workqueue.c 153.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131 132 133 134
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      sched-RCU for reads.
 *
135 136
 * WQ: wq->mutex protected.
 *
137
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138 139
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
140 141
 */

142
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
143

144
struct worker_pool {
145
	spinlock_t		lock;		/* the pool lock */
146
	int			cpu;		/* I: the associated cpu */
147
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
148
	int			id;		/* I: pool ID */
149
	unsigned int		flags;		/* X: flags */
150

T
Tejun Heo 已提交
151 152
	unsigned long		watchdog_ts;	/* L: watchdog timestamp */

153 154
	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
155 156

	/* nr_idle includes the ones off idle_list for rebinding */
157 158 159 160 161 162
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

163
	/* a workers is either on busy_hash or idle_list, or the manager */
164 165 166
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

167
	/* see manage_workers() for details on the two manager mutexes */
168
	struct mutex		manager_arb;	/* manager arbitration */
169
	struct worker		*manager;	/* L: purely informational */
170 171
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
172
	struct completion	*detach_completion; /* all workers detached */
173

174
	struct ida		worker_ida;	/* worker IDs for task name */
175

T
Tejun Heo 已提交
176
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 178
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
179

180 181 182 183 184 185
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 187 188 189 190 191

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
192 193
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
194
/*
195 196 197 198
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
199
 */
200
struct pool_workqueue {
201
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
202
	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 204
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
205
	int			refcnt;		/* L: reference count */
206 207
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
208
	int			nr_active;	/* L: nr of active works */
209
	int			max_active;	/* L: max active works */
210
	struct list_head	delayed_works;	/* L: delayed works */
211
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
213 214 215 216 217

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
218
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
219 220 221
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
222
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
223

224 225 226 227
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
228 229
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
230 231 232
	struct completion	done;		/* flush completion */
};

233 234
struct wq_device;

L
Linus Torvalds 已提交
235
/*
236 237
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
238 239
 */
struct workqueue_struct {
240
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241
	struct list_head	list;		/* PR: list of all workqueues */
242

243 244 245
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
246
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 248 249
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250

251
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 253
	struct worker		*rescuer;	/* I: rescue worker */

254
	int			nr_drainers;	/* WQ: drain in progress */
255
	int			saved_max_active; /* WQ: saved pwq max_active */
256

257 258
	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259

260 261 262
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
263
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
264
	struct lockdep_map	lockdep_map;
265
#endif
266
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267

268 269 270 271 272 273 274
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

275 276 277
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
279 280
};

281 282
static struct kmem_cache *pwq_cache;

283 284 285
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

286 287 288
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

289
/* see the comment above the definition of WQ_POWER_EFFICIENT */
290
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 292
module_param_named(power_efficient, wq_power_efficient, bool, 0444);

293 294
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

295 296 297
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

298
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
299
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
300

301
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
302
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
303

304 305 306 307 308
/* PL: allowable cpus for unbound wqs and work items */
static cpumask_var_t wq_unbound_cpumask;

/* CPU where unbound work was last round robin scheduled from this CPU */
static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309

310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Local execution of unbound work items is no longer guaranteed.  The
 * following always forces round-robin CPU selection on unbound work items
 * to uncover usages which depend on it.
 */
#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
static bool wq_debug_force_rr_cpu = true;
#else
static bool wq_debug_force_rr_cpu = false;
#endif
module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);

322
/* the per-cpu worker pools */
323
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
324

325
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
326

327
/* PL: hash of all unbound pools keyed by pool->attrs */
328 329
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

330
/* I: attributes used when instantiating standard unbound pools on demand */
331 332
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

333 334 335
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

336
struct workqueue_struct *system_wq __read_mostly;
337
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
338
struct workqueue_struct *system_highpri_wq __read_mostly;
339
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
340
struct workqueue_struct *system_long_wq __read_mostly;
341
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
342
struct workqueue_struct *system_unbound_wq __read_mostly;
343
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
344
struct workqueue_struct *system_freezable_wq __read_mostly;
345
EXPORT_SYMBOL_GPL(system_freezable_wq);
346 347 348 349
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
350

351
static int worker_thread(void *__worker);
352
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
353

354 355 356
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

357
#define assert_rcu_or_pool_mutex()					\
358 359 360
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU or wq_pool_mutex should be held")
361

362
#define assert_rcu_or_wq_mutex(wq)					\
363 364 365
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex),			\
			 "sched RCU or wq->mutex should be held")
366

367
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
368 369 370 371
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex) &&		\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
372

373 374 375
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
376
	     (pool)++)
377

T
Tejun Heo 已提交
378 379 380
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
381
 * @pi: integer used for iteration
382
 *
383 384 385
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
386 387 388
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
389
 */
390 391
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
392
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
393
		else
T
Tejun Heo 已提交
394

395 396 397 398 399
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
400
 * This must be called with @pool->attach_mutex.
401 402 403 404
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
405 406
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
407
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
408 409
		else

410 411 412 413
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
414
 *
415
 * This must be called either with wq->mutex held or sched RCU read locked.
416 417
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
418 419 420
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
421 422
 */
#define for_each_pwq(pwq, wq)						\
423
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
424
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
425
		else
426

427 428 429 430
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

431 432 433 434 435
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

436 437 438 439 440 441 442
static bool work_is_static_object(void *addr)
{
	struct work_struct *work = addr;

	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
}

443 444 445 446
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
447
static bool work_fixup_init(void *addr, enum debug_obj_state state)
448 449 450 451 452 453 454
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
455
		return true;
456
	default:
457
		return false;
458 459 460 461 462 463 464
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
465
static bool work_fixup_free(void *addr, enum debug_obj_state state)
466 467 468 469 470 471 472
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
473
		return true;
474
	default:
475
		return false;
476 477 478 479 480
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
481
	.debug_hint	= work_debug_hint,
482
	.is_static_object = work_is_static_object,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	.fixup_init	= work_fixup_init,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

512 513 514 515 516 517 518
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

519 520 521 522 523
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

524 525 526 527 528 529 530
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
531 532 533 534
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

535
	lockdep_assert_held(&wq_pool_mutex);
536

537 538
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
539
	if (ret >= 0) {
T
Tejun Heo 已提交
540
		pool->id = ret;
541 542
		return 0;
	}
543
	return ret;
544 545
}

546 547 548 549 550
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
551 552
 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 * read locked.
553 554
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
555 556
 *
 * Return: The unbound pool_workqueue for @node.
557 558 559 560
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
561
	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
562 563 564 565 566 567 568 569 570 571

	/*
	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
	 * delayed item is pending.  The plan is to keep CPU -> NODE
	 * mapping valid and stable across CPU on/offlines.  Once that
	 * happens, this workaround can be removed.
	 */
	if (unlikely(node == NUMA_NO_NODE))
		return wq->dfl_pwq;

572 573 574
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
590

591
/*
592 593
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
594
 * is cleared and the high bits contain OFFQ flags and pool ID.
595
 *
596 597
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
598 599
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
600
 *
601
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
602
 * corresponding to a work.  Pool is available once the work has been
603
 * queued anywhere after initialization until it is sync canceled.  pwq is
604
 * available only while the work item is queued.
605
 *
606 607 608 609
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
610
 */
611 612
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
613
{
614
	WARN_ON_ONCE(!work_pending(work));
615 616
	atomic_long_set(&work->data, data | flags | work_static(work));
}
617

618
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
619 620
			 unsigned long extra_flags)
{
621 622
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
623 624
}

625 626 627 628 629 630 631
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

632 633
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
634
{
635 636 637 638 639 640 641
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
642
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	/*
	 * The following mb guarantees that previous clear of a PENDING bit
	 * will not be reordered with any speculative LOADS or STORES from
	 * work->current_func, which is executed afterwards.  This possible
	 * reordering can lead to a missed execution on attempt to qeueue
	 * the same @work.  E.g. consider this case:
	 *
	 *   CPU#0                         CPU#1
	 *   ----------------------------  --------------------------------
	 *
	 * 1  STORE event_indicated
	 * 2  queue_work_on() {
	 * 3    test_and_set_bit(PENDING)
	 * 4 }                             set_..._and_clear_pending() {
	 * 5                                 set_work_data() # clear bit
	 * 6                                 smp_mb()
	 * 7                               work->current_func() {
	 * 8				      LOAD event_indicated
	 *				   }
	 *
	 * Without an explicit full barrier speculative LOAD on line 8 can
	 * be executed before CPU#0 does STORE on line 1.  If that happens,
	 * CPU#0 observes the PENDING bit is still set and new execution of
	 * a @work is not queued in a hope, that CPU#1 will eventually
	 * finish the queued @work.  Meanwhile CPU#1 does not see
	 * event_indicated is set, because speculative LOAD was executed
	 * before actual STORE.
	 */
	smp_mb();
672
}
673

674
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
675
{
676 677
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
678 679
}

680
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
681
{
682
	unsigned long data = atomic_long_read(&work->data);
683

684
	if (data & WORK_STRUCT_PWQ)
685 686 687
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
688 689
}

690 691 692 693
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
694 695 696
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
697 698 699 700 701
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
702 703
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
704 705
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
706
{
707
	unsigned long data = atomic_long_read(&work->data);
708
	int pool_id;
709

710
	assert_rcu_or_pool_mutex();
711

712 713
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
714
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
715

716 717
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
718 719
		return NULL;

720
	return idr_find(&worker_pool_idr, pool_id);
721 722 723 724 725 726
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
727
 * Return: The worker_pool ID @work was last associated with.
728 729 730 731
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
732 733
	unsigned long data = atomic_long_read(&work->data);

734 735
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
736
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
737

738
	return data >> WORK_OFFQ_POOL_SHIFT;
739 740
}

741 742
static void mark_work_canceling(struct work_struct *work)
{
743
	unsigned long pool_id = get_work_pool_id(work);
744

745 746
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
747 748 749 750 751 752
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

753
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
754 755
}

756
/*
757 758
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
759
 * they're being called with pool->lock held.
760 761
 */

762
static bool __need_more_worker(struct worker_pool *pool)
763
{
764
	return !atomic_read(&pool->nr_running);
765 766
}

767
/*
768 769
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
770 771
 *
 * Note that, because unbound workers never contribute to nr_running, this
772
 * function will always return %true for unbound pools as long as the
773
 * worklist isn't empty.
774
 */
775
static bool need_more_worker(struct worker_pool *pool)
776
{
777
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
778
}
779

780
/* Can I start working?  Called from busy but !running workers. */
781
static bool may_start_working(struct worker_pool *pool)
782
{
783
	return pool->nr_idle;
784 785 786
}

/* Do I need to keep working?  Called from currently running workers. */
787
static bool keep_working(struct worker_pool *pool)
788
{
789 790
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
791 792 793
}

/* Do we need a new worker?  Called from manager. */
794
static bool need_to_create_worker(struct worker_pool *pool)
795
{
796
	return need_more_worker(pool) && !may_start_working(pool);
797
}
798

799
/* Do we have too many workers and should some go away? */
800
static bool too_many_workers(struct worker_pool *pool)
801
{
802
	bool managing = mutex_is_locked(&pool->manager_arb);
803 804
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
805 806

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
807 808
}

809
/*
810 811 812
 * Wake up functions.
 */

813 814
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
815
{
816
	if (unlikely(list_empty(&pool->idle_list)))
817 818
		return NULL;

