_activate_work(work);
1371 1372
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1373 1374
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1375
		worklist = &pwq->delayed_works;
1376
	}
1377

1378
	insert_work(pwq, work, worklist, work_flags);
1379

1380
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1381 1382
}

1383
/**
1384 1385
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1386 1387 1388
 * @wq: workqueue to use
 * @work: work to queue
 *
1389 1390
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1391 1392
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1393
 */
1394 1395
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1396
{
1397
	bool ret = false;
1398
	unsigned long flags;
1399

1400
	local_irq_save(flags);
1401

1402
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1403
		__queue_work(cpu, wq, work);
1404
		ret = true;
1405
	}
1406

1407
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1408 1409
	return ret;
}
1410
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1411

1412
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1413
{
1414
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1415

1416
	/* should have been called from irqsafe timer with irq already off */
1417
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1418
}
1419
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1420

1421 1422
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1423
{
1424 1425 1426 1427 1428
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1429 1430
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1443
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1444

1445
	dwork->wq = wq;
1446
	dwork->cpu = cpu;
1447 1448 1449 1450 1451 1452
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1453 1454
}

1455 1456 1457 1458
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1459
 * @dwork: work to queue
1460 1461
 * @delay: number of jiffies to wait before queueing
 *
1462
 * Return: %false if @work was already on a queue, %true otherwise.  If
1463 1464
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1465
 */
1466 1467
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1468
{
1469
	struct work_struct *work = &dwork->work;
1470
	bool ret = false;
1471
	unsigned long flags;
1472

1473 1474
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1475

1476
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1477
		__queue_delayed_work(cpu, wq, dwork, delay);
1478
		ret = true;
1479
	}
1480

1481
	local_irq_restore(flags);
1482 1483
	return ret;
}
1484
EXPORT_SYMBOL(queue_delayed_work_on);
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1498
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1499 1500
 * pending and its timer was modified.
 *
1501
 * This function is safe to call from any context including IRQ handler.
1502 1503 1504 1505 1506 1507 1508
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1509

1510 1511 1512
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1513

1514 1515 1516
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1517
	}
1518 1519

	/* -ENOENT from try_to_grab_pending() becomes %true */
1520 1521
	return ret;
}
1522 1523
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1524 1525 1526 1527 1528 1529 1530 1531
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1532
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1533 1534
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1535
{
1536
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1537

1538 1539 1540 1541
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1542

1543
	/* can't use worker_set_flags(), also called from create_worker() */
1544
	worker->flags |= WORKER_IDLE;
1545
	pool->nr_idle++;
1546
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1547 1548

	/* idle_list is LIFO */
1549
	list_add(&worker->entry, &pool->idle_list);
1550

1551 1552
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1553

1554
	/*
1555
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1556
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1557 1558
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1559
	 */
1560
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1561
		     pool->nr_workers == pool->nr_idle &&
1562
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1572
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1573 1574 1575
 */
static void worker_leave_idle(struct worker *worker)
{
1576
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1577

1578 1579
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1580
	worker_clr_flags(worker, WORKER_IDLE);
1581
	pool->nr_idle--;
T
Tejun Heo 已提交
1582 1583 1584
	list_del_init(&worker->entry);
}

1585
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1586 1587 1588
{
	struct worker *worker;

1589
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1590 1591
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1592
		INIT_LIST_HEAD(&worker->scheduled);
1593
		INIT_LIST_HEAD(&worker->node);
1594 1595
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1596
	}
T
Tejun Heo 已提交
1597 1598 1599
	return worker;
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1633 1634 1635 1636 1637
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1638 1639 1640
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1641 1642 1643 1644 1645 1646
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1647
	mutex_lock(&pool->attach_mutex);
1648 1649
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1650
		detach_completion = pool->detach_completion;
1651
	mutex_unlock(&pool->attach_mutex);
1652

1653 1654 1655
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1656 1657 1658 1659
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1660 1661
/**
 * create_worker - create a new workqueue worker
1662
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1663
 *
1664
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1665 1666 1667 1668
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1669
 * Return:
T
Tejun Heo 已提交
1670 1671
 * Pointer to the newly created worker.
 */
1672
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1673 1674
{
	struct worker *worker = NULL;
1675
	int id = -1;
1676
	char id_buf[16];
T
Tejun Heo 已提交
1677

1678 1679
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1680 1681
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1682

1683
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1684 1685 1686
	if (!worker)
		goto fail;

1687
	worker->pool = pool;
T
Tejun Heo 已提交
1688 1689
	worker->id = id;

1690
	if (pool->cpu >= 0)
1691 1692
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1693
	else
1694 1695
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1696
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1697
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1698 1699 1700
	if (IS_ERR(worker->task))
		goto fail;

1701 1702 1703 1704 1705
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1706
	/* successful, attach the worker to the pool */
1707
	worker_attach_to_pool(worker, pool);
1708

1709 1710 1711 1712 1713 1714 1715
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1716
	return worker;
1717

T
Tejun Heo 已提交
1718
fail:
1719
	if (id >= 0)
1720
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1721 1722 1723 1724 1725 1726 1727 1728
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1729 1730
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1731 1732
 *
 * CONTEXT:
1733
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1734 1735 1736
 */
static void destroy_worker(struct worker *worker)
{
1737
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1738

1739 1740
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1741
	/* sanity check frenzy */
1742
	if (WARN_ON(worker->current_work) ||
1743 1744
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1745
		return;
T
Tejun Heo 已提交
1746

1747 1748
	pool->nr_workers--;
	pool->nr_idle--;
1749

T
Tejun Heo 已提交
1750
	list_del_init(&worker->entry);
1751
	worker->flags |= WORKER_DIE;
1752
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1753 1754
}

1755
static void idle_worker_timeout(unsigned long __pool)
1756
{
1757
	struct worker_pool *pool = (void *)__pool;
1758

