workqueue.c 136.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131
 * WQ: wq->mutex protected.
 *
132
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133 134
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
135 136
 */

137
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
138

139
struct worker_pool {
140
	spinlock_t		lock;		/* the pool lock */
141
	int			cpu;		/* I: the associated cpu */
142
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
143
	int			id;		/* I: pool ID */
144
	unsigned int		flags;		/* X: flags */
145 146 147

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
148 149

	/* nr_idle includes the ones off idle_list for rebinding */
150 151 152 153 154 155
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

156
	/* a workers is either on busy_hash or idle_list, or the manager */
157 158 159
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

160
	/* see manage_workers() for details on the two manager mutexes */
161
	struct mutex		manager_arb;	/* manager arbitration */
162 163
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
164
	struct completion	*detach_completion; /* all workers detached */
165

166
	struct ida		worker_ida;	/* worker IDs for task name */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PL: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 260 261 262

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
264 265
};

266 267
static struct kmem_cache *pwq_cache;

268 269 270 271
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

272 273 274
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

275 276 277 278 279 280 281 282 283
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

284 285
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

286 287 288
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

289
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291

292 293
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 295 296 297 298

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

299
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300

301
/* PL: hash of all unbound pools keyed by pool->attrs */
302 303
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

304
/* I: attributes used when instantiating standard unbound pools on demand */
305 306
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

307 308 309
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

310
struct workqueue_struct *system_wq __read_mostly;
311
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
312
struct workqueue_struct *system_highpri_wq __read_mostly;
313
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
314
struct workqueue_struct *system_long_wq __read_mostly;
315
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
316
struct workqueue_struct *system_unbound_wq __read_mostly;
317
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
318
struct workqueue_struct *system_freezable_wq __read_mostly;
319
EXPORT_SYMBOL_GPL(system_freezable_wq);
320 321 322 323
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324

325 326 327 328
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

329 330 331
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

332
#define assert_rcu_or_pool_mutex()					\
333
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
334 335
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
336

337
#define assert_rcu_or_wq_mutex(wq)					\
338
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
339
			   lockdep_is_held(&wq->mutex),			\
340
			   "sched RCU or wq->mutex should be held")
341

342 343 344
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345
	     (pool)++)
346

T
Tejun Heo 已提交
347 348 349
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
350
 * @pi: integer used for iteration
351
 *
352 353 354
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
355 356 357
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
358
 */
359 360
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
361
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
362
		else
T
Tejun Heo 已提交
363

364 365 366 367 368
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
369
 * This must be called with @pool->attach_mutex.
370 371 372 373
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
374 375
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
376
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
377 378
		else

379 380 381 382
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
383
 *
384
 * This must be called either with wq->mutex held or sched RCU read locked.
385 386
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
387 388 389
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
390 391
 */
#define for_each_pwq(pwq, wq)						\
392
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
393
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
394
		else
395

396 397 398 399
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

400 401 402 403 404
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
440
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
476
	.debug_hint	= work_debug_hint,
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

507 508 509 510 511 512 513
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

514 515 516 517 518
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

519 520 521 522 523 524 525
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
526 527 528 529
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

530
	lockdep_assert_held(&wq_pool_mutex);
531

532 533
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
534
	if (ret >= 0) {
T
Tejun Heo 已提交
535
		pool->id = ret;
536 537
		return 0;
	}
538
	return ret;
539 540
}

541 542 543 544 545 546 547 548
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
549 550
 *
 * Return: The unbound pool_workqueue for @node.
551 552 553 554 555 556 557 558
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
574

575
/*
576 577
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
578
 * is cleared and the high bits contain OFFQ flags and pool ID.
579
 *
580 581
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
582 583
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
584
 *
585
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586
 * corresponding to a work.  Pool is available once the work has been
587
 * queued anywhere after initialization until it is sync canceled.  pwq is
588
 * available only while the work item is queued.
589
 *
590 591 592 593
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
594
 */
595 596
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
597
{
598
	WARN_ON_ONCE(!work_pending(work));
599 600
	atomic_long_set(&work->data, data | flags | work_static(work));
}
601

602
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 604
			 unsigned long extra_flags)
{
605 606
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 608
}

609 610 611 612 613 614 615
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

616 617
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
618
{
619 620 621 622 623 624 625
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
626
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627
}
628

629
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
630
{
631 632
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
633 634
}

635
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636
{
637
	unsigned long data = atomic_long_read(&work->data);
638

639
	if (data & WORK_STRUCT_PWQ)
640 641 642
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
643 644
}

645 646 647 648
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
649 650 651
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
652 653 654 655 656
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
657 658
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
659 660
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
661
{
662
	unsigned long data = atomic_long_read(&work->data);
663
	int pool_id;
664

665
	assert_rcu_or_pool_mutex();
666

667 668
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
669
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670

671 672
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
673 674
		return NULL;

675
	return idr_find(&worker_pool_idr, pool_id);
676 677 678 679 680 681
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
682
 * Return: The worker_pool ID @work was last associated with.
683 684 685 686
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
687 688
	unsigned long data = atomic_long_read(&work->data);

689 690
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
691
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692

693
	return data >> WORK_OFFQ_POOL_SHIFT;
694 695
}

696 697
static void mark_work_canceling(struct work_struct *work)
{
698
	unsigned long pool_id = get_work_pool_id(work);
699

700 701
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 703 704 705 706 707
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

708
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 710
}

711
/*
712 713
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
714
 * they're being called with pool->lock held.
715 716
 */

717
static bool __need_more_worker(struct worker_pool *pool)
718
{
719
	return !atomic_read(&pool->nr_running);
720 721
}

722
/*
723 724
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
725 726
 *
 * Note that, because unbound workers never contribute to nr_running, this
727
 * function will always return %true for unbound pools as long as the
728
 * worklist isn't empty.
729
 */
730
static bool need_more_worker(struct worker_pool *pool)
731
{
732
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
733
}
734

735
/* Can I start working?  Called from busy but !running workers. */
736
static bool may_start_working(struct worker_pool *pool)
737
{
738
	return pool->nr_idle;
739 740 741
}

/* Do I need to keep working?  Called from currently running workers. */
742
static bool keep_working(struct worker_pool *pool)
743
{
744 745
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
746 747 748
}

/* Do we need a new worker?  Called from manager. */
749
static bool need_to_create_worker(struct worker_pool *pool)
750
{
751
	return need_more_worker(pool) && !may_start_working(pool);
752
}
753

754
/* Do we have too many workers and should some go away? */
755
static bool too_many_workers(struct worker_pool *pool)
756
{
757
	bool managing = mutex_is_locked(&pool->manager_arb);
758 759
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
760 761

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
762 763
}

764
/*
765 766 767
 * Wake up functions.
 */

768 769
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
770
{
771
	if (unlikely(list_empty(&pool->idle_list)))
772 773
		return NULL;

774
	return list_first_entry(&pool->idle_list, struct worker, entry);
775 776 777 778
}

/**
 * wake_up_worker - wake up an idle worker
779
 * @pool: worker pool to wake worker from
780
 *
781
 * Wake up the first idle worker of @pool.
782 783
 *
 * CONTEXT:
784
 * spin_lock_irq(pool->lock).
785
 */
786
static void wake_up_worker(struct worker_pool *pool)
787
{
788
	struct worker *worker = first_idle_worker(pool);
789 790 791 792 793

	if (likely(worker))
		wake_up_process(worker->task);
}

794
/**
795 796 797 798 799 800 801 802 803 804
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
805
void wq_worker_waking_up(struct task_struct *task, int cpu)
806 807 808
{
	struct worker *worker = kthread_data(task);

809
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
810
		WARN_ON_ONCE(worker->pool->cpu != cpu);
811
		atomic_inc(&worker->pool->nr_running);
812
	}
813 814 815 816 817 818 819 820 821 822 823 824 825 826
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
827
 * Return:
828 829
 * Worker task on @cpu to wake up, %NULL if none.
 */
830
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
831 832
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
833
	struct worker_pool *pool;
834

835 836 837 838 839
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
840
	if (worker->flags & WORKER_NOT_RUNNING)
841 842
		return NULL;