819
	return list_first_entry(&pool->idle_list, struct worker, entry);
820 821 822 823
}

/**
 * wake_up_worker - wake up an idle worker
824
 * @pool: worker pool to wake worker from
825
 *
826
 * Wake up the first idle worker of @pool.
827 828
 *
 * CONTEXT:
829
 * spin_lock_irq(pool->lock).
830
 */
831
static void wake_up_worker(struct worker_pool *pool)
832
{
833
	struct worker *worker = first_idle_worker(pool);
834 835 836 837 838

	if (likely(worker))
		wake_up_process(worker->task);
}

839
/**
840 841 842 843 844 845 846 847 848 849
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
850
void wq_worker_waking_up(struct task_struct *task, int cpu)
851 852 853
{
	struct worker *worker = kthread_data(task);

854
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
855
		WARN_ON_ONCE(worker->pool->cpu != cpu);
856
		atomic_inc(&worker->pool->nr_running);
857
	}
858 859 860 861 862 863 864 865 866 867 868 869 870
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
871
 * Return:
872 873
 * Worker task on @cpu to wake up, %NULL if none.
 */
874
struct task_struct *wq_worker_sleeping(struct task_struct *task)
875 876
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
877
	struct worker_pool *pool;
878

879 880 881 882 883
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
884
	if (worker->flags & WORKER_NOT_RUNNING)
885 886
		return NULL;

887 888
	pool = worker->pool;

889
	/* this can only happen on the local cpu */
890
	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
891
		return NULL;
892 893 894 895 896 897

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
898 899 900
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
901
	 * manipulating idle_list, so dereferencing idle_list without pool
902
	 * lock is safe.
903
	 */
904 905
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
906
		to_wakeup = first_idle_worker(pool);
907 908 909 910 911
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
912
 * @worker: self
913 914
 * @flags: flags to set
 *
915
 * Set @flags in @worker->flags and adjust nr_running accordingly.
916
 *
917
 * CONTEXT:
918
 * spin_lock_irq(pool->lock)
919
 */
920
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
921
{
922
	struct worker_pool *pool = worker->pool;
923

924 925
	WARN_ON_ONCE(worker->task != current);

926
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
927 928
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
929
		atomic_dec(&pool->nr_running);
930 931
	}

932 933 934 935
	worker->flags |= flags;
}

/**
936
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
937
 * @worker: self
938 939
 * @flags: flags to clear
 *
940
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
941
 *
942
 * CONTEXT:
943
 * spin_lock_irq(pool->lock)
944 945 946
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
947
	struct worker_pool *pool = worker->pool;
948 949
	unsigned int oflags = worker->flags;

950 951
	WARN_ON_ONCE(worker->task != current);

952
	worker->flags &= ~flags;
953

954 955 956 957 958
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
959 960
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
961
			atomic_inc(&pool->nr_running);
962 963
}

964 965
/**
 * find_worker_executing_work - find worker which is executing a work
966
 * @pool: pool of interest
967 968
 * @work: work to find worker for
 *
969 970
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
971 972 973 974 975 976 977 978 979 980 981 982
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
983 984 985 986 987 988
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
989 990
 *
 * CONTEXT:
991
 * spin_lock_irq(pool->lock).
992
 *
993 994
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
995
 * otherwise.
996
 */
997
static struct worker *find_worker_executing_work(struct worker_pool *pool,
998
						 struct work_struct *work)
999
{
1000 1001
	struct worker *worker;

1002
	hash_for_each_possible(pool->busy_hash, worker, hentry,
1003 1004 1005
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
1006 1007 1008
			return worker;

	return NULL;
1009 1010
}

1011 1012 1013 1014
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
1015
 * @nextp: out parameter for nested worklist walking
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1026
 * spin_lock_irq(pool->lock).
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1110
static void pwq_activate_delayed_work(struct work_struct *work)
1111
{
1112
	struct pool_workqueue *pwq = get_work_pwq(work);
1113 1114

	trace_workqueue_activate_work(work);
T
Tejun Heo 已提交
1115 1116
	if (list_empty(&pwq->pool->worklist))
		pwq->pool->watchdog_ts = jiffies;
1117
	move_linked_works(work, &pwq->pool->worklist, NULL);
1118
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1119
	pwq->nr_active++;
1120 1121
}

1122
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1123
{
1124
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1125 1126
						    struct work_struct, entry);

1127
	pwq_activate_delayed_work(work);
1128 1129
}

1130
/**
1131 1132
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1133 1134 1135
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1136
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1137 1138
 *
 * CONTEXT:
1139
 * spin_lock_irq(pool->lock).
1140
 */
1141
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1142
{
T
Tejun Heo 已提交
1143
	/* uncolored work items don't participate in flushing or nr_active */
1144
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1145
		goto out_put;
1146

1147
	pwq->nr_in_flight[color]--;
1148

1149 1150
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1151
		/* one down, submit a delayed one */
1152 1153
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1154 1155 1156
	}

	/* is flush in progress and are we at the flushing tip? */
1157
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1158
		goto out_put;
1159 1160

	/* are there still in-flight works? */
1161
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1162
		goto out_put;
1163

1164 1165
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1166 1167

	/*
1168
	 * If this was the last pwq, wake up the first flusher.  It
1169 1170
	 * will handle the rest.
	 */
1171 1172
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1173 1174
out_put:
	put_pwq(pwq);
1175 1176
}

1177
/**
1178
 * try_to_grab_pending - steal work item from worklist and disable irq
1179 1180
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1181
 * @flags: place to store irq state
1182 1183
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1184
 * stable state - idle, on timer or on worklist.
1185
 *
1186
 * Return:
1187 1188 1189
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1190 1191
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1192
 *
1193
 * Note:
1194
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1195 1196 1197
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1198 1199 1200 1201
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1202
 * This function is safe to call from any context including IRQ handler.
1203
 */
1204 1205
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1206
{
1207
	struct worker_pool *pool;
1208
	struct pool_workqueue *pwq;
1209

1210 1211
	local_irq_save(*flags);

1212 1213 1214 1215
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1216 1217 1218 1219 1220
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1221 1222 1223 1224 1225
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1226 1227 1228 1229 1230 1231 1232
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1233 1234
	pool = get_work_pool(work);
	if (!pool)
1235
		goto fail;
1236

1237
	spin_lock(&pool->lock);
1238
	/*
1239 1240 1241 1242 1243
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1244 1245
	 * item is currently queued on that pool.
	 */
1246 1247
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1248 1249 1250 1251 1252
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1253
		 * on the delayed_list, will confuse pwq->nr_active
1254 1255 1256 1257
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1258
			pwq_activate_delayed_work(work);
1259 1260

		list_del_init(&work->entry);
1261
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1262

1263
		/* work->data points to pwq iff queued, point to pool */
1264 1265 1266 1267
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1268
	}
1269
	spin_unlock(&pool->lock);
1270 1271 1272 1273 1274
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1275
	return -EAGAIN;
1276 1277
}

T
Tejun Heo 已提交
1278
/**
1279
 * insert_work - insert a work into a pool
1280
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1281 1282 1283 1284
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1285
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1286
 * work_struct flags.
T
Tejun Heo 已提交
1287 1288
 *
 * CONTEXT:
1289
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1290
 */
1291 1292
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1293
{
1294
	struct worker_pool *pool = pwq->pool;
1295

T
Tejun Heo 已提交
1296
	/* we own @work, set data and link */
1297
	set_work_pwq(work, pwq, extra_flags);
1298
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1299
	get_pwq(pwq);
1300 1301

	/*
1302 1303 1304
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1305 1306 1307
	 */
	smp_mb();

1308 1309
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1310 1311
}

1312 1313
/*
 * Test whether @work is being queued from another work executing on the
1314
 * same workqueue.
1315 1316 1317
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1318 1319 1320 1321 1322 1323 1324
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1325
	return worker && worker->current_pwq->wq == wq;
1326 1327
}

1328 1329 1330 1331 1332 1333 1334
/*
 * When queueing an unbound work item to a wq, prefer local CPU if allowed
 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
 * avoid perturbing sensitive tasks.
 */
static int wq_select_unbound_cpu(int cpu)
{
1335
	static bool printed_dbg_warning;
1336 1337
	int new_cpu;

1338 1339 1340 1341 1342 1343 1344 1345
	if (likely(!wq_debug_force_rr_cpu)) {
		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
			return cpu;
	} else if (!printed_dbg_warning) {
		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
		printed_dbg_warning = true;
	}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	if (cpumask_empty(wq_unbound_cpumask))
		return cpu;

	new_cpu = __this_cpu_read(wq_rr_cpu_last);
	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
	if (unlikely(new_cpu >= nr_cpu_ids)) {
		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
		if (unlikely(new_cpu >= nr_cpu_ids))
			return cpu;
	}
	__this_cpu_write(wq_rr_cpu_last, new_cpu);

	return new_cpu;
}

1361
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1362 1363
			 struct work_struct *work)
{
1364
	struct pool_workqueue *pwq;
1365
	struct worker_pool *last_pool;
1366
	struct list_head *worklist;
1367
	unsigned int work_flags;
1368
	unsigned int req_cpu = cpu;
1369 1370 1371 1372 1373 1374 1375 1376

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1377

1378
	debug_work_activate(work);
1379

1380
	/* if draining, only works from the same workqueue are allowed */
1381
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1382
	    WARN_ON_ONCE(!is_chained_work(wq)))
1383
		return;
1384
retry:
1385
	if (req_cpu == WORK_CPU_UNBOUND)
1386
		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1387

1388
	/* pwq which will be used unless @work is executing elsewhere */
1389
	if (!(wq->flags & WQ_UNBOUND))
1390
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1391 1392
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1393

1394 1395 1396 1397 1398 1399 1400 1401
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1402

1403
		spin_lock(&last_pool->lock);
1404

1405
		worker = find_worker_executing_work(last_pool, work);
1406

1407 1408
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1409
		} else {
1410 1411
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1412
			spin_lock(&pwq->pool->lock);
1413
		}
1414
	} else {
1415
		spin_lock(&pwq->pool->lock);
1416 1417
	}

1418 1419 1420 1421
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1422 1423
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1437 1438
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1439

1440
	if (WARN_ON(!list_empty(&work->entry))) {
1441
		spin_unlock(&pwq->pool->lock);
1442 1443
		return;
	}
1444

1445 1446
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1447

1448
	if (likely(pwq->nr_active < pwq->max_active)) {
1449
		trace_workqueue_activate_work(work);
1450 1451
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
T
Tejun Heo 已提交
1452 1453
		if (list_empty(worklist))
			pwq->pool->watchdog_ts = jiffies;
1454 1455
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1456
		worklist = &pwq->delayed_works;
1457
	}
1458

1459
	insert_work(pwq, work, worklist, work_flags);
1460

1461
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1462 1463
}

1464
/**
1465 1466
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1467 1468 1469
 * @wq: workqueue to use
 * @work: work to queue
 *
1470 1471
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1472 1473
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1474
 */
1475 1476
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1477
{
1478
	bool ret = false;
1479
	unsigned long flags;
1480

1481
	local_irq_save(flags);
1482

1483
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1484
		__queue_work(cpu, wq, work);
1485
		ret = true;
1486
	}
1487