1759
	spin_lock_irq(&pool->lock);
1760

1761
	while (too_many_workers(pool)) {
1762 1763 1764 1765
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1766
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1767 1768
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1769
		if (time_before(jiffies, expires)) {
1770
			mod_timer(&pool->idle_timer, expires);
1771
			break;
1772
		}
1773 1774

		destroy_worker(worker);
1775 1776
	}

1777
	spin_unlock_irq(&pool->lock);
1778
}
1779

1780
static void send_mayday(struct work_struct *work)
1781
{
1782 1783
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1784

1785
	lockdep_assert_held(&wq_mayday_lock);
1786

1787
	if (!wq->rescuer)
1788
		return;
1789 1790

	/* mayday mayday mayday */
1791
	if (list_empty(&pwq->mayday_node)) {
1792 1793 1794 1795 1796 1797
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1798
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1799
		wake_up_process(wq->rescuer->task);
1800
	}
1801 1802
}

1803
static void pool_mayday_timeout(unsigned long __pool)
1804
{
1805
	struct worker_pool *pool = (void *)__pool;
1806 1807
	struct work_struct *work;

1808
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1809
	spin_lock(&pool->lock);
1810

1811
	if (need_to_create_worker(pool)) {
1812 1813 1814 1815 1816 1817
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1818
		list_for_each_entry(work, &pool->worklist, entry)
1819
			send_mayday(work);
L
Linus Torvalds 已提交
1820
	}
1821

1822
	spin_unlock(&pool->lock);
1823
	spin_unlock_irq(&wq_mayday_lock);
1824

1825
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1826 1827
}

1828 1829
/**
 * maybe_create_worker - create a new worker if necessary
1830
 * @pool: pool to create a new worker for
1831
 *
1832
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1833 1834
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1835
 * sent to all rescuers with works scheduled on @pool to resolve
1836 1837
 * possible allocation deadlock.
 *
1838 1839
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1840 1841
 *
 * LOCKING:
1842
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1843 1844 1845
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1846
 * Return:
1847
 * %false if no action was taken and pool->lock stayed locked, %true
1848 1849
 * otherwise.
 */
1850
static bool maybe_create_worker(struct worker_pool *pool)
1851 1852
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1853
{
1854
	if (!need_to_create_worker(pool))
1855 1856
		return false;
restart:
1857
	spin_unlock_irq(&pool->lock);
1858

1859
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1860
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1861 1862

	while (true) {
1863
		if (create_worker(pool) || !need_to_create_worker(pool))
1864
			break;
L
Linus Torvalds 已提交
1865

1866
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1867

1868
		if (!need_to_create_worker(pool))
1869 1870 1871
			break;
	}

1872
	del_timer_sync(&pool->mayday_timer);
1873
	spin_lock_irq(&pool->lock);
1874 1875 1876 1877 1878
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1879
	if (need_to_create_worker(pool))
1880 1881 1882 1883
		goto restart;
	return true;
}

1884
/**
1885 1886
 * manage_workers - manage worker pool
 * @worker: self
1887
 *
1888
 * Assume the manager role and manage the worker pool @worker belongs
1889
 * to.  At any given time, there can be only zero or one manager per
1890
 * pool.  The exclusion is handled automatically by this function.
1891 1892 1893 1894
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1895 1896
 *
 * CONTEXT:
1897
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1898 1899
 * multiple times.  Does GFP_KERNEL allocations.
 *
1900
 * Return:
1901 1902 1903 1904 1905
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
1906
 */
1907
static bool manage_workers(struct worker *worker)
1908
{
1909
	struct worker_pool *pool = worker->pool;
1910
	bool ret = false;
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1922
	if (!mutex_trylock(&pool->manager_arb))
1923
		return ret;
1924

1925
	ret |= maybe_create_worker(pool);
1926

1927
	mutex_unlock(&pool->manager_arb);
1928
	return ret;
1929 1930
}

1931 1932
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1933
 * @worker: self
1934 1935 1936 1937 1938 1939 1940 1941 1942
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1943
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1944
 */
T
Tejun Heo 已提交
1945
static void process_one_work(struct worker *worker, struct work_struct *work)
1946 1947
__releases(&pool->lock)
__acquires(&pool->lock)
1948
{
1949
	struct pool_workqueue *pwq = get_work_pwq(work);
1950
	struct worker_pool *pool = worker->pool;
1951
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1952
	int work_color;
1953
	struct worker *collision;
1954 1955 1956 1957 1958 1959 1960 1961
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1962 1963 1964
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1965
#endif
1966
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1967
		     raw_smp_processor_id() != pool->cpu);
1968

1969 1970 1971 1972 1973 1974
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
1975
	collision = find_worker_executing_work(pool, work);
1976 1977 1978 1979 1980
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1981
	/* claim and dequeue */
1982
	debug_work_deactivate(work);
1983
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
1984
	worker->current_work = work;
1985
	worker->current_func = work->func;
1986
	worker->current_pwq = pwq;
1987
	work_color = get_work_color(work);
1988

1989 1990
	list_del_init(&work->entry);

1991
	/*
1992 1993 1994 1995
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
1996 1997
	 */
	if (unlikely(cpu_intensive))
1998
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1999

2000
	/*
2001 2002 2003 2004
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2005
	 * UNBOUND and CPU_INTENSIVE ones.
2006
	 */
2007
	if (need_more_worker(pool))
2008
		wake_up_worker(pool);
2009

2010
	/*
2011
	 * Record the last pool and clear PENDING which should be the last
2012
	 * update to @work.  Also, do this inside @pool->lock so that
2013 2014
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2015
	 */
2016
	set_work_pool_and_clear_pending(work, pool->id);
2017

2018
	spin_unlock_irq(&pool->lock);
2019

2020
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2021
	lock_map_acquire(&lockdep_map);
2022
	trace_workqueue_execute_start(work);
2023
	worker->current_func(work);
2024 2025 2026 2027 2028
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2029
	lock_map_release(&lockdep_map);
2030
	lock_map_release(&pwq->wq->lockdep_map);
2031 2032

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2033 2034
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2035 2036
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2037 2038 2039 2040
		debug_show_held_locks(current);
		dump_stack();
	}

2041 2042 2043 2044 2045 2046 2047 2048 2049
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2050
	spin_lock_irq(&pool->lock);
2051