843 844
	pool = worker->pool;

845
	/* this can only happen on the local cpu */
846
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
847
		return NULL;
848 849 850 851 852 853

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
854 855 856
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
857
	 * manipulating idle_list, so dereferencing idle_list without pool
858
	 * lock is safe.
859
	 */
860 861
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
862
		to_wakeup = first_idle_worker(pool);
863 864 865 866 867
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
868
 * @worker: self
869 870 871
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
872 873 874
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
875
 *
876
 * CONTEXT:
877
 * spin_lock_irq(pool->lock)
878 879 880 881
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
882
	struct worker_pool *pool = worker->pool;
883

884 885
	WARN_ON_ONCE(worker->task != current);

886 887 888 889 890 891 892 893
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
894
			if (atomic_dec_and_test(&pool->nr_running) &&
895
			    !list_empty(&pool->worklist))
896
				wake_up_worker(pool);
897
		} else
898
			atomic_dec(&pool->nr_running);
899 900
	}

901 902 903 904
	worker->flags |= flags;
}

/**
905
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
906
 * @worker: self
907 908
 * @flags: flags to clear
 *
909
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
910
 *
911
 * CONTEXT:
912
 * spin_lock_irq(pool->lock)
913 914 915
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
916
	struct worker_pool *pool = worker->pool;
917 918
	unsigned int oflags = worker->flags;

919 920
	WARN_ON_ONCE(worker->task != current);

921
	worker->flags &= ~flags;
922

923 924 925 926 927
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
928 929
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
930
			atomic_inc(&pool->nr_running);
931 932
}

933 934
/**
 * find_worker_executing_work - find worker which is executing a work
935
 * @pool: pool of interest
936 937
 * @work: work to find worker for
 *
938 939
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
940 941 942 943 944 945 946 947 948 949 950 951
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
952 953 954 955 956 957
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
958 959
 *
 * CONTEXT:
960
 * spin_lock_irq(pool->lock).
961
 *
962 963
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
964
 * otherwise.
965
 */
966
static struct worker *find_worker_executing_work(struct worker_pool *pool,
967
						 struct work_struct *work)
968
{
969 970
	struct worker *worker;

971
	hash_for_each_possible(pool->busy_hash, worker, hentry,
972 973 974
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
975 976 977
			return worker;

	return NULL;
978 979
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
995
 * spin_lock_irq(pool->lock).
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1079
static void pwq_activate_delayed_work(struct work_struct *work)
1080
{
1081
	struct pool_workqueue *pwq = get_work_pwq(work);
1082 1083

	trace_workqueue_activate_work(work);
1084
	move_linked_works(work, &pwq->pool->worklist, NULL);
1085
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1086
	pwq->nr_active++;
1087 1088
}

1089
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1090
{
1091
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1092 1093
						    struct work_struct, entry);

1094
	pwq_activate_delayed_work(work);
1095 1096
}

1097
/**
1098 1099
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1100 1101 1102
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1103
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1104 1105
 *
 * CONTEXT:
1106
 * spin_lock_irq(pool->lock).
1107
 */
1108
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1109
{
T
Tejun Heo 已提交
1110
	/* uncolored work items don't participate in flushing or nr_active */
1111
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1112
		goto out_put;
1113

1114
	pwq->nr_in_flight[color]--;
1115

1116 1117
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1118
		/* one down, submit a delayed one */
1119 1120
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1121 1122 1123
	}

	/* is flush in progress and are we at the flushing tip? */
1124
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1125
		goto out_put;
1126 1127

	/* are there still in-flight works? */
1128
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1129
		goto out_put;
1130

1131 1132
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1133 1134

	/*
1135
	 * If this was the last pwq, wake up the first flusher.  It
1136 1137
	 * will handle the rest.
	 */
1138 1139
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1140 1141
out_put:
	put_pwq(pwq);
1142 1143
}

1144
/**
1145
 * try_to_grab_pending - steal work item from worklist and disable irq
1146 1147
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1148
 * @flags: place to store irq state
1149 1150
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1151
 * stable state - idle, on timer or on worklist.
1152
 *
1153
 * Return:
1154 1155 1156
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1157 1158
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1159
 *
1160
 * Note:
1161
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1162 1163 1164
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1165 1166 1167 1168
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1169
 * This function is safe to call from any context including IRQ handler.
1170
 */
1171 1172
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1173
{
1174
	struct worker_pool *pool;
1175
	struct pool_workqueue *pwq;
1176

1177 1178
	local_irq_save(*flags);

1179 1180 1181 1182
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1183 1184 1185 1186 1187
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1188 1189 1190 1191 1192
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1193 1194 1195 1196 1197 1198 1199
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1200 1201
	pool = get_work_pool(work);
	if (!pool)
1202
		goto fail;
1203

1204
	spin_lock(&pool->lock);
1205
	/*
1206 1207 1208 1209 1210
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1211 1212
	 * item is currently queued on that pool.
	 */
1213 1214
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1215 1216 1217 1218 1219
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1220
		 * on the delayed_list, will confuse pwq->nr_active
1221 1222 1223 1224
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1225
			pwq_activate_delayed_work(work);
1226 1227

		list_del_init(&work->entry);
1228
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1229

1230
		/* work->data points to pwq iff queued, point to pool */
1231 1232 1233 1234
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1235
	}
1236
	spin_unlock(&pool->lock);
1237 1238 1239 1240 1241
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1242
	return -EAGAIN;
1243 1244
}

T
Tejun Heo 已提交
1245
/**
1246
 * insert_work - insert a work into a pool
1247
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1248 1249 1250 1251
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1252
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1253
 * work_struct flags.
T
Tejun Heo 已提交
1254 1255
 *
 * CONTEXT:
1256
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1257
 */
1258 1259
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1260
{
1261
	struct worker_pool *pool = pwq->pool;
1262

T
Tejun Heo 已提交
1263
	/* we own @work, set data and link */
1264
	set_work_pwq(work, pwq, extra_flags);
1265
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1266
	get_pwq(pwq);
1267 1268

	/*
1269 1270 1271
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1272 1273 1274
	 */
	smp_mb();

1275 1276
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1277 1278
}

1279 1280
/*
 * Test whether @work is being queued from another work executing on the
1281
 * same workqueue.
1282 1283 1284
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1285 1286 1287 1288 1289 1290 1291
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1292
	return worker && worker->current_pwq->wq == wq;
1293 1294
}

1295
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1296 1297
			 struct work_struct *work)
{
1298
	struct pool_workqueue *pwq;
1299
	struct worker_pool *last_pool;
1300
	struct list_head *worklist;
1301
	unsigned int work_flags;
1302
	unsigned int req_cpu = cpu;
1303 1304 1305 1306 1307 1308 1309 1310

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1311

1312
	debug_work_activate(work);
1313

1314
	/* if draining, only works from the same workqueue are allowed */
1315
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1316
	    WARN_ON_ONCE(!is_chained_work(wq)))
1317
		return;
1318
retry:
1319 1320 1321
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1322
	/* pwq which will be used unless @work is executing elsewhere */
1323
	if (!(wq->flags & WQ_UNBOUND))
1324
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1325 1326
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1327

1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1336

1337
		spin_lock(&last_pool->lock);
1338

1339
		worker = find_worker_executing_work(last_pool, work);
1340

1341 1342
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1343
		} else {
1344 1345
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1346
			spin_lock(&pwq->pool->lock);
1347
		}
1348
	} else {
1349
		spin_lock(&pwq->pool->lock);
1350 1351
	}

1352 1353 1354 1355
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1356 1357
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1371 1372
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1373

1374
	if (WARN_ON(!list_empty(&work->entry))) {
1375
		spin_unlock(&pwq->pool->lock);
1376 1377
		return;
	}
1378

1379 1380
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1381

1382
	if (likely(pwq->nr_active < pwq->max_active)) {
1383
		trace_workqueue_activate_work(work);
1384 1385
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1386 1387
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1388
		worklist = &pwq->delayed_works;
1389
	}
1390