1488
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1489 1490
	return ret;
}
1491
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1492

1493
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1494
{
1495
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1496

1497
	/* should have been called from irqsafe timer with irq already off */
1498
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1499
}
1500
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1501

1502 1503
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1504
{
1505 1506 1507 1508 1509
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1510 1511
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1524
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1525

1526
	dwork->wq = wq;
1527
	dwork->cpu = cpu;
1528 1529
	timer->expires = jiffies + delay;

1530 1531 1532 1533
	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1534 1535
}

1536 1537 1538 1539
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1540
 * @dwork: work to queue
1541 1542
 * @delay: number of jiffies to wait before queueing
 *
1543
 * Return: %false if @work was already on a queue, %true otherwise.  If
1544 1545
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1546
 */
1547 1548
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1549
{
1550
	struct work_struct *work = &dwork->work;
1551
	bool ret = false;
1552
	unsigned long flags;
1553

1554 1555
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1556

1557
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1558
		__queue_delayed_work(cpu, wq, dwork, delay);
1559
		ret = true;
1560
	}
1561

1562
	local_irq_restore(flags);
1563 1564
	return ret;
}
1565
EXPORT_SYMBOL(queue_delayed_work_on);
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1579
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1580 1581
 * pending and its timer was modified.
 *
1582
 * This function is safe to call from any context including IRQ handler.
1583 1584 1585 1586 1587 1588 1589
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1590

1591 1592 1593
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1594

1595 1596 1597
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1598
	}
1599 1600

	/* -ENOENT from try_to_grab_pending() becomes %true */
1601 1602
	return ret;
}
1603 1604
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1605 1606 1607 1608 1609 1610 1611 1612
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1613
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1614 1615
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1616
{
1617
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1618

1619 1620 1621 1622
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1623

1624
	/* can't use worker_set_flags(), also called from create_worker() */
1625
	worker->flags |= WORKER_IDLE;
1626
	pool->nr_idle++;
1627
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1628 1629

	/* idle_list is LIFO */
1630
	list_add(&worker->entry, &pool->idle_list);
1631

1632 1633
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1634

1635
	/*
1636
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1637
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1638 1639
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1640
	 */
1641
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1642
		     pool->nr_workers == pool->nr_idle &&
1643
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1653
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1654 1655 1656
 */
static void worker_leave_idle(struct worker *worker)
{
1657
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1658

1659 1660
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1661
	worker_clr_flags(worker, WORKER_IDLE);
1662
	pool->nr_idle--;
T
Tejun Heo 已提交
1663 1664 1665
	list_del_init(&worker->entry);
}

1666
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1667 1668 1669
{
	struct worker *worker;

1670
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1671 1672
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1673
		INIT_LIST_HEAD(&worker->scheduled);
1674
		INIT_LIST_HEAD(&worker->node);
1675 1676
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1677
	}
T
Tejun Heo 已提交
1678 1679 1680
	return worker;
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1714 1715 1716 1717 1718
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1719 1720 1721
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1722 1723 1724 1725 1726 1727
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1728
	mutex_lock(&pool->attach_mutex);
1729 1730
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1731
		detach_completion = pool->detach_completion;
1732
	mutex_unlock(&pool->attach_mutex);
1733

1734 1735 1736
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1737 1738 1739 1740
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1741 1742
/**
 * create_worker - create a new workqueue worker
1743
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1744
 *
1745
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1746 1747 1748 1749
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1750
 * Return:
T
Tejun Heo 已提交
1751 1752
 * Pointer to the newly created worker.
 */
1753
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1754 1755
{
	struct worker *worker = NULL;
1756
	int id = -1;
1757
	char id_buf[16];
T
Tejun Heo 已提交
1758

1759 1760
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1761 1762
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1763

1764
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1765 1766 1767
	if (!worker)
		goto fail;

1768
	worker->pool = pool;
T
Tejun Heo 已提交
1769 1770
	worker->id = id;

1771
	if (pool->cpu >= 0)
1772 1773
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1774
	else
1775 1776
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1777
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1778
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1779 1780 1781
	if (IS_ERR(worker->task))
		goto fail;

1782
	set_user_nice(worker->task, pool->attrs->nice);
1783
	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1784

1785
	/* successful, attach the worker to the pool */
1786
	worker_attach_to_pool(worker, pool);
1787

1788 1789 1790 1791 1792 1793 1794
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1795
	return worker;
1796

T
Tejun Heo 已提交
1797
fail:
1798
	if (id >= 0)
1799
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1800 1801 1802 1803 1804 1805 1806 1807
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1808 1809
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1810 1811
 *
 * CONTEXT:
1812
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1813 1814 1815
 */
static void destroy_worker(struct worker *worker)
{
1816
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1817

1818 1819
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1820
	/* sanity check frenzy */
1821
	if (WARN_ON(worker->current_work) ||
1822 1823
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1824
		return;
T
Tejun Heo 已提交
1825

1826 1827
	pool->nr_workers--;
	pool->nr_idle--;
1828

T
Tejun Heo 已提交
1829
	list_del_init(&worker->entry);
1830
	worker->flags |= WORKER_DIE;
1831
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1832 1833
}

1834
static void idle_worker_timeout(unsigned long __pool)
1835
{
1836
	struct worker_pool *pool = (void *)__pool;
1837

1838
	spin_lock_irq(&pool->lock);
1839

1840
	while (too_many_workers(pool)) {
1841 1842 1843 1844
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1845
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1846 1847
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1848
		if (time_before(jiffies, expires)) {
1849
			mod_timer(&pool->idle_timer, expires);
1850
			break;
1851
		}
1852 1853

		destroy_worker(worker);
1854 1855
	}

1856
	spin_unlock_irq(&pool->lock);
1857
}
1858

1859
static void send_mayday(struct work_struct *work)
1860
{
1861 1862
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1863

1864
	lockdep_assert_held(&wq_mayday_lock);
1865

1866
	if (!wq->rescuer)
1867
		return;
1868 1869

	/* mayday mayday mayday */
1870
	if (list_empty(&pwq->mayday_node)) {
1871 1872 1873 1874 1875 1876
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1877
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1878
		wake_up_process(wq->rescuer->task);
1879
	}
1880 1881
}

1882
static void pool_mayday_timeout(unsigned long __pool)
1883
{
1884
	struct worker_pool *pool = (void *)__pool;
1885 1886
	struct work_struct *work;

1887 1888
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1889

1890
	if (need_to_create_worker(pool)) {
1891 1892 1893 1894 1895 1896
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1897
		list_for_each_entry(work, &pool->worklist, entry)
1898
			send_mayday(work);
L
Linus Torvalds 已提交
1899
	}
1900

1901 1902
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1903

1904
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1905 1906
}

1907 1908
/**
 * maybe_create_worker - create a new worker if necessary
1909
 * @pool: pool to create a new worker for
1910
 *
1911
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1912 1913
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1914
 * sent to all rescuers with works scheduled on @pool to resolve
1915 1916
 * possible allocation deadlock.
 *
1917 1918
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1919 1920
 *
 * LOCKING:
1921
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1922 1923 1924
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1925
static void maybe_create_worker(struct worker_pool *pool)
1926 1927
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1928
{
1929
restart:
1930
	spin_unlock_irq(&pool->lock);
1931

1932
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1933
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1934 1935

	while (true) {
1936
		if (create_worker(pool) || !need_to_create_worker(pool))
1937
			break;
L
Linus Torvalds 已提交
1938

1939
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1940

1941
		if (!need_to_create_worker(pool))
1942 1943 1944
			break;
	}

1945
	del_timer_sync(&pool->mayday_timer);
1946
	spin_lock_irq(&pool->lock);
1947 1948 1949 1950 1951
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1952
	if (need_to_create_worker(pool))
1953 1954 1955
		goto restart;
}

1956
/**
1957 1958
 * manage_workers - manage worker pool
 * @worker: self
1959
 *
1960
 * Assume the manager role and manage the worker pool @worker belongs
1961
 * to.  At any given time, there can be only zero or one manager per
1962
 * pool.  The exclusion is handled automatically by this function.
1963 1964 1965 1966
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1967 1968
 *
 * CONTEXT:
1969
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1970 1971
 * multiple times.  Does GFP_KERNEL allocations.
 *
1972
 * Return:
1973 1974 1975 1976
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1977
 */
1978
static bool manage_workers(struct worker *worker)
1979
{
1980
	struct worker_pool *pool = worker->pool;
1981

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1992
	if (!mutex_trylock(&pool->manager_arb))
1993
		return false;
1994
	pool->manager = worker;
1995

1996
	maybe_create_worker(pool);
1997

1998
	pool->manager = NULL;
1999
	mutex_unlock(&pool->manager_arb);
2000
	return true;
2001 2002
}

2003 2004
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2005
 * @worker: self
2006 2007 2008 2009 2010 2011 2012 2013 2014
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2015
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2016
 */
T
Tejun Heo 已提交
2017
static void process_one_work(struct worker *worker, struct work_struct *work)
2018 2019
__releases(&pool->lock)
__acquires(&pool->lock)
2020
{
2021
	struct pool_workqueue *pwq = get_work_pwq(work);
2022
	struct worker_pool *pool = worker->pool;
2023
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2024
	int work_color;
2025
	struct worker *collision;
2026 2027 2028 2029 2030 2031 2032 2033
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2034 2035 2036
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2037
#endif
2038
	/* ensure we're on the correct CPU */
2039
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2040
		     raw_smp_processor_id() != pool->cpu);
2041

2042 2043 2044 2045 2046 2047
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2048
	collision = find_worker_executing_work(pool, work);
2049 2050 2051 2052 2053
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2054
	/* claim and dequeue */
2055
	debug_work_deactivate(work);
2056
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2057
	worker->current_work = work;
2058
	worker->current_func = work->func;
2059
	worker->current_pwq = pwq;
2060
	work_color = get_work_color(work);
2061

2062 2063
	list_del_init(&work->entry);

2064
	/*
2065 2066 2067 2068
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
2069 2070
	 */
	if (unlikely(cpu_intensive))
2071
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2072

2073
	/*
2074 2075 2076 2077
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2078
	 * UNBOUND and CPU_INTENSIVE ones.
2079
	 */
2080
	if (need_more_worker(pool))
2081
		wake_up_worker(pool);
2082

2083
	/*
2084
	 * Record the last pool and clear PENDING which should be the last
2085
	 * update to @work.  Also, do this inside @pool->lock so that
2086 2087
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2088
	 */
2089
	set_work_pool_and_clear_pending(work, pool->id);
2090

2091
	spin_unlock_irq(&pool->lock);
2092

2093
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2094
	lock_map_acquire(&lockdep_map);
2095
	trace_workqueue_execute_start(work);
2096
	worker->current_func(work);
2097 2098 2099 2100 2101
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2102
	lock_map_release(&lockdep_map);
2103
	lock_map_release(&pwq->wq->lockdep_map);
2104 2105

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2106 2107
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2108 2109
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2110 2111 2112 2113
		debug_show_held_locks(current);
		dump_stack();
	}

2114 2115 2116 2117 2118
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2119 2120
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2121
	 */
2122
	cond_resched_rcu_qs();
2123