2052 2053 2054 2055
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2056
	/* we're done with it, release */
2057
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2058
	worker->current_work = NULL;
2059
	worker->current_func = NULL;
2060
	worker->current_pwq = NULL;
2061
	worker->desc_valid = false;
2062
	pwq_dec_nr_in_flight(pwq, work_color);
2063 2064
}

2065 2066 2067 2068 2069 2070 2071 2072 2073
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2074
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2075 2076 2077
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2078
{
2079 2080
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2081
						struct work_struct, entry);
T
Tejun Heo 已提交
2082
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2083 2084 2085
	}
}

T
Tejun Heo 已提交
2086 2087
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2088
 * @__worker: self
T
Tejun Heo 已提交
2089
 *
2090 2091 2092 2093 2094
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2095 2096
 *
 * Return: 0
T
Tejun Heo 已提交
2097
 */
T
Tejun Heo 已提交
2098
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2099
{
T
Tejun Heo 已提交
2100
	struct worker *worker = __worker;
2101
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2102

2103 2104
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2105
woke_up:
2106
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2107

2108 2109
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2110
		spin_unlock_irq(&pool->lock);
2111 2112
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2113 2114

		set_task_comm(worker->task, "kworker/dying");
2115
		ida_simple_remove(&pool->worker_ida, worker->id);
2116 2117
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2118
		return 0;
T
Tejun Heo 已提交
2119
	}
2120

T
Tejun Heo 已提交
2121
	worker_leave_idle(worker);
2122
recheck:
2123
	/* no more worker necessary? */
2124
	if (!need_more_worker(pool))
2125 2126 2127
		goto sleep;

	/* do we need to manage? */
2128
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2129 2130
		goto recheck;

T
Tejun Heo 已提交
2131 2132 2133 2134 2135
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2136
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2137

2138
	/*
2139 2140 2141 2142 2143
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2144
	 */
2145
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2146 2147

	do {
T
Tejun Heo 已提交
2148
		struct work_struct *work =
2149
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2150 2151 2152 2153 2154 2155
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2156
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2157 2158 2159
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2160
		}
2161
	} while (keep_working(pool));
2162

2163
	worker_set_flags(worker, WORKER_PREP);
2164
sleep:
T
Tejun Heo 已提交
2165
	/*
2166 2167 2168 2169 2170
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2171 2172 2173
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2174
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2175 2176
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2177 2178
}

2179 2180
/**
 * rescuer_thread - the rescuer thread function
2181
 * @__rescuer: self
2182 2183
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2184
 * workqueue which has WQ_MEM_RECLAIM set.
2185
 *
2186
 * Regular work processing on a pool may block trying to create a new
2187 2188 2189 2190 2191
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2192 2193
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2194 2195 2196
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2197 2198
 *
 * Return: 0
2199
 */
2200
static int rescuer_thread(void *__rescuer)
2201
{
2202 2203
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2204
	struct list_head *scheduled = &rescuer->scheduled;
2205
	bool should_stop;
2206 2207

	set_user_nice(current, RESCUER_NICE_LEVEL);
2208 2209 2210 2211 2212 2213

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2214 2215 2216
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2217 2218 2219 2220 2221 2222 2223 2224 2225
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2226

2227
	/* see whether any pwq is asking for help */
2228
	spin_lock_irq(&wq_mayday_lock);
2229 2230 2231 2232

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2233
		struct worker_pool *pool = pwq->pool;
2234 2235 2236
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2237 2238
		list_del_init(&pwq->mayday_node);

2239
		spin_unlock_irq(&wq_mayday_lock);
2240

2241 2242 2243
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2244
		rescuer->pool = pool;
2245 2246 2247 2248 2249

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2250
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2251
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2252
			if (get_work_pwq(work) == pwq)
2253 2254 2255
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2256 2257 2258 2259 2260
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2261

2262 2263 2264 2265 2266 2267
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2268
		/*
2269
		 * Leave this pool.  If need_more_worker() is %true, notify a
2270 2271 2272
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2273
		if (need_more_worker(pool))
2274
			wake_up_worker(pool);
2275

2276
		rescuer->pool = NULL;
2277
		spin_unlock(&pool->lock);
2278
		spin_lock(&wq_mayday_lock);
2279 2280
	}

2281
	spin_unlock_irq(&wq_mayday_lock);
2282

2283 2284 2285 2286 2287 2288
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2289 2290
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2291 2292
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2293 2294
}

O
Oleg Nesterov 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2306 2307
/**
 * insert_wq_barrier - insert a barrier work
2308
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2309
 * @barr: wq_barrier to insert
2310 2311
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2312
 *
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2325
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2326 2327
 *
 * CONTEXT:
2328
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2329
 */
2330
static void insert_wq_barrier(struct pool_workqueue *pwq,
2331 2332
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2333
{
2334 2335 2336
	struct list_head *head;
	unsigned int linked = 0;

2337
	/*
2338
	 * debugobject calls are safe here even with pool->lock locked
2339 2340 2341 2342
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2343
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2344
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2345
	init_completion(&barr->done);
2346

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2362
	debug_work_activate(&barr->work);
2363
	insert_work(pwq, &barr->work, head,
2364
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2365 2366
}

2367
/**
2368
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2369 2370 2371 2372
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2373
 * Prepare pwqs for workqueue flushing.
2374
 *
2375 2376 2377 2378 2379
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2380 2381 2382 2383 2384 2385 2386
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2387
 * If @work_color is non-negative, all pwqs should have the same
2388 2389 2390 2391
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2392
 * mutex_lock(wq->mutex).
2393
 *
2394
 * Return:
2395 2396 2397
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2398
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2399
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2400
{
2401
	bool wait = false;
2402
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2403

2404
	if (flush_color >= 0) {
2405
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2406
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2407
	}
2408

2409
	for_each_pwq(pwq, wq) {
2410
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2411

2412
		spin_lock_irq(&pool->lock);
2413

2414
		if (flush_color >= 0) {
2415
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2416

2417 2418 2419
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2420 2421 2422
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2423

2424
		if (work_color >= 0) {
2425
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2426
			pwq->work_color = work_color;
2427
		}
L
Linus Torvalds 已提交
2428