1391
	insert_work(pwq, work, worklist, work_flags);
1392

1393
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1394 1395
}

1396
/**
1397 1398
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1399 1400 1401
 * @wq: workqueue to use
 * @work: work to queue
 *
1402 1403
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1404 1405
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1406
 */
1407 1408
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1409
{
1410
	bool ret = false;
1411
	unsigned long flags;
1412

1413
	local_irq_save(flags);
1414

1415
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1416
		__queue_work(cpu, wq, work);
1417
		ret = true;
1418
	}
1419

1420
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1421 1422
	return ret;
}
1423
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1424

1425
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1426
{
1427
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1428

1429
	/* should have been called from irqsafe timer with irq already off */
1430
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1431
}
1432
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1433

1434 1435
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1436
{
1437 1438 1439 1440 1441
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1442 1443
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1456
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1457

1458
	dwork->wq = wq;
1459
	dwork->cpu = cpu;
1460 1461 1462 1463 1464 1465
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1466 1467
}

1468 1469 1470 1471
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1472
 * @dwork: work to queue
1473 1474
 * @delay: number of jiffies to wait before queueing
 *
1475
 * Return: %false if @work was already on a queue, %true otherwise.  If
1476 1477
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1478
 */
1479 1480
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1481
{
1482
	struct work_struct *work = &dwork->work;
1483
	bool ret = false;
1484
	unsigned long flags;
1485

1486 1487
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1488

1489
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1490
		__queue_delayed_work(cpu, wq, dwork, delay);
1491
		ret = true;
1492
	}
1493

1494
	local_irq_restore(flags);
1495 1496
	return ret;
}
1497
EXPORT_SYMBOL(queue_delayed_work_on);
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1511
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1512 1513
 * pending and its timer was modified.
 *
1514
 * This function is safe to call from any context including IRQ handler.
1515 1516 1517 1518 1519 1520 1521
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1522

1523 1524 1525
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1526

1527 1528 1529
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1530
	}
1531 1532

	/* -ENOENT from try_to_grab_pending() becomes %true */
1533 1534
	return ret;
}
1535 1536
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1537 1538 1539 1540 1541 1542 1543 1544
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1545
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1546 1547
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1548
{
1549
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1550

1551 1552 1553 1554
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1555

1556 1557
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1558
	pool->nr_idle++;
1559
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1560 1561

	/* idle_list is LIFO */
1562
	list_add(&worker->entry, &pool->idle_list);
1563

1564 1565
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1566

1567
	/*
1568
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1569
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1570 1571
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1572
	 */
1573
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1574
		     pool->nr_workers == pool->nr_idle &&
1575
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1585
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1586 1587 1588
 */
static void worker_leave_idle(struct worker *worker)
{
1589
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1590

1591 1592
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1593
	worker_clr_flags(worker, WORKER_IDLE);
1594
	pool->nr_idle--;
T
Tejun Heo 已提交
1595 1596 1597
	list_del_init(&worker->entry);
}

1598
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1599 1600 1601
{
	struct worker *worker;

1602
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1603 1604
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1605
		INIT_LIST_HEAD(&worker->scheduled);
1606
		INIT_LIST_HEAD(&worker->node);
1607 1608
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1609
	}
T
Tejun Heo 已提交
1610 1611 1612
	return worker;
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1646 1647 1648 1649 1650
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1651 1652 1653
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1654 1655 1656 1657 1658 1659
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1660
	mutex_lock(&pool->attach_mutex);
1661 1662
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1663
		detach_completion = pool->detach_completion;
1664
	mutex_unlock(&pool->attach_mutex);
1665

1666 1667 1668
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1669 1670 1671 1672
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1673 1674
/**
 * create_worker - create a new workqueue worker
1675
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1676
 *
1677 1678
 * Create a new worker which is attached to @pool.  The new worker must be
 * started by start_worker().
T
Tejun Heo 已提交
1679 1680 1681 1682
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1683
 * Return:
T
Tejun Heo 已提交
1684 1685
 * Pointer to the newly created worker.
 */
1686
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1687 1688
{
	struct worker *worker = NULL;
1689
	int id = -1;
1690
	char id_buf[16];
T
Tejun Heo 已提交
1691

1692 1693
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1694 1695
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1696

1697
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1698 1699 1700
	if (!worker)
		goto fail;

1701
	worker->pool = pool;
T
Tejun Heo 已提交
1702 1703
	worker->id = id;

1704
	if (pool->cpu >= 0)
1705 1706
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1707
	else
1708 1709
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1710
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1711
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1712 1713 1714
	if (IS_ERR(worker->task))
		goto fail;

1715 1716 1717 1718 1719
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1720
	/* successful, attach the worker to the pool */
1721
	worker_attach_to_pool(worker, pool);
1722

T
Tejun Heo 已提交
1723
	return worker;
1724

T
Tejun Heo 已提交
1725
fail:
1726
	if (id >= 0)
1727
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1728 1729 1730 1731 1732 1733 1734 1735
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1736
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1737 1738
 *
 * CONTEXT:
1739
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1740 1741 1742
 */
static void start_worker(struct worker *worker)
{
1743
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1744
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1745 1746 1747
	wake_up_process(worker->task);
}

1748 1749 1750 1751
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1752
 * Grab the managership of @pool and create and start a new worker for it.
1753 1754
 *
 * Return: 0 on success. A negative error code otherwise.
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1770 1771 1772 1773
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1774 1775
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1776 1777
 *
 * CONTEXT:
1778
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1779 1780 1781
 */
static void destroy_worker(struct worker *worker)
{
1782
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1783

1784 1785
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1786
	/* sanity check frenzy */
1787
	if (WARN_ON(worker->current_work) ||
1788 1789
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1790
		return;
T
Tejun Heo 已提交
1791

1792 1793
	pool->nr_workers--;
	pool->nr_idle--;
1794

T
Tejun Heo 已提交
1795
	list_del_init(&worker->entry);
1796
	worker->flags |= WORKER_DIE;
1797
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1798 1799
}

1800
static void idle_worker_timeout(unsigned long __pool)
1801
{
1802
	struct worker_pool *pool = (void *)__pool;
1803

1804
	spin_lock_irq(&pool->lock);
1805

1806
	while (too_many_workers(pool)) {
1807 1808 1809 1810
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1811
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1812 1813
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1814
		if (time_before(jiffies, expires)) {
1815
			mod_timer(&pool->idle_timer, expires);
1816
			break;
1817
		}
1818 1819

		destroy_worker(worker);
1820 1821
	}

1822
	spin_unlock_irq(&pool->lock);
1823
}
1824

1825
static void send_mayday(struct work_struct *work)
1826
{
1827 1828
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1829

1830
	lockdep_assert_held(&wq_mayday_lock);
1831

1832
	if (!wq->rescuer)
1833
		return;
1834 1835

	/* mayday mayday mayday */
1836
	if (list_empty(&pwq->mayday_node)) {
1837 1838 1839 1840 1841 1842
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1843
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1844
		wake_up_process(wq->rescuer->task);
1845
	}
1846 1847
}

1848
static void pool_mayday_timeout(unsigned long __pool)
1849
{
1850
	struct worker_pool *pool = (void *)__pool;
1851 1852
	struct work_struct *work;

1853
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1854
	spin_lock(&pool->lock);
1855

1856
	if (need_to_create_worker(pool)) {
1857 1858 1859 1860 1861 1862
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1863
		list_for_each_entry(work, &pool->worklist, entry)
1864
			send_mayday(work);
L
Linus Torvalds 已提交
1865
	}
1866

1867
	spin_unlock(&pool->lock);
1868
	spin_unlock_irq(&wq_mayday_lock);
1869

1870
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1871 1872
}

1873 1874
/**
 * maybe_create_worker - create a new worker if necessary
1875
 * @pool: pool to create a new worker for
1876
 *
1877
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1878 1879
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1880
 * sent to all rescuers with works scheduled on @pool to resolve
1881 1882
 * possible allocation deadlock.
 *
1883 1884
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1885 1886
 *
 * LOCKING:
1887
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1888 1889 1890
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1891
 * Return:
1892
 * %false if no action was taken and pool->lock stayed locked, %true
1893 1894
 * otherwise.
 */
1895
static bool maybe_create_worker(struct worker_pool *pool)
1896 1897
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1898
{
1899
	if (!need_to_create_worker(pool))
1900 1901
		return false;
restart:
1902
	spin_unlock_irq(&pool->lock);
1903