2124
	spin_lock_irq(&pool->lock);
2125

2126 2127 2128 2129
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2130
	/* we're done with it, release */
2131
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2132
	worker->current_work = NULL;
2133
	worker->current_func = NULL;
2134
	worker->current_pwq = NULL;
2135
	worker->desc_valid = false;
2136
	pwq_dec_nr_in_flight(pwq, work_color);
2137 2138
}

2139 2140 2141 2142 2143 2144 2145 2146 2147
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2148
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2149 2150 2151
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2152
{
2153 2154
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2155
						struct work_struct, entry);
T
Tejun Heo 已提交
2156
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2157 2158 2159
	}
}

T
Tejun Heo 已提交
2160 2161
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2162
 * @__worker: self
T
Tejun Heo 已提交
2163
 *
2164 2165 2166 2167 2168
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2169 2170
 *
 * Return: 0
T
Tejun Heo 已提交
2171
 */
T
Tejun Heo 已提交
2172
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2173
{
T
Tejun Heo 已提交
2174
	struct worker *worker = __worker;
2175
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2176

2177 2178
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2179
woke_up:
2180
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2181

2182 2183
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2184
		spin_unlock_irq(&pool->lock);
2185 2186
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2187 2188

		set_task_comm(worker->task, "kworker/dying");
2189
		ida_simple_remove(&pool->worker_ida, worker->id);
2190 2191
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2192
		return 0;
T
Tejun Heo 已提交
2193
	}
2194

T
Tejun Heo 已提交
2195
	worker_leave_idle(worker);
2196
recheck:
2197
	/* no more worker necessary? */
2198
	if (!need_more_worker(pool))
2199 2200 2201
		goto sleep;

	/* do we need to manage? */
2202
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2203 2204
		goto recheck;

T
Tejun Heo 已提交
2205 2206 2207 2208 2209
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2210
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2211

2212
	/*
2213 2214 2215 2216 2217
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2218
	 */
2219
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2220 2221

	do {
T
Tejun Heo 已提交
2222
		struct work_struct *work =
2223
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2224 2225
					 struct work_struct, entry);

T
Tejun Heo 已提交
2226 2227
		pool->watchdog_ts = jiffies;

T
Tejun Heo 已提交
2228 2229 2230 2231
		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2232
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2233 2234 2235
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2236
		}
2237
	} while (keep_working(pool));
2238

2239
	worker_set_flags(worker, WORKER_PREP);
2240
sleep:
T
Tejun Heo 已提交
2241
	/*
2242 2243 2244 2245 2246
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2247 2248 2249
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2250
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2251 2252
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2253 2254
}

2255 2256
/**
 * rescuer_thread - the rescuer thread function
2257
 * @__rescuer: self
2258 2259
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2260
 * workqueue which has WQ_MEM_RECLAIM set.
2261
 *
2262
 * Regular work processing on a pool may block trying to create a new
2263 2264 2265 2266 2267
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2268 2269
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2270 2271 2272
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2273 2274
 *
 * Return: 0
2275
 */
2276
static int rescuer_thread(void *__rescuer)
2277
{
2278 2279
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2280
	struct list_head *scheduled = &rescuer->scheduled;
2281
	bool should_stop;
2282 2283

	set_user_nice(current, RESCUER_NICE_LEVEL);
2284 2285 2286 2287 2288 2289

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2290 2291 2292
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2293 2294 2295 2296 2297 2298 2299 2300 2301
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2302

2303
	/* see whether any pwq is asking for help */
2304
	spin_lock_irq(&wq_mayday_lock);
2305 2306 2307 2308

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2309
		struct worker_pool *pool = pwq->pool;
2310
		struct work_struct *work, *n;
T
Tejun Heo 已提交
2311
		bool first = true;
2312 2313

		__set_current_state(TASK_RUNNING);
2314 2315
		list_del_init(&pwq->mayday_node);

2316
		spin_unlock_irq(&wq_mayday_lock);
2317

2318 2319 2320
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2321
		rescuer->pool = pool;
2322 2323 2324 2325 2326

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2327
		WARN_ON_ONCE(!list_empty(scheduled));
T
Tejun Heo 已提交
2328 2329 2330 2331
		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
			if (get_work_pwq(work) == pwq) {
				if (first)
					pool->watchdog_ts = jiffies;
2332
				move_linked_works(work, scheduled, &n);
T
Tejun Heo 已提交
2333 2334 2335
			}
			first = false;
		}
2336

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2356

2357 2358
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2359
		 * go away while we're still attached to it.
2360 2361 2362
		 */
		put_pwq(pwq);

2363
		/*
2364
		 * Leave this pool.  If need_more_worker() is %true, notify a
2365 2366 2367
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2368
		if (need_more_worker(pool))
2369
			wake_up_worker(pool);
2370

2371
		rescuer->pool = NULL;
2372 2373 2374 2375 2376
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2377 2378
	}

2379
	spin_unlock_irq(&wq_mayday_lock);
2380

2381 2382 2383 2384 2385 2386
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2387 2388
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2389 2390
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2391 2392
}

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
/**
 * check_flush_dependency - check for flush dependency sanity
 * @target_wq: workqueue being flushed
 * @target_work: work item being flushed (NULL for workqueue flushes)
 *
 * %current is trying to flush the whole @target_wq or @target_work on it.
 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
 * reclaiming memory or running on a workqueue which doesn't have
 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
 * a deadlock.
 */
static void check_flush_dependency(struct workqueue_struct *target_wq,
				   struct work_struct *target_work)
{
	work_func_t target_func = target_work ? target_work->func : NULL;
	struct worker *worker;

	if (target_wq->flags & WQ_MEM_RECLAIM)
		return;

	worker = current_wq_worker();

	WARN_ONCE(current->flags & PF_MEMALLOC,
		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
		  current->pid, current->comm, target_wq->name, target_func);
2418 2419
	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2420 2421 2422 2423 2424
		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
		  worker->current_pwq->wq->name, worker->current_func,
		  target_wq->name, target_func);
}

O
Oleg Nesterov 已提交
2425 2426 2427
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
2428
	struct task_struct	*task;	/* purely informational */
O
Oleg Nesterov 已提交
2429 2430 2431 2432 2433 2434 2435 2436
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2437 2438
/**
 * insert_wq_barrier - insert a barrier work
2439
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2440
 * @barr: wq_barrier to insert
2441 2442
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2443
 *
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2456
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2457 2458
 *
 * CONTEXT:
2459
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2460
 */
2461
static void insert_wq_barrier(struct pool_workqueue *pwq,
2462 2463
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2464
{
2465 2466 2467
	struct list_head *head;
	unsigned int linked = 0;

2468
	/*
2469
	 * debugobject calls are safe here even with pool->lock locked
2470 2471 2472 2473
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2474
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2475
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2476
	init_completion(&barr->done);
2477
	barr->task = current;
2478

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2494
	debug_work_activate(&barr->work);
2495
	insert_work(pwq, &barr->work, head,
2496
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2497 2498
}

2499
/**
2500
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2501 2502 2503 2504
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2505
 * Prepare pwqs for workqueue flushing.
2506
 *
2507 2508 2509 2510 2511
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2512 2513 2514 2515 2516 2517 2518
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2519
 * If @work_color is non-negative, all pwqs should have the same
2520 2521 2522 2523
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2524
 * mutex_lock(wq->mutex).
2525
 *
2526
 * Return:
2527 2528 2529
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2530
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2531
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2532
{
2533
	bool wait = false;
2534
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2535

2536
	if (flush_color >= 0) {
2537
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2538
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2539
	}
2540

2541
	for_each_pwq(pwq, wq) {
2542
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2543

2544
		spin_lock_irq(&pool->lock);
2545

2546
		if (flush_color >= 0) {
2547
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2548

2549 2550 2551
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2552 2553 2554
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2555

2556
		if (work_color >= 0) {
2557
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2558
			pwq->work_color = work_color;
2559
		}
L
Linus Torvalds 已提交
2560

2561
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2562
	}
2563

2564
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2565
		complete(&wq->first_flusher->done);
2566

2567
	return wait;
L
Linus Torvalds 已提交
2568 2569
}

2570
/**
L
Linus Torvalds 已提交
2571
 * flush_workqueue - ensure that any scheduled work has run to completion.
2572
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2573
 *
2574 2575
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2576
 */
2577
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2578
{
2579 2580 2581 2582 2583 2584
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2585

2586 2587
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2588

2589
	mutex_lock(&wq->mutex);
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2602
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2603 2604 2605 2606 2607
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2608
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2609 2610 2611

			wq->first_flusher = &this_flusher;

2612
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2613 2614 2615 2616 2617 2618 2619 2620
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2621
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2622
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2623
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2634 2635
	check_flush_dependency(wq, NULL);

2636
	mutex_unlock(&wq->mutex);
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2649
	mutex_lock(&wq->mutex);
2650

2651 2652 2653 2654
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2655 2656
	wq->first_flusher = NULL;

2657 2658
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2671 2672
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2692
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2693 2694 2695
		}

		if (list_empty(&wq->flusher_queue)) {
2696
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2697 2698 2699 2700 2701
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2702
		 * the new first flusher and arm pwqs.
2703
		 */
2704 2705
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2706 2707 2708 2709

		list_del_init(&next->list);
		wq->first_flusher = next;

2710
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2721
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2722
}
2723
EXPORT_SYMBOL(flush_workqueue);
L
Linus Torvalds 已提交
2724

2725 2726 2727 2728 2729 2730 2731
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
C
Chen Hanxiao 已提交
2732
 * repeatedly until it becomes empty.  The number of flushing is determined
2733 2734 2735 2736 2737 2738
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2739
	struct pool_workqueue *pwq;
2740 2741 2742 2743

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2744
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2745
	 */
2746
	mutex_lock(&wq->mutex);
2747
	if (!wq->nr_drainers++)
2748
		wq->flags |= __WQ_DRAINING;
2749
	mutex_unlock(&wq->mutex);
2750 2751 2752
reflush:
	flush_workqueue(wq);

2753
	mutex_lock(&wq->mutex);
2754

2755
	for_each_pwq(pwq, wq) {
2756
		bool drained;
2757

2758
		spin_lock_irq(&pwq->pool->lock);
2759
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2760
		spin_unlock_irq(&pwq->pool->lock);
2761 2762

		if (drained)
2763 2764 2765 2766
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2767
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2768
				wq->name, flush_cnt);
2769

2770
		mutex_unlock(&wq->mutex);
2771 2772 2773 2774
		goto reflush;
	}

	if (!--wq->nr_drainers)
2775
		wq->flags &= ~__WQ_DRAINING;
2776
	mutex_unlock(&wq->mutex);
2777 2778 2779
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2780
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2781
{
2782
	struct worker *worker = NULL;
2783
	struct worker_pool *pool;
2784
	struct pool_workqueue *pwq;
2785 2786

	might_sleep();
2787 2788

	local_irq_disable();
2789
	pool = get_work_pool(work);
2790 2791
	if (!pool) {
		local_irq_enable();
2792
		return false;
2793
	}
2794

2795
	spin_lock(&pool->lock);
2796
	/* see the comment in try_to_grab_pending() with the same code */
2797 2798 2799
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2800
			goto already_gone;
2801
	} else {
2802
		worker = find_worker_executing_work(pool, work);
2803
		if (!worker)
T
Tejun Heo 已提交
2804
			goto already_gone;
2805
		pwq = worker->current_pwq;
2806
	}
2807