2429
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2430
	}
2431

2432
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2433
		complete(&wq->first_flusher->done);
2434

2435
	return wait;
L
Linus Torvalds 已提交
2436 2437
}

2438
/**
L
Linus Torvalds 已提交
2439
 * flush_workqueue - ensure that any scheduled work has run to completion.
2440
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2441
 *
2442 2443
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2444
 */
2445
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2446
{
2447 2448 2449 2450 2451 2452
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2453

2454 2455
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2456

2457
	mutex_lock(&wq->mutex);
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2470
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2471 2472 2473 2474 2475
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2476
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2477 2478 2479

			wq->first_flusher = &this_flusher;

2480
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2481 2482 2483 2484 2485 2486 2487 2488
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2489
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2490
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2491
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2502
	mutex_unlock(&wq->mutex);
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2515
	mutex_lock(&wq->mutex);
2516

2517 2518 2519 2520
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2521 2522
	wq->first_flusher = NULL;

2523 2524
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2537 2538
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2558
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2559 2560 2561
		}

		if (list_empty(&wq->flusher_queue)) {
2562
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2563 2564 2565 2566 2567
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2568
		 * the new first flusher and arm pwqs.
2569
		 */
2570 2571
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2572 2573 2574 2575

		list_del_init(&next->list);
		wq->first_flusher = next;

2576
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2587
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2588
}
2589
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2590

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2605
	struct pool_workqueue *pwq;
2606 2607 2608 2609

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2610
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2611
	 */
2612
	mutex_lock(&wq->mutex);
2613
	if (!wq->nr_drainers++)
2614
		wq->flags |= __WQ_DRAINING;
2615
	mutex_unlock(&wq->mutex);
2616 2617 2618
reflush:
	flush_workqueue(wq);

2619
	mutex_lock(&wq->mutex);
2620

2621
	for_each_pwq(pwq, wq) {
2622
		bool drained;
2623

2624
		spin_lock_irq(&pwq->pool->lock);
2625
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2626
		spin_unlock_irq(&pwq->pool->lock);
2627 2628

		if (drained)
2629 2630 2631 2632
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2633
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2634
				wq->name, flush_cnt);
2635

2636
		mutex_unlock(&wq->mutex);
2637 2638 2639 2640
		goto reflush;
	}

	if (!--wq->nr_drainers)
2641
		wq->flags &= ~__WQ_DRAINING;
2642
	mutex_unlock(&wq->mutex);
2643 2644 2645
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2646
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2647
{
2648
	struct worker *worker = NULL;
2649
	struct worker_pool *pool;
2650
	struct pool_workqueue *pwq;
2651 2652

	might_sleep();
2653 2654

	local_irq_disable();
2655
	pool = get_work_pool(work);
2656 2657
	if (!pool) {
		local_irq_enable();
2658
		return false;
2659
	}
2660

2661
	spin_lock(&pool->lock);
2662
	/* see the comment in try_to_grab_pending() with the same code */
2663 2664 2665
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2666
			goto already_gone;
2667
	} else {
2668
		worker = find_worker_executing_work(pool, work);
2669
		if (!worker)
T
Tejun Heo 已提交
2670
			goto already_gone;
2671
		pwq = worker->current_pwq;
2672
	}
2673

2674
	insert_wq_barrier(pwq, barr, work, worker);
2675
	spin_unlock_irq(&pool->lock);
2676

2677 2678 2679 2680 2681 2682
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2683
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2684
		lock_map_acquire(&pwq->wq->lockdep_map);
2685
	else
2686 2687
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2688

2689
	return true;
T
Tejun Heo 已提交
2690
already_gone:
2691
	spin_unlock_irq(&pool->lock);
2692
	return false;
2693
}
2694 2695 2696 2697 2698

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2699 2700
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2701
 *
2702
 * Return:
2703 2704 2705 2706 2707
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2708 2709
	struct wq_barrier barr;

2710 2711 2712
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2713 2714 2715 2716 2717 2718 2719
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2720
}
2721
EXPORT_SYMBOL_GPL(flush_work);
2722

2723
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2724
{
2725
	unsigned long flags;
2726 2727 2728
	int ret;

	do {
2729 2730 2731 2732 2733 2734
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2735
			flush_work(work);
2736 2737
	} while (unlikely(ret < 0));

2738 2739 2740 2741
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2742
	flush_work(work);
2743
	clear_work_data(work);
2744 2745 2746
	return ret;
}

2747
/**
2748 2749
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2750
 *
2751 2752 2753 2754
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2755
 *
2756 2757
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2758
 *
2759
 * The caller must ensure that the workqueue on which @work was last
2760
 * queued can't be destroyed before this function returns.
2761
 *
2762
 * Return:
2763
 * %true if @work was pending, %false otherwise.
2764
 */
2765
bool cancel_work_sync(struct work_struct *work)
2766
{
2767
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2768
}
2769
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2770

2771
/**
2772 2773
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2774
 *
2775 2776 2777
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2778
 *
2779
 * Return:
2780 2781
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2782
 */
2783 2784
bool flush_delayed_work(struct delayed_work *dwork)
{
2785
	local_irq_disable();
2786
	if (del_timer_sync(&dwork->timer))
2787
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2788
	local_irq_enable();
2789 2790 2791 2792
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2793
/**
2794 2795
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2796
 *
2797 2798 2799 2800 2801 2802 2803 2804 2805
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2806
 *
2807
 * This function is safe to call from any context including IRQ handler.
2808
 */
2809
bool cancel_delayed_work(struct delayed_work *dwork)
2810
{
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2821 2822
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2823
	local_irq_restore(flags);
2824
	return ret;
2825
}
2826
EXPORT_SYMBOL(cancel_delayed_work);
2827

2828 2829 2830 2831 2832 2833
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2834
 * Return:
2835 2836 2837
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2838
{
2839
	return __cancel_work_timer(&dwork->work, true);
2840
}
2841
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2842