1904
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1905
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1906 1907 1908 1909

	while (true) {
		struct worker *worker;

1910
		worker = create_worker(pool);
1911
		if (worker) {
1912
			del_timer_sync(&pool->mayday_timer);
1913
			spin_lock_irq(&pool->lock);
1914
			start_worker(worker);
1915 1916
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1917 1918 1919
			return true;
		}

1920
		if (!need_to_create_worker(pool))
1921
			break;
L
Linus Torvalds 已提交
1922

1923
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1924

1925
		if (!need_to_create_worker(pool))
1926 1927 1928
			break;
	}

1929
	del_timer_sync(&pool->mayday_timer);
1930
	spin_lock_irq(&pool->lock);
1931
	if (need_to_create_worker(pool))
1932 1933 1934 1935
		goto restart;
	return true;
}

1936
/**
1937 1938
 * manage_workers - manage worker pool
 * @worker: self
1939
 *
1940
 * Assume the manager role and manage the worker pool @worker belongs
1941
 * to.  At any given time, there can be only zero or one manager per
1942
 * pool.  The exclusion is handled automatically by this function.
1943 1944 1945 1946
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1947 1948
 *
 * CONTEXT:
1949
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1950 1951
 * multiple times.  Does GFP_KERNEL allocations.
 *
1952
 * Return:
1953 1954 1955 1956 1957
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
1958
 */
1959
static bool manage_workers(struct worker *worker)
1960
{
1961
	struct worker_pool *pool = worker->pool;
1962
	bool ret = false;
1963

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1974
	if (!mutex_trylock(&pool->manager_arb))
1975
		return ret;
1976

1977
	ret |= maybe_create_worker(pool);
1978

1979
	mutex_unlock(&pool->manager_arb);
1980
	return ret;
1981 1982
}

1983 1984
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1985
 * @worker: self
1986 1987 1988 1989 1990 1991 1992 1993 1994
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1995
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1996
 */
T
Tejun Heo 已提交
1997
static void process_one_work(struct worker *worker, struct work_struct *work)
1998 1999
__releases(&pool->lock)
__acquires(&pool->lock)
2000
{
2001
	struct pool_workqueue *pwq = get_work_pwq(work);
2002
	struct worker_pool *pool = worker->pool;
2003
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2004
	int work_color;
2005
	struct worker *collision;
2006 2007 2008 2009 2010 2011 2012 2013
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2014 2015 2016
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2017
#endif
2018
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2019
		     raw_smp_processor_id() != pool->cpu);
2020

2021 2022 2023 2024 2025 2026
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2027
	collision = find_worker_executing_work(pool, work);
2028 2029 2030 2031 2032
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2033
	/* claim and dequeue */
2034
	debug_work_deactivate(work);
2035
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2036
	worker->current_work = work;
2037
	worker->current_func = work->func;
2038
	worker->current_pwq = pwq;
2039
	work_color = get_work_color(work);
2040

2041 2042
	list_del_init(&work->entry);

2043 2044 2045 2046 2047 2048 2049
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2050
	/*
2051
	 * Unbound pool isn't concurrency managed and work items should be
2052 2053
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2054 2055
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2056

2057
	/*
2058
	 * Record the last pool and clear PENDING which should be the last
2059
	 * update to @work.  Also, do this inside @pool->lock so that
2060 2061
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2062
	 */
2063
	set_work_pool_and_clear_pending(work, pool->id);
2064

2065
	spin_unlock_irq(&pool->lock);
2066

2067
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2068
	lock_map_acquire(&lockdep_map);
2069
	trace_workqueue_execute_start(work);
2070
	worker->current_func(work);
2071 2072 2073 2074 2075
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2076
	lock_map_release(&lockdep_map);
2077
	lock_map_release(&pwq->wq->lockdep_map);
2078 2079

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2080 2081
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2082 2083
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2084 2085 2086 2087
		debug_show_held_locks(current);
		dump_stack();
	}

2088 2089 2090 2091 2092 2093 2094 2095 2096
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2097
	spin_lock_irq(&pool->lock);
2098

2099 2100 2101 2102
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2103
	/* we're done with it, release */
2104
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2105
	worker->current_work = NULL;
2106
	worker->current_func = NULL;
2107
	worker->current_pwq = NULL;
2108
	worker->desc_valid = false;
2109
	pwq_dec_nr_in_flight(pwq, work_color);
2110 2111
}

2112 2113 2114 2115 2116 2117 2118 2119 2120
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2121
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2122 2123 2124
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2125
{
2126 2127
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2128
						struct work_struct, entry);
T
Tejun Heo 已提交
2129
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2130 2131 2132
	}
}

T
Tejun Heo 已提交
2133 2134
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2135
 * @__worker: self
T
Tejun Heo 已提交
2136
 *
2137 2138 2139 2140 2141
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2142 2143
 *
 * Return: 0
T
Tejun Heo 已提交
2144
 */
T
Tejun Heo 已提交
2145
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2146
{
T
Tejun Heo 已提交
2147
	struct worker *worker = __worker;
2148
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2149

2150 2151
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2152
woke_up:
2153
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2154

2155 2156
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2157
		spin_unlock_irq(&pool->lock);
2158 2159
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2160 2161

		set_task_comm(worker->task, "kworker/dying");
2162
		ida_simple_remove(&pool->worker_ida, worker->id);
2163 2164
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2165
		return 0;
T
Tejun Heo 已提交
2166
	}
2167

T
Tejun Heo 已提交
2168
	worker_leave_idle(worker);
2169
recheck:
2170
	/* no more worker necessary? */
2171
	if (!need_more_worker(pool))
2172 2173 2174
		goto sleep;

	/* do we need to manage? */
2175
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2176 2177
		goto recheck;

T
Tejun Heo 已提交
2178 2179 2180 2181 2182
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2183
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2184

2185
	/*
2186 2187 2188 2189 2190
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2191
	 */
2192
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2193 2194

	do {
T
Tejun Heo 已提交
2195
		struct work_struct *work =
2196
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2197 2198 2199 2200 2201 2202
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2203
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2204 2205 2206
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2207
		}
2208
	} while (keep_working(pool));
2209 2210

	worker_set_flags(worker, WORKER_PREP, false);
2211
sleep:
T
Tejun Heo 已提交
2212
	/*
2213 2214 2215 2216 2217
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2218 2219 2220
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2221
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2222 2223
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2224 2225
}

2226 2227
/**
 * rescuer_thread - the rescuer thread function
2228
 * @__rescuer: self
2229 2230
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2231
 * workqueue which has WQ_MEM_RECLAIM set.
2232
 *
2233
 * Regular work processing on a pool may block trying to create a new
2234 2235 2236 2237 2238
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2239 2240
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2241 2242 2243
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2244 2245
 *
 * Return: 0
2246
 */
2247
static int rescuer_thread(void *__rescuer)
2248
{
2249 2250
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2251
	struct list_head *scheduled = &rescuer->scheduled;
2252
	bool should_stop;
2253 2254

	set_user_nice(current, RESCUER_NICE_LEVEL);
2255 2256 2257 2258 2259 2260

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2261 2262 2263
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2264 2265 2266 2267 2268 2269 2270 2271 2272
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2273

2274
	/* see whether any pwq is asking for help */
2275
	spin_lock_irq(&wq_mayday_lock);
2276 2277 2278 2279

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2280
		struct worker_pool *pool = pwq->pool;
2281 2282 2283
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2284 2285
		list_del_init(&pwq->mayday_node);

2286
		spin_unlock_irq(&wq_mayday_lock);
2287

2288 2289 2290
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2291
		rescuer->pool = pool;
2292 2293 2294 2295 2296

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2297
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2298
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2299
			if (get_work_pwq(work) == pwq)
2300 2301 2302
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2303 2304 2305 2306 2307
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2308