2808 2809
	check_flush_dependency(pwq->wq, work);

2810
	insert_wq_barrier(pwq, barr, work, worker);
2811
	spin_unlock_irq(&pool->lock);
2812

2813 2814 2815 2816 2817 2818
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2819
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2820
		lock_map_acquire(&pwq->wq->lockdep_map);
2821
	else
2822 2823
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2824

2825
	return true;
T
Tejun Heo 已提交
2826
already_gone:
2827
	spin_unlock_irq(&pool->lock);
2828
	return false;
2829
}
2830 2831 2832 2833 2834

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2835 2836
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2837
 *
2838
 * Return:
2839 2840 2841 2842 2843
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2844 2845
	struct wq_barrier barr;

2846 2847 2848
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2849 2850 2851 2852 2853 2854 2855
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2856
}
2857
EXPORT_SYMBOL_GPL(flush_work);
2858

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
struct cwt_wait {
	wait_queue_t		wait;
	struct work_struct	*work;
};

static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2873
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2874
{
2875
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2876
	unsigned long flags;
2877 2878 2879
	int ret;

	do {
2880 2881
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2896
		 */
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2910 2911
	} while (unlikely(ret < 0));

2912 2913 2914 2915
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2916
	flush_work(work);
2917
	clear_work_data(work);
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2928 2929 2930
	return ret;
}

2931
/**
2932 2933
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2934
 *
2935 2936 2937 2938
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2939
 *
2940 2941
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2942
 *
2943
 * The caller must ensure that the workqueue on which @work was last
2944
 * queued can't be destroyed before this function returns.
2945
 *
2946
 * Return:
2947
 * %true if @work was pending, %false otherwise.
2948
 */
2949
bool cancel_work_sync(struct work_struct *work)
2950
{
2951
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2952
}
2953
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2954

2955
/**
2956 2957
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2958
 *
2959 2960 2961
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2962
 *
2963
 * Return:
2964 2965
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2966
 */
2967 2968
bool flush_delayed_work(struct delayed_work *dwork)
{
2969
	local_irq_disable();
2970
	if (del_timer_sync(&dwork->timer))
2971
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2972
	local_irq_enable();
2973 2974 2975 2976
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2977
/**
2978 2979
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2980
 *
2981 2982 2983 2984 2985 2986 2987 2988 2989
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2990
 *
2991
 * This function is safe to call from any context including IRQ handler.
2992
 */
2993
bool cancel_delayed_work(struct delayed_work *dwork)
2994
{
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

3005 3006
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
3007
	local_irq_restore(flags);
3008
	return ret;
3009
}
3010
EXPORT_SYMBOL(cancel_delayed_work);
3011

3012 3013 3014 3015 3016 3017
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
3018
 * Return:
3019 3020 3021
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3022
{
3023
	return __cancel_work_timer(&dwork->work, true);
3024
}
3025
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3026

3027
/**
3028
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3029 3030
 * @func: the function to call
 *
3031 3032
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3033
 * schedule_on_each_cpu() is very slow.
3034
 *
3035
 * Return:
3036
 * 0 on success, -errno on failure.
3037
 */
3038
int schedule_on_each_cpu(work_func_t func)
3039 3040
{
	int cpu;
3041
	struct work_struct __percpu *works;
3042

3043 3044
	works = alloc_percpu(struct work_struct);
	if (!works)
3045
		return -ENOMEM;
3046

3047 3048
	get_online_cpus();

3049
	for_each_online_cpu(cpu) {
3050 3051 3052
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3053
		schedule_work_on(cpu, work);
3054
	}
3055 3056 3057 3058

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3059
	put_online_cpus();
3060
	free_percpu(works);
3061 3062 3063
	return 0;
}

3064 3065 3066 3067 3068 3069 3070 3071 3072
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3073
 * Return:	0 - function was executed
3074 3075
 *		1 - function was scheduled for execution
 */
3076
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3077 3078
{
	if (!in_interrupt()) {
3079
		fn(&ew->work);
3080 3081 3082
		return 0;
	}

3083
	INIT_WORK(&ew->work, fn);
3084 3085 3086 3087 3088 3089
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3090 3091 3092
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
3093
 *
3094
 * Undo alloc_workqueue_attrs().
3095
 */
3096
void free_workqueue_attrs(struct workqueue_attrs *attrs)
3097
{
3098 3099 3100 3101
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
3102 3103
}

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3114
{
3115
	struct workqueue_attrs *attrs;
3116

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_copy(attrs->cpumask, cpu_possible_mask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
3128 3129
}

3130 3131
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
3132
{
3133 3134 3135 3136 3137 3138 3139 3140
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3141 3142
}

3143 3144
/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3145
{
3146
	u32 hash = 0;
3147

3148 3149 3150 3151
	hash = jhash_1word(attrs->nice, hash);
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	return hash;
3152 3153
}

3154 3155 3156
/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
3157
{
3158 3159 3160 3161 3162
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
3163 3164
}

3165 3166 3167 3168
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
3169
 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3170 3171 3172 3173 3174 3175
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
 */
static int init_worker_pool(struct worker_pool *pool)
3176
{
3177 3178 3179 3180 3181
	spin_lock_init(&pool->lock);
	pool->id = -1;
	pool->cpu = -1;
	pool->node = NUMA_NO_NODE;
	pool->flags |= POOL_DISASSOCIATED;
T
Tejun Heo 已提交
3182
	pool->watchdog_ts = jiffies;
3183 3184 3185
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);
3186

3187 3188 3189
	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;
3190

3191 3192
	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);
3193

3194 3195 3196
	mutex_init(&pool->manager_arb);
	mutex_init(&pool->attach_mutex);
	INIT_LIST_HEAD(&pool->workers);
3197

3198 3199 3200
	ida_init(&pool->worker_ida);
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;
3201

3202 3203 3204 3205 3206
	/* shouldn't fail above this point */
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3207 3208
}

3209
static void rcu_free_wq(struct rcu_head *rcu)
3210
{
3211 3212
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);
3213

3214 3215
	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
3216
	else
3217
		free_workqueue_attrs(wq->unbound_attrs);
3218

3219 3220
	kfree(wq->rescuer);
	kfree(wq);
3221 3222
}

3223
static void rcu_free_pool(struct rcu_head *rcu)
3224
{
3225
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3226

3227 3228 3229
	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
3230 3231
}

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
 *
 * Should be called with wq_pool_mutex held.
 */
static void put_unbound_pool(struct worker_pool *pool)
3244
{
3245 3246
	DECLARE_COMPLETION_ONSTACK(detach_completion);
	struct worker *worker;
3247

3248
	lockdep_assert_held(&wq_pool_mutex);
3249

3250 3251
	if (--pool->refcnt)
		return;
3252

3253 3254 3255 3256
	/* sanity checks */
	if (WARN_ON(!(pool->cpu < 0)) ||
	    WARN_ON(!list_empty(&pool->worklist)))
		return;
3257

3258 3259 3260 3261
	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);
3262

3263 3264 3265 3266 3267 3268
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * attach_mutex.
	 */
	mutex_lock(&pool->manager_arb);
3269

3270 3271 3272 3273 3274
	spin_lock_irq(&pool->lock);
	while ((worker = first_idle_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3275

3276 3277 3278 3279
	mutex_lock(&pool->attach_mutex);
	if (!list_empty(&pool->workers))
		pool->detach_completion = &detach_completion;
	mutex_unlock(&pool->attach_mutex);
3280

3281 3282
	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);
3283

3284
	mutex_unlock(&pool->manager_arb);
3285

3286 3287 3288
	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);
3289

3290 3291
	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
3292 3293 3294
}

/**
3295 3296
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
3297
 *
3298 3299 3300 3301
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.
3302
 *
3303
 * Should be called with wq_pool_mutex held.
3304
 *
3305 3306
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3307
 */
3308
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3309
{
3310 3311 3312
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	int node;
3313
	int target_node = NUMA_NO_NODE;
3314

3315
	lockdep_assert_held(&wq_pool_mutex);
3316

3317 3318 3319 3320 3321 3322 3323
	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			return pool;
		}
	}
3324

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				target_node = node;
				break;
			}
		}
	}

3336
	/* nope, create a new one */
3337
	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3338 3339 3340 3341 3342
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
	copy_workqueue_attrs(pool->attrs, attrs);
3343
	pool->node = target_node;
3344 3345

	/*
3346 3347
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
3348
	 */
3349
	pool->attrs->no_numa = false;
3350

3351 3352
	if (worker_pool_assign_id(pool) < 0)
		goto fail;
3353

3354 3355 3356
	/* create and start the initial worker */
	if (!create_worker(pool))
		goto fail;
3357

3358 3359
	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3360

3361 3362 3363 3364 3365
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
3366 3367
}

3368
static void rcu_free_pwq(struct rcu_head *rcu)
T
Tejun Heo 已提交
3369
{
3370 3371
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
T
Tejun Heo 已提交
3372 3373
}

3374 3375 3376
/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
T
Tejun Heo 已提交
3377
 */
3378
static void pwq_unbound_release_workfn(struct work_struct *work)
T
Tejun Heo 已提交
3379
{
3380 3381 3382 3383 3384
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	bool is_last;
T
Tejun Heo 已提交
3385

3386 3387
	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;
T
Tejun Heo 已提交
3388

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	mutex_lock(&wq->mutex);
	list_del_rcu(&pwq->pwqs_node);
	is_last = list_empty(&wq->pwqs);
	mutex_unlock(&wq->mutex);

	mutex_lock(&wq_pool_mutex);
	put_unbound_pool(pool);
	mutex_unlock(&wq_pool_mutex);

	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
T
Tejun Heo 已提交
3399

3400
	/*
3401 3402
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Schedule RCU free.
3403
	 */
3404 3405
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
3406 3407
}

T
Tejun Heo 已提交
3408
/**
3409 3410
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
 * @pwq: target pool_workqueue
3411
 *
3412 3413 3414
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
T
Tejun Heo 已提交
3415
 */
3416
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3417
{
3418 3419
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;
3420

3421 3422
	/* for @wq->saved_max_active */
	lockdep_assert_held(&wq->mutex);
3423

3424 3425 3426
	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;
T
Tejun Heo 已提交
3427

3428
	spin_lock_irq(&pwq->pool->lock);
3429

3430 3431 3432 3433 3434 3435 3436
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
		pwq->max_active = wq->saved_max_active;
3437

3438 3439 3440
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3441

3442 3443 3444 3445 3446 3447 3448 3449
		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
	} else {
		pwq->max_active = 0;
	}
3450

3451
	spin_unlock_irq(&pwq->pool->lock);
3452 3453
}

3454 3455 3456
/* initialize newly alloced @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3457
{
3458
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3459

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	memset(pwq, 0, sizeof(*pwq));

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
	pwq->refcnt = 1;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->pwqs_node);
	INIT_LIST_HEAD(&pwq->mayday_node);
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3470 3471
}

3472 3473
/* sync @pwq with the current state of its associated wq and link it */
static void link_pwq(struct pool_workqueue *pwq)
3474
{
3475
	struct workqueue_struct *wq = pwq->wq;
3476