2843
/**
2844
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2845 2846
 * @func: the function to call
 *
2847 2848
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2849
 * schedule_on_each_cpu() is very slow.
2850
 *
2851
 * Return:
2852
 * 0 on success, -errno on failure.
2853
 */
2854
int schedule_on_each_cpu(work_func_t func)
2855 2856
{
	int cpu;
2857
	struct work_struct __percpu *works;
2858

2859 2860
	works = alloc_percpu(struct work_struct);
	if (!works)
2861
		return -ENOMEM;
2862

2863 2864
	get_online_cpus();

2865
	for_each_online_cpu(cpu) {
2866 2867 2868
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2869
		schedule_work_on(cpu, work);
2870
	}
2871 2872 2873 2874

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2875
	put_online_cpus();
2876
	free_percpu(works);
2877 2878 2879
	return 0;
}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2904 2905
void flush_scheduled_work(void)
{
2906
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2907
}
2908
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2909

2910 2911 2912 2913 2914 2915 2916 2917 2918
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2919
 * Return:	0 - function was executed
2920 2921
 *		1 - function was scheduled for execution
 */
2922
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2923 2924
{
	if (!in_interrupt()) {
2925
		fn(&ew->work);
2926 2927 2928
		return 0;
	}

2929
	INIT_WORK(&ew->work, fn);
2930 2931 2932 2933 2934 2935
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

2963 2964
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
2965 2966 2967 2968 2969
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
2970
static DEVICE_ATTR_RO(per_cpu);
2971

2972 2973
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
2974 2975 2976 2977 2978 2979
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

2980 2981 2982
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
2993
static DEVICE_ATTR_RW(max_active);
2994

2995 2996 2997 2998
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
2999
};
3000
ATTRIBUTE_GROUPS(wq_sysfs);
3001

3002 3003
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3004 3005
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3006 3007
	const char *delim = "";
	int node, written = 0;
3008 3009

	rcu_read_lock_sched();
3010 3011 3012 3013 3014 3015 3016
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3028 3029 3030
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3044 3045 3046
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3062
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3077 3078 3079
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3140
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3141
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3142 3143
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3144
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3145 3146 3147 3148 3149
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3150
	.dev_groups			= wq_sysfs_groups,
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3179
 * Return: 0 on success, -errno on failure.
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3272 3273 3274
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3286
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3287 3288 3289 3290 3291 3292
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3293 3294 3295 3296 3297
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3298 3299 3300 3301 3302 3303
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3304 3305 3306 3307 3308 3309 3310 3311
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3312 3313
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3328 3329 3330 3331 3332
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3333 3334
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3335 3336
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3337 3338
 */
static int init_worker_pool(struct worker_pool *pool)
3339 3340
{
	spin_lock_init(&pool->lock);
3341 3342
	pool->id = -1;
	pool->cpu = -1;
3343
	pool->node = NUMA_NO_NODE;
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3357
	mutex_init(&pool->attach_mutex);
3358
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3359

3360
	ida_init(&pool->worker_ida);
3361 3362 3363 3364
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3365 3366 3367 3368
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3369 3370
}

3371 3372 3373 3374
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3375
	ida_destroy(&pool->worker_ida);
3376 3377 3378 3379 3380 3381 3382 3383 3384
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3385 3386 3387
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3388 3389
 *
 * Should be called with wq_pool_mutex held.
3390 3391 3392
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3393
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3394 3395
	struct worker *worker;

3396 3397 3398
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3399 3400 3401
		return;

	/* sanity checks */
3402
	if (WARN_ON(!(pool->cpu < 0)) ||
3403
	    WARN_ON(!list_empty(&pool->worklist)))
3404 3405 3406 3407 3408 3409 3410
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3411 3412 3413
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
3414
	 * attach_mutex.
3415
	 */
3416 3417
	mutex_lock(&pool->manager_arb);

3418
	spin_lock_irq(&pool->lock);
3419
	while ((worker = first_idle_worker(pool)))
3420 3421 3422
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3423

3424
	mutex_lock(&pool->attach_mutex);
3425
	if (!list_empty(&pool->workers))
3426
		pool->detach_completion = &detach_completion;
3427
	mutex_unlock(&pool->attach_mutex);
3428 3429 3430 3431

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3449
 * create a new one.
3450 3451
 *
 * Should be called with wq_pool_mutex held.
3452 3453 3454
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3455 3456 3457 3458 3459
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3460
	int node;
3461

3462
	lockdep_assert_held(&wq_pool_mutex);
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3477
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3478 3479
	copy_workqueue_attrs(pool->attrs, attrs);

3480 3481 3482 3483 3484 3485
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3497 3498 3499 3500
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3501
	if (!create_worker(pool))
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3530
	bool is_last;
T
Tejun Heo 已提交
3531 3532 3533 3534

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3535
	/*
3536
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3537 3538 3539
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3540
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3541
	list_del_rcu(&pwq->pwqs_node);
3542
	is_last = list_empty(&wq->pwqs);
3543
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3544

3545
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3546
	put_unbound_pool(pool);
3547 3548
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3549 3550 3551 3552 3553 3554
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3555 3556
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3557
		kfree(wq);
3558
	}
T
Tejun Heo 已提交
3559 3560
}

3561
/**
3562
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3563 3564
 * @pwq: target pool_workqueue
 *
3565 3566 3567
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3568
 */
3569
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3570
{
3571 3572 3573 3574
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3575
	lockdep_assert_held(&wq->mutex);
3576 3577 3578 3579 3580

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3581
	spin_lock_irq(&pwq->pool->lock);
3582

3583 3584 3585 3586 3587 3588
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
3589
		pwq->max_active = wq->saved_max_active;
3590

3591 3592 3593
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3594 3595 3596 3597 3598 3599

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3600 3601 3602 3603
	} else {
		pwq->max_active = 0;
	}

3604
	spin_unlock_irq(&pwq->pool->lock);
3605 3606
}

3607
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3608 3609
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3610 3611 3612
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3613 3614
	memset(pwq, 0, sizeof(*pwq));

3615 3616 3617
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3618
	pwq->refcnt = 1;
3619
	INIT_LIST_HEAD(&pwq->delayed_works);
3620
	INIT_LIST_HEAD(&pwq->pwqs_node);
3621
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3622
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3623
}
3624