2309 2310 2311 2312 2313 2314
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2315
		/*
2316
		 * Leave this pool.  If need_more_worker() is %true, notify a
2317 2318 2319
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2320
		if (need_more_worker(pool))
2321
			wake_up_worker(pool);
2322

2323
		rescuer->pool = NULL;
2324
		spin_unlock(&pool->lock);
2325
		spin_lock(&wq_mayday_lock);
2326 2327
	}

2328
	spin_unlock_irq(&wq_mayday_lock);
2329

2330 2331 2332 2333 2334 2335
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2336 2337
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2338 2339
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2340 2341
}

O
Oleg Nesterov 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2353 2354
/**
 * insert_wq_barrier - insert a barrier work
2355
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2356
 * @barr: wq_barrier to insert
2357 2358
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2359
 *
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2372
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2373 2374
 *
 * CONTEXT:
2375
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2376
 */
2377
static void insert_wq_barrier(struct pool_workqueue *pwq,
2378 2379
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2380
{
2381 2382 2383
	struct list_head *head;
	unsigned int linked = 0;

2384
	/*
2385
	 * debugobject calls are safe here even with pool->lock locked
2386 2387 2388 2389
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2390
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2391
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2392
	init_completion(&barr->done);
2393

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2409
	debug_work_activate(&barr->work);
2410
	insert_work(pwq, &barr->work, head,
2411
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2412 2413
}

2414
/**
2415
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2416 2417 2418 2419
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2420
 * Prepare pwqs for workqueue flushing.
2421
 *
2422 2423 2424 2425 2426
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2427 2428 2429 2430 2431 2432 2433
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2434
 * If @work_color is non-negative, all pwqs should have the same
2435 2436 2437 2438
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2439
 * mutex_lock(wq->mutex).
2440
 *
2441
 * Return:
2442 2443 2444
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2445
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2446
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2447
{
2448
	bool wait = false;
2449
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2450

2451
	if (flush_color >= 0) {
2452
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2453
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2454
	}
2455

2456
	for_each_pwq(pwq, wq) {
2457
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2458

2459
		spin_lock_irq(&pool->lock);
2460

2461
		if (flush_color >= 0) {
2462
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2463

2464 2465 2466
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2467 2468 2469
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2470

2471
		if (work_color >= 0) {
2472
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2473
			pwq->work_color = work_color;
2474
		}
L
Linus Torvalds 已提交
2475

2476
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2477
	}
2478

2479
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2480
		complete(&wq->first_flusher->done);
2481

2482
	return wait;
L
Linus Torvalds 已提交
2483 2484
}

2485
/**
L
Linus Torvalds 已提交
2486
 * flush_workqueue - ensure that any scheduled work has run to completion.
2487
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2488
 *
2489 2490
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2491
 */
2492
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2493
{
2494 2495 2496 2497 2498 2499
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2500

2501 2502
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2503

2504
	mutex_lock(&wq->mutex);
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2517
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2518 2519 2520 2521 2522
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2523
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2524 2525 2526

			wq->first_flusher = &this_flusher;

2527
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2528 2529 2530 2531 2532 2533 2534 2535
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2536
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2537
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2538
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2549
	mutex_unlock(&wq->mutex);
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2562
	mutex_lock(&wq->mutex);
2563

2564 2565 2566 2567
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2568 2569
	wq->first_flusher = NULL;

2570 2571
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2584 2585
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2605
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2606 2607 2608
		}

		if (list_empty(&wq->flusher_queue)) {
2609
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2610 2611 2612 2613 2614
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2615
		 * the new first flusher and arm pwqs.
2616
		 */
2617 2618
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2619 2620 2621 2622

		list_del_init(&next->list);
		wq->first_flusher = next;

2623
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2634
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2635
}
2636
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2637

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2652
	struct pool_workqueue *pwq;
2653 2654 2655 2656

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2657
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2658
	 */
2659
	mutex_lock(&wq->mutex);
2660
	if (!wq->nr_drainers++)
2661
		wq->flags |= __WQ_DRAINING;
2662
	mutex_unlock(&wq->mutex);
2663 2664 2665
reflush:
	flush_workqueue(wq);

2666
	mutex_lock(&wq->mutex);
2667

2668
	for_each_pwq(pwq, wq) {
2669
		bool drained;
2670

2671
		spin_lock_irq(&pwq->pool->lock);
2672
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2673
		spin_unlock_irq(&pwq->pool->lock);
2674 2675

		if (drained)
2676 2677 2678 2679
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2680
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2681
				wq->name, flush_cnt);
2682

2683
		mutex_unlock(&wq->mutex);
2684 2685 2686 2687
		goto reflush;
	}

	if (!--wq->nr_drainers)
2688
		wq->flags &= ~__WQ_DRAINING;
2689
	mutex_unlock(&wq->mutex);
2690 2691 2692
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2693
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2694
{
2695
	struct worker *worker = NULL;
2696
	struct worker_pool *pool;
2697
	struct pool_workqueue *pwq;
2698 2699

	might_sleep();
2700 2701

	local_irq_disable();
2702
	pool = get_work_pool(work);
2703 2704
	if (!pool) {
		local_irq_enable();
2705
		return false;
2706
	}
2707

2708
	spin_lock(&pool->lock);
2709
	/* see the comment in try_to_grab_pending() with the same code */
2710 2711 2712
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2713
			goto already_gone;
2714
	} else {
2715
		worker = find_worker_executing_work(pool, work);
2716
		if (!worker)
T
Tejun Heo 已提交
2717
			goto already_gone;
2718
		pwq = worker->current_pwq;
2719
	}
2720

2721
	insert_wq_barrier(pwq, barr, work, worker);
2722
	spin_unlock_irq(&pool->lock);
2723

2724 2725 2726 2727 2728 2729
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2730
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2731
		lock_map_acquire(&pwq->wq->lockdep_map);
2732
	else
2733 2734
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2735

2736
	return true;
T
Tejun Heo 已提交
2737
already_gone:
2738
	spin_unlock_irq(&pool->lock);
2739
	return false;
2740
}
2741 2742 2743 2744 2745

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2746 2747
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2748
 *
2749
 * Return:
2750 2751 2752 2753 2754
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2755 2756
	struct wq_barrier barr;

2757 2758 2759
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2760 2761 2762 2763 2764 2765 2766
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2767
}
2768
EXPORT_SYMBOL_GPL(flush_work);
2769

2770
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2771
{
2772
	unsigned long flags;
2773 2774 2775
	int ret;

	do {
2776 2777 2778 2779 2780 2781
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2782
			flush_work(work);
2783 2784
	} while (unlikely(ret < 0));

2785 2786 2787 2788
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2789
	flush_work(work);
2790
	clear_work_data(work);
2791 2792 2793
	return ret;
}

2794
/**
2795 2796
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2797
 *
2798 2799 2800 2801
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2802
 *
2803 2804
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2805
 *
2806
 * The caller must ensure that the workqueue on which @work was last
2807
 * queued can't be destroyed before this function returns.
2808
 *
2809
 * Return:
2810
 * %true if @work was pending, %false otherwise.
2811
 */
2812
bool cancel_work_sync(struct work_struct *work)
2813
{
2814
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2815
}
2816
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2817

2818
/**
2819 2820
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2821
 *
2822 2823 2824
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2825
 *
2826
 * Return:
2827 2828
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2829
 */
2830 2831
bool flush_delayed_work(struct delayed_work *dwork)
{
2832
	local_irq_disable();
2833
	if (del_timer_sync(&dwork->timer))
2834
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2835
	local_irq_enable();
2836 2837 2838 2839
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2840
/**
2841 2842
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2843
 *
2844 2845 2846 2847 2848 2849 2850 2851 2852
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2853
 *
2854
 * This function is safe to call from any context including IRQ handler.
2855
 */
2856
bool cancel_delayed_work(struct delayed_work *dwork)
2857
{
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2868 2869
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2870
	local_irq_restore(flags);
2871
	return ret;
2872
}
2873
EXPORT_SYMBOL(cancel_delayed_work);
2874

2875 2876 2877 2878 2879 2880
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2881
 * Return:
2882 2883 2884
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2885
{
2886
	return __cancel_work_timer(&dwork->work, true);
2887
}
2888
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2889