3477
	lockdep_assert_held(&wq->mutex);
3478

3479 3480
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
3481 3482
		return;

3483 3484
	/* set the matching work_color */
	pwq->work_color = wq->work_color;
3485

3486 3487
	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);
3488

3489 3490 3491
	/* link in @pwq */
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
}
3492

3493 3494 3495 3496 3497 3498
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;
3499

3500
	lockdep_assert_held(&wq_pool_mutex);
3501

3502 3503 3504
	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;
3505

3506 3507 3508 3509 3510
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
	}
3511

3512 3513 3514
	init_pwq(pwq, wq, pool);
	return pwq;
}
3515 3516

/**
3517
 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3518
 * @attrs: the wq_attrs of the default pwq of the target workqueue
3519 3520 3521
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
3522
 *
3523 3524 3525
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.
3526
 *
3527 3528 3529 3530
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
3531
 *
3532 3533 3534 3535 3536
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3537
 */
3538 3539
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
3540
{
3541 3542
	if (!wq_numa_enabled || attrs->no_numa)
		goto use_dfl;
3543

3544 3545 3546 3547
	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);
3548

3549 3550
	if (cpumask_empty(cpumask))
		goto use_dfl;
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3561 3562 3563 3564 3565 3566 3567
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

3568
	lockdep_assert_held(&wq_pool_mutex);
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3579 3580 3581 3582
/* context to store the prepared attrs & pwqs before applying */
struct apply_wqattrs_ctx {
	struct workqueue_struct	*wq;		/* target workqueue */
	struct workqueue_attrs	*attrs;		/* attrs to apply */
3583
	struct list_head	list;		/* queued for batching commit */
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	struct pool_workqueue	*dfl_pwq;
	struct pool_workqueue	*pwq_tbl[];
};

/* free the resources after success or abort */
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
{
	if (ctx) {
		int node;

		for_each_node(node)
			put_pwq_unlocked(ctx->pwq_tbl[node]);
		put_pwq_unlocked(ctx->dfl_pwq);

		free_workqueue_attrs(ctx->attrs);

		kfree(ctx);
	}
}

/* allocate the attrs and pwqs for later installation */
static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct *wq,
		      const struct workqueue_attrs *attrs)
3608
{
3609
	struct apply_wqattrs_ctx *ctx;
3610
	struct workqueue_attrs *new_attrs, *tmp_attrs;
3611
	int node;
3612

3613
	lockdep_assert_held(&wq_pool_mutex);
3614

3615 3616
	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
		      GFP_KERNEL);
3617

3618
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3619
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3620 3621
	if (!ctx || !new_attrs || !tmp_attrs)
		goto out_free;
3622

3623 3624 3625 3626 3627
	/*
	 * Calculate the attrs of the default pwq.
	 * If the user configured cpumask doesn't overlap with the
	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
	 */
3628
	copy_workqueue_attrs(new_attrs, attrs);
3629
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3630 3631
	if (unlikely(cpumask_empty(new_attrs->cpumask)))
		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3632

3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
3645 3646 3647
	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!ctx->dfl_pwq)
		goto out_free;
3648 3649

	for_each_node(node) {
3650
		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3651 3652 3653
			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!ctx->pwq_tbl[node])
				goto out_free;
3654
		} else {
3655 3656
			ctx->dfl_pwq->refcnt++;
			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3657 3658 3659
		}
	}

3660 3661 3662
	/* save the user configured attrs and sanitize it. */
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3663
	ctx->attrs = new_attrs;
3664

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
	ctx->wq = wq;
	free_workqueue_attrs(tmp_attrs);
	return ctx;

out_free:
	free_workqueue_attrs(tmp_attrs);
	free_workqueue_attrs(new_attrs);
	apply_wqattrs_cleanup(ctx);
	return NULL;
}

/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
{
	int node;
3680

3681
	/* all pwqs have been created successfully, let's install'em */
3682
	mutex_lock(&ctx->wq->mutex);
3683

3684
	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3685 3686

	/* save the previous pwq and install the new one */
3687
	for_each_node(node)
3688 3689
		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
							  ctx->pwq_tbl[node]);
3690 3691

	/* @dfl_pwq might not have been used, ensure it's linked */
3692 3693
	link_pwq(ctx->dfl_pwq);
	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3694

3695 3696
	mutex_unlock(&ctx->wq->mutex);
}
3697

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
static void apply_wqattrs_lock(void)
{
	/* CPUs should stay stable across pwq creations and installations */
	get_online_cpus();
	mutex_lock(&wq_pool_mutex);
}

static void apply_wqattrs_unlock(void)
{
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
}

static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
3713 3714
{
	struct apply_wqattrs_ctx *ctx;
3715

3716 3717 3718
	/* only unbound workqueues can change attributes */
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;
3719

3720 3721 3722 3723 3724
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

	ctx = apply_wqattrs_prepare(wq, attrs);
3725 3726
	if (!ctx)
		return -ENOMEM;
3727 3728

	/* the ctx has been prepared successfully, let's commit it */
3729
	apply_wqattrs_commit(ctx);
3730 3731
	apply_wqattrs_cleanup(ctx);

3732
	return 0;
3733 3734
}

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	int ret;

	apply_wqattrs_lock();
	ret = apply_workqueue_attrs_locked(wq, attrs);
	apply_wqattrs_unlock();

	return ret;
}

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

3796 3797
	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
	    wq->unbound_attrs->no_numa)
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
3813 3814 3815
	 * different from the default pwq's, we need to compare it to @pwq's
	 * and create a new one if they don't match.  If the target cpumask
	 * equals the default pwq's, the default pwq should be used.
3816
	 */
3817
	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3818
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3819
			return;
3820
	} else {
3821
		goto use_dfl_pwq;
3822 3823 3824 3825 3826
	}

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3827 3828
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3829
		goto use_dfl_pwq;
3830 3831
	}

3832
	/* Install the new pwq. */
3833 3834 3835 3836 3837
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
3838
	mutex_lock(&wq->mutex);
3839 3840 3841 3842 3843 3844 3845 3846 3847
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3848
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3849
{
3850
	bool highpri = wq->flags & WQ_HIGHPRI;
3851
	int cpu, ret;
3852 3853

	if (!(wq->flags & WQ_UNBOUND)) {
3854 3855
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3856 3857 3858
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3859 3860
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3861
			struct worker_pool *cpu_pools =
3862
				per_cpu(cpu_worker_pools, cpu);
3863

3864 3865 3866
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3867
			link_pwq(pwq);
3868
			mutex_unlock(&wq->mutex);
3869
		}
3870
		return 0;
3871 3872 3873 3874 3875 3876 3877
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3878
	} else {
3879
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3880
	}
T
Tejun Heo 已提交
3881 3882
}

3883 3884
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3885
{
3886 3887 3888
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3889 3890
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3891

3892
	return clamp_val(max_active, 1, lim);
3893 3894
}

3895
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3896 3897 3898
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3899
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3900
{
3901
	size_t tbl_size = 0;
3902
	va_list args;
L
Linus Torvalds 已提交
3903
	struct workqueue_struct *wq;
3904
	struct pool_workqueue *pwq;
3905

3906 3907 3908 3909
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

3910
	/* allocate wq and format name */
3911
	if (flags & WQ_UNBOUND)
3912
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3913 3914

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3915
	if (!wq)
3916
		return NULL;
3917

3918 3919 3920 3921 3922 3923
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

3924 3925
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3926
	va_end(args);
L
Linus Torvalds 已提交
3927

3928
	max_active = max_active ?: WQ_DFL_ACTIVE;
3929
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3930

3931
	/* init wq */
3932
	wq->flags = flags;
3933
	wq->saved_max_active = max_active;
3934
	mutex_init(&wq->mutex);
3935
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3936
	INIT_LIST_HEAD(&wq->pwqs);
3937 3938
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3939
	INIT_LIST_HEAD(&wq->maydays);
3940

3941
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3942
	INIT_LIST_HEAD(&wq->list);
3943

3944
	if (alloc_and_link_pwqs(wq) < 0)
3945
		goto err_free_wq;
T
Tejun Heo 已提交
3946

3947 3948 3949 3950 3951
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3952 3953
		struct worker *rescuer;

3954
		rescuer = alloc_worker(NUMA_NO_NODE);
3955
		if (!rescuer)
3956
			goto err_destroy;
3957

3958 3959
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3960
					       wq->name);
3961 3962 3963 3964
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3965

3966
		wq->rescuer = rescuer;
3967
		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3968
		wake_up_process(rescuer->task);
3969 3970
	}

3971 3972 3973
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3974
	/*
3975 3976 3977
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
3978
	 */
3979
	mutex_lock(&wq_pool_mutex);
3980

3981
	mutex_lock(&wq->mutex);
3982 3983
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3984
	mutex_unlock(&wq->mutex);
3985

3986
	list_add_tail_rcu(&wq->list, &workqueues);
3987

3988
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
3989

3990
	return wq;
3991 3992

err_free_wq:
3993
	free_workqueue_attrs(wq->unbound_attrs);
3994 3995 3996 3997
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3998
	return NULL;
3999
}
4000
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4001

4002 4003 4004 4005 4006 4007 4008 4009
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4010
	struct pool_workqueue *pwq;
4011
	int node;
4012

4013 4014
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4015

4016
	/* sanity checks */
4017
	mutex_lock(&wq->mutex);
4018
	for_each_pwq(pwq, wq) {
4019 4020
		int i;

4021 4022
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4023
				mutex_unlock(&wq->mutex);
4024
				return;
4025 4026 4027
			}
		}

4028
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4029
		    WARN_ON(pwq->nr_active) ||
4030
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4031
			mutex_unlock(&wq->mutex);
4032
			return;
4033
		}
4034
	}
4035
	mutex_unlock(&wq->mutex);
4036

4037 4038 4039 4040
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4041
	mutex_lock(&wq_pool_mutex);
4042
	list_del_rcu(&wq->list);
4043
	mutex_unlock(&wq_pool_mutex);
4044

4045 4046
	workqueue_sysfs_unregister(wq);

4047
	if (wq->rescuer)
4048 4049
		kthread_stop(wq->rescuer->task);

T
Tejun Heo 已提交
4050 4051 4052
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
4053
		 * schedule RCU free.
T
Tejun Heo 已提交
4054
		 */
4055
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
4056 4057 4058
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4059 4060
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4061
		 */
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4074
		put_pwq_unlocked(pwq);
4075
	}
4076 4077 4078
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4091
	struct pool_workqueue *pwq;
4092

4093 4094 4095 4096
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4097
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4098

4099
	mutex_lock(&wq->mutex);
4100 4101 4102

	wq->saved_max_active = max_active;

4103 4104
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4105

4106
	mutex_unlock(&wq->mutex);
4107
}
4108
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4109

4110 4111 4112 4113 4114
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4115 4116
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4117 4118 4119 4120 4121
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4122
	return worker && worker->rescue_wq;
4123 4124
}

4125
/**
4126 4127 4128
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4129
 *
4130 4131 4132
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4133
 *
4134 4135 4136 4137 4138 4139
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4140
 * Return:
4141
 * %true if congested, %false otherwise.
4142
 */
4143
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4144
{
4145
	struct pool_workqueue *pwq;
4146 4147
	bool ret;