3625
/* sync @pwq with the current state of its associated wq and link it */
3626
static void link_pwq(struct pool_workqueue *pwq)
3627 3628 3629 3630
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3631

3632 3633 3634 3635
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3636 3637
	/*
	 * Set the matching work_color.  This is synchronized with
3638
	 * wq->mutex to avoid confusing flush_workqueue().
3639
	 */
3640
	pwq->work_color = wq->work_color;
3641 3642 3643 3644 3645

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3646
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3647
}
3648

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3662
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3663 3664 3665
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3666
	}
3667

3668 3669
	init_pwq(pwq, wq, pool);
	return pwq;
3670 3671
}

3672 3673 3674 3675 3676 3677 3678
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3679
		kmem_cache_free(pwq_cache, pwq);
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3692
 * calculation.  The result is stored in @cpumask.
3693 3694 3695 3696 3697 3698 3699 3700
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3701 3702 3703
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3704 3705 3706 3707
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3708
	if (!wq_numa_enabled || attrs->no_numa)
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3745 3746 3747 3748 3749
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3750 3751 3752 3753 3754 3755
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3756
 *
3757 3758 3759
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3760 3761 3762 3763
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3764 3765
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3766
	int node, ret;
3767

3768
	/* only unbound workqueues can change attributes */
3769 3770 3771
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3772 3773 3774 3775
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3776
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3777
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3778 3779
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3780 3781
		goto enomem;

3782
	/* make a copy of @attrs and sanitize it */
3783 3784 3785
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3800
	mutex_lock(&wq_pool_mutex);
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3822
	mutex_unlock(&wq_pool_mutex);
3823

3824
	/* all pwqs have been created successfully, let's install'em */
3825
	mutex_lock(&wq->mutex);
3826

3827
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3828 3829

	/* save the previous pwq and install the new one */
3830
	for_each_node(node)
3831 3832 3833 3834 3835
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3836 3837

	mutex_unlock(&wq->mutex);
3838

3839 3840 3841 3842 3843 3844
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3845 3846 3847
	ret = 0;
	/* fall through */
out_free:
3848
	free_workqueue_attrs(tmp_attrs);
3849
	free_workqueue_attrs(new_attrs);
3850
	kfree(pwq_tbl);
3851
	return ret;
3852

3853 3854 3855 3856 3857 3858 3859
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3860
enomem:
3861 3862
	ret = -ENOMEM;
	goto out_free;
3863 3864
}

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3910 3911
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
3912 3913 3914 3915 3916 3917 3918 3919

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
3920
	 * wq's, the default pwq should be used.
3921 3922 3923 3924 3925
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
3926
		goto use_dfl_pwq;
3927 3928 3929 3930 3931 3932 3933
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3934 3935
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3936 3937
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3960
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3961
{
3962
	bool highpri = wq->flags & WQ_HIGHPRI;
3963
	int cpu, ret;
3964 3965

	if (!(wq->flags & WQ_UNBOUND)) {
3966 3967
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3968 3969 3970
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3971 3972
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3973
			struct worker_pool *cpu_pools =
3974
				per_cpu(cpu_worker_pools, cpu);
3975

3976 3977 3978
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3979
			link_pwq(pwq);
3980
			mutex_unlock(&wq->mutex);
3981
		}
3982
		return 0;
3983 3984 3985 3986 3987 3988 3989
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3990
	} else {
3991
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3992
	}
T
Tejun Heo 已提交
3993 3994
}

3995 3996
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3997
{
3998 3999 4000
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4001 4002
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4003

4004
	return clamp_val(max_active, 1, lim);
4005 4006
}

4007
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4008 4009 4010
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4011
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4012
{
4013
	size_t tbl_size = 0;
4014
	va_list args;
L
Linus Torvalds 已提交
4015
	struct workqueue_struct *wq;
4016
	struct pool_workqueue *pwq;
4017

4018 4019 4020 4021
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4022
	/* allocate wq and format name */
4023 4024 4025 4026
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4027
	if (!wq)
4028
		return NULL;
4029

4030 4031 4032 4033 4034 4035
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4036 4037
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4038
	va_end(args);
L
Linus Torvalds 已提交
4039

4040
	max_active = max_active ?: WQ_DFL_ACTIVE;
4041
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4042

4043
	/* init wq */
4044
	wq->flags = flags;
4045
	wq->saved_max_active = max_active;
4046
	mutex_init(&wq->mutex);
4047
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4048
	INIT_LIST_HEAD(&wq->pwqs);
4049 4050
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4051
	INIT_LIST_HEAD(&wq->maydays);
4052

4053
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4054
	INIT_LIST_HEAD(&wq->list);
4055

4056
	if (alloc_and_link_pwqs(wq) < 0)
4057
		goto err_free_wq;
T
Tejun Heo 已提交
4058

4059 4060 4061 4062 4063
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4064 4065
		struct worker *rescuer;

4066
		rescuer = alloc_worker(NUMA_NO_NODE);
4067
		if (!rescuer)
4068
			goto err_destroy;
4069

4070 4071
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4072
					       wq->name);
4073 4074 4075 4076
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4077

4078
		wq->rescuer = rescuer;
4079
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4080
		wake_up_process(rescuer->task);
4081 4082
	}

4083 4084 4085
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4086
	/*
4087 4088 4089
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4090
	 */
4091
	mutex_lock(&wq_pool_mutex);
4092

4093
	mutex_lock(&wq->mutex);
4094 4095
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4096
	mutex_unlock(&wq->mutex);
4097

T
Tejun Heo 已提交
4098
	list_add(&wq->list, &workqueues);
4099

4100
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4101

4102
	return wq;
4103 4104

err_free_wq:
4105
	free_workqueue_attrs(wq->unbound_attrs);
4106 4107 4108 4109
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4110
	return NULL;
4111
}
4112
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4113

4114 4115 4116 4117 4118 4119 4120 4121
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4122
	struct pool_workqueue *pwq;
4123
	int node;
4124