2890
/**
2891
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2892 2893
 * @func: the function to call
 *
2894 2895
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2896
 * schedule_on_each_cpu() is very slow.
2897
 *
2898
 * Return:
2899
 * 0 on success, -errno on failure.
2900
 */
2901
int schedule_on_each_cpu(work_func_t func)
2902 2903
{
	int cpu;
2904
	struct work_struct __percpu *works;
2905

2906 2907
	works = alloc_percpu(struct work_struct);
	if (!works)
2908
		return -ENOMEM;
2909

2910 2911
	get_online_cpus();

2912
	for_each_online_cpu(cpu) {
2913 2914 2915
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2916
		schedule_work_on(cpu, work);
2917
	}
2918 2919 2920 2921

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2922
	put_online_cpus();
2923
	free_percpu(works);
2924 2925 2926
	return 0;
}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2951 2952
void flush_scheduled_work(void)
{
2953
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2954
}
2955
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2956

2957 2958 2959 2960 2961 2962 2963 2964 2965
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2966
 * Return:	0 - function was executed
2967 2968
 *		1 - function was scheduled for execution
 */
2969
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2970 2971
{
	if (!in_interrupt()) {
2972
		fn(&ew->work);
2973 2974 2975
		return 0;
	}

2976
	INIT_WORK(&ew->work, fn);
2977 2978 2979 2980 2981 2982
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3010 3011
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3012 3013 3014 3015 3016
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3017
static DEVICE_ATTR_RO(per_cpu);
3018

3019 3020
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3021 3022 3023 3024 3025 3026
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3027 3028 3029
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3040
static DEVICE_ATTR_RW(max_active);
3041

3042 3043 3044 3045
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3046
};
3047
ATTRIBUTE_GROUPS(wq_sysfs);
3048

3049 3050
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3051 3052
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3053 3054
	const char *delim = "";
	int node, written = 0;
3055 3056

	rcu_read_lock_sched();
3057 3058 3059 3060 3061 3062 3063
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3075 3076 3077
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3091 3092 3093
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3109
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3124 3125 3126
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3187
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3188
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3189 3190
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3191
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3192 3193 3194 3195 3196
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3197
	.dev_groups			= wq_sysfs_groups,
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3226
 * Return: 0 on success, -errno on failure.
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3319 3320 3321
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3333
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3334 3335 3336 3337 3338 3339
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3340 3341 3342 3343 3344
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3345 3346 3347 3348 3349 3350
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3351 3352 3353 3354 3355 3356 3357 3358
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3359 3360
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3375 3376 3377 3378 3379
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3380 3381
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3382 3383
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3384 3385
 */
static int init_worker_pool(struct worker_pool *pool)
3386 3387
{
	spin_lock_init(&pool->lock);
3388 3389
	pool->id = -1;
	pool->cpu = -1;
3390
	pool->node = NUMA_NO_NODE;
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3404
	mutex_init(&pool->attach_mutex);
3405
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3406

3407
	ida_init(&pool->worker_ida);
3408 3409 3410 3411
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3412 3413 3414 3415
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3416 3417
}

3418 3419 3420 3421
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3422
	ida_destroy(&pool->worker_ida);
3423 3424 3425 3426 3427 3428 3429 3430 3431
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3432 3433 3434
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3435 3436
 *
 * Should be called with wq_pool_mutex held.
3437 3438 3439
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3440
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3441 3442
	struct worker *worker;

3443 3444 3445
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3446 3447 3448
		return;

	/* sanity checks */
3449
	if (WARN_ON(!(pool->cpu < 0)) ||
3450
	    WARN_ON(!list_empty(&pool->worklist)))
3451 3452 3453 3454 3455 3456 3457
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3458 3459 3460
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
3461
	 * attach_mutex.
3462
	 */
3463 3464
	mutex_lock(&pool->manager_arb);

3465
	spin_lock_irq(&pool->lock);
3466
	while ((worker = first_idle_worker(pool)))
3467 3468 3469
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3470

3471
	mutex_lock(&pool->attach_mutex);
3472
	if (!list_empty(&pool->workers))
3473
		pool->detach_completion = &detach_completion;
3474
	mutex_unlock(&pool->attach_mutex);
3475 3476 3477 3478

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3496
 * create a new one.
3497 3498
 *
 * Should be called with wq_pool_mutex held.
3499 3500 3501
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3502 3503 3504 3505 3506
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3507
	int node;
3508

3509
	lockdep_assert_held(&wq_pool_mutex);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3524
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3525 3526
	copy_workqueue_attrs(pool->attrs, attrs);

3527 3528 3529 3530 3531 3532
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3544 3545 3546 3547
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3548
	if (create_and_start_worker(pool) < 0)
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3577
	bool is_last;
T
Tejun Heo 已提交
3578 3579 3580 3581

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3582
	/*
3583
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3584 3585 3586
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3587
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3588
	list_del_rcu(&pwq->pwqs_node);
3589
	is_last = list_empty(&wq->pwqs);
3590
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3591

3592
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3593
	put_unbound_pool(pool);
3594 3595
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3596 3597 3598 3599 3600 3601
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3602 3603
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3604
		kfree(wq);
3605
	}
T
Tejun Heo 已提交
3606 3607
}

3608
/**
3609
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3610 3611
 * @pwq: target pool_workqueue
 *
3612 3613 3614
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3615
 */
3616
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3617
{
3618 3619 3620 3621
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3622
	lockdep_assert_held(&wq->mutex);
3623 3624 3625 3626 3627

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3628
	spin_lock_irq(&pwq->pool->lock);
3629

3630 3631 3632 3633 3634 3635
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
3636
		pwq->max_active = wq->saved_max_active;
3637

3638 3639 3640
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3641 3642 3643 3644 3645 3646

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3647 3648 3649 3650
	} else {
		pwq->max_active = 0;
	}

3651
	spin_unlock_irq(&pwq->pool->lock);
3652 3653
}

3654
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3655 3656
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3657 3658 3659
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3660 3661
	memset(pwq, 0, sizeof(*pwq));

3662 3663 3664
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3665
	pwq->refcnt = 1;
3666
	INIT_LIST_HEAD(&pwq->delayed_works);
3667
	INIT_LIST_HEAD(&pwq->pwqs_node);
3668
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3669
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3670
}
3671

3672
/* sync @pwq with the current state of its associated wq and link it */
3673
static void link_pwq(struct pool_workqueue *pwq)
3674 3675 3676 3677
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3678

3679 3680 3681 3682
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3683 3684
	/*
	 * Set the matching work_color.  This is synchronized with
3685
	 * wq->mutex to avoid confusing flush_workqueue().
3686
	 */
3687
	pwq->work_color = wq->work_color;
3688 3689 3690 3691 3692

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3693
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3694
}
3695

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3709
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3710 3711 3712
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3713
	}
3714

3715 3716
	init_pwq(pwq, wq, pool);
	return pwq;
3717 3718
}

3719 3720 3721 3722 3723 3724 3725
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3726
		kmem_cache_free(pwq_cache, pwq);
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3739
 * calculation.  The result is stored in @cpumask.
3740 3741 3742 3743 3744 3745 3746 3747
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3748 3749 3750
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3751 3752 3753 3754
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3755
	if (!wq_numa_enabled || attrs->no_numa)
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3792 3793 3794 3795 3796
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3797 3798 3799 3800 3801 3802
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3803
 *
3804 3805 3806
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3807 3808 3809 3810
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3811 3812
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3813
	int node, ret;
3814

3815
	/* only unbound workqueues can change attributes */
3816 3817 3818
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3819 3820 3821 3822
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3823
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3824
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3825 3826
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3827 3828
		goto enomem;

3829
	/* make a copy of @attrs and sanitize it */
3830 3831 3832
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3847
	mutex_lock(&wq_pool_mutex);
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3869
	mutex_unlock(&wq_pool_mutex);
3870

3871
	/* all pwqs have been created successfully, let's install'em */
3872
	mutex_lock(&wq->mutex);
3873