4148
	rcu_read_lock_sched();
4149

4150 4151 4152
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4153 4154 4155
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4156
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4157

4158
	ret = !list_empty(&pwq->delayed_works);
4159
	rcu_read_unlock_sched();
4160 4161

	return ret;
L
Linus Torvalds 已提交
4162
}
4163
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4164

4165 4166 4167 4168 4169 4170 4171 4172
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4173
 * Return:
4174 4175 4176
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4177
{
4178
	struct worker_pool *pool;
4179 4180
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4181

4182 4183
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4184

4185 4186
	local_irq_save(flags);
	pool = get_work_pool(work);
4187
	if (pool) {
4188
		spin_lock(&pool->lock);
4189 4190
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4191
		spin_unlock(&pool->lock);
4192
	}
4193
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4194

4195
	return ret;
L
Linus Torvalds 已提交
4196
}
4197
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4198

4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
static void pr_cont_pool_info(struct worker_pool *pool)
{
	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
	if (pool->node != NUMA_NO_NODE)
		pr_cont(" node=%d", pool->node);
	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
}

static void pr_cont_work(bool comma, struct work_struct *work)
{
	if (work->func == wq_barrier_func) {
		struct wq_barrier *barr;

		barr = container_of(work, struct wq_barrier, work);

		pr_cont("%s BAR(%d)", comma ? "," : "",
			task_pid_nr(barr->task));
	} else {
		pr_cont("%s %pf", comma ? "," : "", work->func);
	}
}

static void show_pwq(struct pool_workqueue *pwq)
{
	struct worker_pool *pool = pwq->pool;
	struct work_struct *work;
	struct worker *worker;
	bool has_in_flight = false, has_pending = false;
	int bkt;

	pr_info("  pwq %d:", pool->id);
	pr_cont_pool_info(pool);

	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (worker->current_pwq == pwq) {
			has_in_flight = true;
			break;
		}
	}
	if (has_in_flight) {
		bool comma = false;

		pr_info("    in-flight:");
		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
			if (worker->current_pwq != pwq)
				continue;

			pr_cont("%s %d%s:%pf", comma ? "," : "",
				task_pid_nr(worker->task),
				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
				worker->current_func);
			list_for_each_entry(work, &worker->scheduled, entry)
				pr_cont_work(false, work);
			comma = true;
		}
		pr_cont("\n");
	}

	list_for_each_entry(work, &pool->worklist, entry) {
		if (get_work_pwq(work) == pwq) {
			has_pending = true;
			break;
		}
	}
	if (has_pending) {
		bool comma = false;

		pr_info("    pending:");
		list_for_each_entry(work, &pool->worklist, entry) {
			if (get_work_pwq(work) != pwq)
				continue;

			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}

	if (!list_empty(&pwq->delayed_works)) {
		bool comma = false;

		pr_info("    delayed:");
		list_for_each_entry(work, &pwq->delayed_works, entry) {
			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}
}

/**
 * show_workqueue_state - dump workqueue state
 *
 * Called from a sysrq handler and prints out all busy workqueues and
 * pools.
 */
void show_workqueue_state(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	unsigned long flags;
	int pi;

	rcu_read_lock_sched();

	pr_info("Showing busy workqueues and worker pools:\n");

	list_for_each_entry_rcu(wq, &workqueues, list) {
		struct pool_workqueue *pwq;
		bool idle = true;

		for_each_pwq(pwq, wq) {
			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
				idle = false;
				break;
			}
		}
		if (idle)
			continue;

		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);

		for_each_pwq(pwq, wq) {
			spin_lock_irqsave(&pwq->pool->lock, flags);
			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
				show_pwq(pwq);
			spin_unlock_irqrestore(&pwq->pool->lock, flags);
		}
	}

	for_each_pool(pool, pi) {
		struct worker *worker;
		bool first = true;

		spin_lock_irqsave(&pool->lock, flags);
		if (pool->nr_workers == pool->nr_idle)
			goto next_pool;

		pr_info("pool %d:", pool->id);
		pr_cont_pool_info(pool);
T
Tejun Heo 已提交
4419 4420 4421
		pr_cont(" hung=%us workers=%d",
			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
			pool->nr_workers);
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
		if (pool->manager)
			pr_cont(" manager: %d",
				task_pid_nr(pool->manager->task));
		list_for_each_entry(worker, &pool->idle_list, entry) {
			pr_cont(" %s%d", first ? "idle: " : "",
				task_pid_nr(worker->task));
			first = false;
		}
		pr_cont("\n");
	next_pool:
		spin_unlock_irqrestore(&pool->lock, flags);
	}

	rcu_read_unlock_sched();
}

4438 4439 4440
/*
 * CPU hotplug.
 *
4441
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4442
 * are a lot of assumptions on strong associations among work, pwq and
4443
 * pool which make migrating pending and scheduled works very
4444
 * difficult to implement without impacting hot paths.  Secondly,
4445
 * worker pools serve mix of short, long and very long running works making
4446 4447
 * blocked draining impractical.
 *
4448
 * This is solved by allowing the pools to be disassociated from the CPU
4449 4450
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4451
 */
L
Linus Torvalds 已提交
4452

4453
static void wq_unbind_fn(struct work_struct *work)
4454
{
4455
	int cpu = smp_processor_id();
4456
	struct worker_pool *pool;
4457
	struct worker *worker;
4458

4459
	for_each_cpu_worker_pool(pool, cpu) {
4460
		mutex_lock(&pool->attach_mutex);
4461
		spin_lock_irq(&pool->lock);
4462

4463
		/*
4464
		 * We've blocked all attach/detach operations. Make all workers
4465 4466 4467 4468 4469
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4470
		for_each_pool_worker(worker, pool)
4471
			worker->flags |= WORKER_UNBOUND;
4472

4473
		pool->flags |= POOL_DISASSOCIATED;
4474

4475
		spin_unlock_irq(&pool->lock);
4476
		mutex_unlock(&pool->attach_mutex);
4477

4478 4479 4480 4481 4482 4483 4484
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4485

4486 4487 4488 4489 4490 4491 4492 4493
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4494
		atomic_set(&pool->nr_running, 0);
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4505 4506
}

T
Tejun Heo 已提交
4507 4508 4509 4510
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4511
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4512 4513 4514
 */
static void rebind_workers(struct worker_pool *pool)
{
4515
	struct worker *worker;
T
Tejun Heo 已提交
4516

4517
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4518

4519 4520 4521
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
4522
	 * wake-ups for concurrency management happen, restore CPU affinity
4523 4524 4525
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4526
	for_each_pool_worker(worker, pool)
4527 4528
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4529

4530
	spin_lock_irq(&pool->lock);
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541

	/*
	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
	 * being reworked and this can go away in time.
	 */
	if (!(pool->flags & POOL_DISASSOCIATED)) {
		spin_unlock_irq(&pool->lock);
		return;
	}

4542
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4543

4544
	for_each_pool_worker(worker, pool) {
4545
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4546 4547

		/*
4548 4549 4550 4551 4552 4553
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4554
		 */
4555 4556
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4557

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4577
	}
4578 4579

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4580 4581
}

4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4597
	lockdep_assert_held(&pool->attach_mutex);
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4609
	for_each_pool_worker(worker, pool)
4610 4611 4612 4613
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4614 4615 4616 4617
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4618
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4619 4620
					       unsigned long action,
					       void *hcpu)
4621
{
4622
	int cpu = (unsigned long)hcpu;
4623
	struct worker_pool *pool;
4624
	struct workqueue_struct *wq;
4625
	int pi;
4626

T
Tejun Heo 已提交
4627
	switch (action & ~CPU_TASKS_FROZEN) {
4628
	case CPU_UP_PREPARE:
4629
		for_each_cpu_worker_pool(pool, cpu) {
4630 4631
			if (pool->nr_workers)
				continue;
4632
			if (!create_worker(pool))
4633
				return NOTIFY_BAD;
4634
		}
T
Tejun Heo 已提交
4635
		break;
4636

4637 4638
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4639
		mutex_lock(&wq_pool_mutex);
4640 4641

		for_each_pool(pool, pi) {
4642
			mutex_lock(&pool->attach_mutex);
4643

4644
			if (pool->cpu == cpu)
4645
				rebind_workers(pool);
4646
			else if (pool->cpu < 0)
4647
				restore_unbound_workers_cpumask(pool, cpu);
4648

4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
			mutex_unlock(&pool->attach_mutex);
		}

		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

		mutex_unlock(&wq_pool_mutex);
		break;
	}
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;
	struct workqueue_struct *wq;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/* unbinding per-cpu workers should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
		queue_work_on(cpu, system_highpri_wq, &unbind_work);

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
		flush_work(&unbind_work);
		destroy_work_on_stack(&unbind_work);
		break;
	}
	return NOTIFY_OK;
}

#ifdef CONFIG_SMP

struct work_for_cpu {
	struct work_struct work;
	long (*fn)(void *);
	void *arg;
	long ret;
};

static void work_for_cpu_fn(struct work_struct *work)
{
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

	wfc->ret = wfc->fn(wfc->arg);
}

/**
4711
 * work_on_cpu - run a function in thread context on a particular cpu
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
 * It is up to the caller to ensure that the cpu doesn't go offline.
 * The caller must not hold any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
{
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };

	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
	destroy_work_on_stack(&wfc.work);
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their delayed_works list instead of
 * pool->worklist.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void freeze_workqueues_begin(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(workqueue_freezing);
	workqueue_freezing = true;

	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

	mutex_unlock(&wq_pool_mutex);
}

/**
 * freeze_workqueues_busy - are freezable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex.
 *
 * Return:
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(!workqueue_freezing);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		rcu_read_lock_sched();
		for_each_pwq(pwq, wq) {
			WARN_ON_ONCE(pwq->nr_active < 0);
			if (pwq->nr_active) {
				busy = true;
				rcu_read_unlock_sched();
				goto out_unlock;
			}
		}
		rcu_read_unlock_sched();
	}
out_unlock:
	mutex_unlock(&wq_pool_mutex);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
 * frozen works are transferred to their respective pool worklists.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void thaw_workqueues(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	if (!workqueue_freezing)
		goto out_unlock;

	workqueue_freezing = false;

	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

out_unlock:
	mutex_unlock(&wq_pool_mutex);
}
#endif /* CONFIG_FREEZER */

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
static int workqueue_apply_unbound_cpumask(void)
{
	LIST_HEAD(ctxs);
	int ret = 0;
	struct workqueue_struct *wq;
	struct apply_wqattrs_ctx *ctx, *n;

	lockdep_assert_held(&wq_pool_mutex);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_UNBOUND))
			continue;
		/* creating multiple pwqs breaks ordering guarantee */
		if (wq->flags & __WQ_ORDERED)
			continue;

		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
		if (!ctx) {
			ret = -ENOMEM;
			break;
		}

		list_add_tail(&ctx->list, &ctxs);
	}

	list_for_each_entry_safe(ctx, n, &ctxs, list) {
		if (!ret)
			apply_wqattrs_commit(ctx);
		apply_wqattrs_cleanup(ctx);
	}

	return ret;
}

/**
 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
 *  @cpumask: the cpumask to set
 *
 *  The low-level workqueues cpumask is a global cpumask that limits
 *  the affinity of all unbound workqueues.  This function check the @cpumask
 *  and apply it to all unbound workqueues and updates all pwqs of them.
 *
 *  Retun:	0	- Success
 *  		-EINVAL	- Invalid @cpumask
 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
 */
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
{
	int ret = -EINVAL;
	cpumask_var_t saved_cpumask;