4125 4126
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4127

4128
	/* sanity checks */
4129
	mutex_lock(&wq->mutex);
4130
	for_each_pwq(pwq, wq) {
4131 4132
		int i;

4133 4134
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4135
				mutex_unlock(&wq->mutex);
4136
				return;
4137 4138 4139
			}
		}

4140
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4141
		    WARN_ON(pwq->nr_active) ||
4142
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4143
			mutex_unlock(&wq->mutex);
4144
			return;
4145
		}
4146
	}
4147
	mutex_unlock(&wq->mutex);
4148

4149 4150 4151 4152
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4153
	mutex_lock(&wq_pool_mutex);
4154
	list_del_init(&wq->list);
4155
	mutex_unlock(&wq_pool_mutex);
4156

4157 4158
	workqueue_sysfs_unregister(wq);

4159
	if (wq->rescuer) {
4160
		kthread_stop(wq->rescuer->task);
4161
		kfree(wq->rescuer);
4162
		wq->rescuer = NULL;
4163 4164
	}

T
Tejun Heo 已提交
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4175 4176
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4177
		 */
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4190
		put_pwq_unlocked(pwq);
4191
	}
4192 4193 4194
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4207
	struct pool_workqueue *pwq;
4208

4209 4210 4211 4212
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4213
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4214

4215
	mutex_lock(&wq->mutex);
4216 4217 4218

	wq->saved_max_active = max_active;

4219 4220
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4221

4222
	mutex_unlock(&wq->mutex);
4223
}
4224
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4225

4226 4227 4228 4229 4230
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4231 4232
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4233 4234 4235 4236 4237
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4238
	return worker && worker->rescue_wq;
4239 4240
}

4241
/**
4242 4243 4244
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4245
 *
4246 4247 4248
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4249
 *
4250 4251 4252 4253 4254 4255
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4256
 * Return:
4257
 * %true if congested, %false otherwise.
4258
 */
4259
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4260
{
4261
	struct pool_workqueue *pwq;
4262 4263
	bool ret;

4264
	rcu_read_lock_sched();
4265

4266 4267 4268
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4269 4270 4271
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4272
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4273

4274
	ret = !list_empty(&pwq->delayed_works);
4275
	rcu_read_unlock_sched();
4276 4277

	return ret;
L
Linus Torvalds 已提交
4278
}
4279
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4280

4281 4282 4283 4284 4285 4286 4287 4288
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4289
 * Return:
4290 4291 4292
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4293
{
4294
	struct worker_pool *pool;
4295 4296
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4297

4298 4299
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4300

4301 4302
	local_irq_save(flags);
	pool = get_work_pool(work);
4303
	if (pool) {
4304
		spin_lock(&pool->lock);
4305 4306
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4307
		spin_unlock(&pool->lock);
4308
	}
4309
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4310

4311
	return ret;
L
Linus Torvalds 已提交
4312
}
4313
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4314

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4392 4393 4394
/*
 * CPU hotplug.
 *
4395
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4396
 * are a lot of assumptions on strong associations among work, pwq and
4397
 * pool which make migrating pending and scheduled works very
4398
 * difficult to implement without impacting hot paths.  Secondly,
4399
 * worker pools serve mix of short, long and very long running works making
4400 4401
 * blocked draining impractical.
 *
4402
 * This is solved by allowing the pools to be disassociated from the CPU
4403 4404
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4405
 */
L
Linus Torvalds 已提交
4406

4407
static void wq_unbind_fn(struct work_struct *work)
4408
{
4409
	int cpu = smp_processor_id();
4410
	struct worker_pool *pool;
4411
	struct worker *worker;
4412

4413
	for_each_cpu_worker_pool(pool, cpu) {
4414
		mutex_lock(&pool->attach_mutex);
4415
		spin_lock_irq(&pool->lock);
4416

4417
		/*
4418
		 * We've blocked all attach/detach operations. Make all workers
4419 4420 4421 4422 4423
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4424
		for_each_pool_worker(worker, pool)
4425
			worker->flags |= WORKER_UNBOUND;
4426

4427
		pool->flags |= POOL_DISASSOCIATED;
4428

4429
		spin_unlock_irq(&pool->lock);
4430
		mutex_unlock(&pool->attach_mutex);
4431

4432 4433 4434 4435 4436 4437 4438
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4439

4440 4441 4442 4443 4444 4445 4446 4447
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4448
		atomic_set(&pool->nr_running, 0);
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4459 4460
}

T
Tejun Heo 已提交
4461 4462 4463 4464
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4465
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4466 4467 4468
 */
static void rebind_workers(struct worker_pool *pool)
{
4469
	struct worker *worker;
T
Tejun Heo 已提交
4470

4471
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4472

4473 4474 4475 4476 4477 4478 4479
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4480
	for_each_pool_worker(worker, pool)
4481 4482
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4483

4484
	spin_lock_irq(&pool->lock);
4485
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4486

4487
	for_each_pool_worker(worker, pool) {
4488
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4489 4490

		/*
4491 4492 4493 4494 4495 4496
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4497
		 */
4498 4499
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4500

4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4520
	}
4521 4522

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4523 4524
}

4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4540
	lockdep_assert_held(&pool->attach_mutex);
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4552
	for_each_pool_worker(worker, pool)
4553 4554 4555 4556
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4557 4558 4559 4560
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4561
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4562 4563
					       unsigned long action,
					       void *hcpu)
4564
{
4565
	int cpu = (unsigned long)hcpu;
4566
	struct worker_pool *pool;
4567
	struct workqueue_struct *wq;
4568
	int pi;
4569

T
Tejun Heo 已提交
4570
	switch (action & ~CPU_TASKS_FROZEN) {
4571
	case CPU_UP_PREPARE:
4572
		for_each_cpu_worker_pool(pool, cpu) {
4573 4574
			if (pool->nr_workers)
				continue;
4575
			if (!create_worker(pool))
4576
				return NOTIFY_BAD;
4577
		}
T
Tejun Heo 已提交
4578
		break;
4579