3874
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3875 3876

	/* save the previous pwq and install the new one */
3877
	for_each_node(node)
3878 3879 3880 3881 3882
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3883 3884

	mutex_unlock(&wq->mutex);
3885

3886 3887 3888 3889 3890 3891
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3892 3893 3894
	ret = 0;
	/* fall through */
out_free:
3895
	free_workqueue_attrs(tmp_attrs);
3896
	free_workqueue_attrs(new_attrs);
3897
	kfree(pwq_tbl);
3898
	return ret;
3899

3900 3901 3902 3903 3904 3905 3906
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3907
enomem:
3908 3909
	ret = -ENOMEM;
	goto out_free;
3910 3911
}

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3957 3958
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
3959 3960 3961 3962 3963 3964 3965 3966

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
3967
	 * wq's, the default pwq should be used.
3968 3969 3970 3971 3972
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
3973
		goto use_dfl_pwq;
3974 3975 3976 3977 3978 3979 3980
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3981 3982
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3983 3984
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4007
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4008
{
4009
	bool highpri = wq->flags & WQ_HIGHPRI;
4010
	int cpu, ret;
4011 4012

	if (!(wq->flags & WQ_UNBOUND)) {
4013 4014
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4015 4016 4017
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4018 4019
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4020
			struct worker_pool *cpu_pools =
4021
				per_cpu(cpu_worker_pools, cpu);
4022

4023 4024 4025
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4026
			link_pwq(pwq);
4027
			mutex_unlock(&wq->mutex);
4028
		}
4029
		return 0;
4030 4031 4032 4033 4034 4035 4036
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4037
	} else {
4038
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4039
	}
T
Tejun Heo 已提交
4040 4041
}

4042 4043
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4044
{
4045 4046 4047
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4048 4049
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4050

4051
	return clamp_val(max_active, 1, lim);
4052 4053
}

4054
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4055 4056 4057
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4058
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4059
{
4060
	size_t tbl_size = 0;
4061
	va_list args;
L
Linus Torvalds 已提交
4062
	struct workqueue_struct *wq;
4063
	struct pool_workqueue *pwq;
4064

4065 4066 4067 4068
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4069
	/* allocate wq and format name */
4070 4071 4072 4073
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4074
	if (!wq)
4075
		return NULL;
4076

4077 4078 4079 4080 4081 4082
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4083 4084
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4085
	va_end(args);
L
Linus Torvalds 已提交
4086

4087
	max_active = max_active ?: WQ_DFL_ACTIVE;
4088
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4089

4090
	/* init wq */
4091
	wq->flags = flags;
4092
	wq->saved_max_active = max_active;
4093
	mutex_init(&wq->mutex);
4094
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4095
	INIT_LIST_HEAD(&wq->pwqs);
4096 4097
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4098
	INIT_LIST_HEAD(&wq->maydays);
4099

4100
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4101
	INIT_LIST_HEAD(&wq->list);
4102

4103
	if (alloc_and_link_pwqs(wq) < 0)
4104
		goto err_free_wq;
T
Tejun Heo 已提交
4105

4106 4107 4108 4109 4110
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4111 4112
		struct worker *rescuer;

4113
		rescuer = alloc_worker(NUMA_NO_NODE);
4114
		if (!rescuer)
4115
			goto err_destroy;
4116

4117 4118
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4119
					       wq->name);
4120 4121 4122 4123
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4124

4125
		wq->rescuer = rescuer;
4126
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4127
		wake_up_process(rescuer->task);
4128 4129
	}

4130 4131 4132
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4133
	/*
4134 4135 4136
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4137
	 */
4138
	mutex_lock(&wq_pool_mutex);
4139

4140
	mutex_lock(&wq->mutex);
4141 4142
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4143
	mutex_unlock(&wq->mutex);
4144

T
Tejun Heo 已提交
4145
	list_add(&wq->list, &workqueues);
4146

4147
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4148

4149
	return wq;
4150 4151

err_free_wq:
4152
	free_workqueue_attrs(wq->unbound_attrs);
4153 4154 4155 4156
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4157
	return NULL;
4158
}
4159
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4160

4161 4162 4163 4164 4165 4166 4167 4168
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4169
	struct pool_workqueue *pwq;
4170
	int node;
4171

4172 4173
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4174

4175
	/* sanity checks */
4176
	mutex_lock(&wq->mutex);
4177
	for_each_pwq(pwq, wq) {
4178 4179
		int i;

4180 4181
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4182
				mutex_unlock(&wq->mutex);
4183
				return;
4184 4185 4186
			}
		}

4187
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4188
		    WARN_ON(pwq->nr_active) ||
4189
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4190
			mutex_unlock(&wq->mutex);
4191
			return;
4192
		}
4193
	}
4194
	mutex_unlock(&wq->mutex);
4195

4196 4197 4198 4199
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4200
	mutex_lock(&wq_pool_mutex);
4201
	list_del_init(&wq->list);
4202
	mutex_unlock(&wq_pool_mutex);
4203

4204 4205
	workqueue_sysfs_unregister(wq);

4206
	if (wq->rescuer) {
4207
		kthread_stop(wq->rescuer->task);
4208
		kfree(wq->rescuer);
4209
		wq->rescuer = NULL;
4210 4211
	}

T
Tejun Heo 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4222 4223
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4224
		 */
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4237
		put_pwq_unlocked(pwq);
4238
	}
4239 4240 4241
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4254
	struct pool_workqueue *pwq;
4255

4256 4257 4258 4259
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4260
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4261

4262
	mutex_lock(&wq->mutex);
4263 4264 4265

	wq->saved_max_active = max_active;

4266 4267
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4268

4269
	mutex_unlock(&wq->mutex);
4270
}
4271
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4272

4273 4274 4275 4276 4277
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4278 4279
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4280 4281 4282 4283 4284
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4285
	return worker && worker->rescue_wq;
4286 4287
}

4288
/**
4289 4290 4291
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4292
 *
4293 4294 4295
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4296
 *
4297 4298 4299 4300 4301 4302
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4303
 * Return:
4304
 * %true if congested, %false otherwise.
4305
 */
4306
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4307
{
4308
	struct pool_workqueue *pwq;
4309 4310
	bool ret;

4311
	rcu_read_lock_sched();
4312

4313 4314 4315
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4316 4317 4318
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4319
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4320

4321
	ret = !list_empty(&pwq->delayed_works);
4322
	rcu_read_unlock_sched();
4323 4324

	return ret;
L
Linus Torvalds 已提交
4325
}
4326
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4327

4328 4329 4330 4331 4332 4333 4334 4335
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4336
 * Return:
4337 4338 4339
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4340
{
4341
	struct worker_pool *pool;
4342 4343
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4344

4345 4346
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4347

4348 4349
	local_irq_save(flags);
	pool = get_work_pool(work);
4350
	if (pool) {
4351
		spin_lock(&pool->lock);
4352 4353
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4354
		spin_unlock(&pool->lock);
4355
	}
4356
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4357

4358
	return ret;
L
Linus Torvalds 已提交
4359
}
4360
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4361

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4439 4440 4441
/*
 * CPU hotplug.
 *
4442
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4443
 * are a lot of assumptions on strong associations among work, pwq and
4444
 * pool which make migrating pending and scheduled works very
4445
 * difficult to implement without impacting hot paths.  Secondly,
4446
 * worker pools serve mix of short, long and very long running works making
4447 4448
 * blocked draining impractical.
 *
4449
 * This is solved by allowing the pools to be disassociated from the CPU
4450 4451
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4452
 */
L
Linus Torvalds 已提交
4453

4454
static void wq_unbind_fn(struct work_struct *work)
4455
{
4456
	int cpu = smp_processor_id();
4457
	struct worker_pool *pool;
4458
	struct worker *worker;
4459

4460
	for_each_cpu_worker_pool(pool, cpu) {
4461
		mutex_lock(&pool->attach_mutex);
4462
		spin_lock_irq(&pool->lock);
4463

4464
		/*
4465
		 * We've blocked all attach/detach operations. Make all workers
4466 4467 4468 4469 4470
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4471
		for_each_pool_worker(worker, pool)
4472
			worker->flags |= WORKER_UNBOUND;
4473