	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
		return -ENOMEM;

	cpumask_and(cpumask, cpumask, cpu_possible_mask);
	if (!cpumask_empty(cpumask)) {
4902
		apply_wqattrs_lock();
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914

		/* save the old wq_unbound_cpumask. */
		cpumask_copy(saved_cpumask, wq_unbound_cpumask);

		/* update wq_unbound_cpumask at first and apply it to wqs. */
		cpumask_copy(wq_unbound_cpumask, cpumask);
		ret = workqueue_apply_unbound_cpumask();

		/* restore the wq_unbound_cpumask when failed. */
		if (ret < 0)
			cpumask_copy(wq_unbound_cpumask, saved_cpumask);

4915
		apply_wqattrs_unlock();
4916 4917 4918 4919 4920 4921
	}

	free_cpumask_var(saved_cpumask);
	return ret;
}

4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
static DEVICE_ATTR_RO(per_cpu);

static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
static DEVICE_ATTR_RW(max_active);

static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
};
ATTRIBUTE_GROUPS(wq_sysfs);

static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	const char *delim = "";
	int node, written = 0;

	rcu_read_lock_sched();
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

5026 5027
	lockdep_assert_held(&wq_pool_mutex);

5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5041 5042 5043
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5044 5045 5046

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5047
		goto out_unlock;
5048 5049 5050

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5051
		ret = apply_workqueue_attrs_locked(wq, attrs);
5052 5053 5054
	else
		ret = -EINVAL;

5055 5056
out_unlock:
	apply_wqattrs_unlock();
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
	mutex_unlock(&wq->mutex);
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5080 5081 5082
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5083 5084 5085

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5086
		goto out_unlock;
5087 5088 5089

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
5090
		ret = apply_workqueue_attrs_locked(wq, attrs);
5091

5092 5093
out_unlock:
	apply_wqattrs_unlock();
5094 5095 5096 5097 5098 5099 5100 5101 5102
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;
5103

5104 5105 5106 5107
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);
5108

5109
	return written;
5110 5111
}

5112 5113
static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
5114
{
5115 5116
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5117 5118 5119
	int v, ret = -ENOMEM;

	apply_wqattrs_lock();
5120

5121 5122
	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5123
		goto out_unlock;
5124

5125 5126 5127
	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
5128
		ret = apply_workqueue_attrs_locked(wq, attrs);
5129
	}
5130

5131 5132
out_unlock:
	apply_wqattrs_unlock();
5133 5134
	free_workqueue_attrs(attrs);
	return ret ?: count;
5135 5136
}

5137 5138 5139 5140 5141 5142 5143
static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
	__ATTR_NULL,
};
5144

5145 5146 5147
static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_groups			= wq_sysfs_groups,
5148 5149
};

5150 5151 5152 5153 5154
static ssize_t wq_unbound_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int written;

5155
	mutex_lock(&wq_pool_mutex);
5156 5157
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq_unbound_cpumask));
5158
	mutex_unlock(&wq_pool_mutex);
5159 5160 5161 5162

	return written;
}

5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
static ssize_t wq_unbound_cpumask_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	cpumask_var_t cpumask;
	int ret;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	ret = cpumask_parse(buf, cpumask);
	if (!ret)
		ret = workqueue_set_unbound_cpumask(cpumask);

	free_cpumask_var(cpumask);
	return ret ? ret : count;
}

5180
static struct device_attribute wq_sysfs_cpumask_attr =
5181 5182
	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
	       wq_unbound_cpumask_store);
5183

5184
static int __init wq_sysfs_init(void)
5185
{
5186 5187 5188 5189 5190 5191 5192
	int err;

	err = subsys_virtual_register(&wq_subsys, NULL);
	if (err)
		return err;

	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5193
}
5194
core_initcall(wq_sysfs_init);
5195

5196
static void wq_device_release(struct device *dev)
5197
{
5198
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5199

5200
	kfree(wq_dev);
5201
}
5202 5203

/**
5204 5205
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
5206
 *
5207 5208 5209
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
5210
 *
5211 5212 5213 5214 5215 5216
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Return: 0 on success, -errno on failure.
5217
 */
5218
int workqueue_sysfs_register(struct workqueue_struct *wq)
5219
{
5220 5221
	struct wq_device *wq_dev;
	int ret;
5222

5223
	/*
5224
	 * Adjusting max_active or creating new pwqs by applying
5225 5226 5227 5228 5229
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;
5230

5231 5232 5233
	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;
5234

5235 5236 5237
	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.release = wq_device_release;
5238
	dev_set_name(&wq_dev->dev, "%s", wq->name);
5239

5240 5241 5242 5243 5244
	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);
5245

5246 5247 5248 5249 5250 5251
	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}
5252

5253 5254
	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;
5255

5256 5257 5258 5259 5260 5261
		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
5262 5263 5264
			}
		}
	}
5265 5266 5267 5268

	dev_set_uevent_suppress(&wq_dev->dev, false);
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
5269 5270 5271
}

/**
5272 5273
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
5274
 *
5275
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5276
 */
5277
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5278
{
5279
	struct wq_device *wq_dev = wq->wq_dev;
5280

5281 5282
	if (!wq->wq_dev)
		return;
5283

5284 5285
	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
5286
}
5287 5288 5289
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */
5290

T
Tejun Heo 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
/*
 * Workqueue watchdog.
 *
 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
 * flush dependency, a concurrency managed work item which stays RUNNING
 * indefinitely.  Workqueue stalls can be very difficult to debug as the
 * usual warning mechanisms don't trigger and internal workqueue state is
 * largely opaque.
 *
 * Workqueue watchdog monitors all worker pools periodically and dumps
 * state if some pools failed to make forward progress for a while where
 * forward progress is defined as the first item on ->worklist changing.
 *
 * This mechanism is controlled through the kernel parameter
 * "workqueue.watchdog_thresh" which can be updated at runtime through the
 * corresponding sysfs parameter file.
 */
#ifdef CONFIG_WQ_WATCHDOG

static void wq_watchdog_timer_fn(unsigned long data);

static unsigned long wq_watchdog_thresh = 30;
static struct timer_list wq_watchdog_timer =
	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);

static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;

static void wq_watchdog_reset_touched(void)
{
	int cpu;

	wq_watchdog_touched = jiffies;
	for_each_possible_cpu(cpu)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
}

static void wq_watchdog_timer_fn(unsigned long data)
{
	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
	bool lockup_detected = false;
	struct worker_pool *pool;
	int pi;

	if (!thresh)
		return;

	rcu_read_lock();

	for_each_pool(pool, pi) {
		unsigned long pool_ts, touched, ts;

		if (list_empty(&pool->worklist))
			continue;

		/* get the latest of pool and touched timestamps */
		pool_ts = READ_ONCE(pool->watchdog_ts);
		touched = READ_ONCE(wq_watchdog_touched);

		if (time_after(pool_ts, touched))
			ts = pool_ts;
		else
			ts = touched;

		if (pool->cpu >= 0) {
			unsigned long cpu_touched =
				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
						  pool->cpu));
			if (time_after(cpu_touched, ts))
				ts = cpu_touched;
		}

		/* did we stall? */
		if (time_after(jiffies, ts + thresh)) {
			lockup_detected = true;
			pr_emerg("BUG: workqueue lockup - pool");
			pr_cont_pool_info(pool);
			pr_cont(" stuck for %us!\n",
				jiffies_to_msecs(jiffies - pool_ts) / 1000);
		}
	}

	rcu_read_unlock();

	if (lockup_detected)
		show_workqueue_state();

	wq_watchdog_reset_touched();
	mod_timer(&wq_watchdog_timer, jiffies + thresh);
}

void wq_watchdog_touch(int cpu)
{
	if (cpu >= 0)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
	else
		wq_watchdog_touched = jiffies;
}

static void wq_watchdog_set_thresh(unsigned long thresh)
{
	wq_watchdog_thresh = 0;
	del_timer_sync(&wq_watchdog_timer);

	if (thresh) {
		wq_watchdog_thresh = thresh;
		wq_watchdog_reset_touched();
		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
	}
}

static int wq_watchdog_param_set_thresh(const char *val,
					const struct kernel_param *kp)
{
	unsigned long thresh;
	int ret;

	ret = kstrtoul(val, 0, &thresh);
	if (ret)
		return ret;

	if (system_wq)
		wq_watchdog_set_thresh(thresh);
	else
		wq_watchdog_thresh = thresh;

	return 0;
}

static const struct kernel_param_ops wq_watchdog_thresh_ops = {
	.set	= wq_watchdog_param_set_thresh,
	.get	= param_get_ulong,
};

module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
		0644);

static void wq_watchdog_init(void)
{
	wq_watchdog_set_thresh(wq_watchdog_thresh);
}

#else	/* CONFIG_WQ_WATCHDOG */

static inline void wq_watchdog_init(void) { }

#endif	/* CONFIG_WQ_WATCHDOG */

5439 5440 5441 5442 5443 5444 5445 5446
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

5447 5448 5449 5450 5451
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5452 5453 5454
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5455 5456 5457 5458 5459
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
5460
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5461 5462 5463
	BUG_ON(!tbl);

	for_each_node(node)
5464
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5465
				node_online(node) ? node : NUMA_NO_NODE));
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5481
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5482
{
T
Tejun Heo 已提交
5483 5484
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5485

5486 5487
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

5488 5489 5490
	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);

5491 5492
	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5493
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5494
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5495

5496 5497
	wq_numa_init();

5498
	/* initialize CPU pools */
5499
	for_each_possible_cpu(cpu) {
5500
		struct worker_pool *pool;
5501

T
Tejun Heo 已提交
5502
		i = 0;
5503
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5504
			BUG_ON(init_worker_pool(pool));
5505
			pool->cpu = cpu;
5506
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5507
			pool->attrs->nice = std_nice[i++];
5508
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5509

T
Tejun Heo 已提交
5510
			/* alloc pool ID */
5511
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5512
			BUG_ON(worker_pool_assign_id(pool));
5513
			mutex_unlock(&wq_pool_mutex);
5514
		}
5515 5516
	}

5517
	/* create the initial worker */
5518
	for_each_online_cpu(cpu) {
5519
		struct worker_pool *pool;
5520

5521
		for_each_cpu_worker_pool(pool, cpu) {
5522
			pool->flags &= ~POOL_DISASSOCIATED;
5523
			BUG_ON(!create_worker(pool));
5524
		}
5525 5526
	}

5527
	/* create default unbound and ordered wq attrs */
5528 5529 5530 5531 5532 5533
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5544 5545
	}

5546
	system_wq = alloc_workqueue("events", 0, 0);
5547
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5548
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5549 5550
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5551 5552
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5553 5554 5555 5556 5557
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5558
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5559 5560 5561
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
T
Tejun Heo 已提交
5562 5563 5564

	wq_watchdog_init();

5565
	return 0;
L
Linus Torvalds 已提交
5566
}
5567
early_initcall(init_workqueues);