4580 4581
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4582
		mutex_lock(&wq_pool_mutex);
4583 4584

		for_each_pool(pool, pi) {
4585
			mutex_lock(&pool->attach_mutex);
4586

4587 4588 4589 4590 4591
			if (pool->cpu == cpu) {
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4592

4593
			mutex_unlock(&pool->attach_mutex);
4594
		}
4595

4596 4597 4598 4599
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4600
		mutex_unlock(&wq_pool_mutex);
4601
		break;
4602
	}
4603 4604 4605 4606 4607 4608 4609
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4610
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4611 4612 4613
						 unsigned long action,
						 void *hcpu)
{
4614
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4615
	struct work_struct unbind_work;
4616
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4617

4618 4619
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4620
		/* unbinding per-cpu workers should happen on the local CPU */
4621
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4622
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4623 4624 4625 4626 4627 4628 4629 4630

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4631
		flush_work(&unbind_work);
4632
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4633
		break;
4634 4635 4636 4637
	}
	return NOTIFY_OK;
}

4638
#ifdef CONFIG_SMP
4639

4640
struct work_for_cpu {
4641
	struct work_struct work;
4642 4643 4644 4645 4646
	long (*fn)(void *);
	void *arg;
	long ret;
};

4647
static void work_for_cpu_fn(struct work_struct *work)
4648
{
4649 4650
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4651 4652 4653 4654 4655 4656 4657 4658 4659
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4660
 * It is up to the caller to ensure that the cpu doesn't go offline.
4661
 * The caller must not hold any locks which would prevent @fn from completing.
4662 4663
 *
 * Return: The value @fn returns.
4664
 */
4665
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4666
{
4667
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4668

4669 4670
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4671
	flush_work(&wfc.work);
4672
	destroy_work_on_stack(&wfc.work);
4673 4674 4675 4676 4677
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4678 4679 4680 4681 4682
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4683
 * Start freezing workqueues.  After this function returns, all freezable
4684
 * workqueues will queue new works to their delayed_works list instead of
4685
 * pool->worklist.
4686 4687
 *
 * CONTEXT:
4688
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4689 4690 4691
 */
void freeze_workqueues_begin(void)
{
4692 4693
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4694

4695
	mutex_lock(&wq_pool_mutex);
4696

4697
	WARN_ON_ONCE(workqueue_freezing);
4698 4699
	workqueue_freezing = true;

4700
	list_for_each_entry(wq, &workqueues, list) {
4701
		mutex_lock(&wq->mutex);
4702 4703
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4704
		mutex_unlock(&wq->mutex);
4705
	}
4706

4707
	mutex_unlock(&wq_pool_mutex);
4708 4709 4710
}

/**
4711
 * freeze_workqueues_busy - are freezable workqueues still busy?
4712 4713 4714 4715 4716
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4717
 * Grabs and releases wq_pool_mutex.
4718
 *
4719
 * Return:
4720 4721
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4722 4723 4724 4725
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4726 4727
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4728

4729
	mutex_lock(&wq_pool_mutex);
4730

4731
	WARN_ON_ONCE(!workqueue_freezing);
4732

4733 4734 4735
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4736 4737 4738 4739
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4740
		rcu_read_lock_sched();
4741
		for_each_pwq(pwq, wq) {
4742
			WARN_ON_ONCE(pwq->nr_active < 0);
4743
			if (pwq->nr_active) {
4744
				busy = true;
4745
				rcu_read_unlock_sched();
4746 4747 4748
				goto out_unlock;
			}
		}
4749
		rcu_read_unlock_sched();
4750 4751
	}
out_unlock:
4752
	mutex_unlock(&wq_pool_mutex);
4753 4754 4755 4756 4757 4758 4759
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4760
 * frozen works are transferred to their respective pool worklists.
4761 4762
 *
 * CONTEXT:
4763
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4764 4765 4766
 */
void thaw_workqueues(void)
{
4767 4768
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4769

4770
	mutex_lock(&wq_pool_mutex);
4771 4772 4773 4774

	if (!workqueue_freezing)
		goto out_unlock;

4775
	workqueue_freezing = false;
4776

4777 4778
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4779
		mutex_lock(&wq->mutex);
4780 4781
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4782
		mutex_unlock(&wq->mutex);
4783 4784 4785
	}

out_unlock:
4786
	mutex_unlock(&wq_pool_mutex);
4787 4788 4789
}
#endif /* CONFIG_FREEZER */

4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4802 4803 4804 4805 4806
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4807 4808 4809
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4810 4811 4812 4813 4814 4815 4816 4817 4818
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4819 4820
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4836
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4837
{
T
Tejun Heo 已提交
4838 4839
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4840

4841 4842 4843 4844
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4845
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4846
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4847

4848 4849
	wq_numa_init();

4850
	/* initialize CPU pools */
4851
	for_each_possible_cpu(cpu) {
4852
		struct worker_pool *pool;
4853

T
Tejun Heo 已提交
4854
		i = 0;
4855
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4856
			BUG_ON(init_worker_pool(pool));
4857
			pool->cpu = cpu;
4858
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4859
			pool->attrs->nice = std_nice[i++];
4860
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4861

T
Tejun Heo 已提交
4862
			/* alloc pool ID */
4863
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4864
			BUG_ON(worker_pool_assign_id(pool));
4865
			mutex_unlock(&wq_pool_mutex);
4866
		}
4867 4868
	}

4869
	/* create the initial worker */
4870
	for_each_online_cpu(cpu) {
4871
		struct worker_pool *pool;
4872

4873
		for_each_cpu_worker_pool(pool, cpu) {
4874
			pool->flags &= ~POOL_DISASSOCIATED;
4875
			BUG_ON(!create_worker(pool));
4876
		}
4877 4878
	}

4879
	/* create default unbound and ordered wq attrs */
4880 4881 4882 4883 4884 4885
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
4896 4897
	}

4898
	system_wq = alloc_workqueue("events", 0, 0);
4899
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4900
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4901 4902
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4903 4904
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4905 4906 4907 4908 4909
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
4910
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4911 4912 4913
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
4914
	return 0;
L
Linus Torvalds 已提交
4915
}
4916
early_initcall(init_workqueues);