4474
		pool->flags |= POOL_DISASSOCIATED;
4475

4476
		spin_unlock_irq(&pool->lock);
4477
		mutex_unlock(&pool->attach_mutex);
4478

4479 4480 4481 4482 4483 4484 4485
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4486

4487 4488 4489 4490 4491 4492 4493 4494
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4495
		atomic_set(&pool->nr_running, 0);
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4506 4507
}

T
Tejun Heo 已提交
4508 4509 4510 4511
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4512
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4513 4514 4515
 */
static void rebind_workers(struct worker_pool *pool)
{
4516
	struct worker *worker;
T
Tejun Heo 已提交
4517

4518
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4519

4520 4521 4522 4523 4524 4525 4526
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4527
	for_each_pool_worker(worker, pool)
4528 4529
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4530

4531
	spin_lock_irq(&pool->lock);
4532
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4533

4534
	for_each_pool_worker(worker, pool) {
4535
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4536 4537

		/*
4538 4539 4540 4541 4542 4543
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4544
		 */
4545 4546
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4547

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4567
	}
4568 4569

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4570 4571
}

4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4587
	lockdep_assert_held(&pool->attach_mutex);
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4599
	for_each_pool_worker(worker, pool)
4600 4601 4602 4603
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4604 4605 4606 4607
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4608
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4609 4610
					       unsigned long action,
					       void *hcpu)
4611
{
4612
	int cpu = (unsigned long)hcpu;
4613
	struct worker_pool *pool;
4614
	struct workqueue_struct *wq;
4615
	int pi;
4616

T
Tejun Heo 已提交
4617
	switch (action & ~CPU_TASKS_FROZEN) {
4618
	case CPU_UP_PREPARE:
4619
		for_each_cpu_worker_pool(pool, cpu) {
4620 4621
			if (pool->nr_workers)
				continue;
4622
			if (create_and_start_worker(pool) < 0)
4623
				return NOTIFY_BAD;
4624
		}
T
Tejun Heo 已提交
4625
		break;
4626

4627 4628
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4629
		mutex_lock(&wq_pool_mutex);
4630 4631

		for_each_pool(pool, pi) {
4632
			mutex_lock(&pool->attach_mutex);
4633

4634 4635 4636 4637 4638
			if (pool->cpu == cpu) {
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4639

4640
			mutex_unlock(&pool->attach_mutex);
4641
		}
4642

4643 4644 4645 4646
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4647
		mutex_unlock(&wq_pool_mutex);
4648
		break;
4649
	}
4650 4651 4652 4653 4654 4655 4656
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4657
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4658 4659 4660
						 unsigned long action,
						 void *hcpu)
{
4661
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4662
	struct work_struct unbind_work;
4663
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4664

4665 4666
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4667
		/* unbinding per-cpu workers should happen on the local CPU */
4668
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4669
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4670 4671 4672 4673 4674 4675 4676 4677

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4678
		flush_work(&unbind_work);
4679
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4680
		break;
4681 4682 4683 4684
	}
	return NOTIFY_OK;
}

4685
#ifdef CONFIG_SMP
4686

4687
struct work_for_cpu {
4688
	struct work_struct work;
4689 4690 4691 4692 4693
	long (*fn)(void *);
	void *arg;
	long ret;
};

4694
static void work_for_cpu_fn(struct work_struct *work)
4695
{
4696 4697
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4698 4699 4700 4701 4702 4703 4704 4705 4706
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4707
 * It is up to the caller to ensure that the cpu doesn't go offline.
4708
 * The caller must not hold any locks which would prevent @fn from completing.
4709 4710
 *
 * Return: The value @fn returns.
4711
 */
4712
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4713
{
4714
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4715

4716 4717
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4718
	flush_work(&wfc.work);
4719
	destroy_work_on_stack(&wfc.work);
4720 4721 4722 4723 4724
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4725 4726 4727 4728 4729
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4730
 * Start freezing workqueues.  After this function returns, all freezable
4731
 * workqueues will queue new works to their delayed_works list instead of
4732
 * pool->worklist.
4733 4734
 *
 * CONTEXT:
4735
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4736 4737 4738
 */
void freeze_workqueues_begin(void)
{
4739 4740
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4741

4742
	mutex_lock(&wq_pool_mutex);
4743

4744
	WARN_ON_ONCE(workqueue_freezing);
4745 4746
	workqueue_freezing = true;

4747
	list_for_each_entry(wq, &workqueues, list) {
4748
		mutex_lock(&wq->mutex);
4749 4750
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4751
		mutex_unlock(&wq->mutex);
4752
	}
4753

4754
	mutex_unlock(&wq_pool_mutex);
4755 4756 4757
}

/**
4758
 * freeze_workqueues_busy - are freezable workqueues still busy?
4759 4760 4761 4762 4763
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4764
 * Grabs and releases wq_pool_mutex.
4765
 *
4766
 * Return:
4767 4768
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4769 4770 4771 4772
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4773 4774
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4775

4776
	mutex_lock(&wq_pool_mutex);
4777

4778
	WARN_ON_ONCE(!workqueue_freezing);
4779

4780 4781 4782
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4783 4784 4785 4786
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4787
		rcu_read_lock_sched();
4788
		for_each_pwq(pwq, wq) {
4789
			WARN_ON_ONCE(pwq->nr_active < 0);
4790
			if (pwq->nr_active) {
4791
				busy = true;
4792
				rcu_read_unlock_sched();
4793 4794 4795
				goto out_unlock;
			}
		}
4796
		rcu_read_unlock_sched();
4797 4798
	}
out_unlock:
4799
	mutex_unlock(&wq_pool_mutex);
4800 4801 4802 4803 4804 4805 4806
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4807
 * frozen works are transferred to their respective pool worklists.
4808 4809
 *
 * CONTEXT:
4810
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4811 4812 4813
 */
void thaw_workqueues(void)
{
4814 4815
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4816

4817
	mutex_lock(&wq_pool_mutex);
4818 4819 4820 4821

	if (!workqueue_freezing)
		goto out_unlock;

4822
	workqueue_freezing = false;
4823

4824 4825
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4826
		mutex_lock(&wq->mutex);
4827 4828
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4829
		mutex_unlock(&wq->mutex);
4830 4831 4832
	}

out_unlock:
4833
	mutex_unlock(&wq_pool_mutex);
4834 4835 4836
}
#endif /* CONFIG_FREEZER */

4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4849 4850 4851 4852 4853
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4854 4855 4856
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4857 4858 4859 4860 4861 4862 4863 4864 4865
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4866 4867
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4883
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4884
{
T
Tejun Heo 已提交
4885 4886
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4887

4888 4889 4890 4891
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4892
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4893
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4894

4895 4896
	wq_numa_init();

4897
	/* initialize CPU pools */
4898
	for_each_possible_cpu(cpu) {
4899
		struct worker_pool *pool;
4900

T
Tejun Heo 已提交
4901
		i = 0;
4902
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4903
			BUG_ON(init_worker_pool(pool));
4904
			pool->cpu = cpu;
4905
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4906
			pool->attrs->nice = std_nice[i++];
4907
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4908

T
Tejun Heo 已提交
4909
			/* alloc pool ID */
4910
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4911
			BUG_ON(worker_pool_assign_id(pool));
4912
			mutex_unlock(&wq_pool_mutex);
4913
		}
4914 4915
	}

4916
	/* create the initial worker */
4917
	for_each_online_cpu(cpu) {
4918
		struct worker_pool *pool;
4919

4920
		for_each_cpu_worker_pool(pool, cpu) {
4921
			pool->flags &= ~POOL_DISASSOCIATED;
4922
			BUG_ON(create_and_start_worker(pool) < 0);
4923
		}
4924 4925
	}

4926
	/* create default unbound and ordered wq attrs */
4927 4928 4929 4930 4931 4932
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
4943 4944
	}

4945
	system_wq = alloc_workqueue("events", 0, 0);
4946
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4947
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4948 4949
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4950 4951
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4952 4953 4954 4955 4956
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
4957
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4958 4959 4960
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
4961
	return 0;
L
Linus Torvalds 已提交
4962
}
4963
early_initcall(init_workqueues);