workqueue.c 145.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131
 * WQ: wq->mutex protected.
 *
132
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133 134
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
135 136
 */

137
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
138

139
struct worker_pool {
140
	spinlock_t		lock;		/* the pool lock */
141
	int			cpu;		/* I: the associated cpu */
142
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
143
	int			id;		/* I: pool ID */
144
	unsigned int		flags;		/* X: flags */
145 146 147

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
148 149

	/* nr_idle includes the ones off idle_list for rebinding */
150 151 152 153 154 155
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

156
	/* a workers is either on busy_hash or idle_list, or the manager */
157 158 159
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

160
	/* see manage_workers() for details on the two manager mutexes */
161
	struct mutex		manager_arb;	/* manager arbitration */
162
	struct worker		*manager;	/* L: purely informational */
163 164
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
165
	struct completion	*detach_completion; /* all workers detached */
166

167
	struct ida		worker_ida;	/* worker IDs for task name */
168

T
Tejun Heo 已提交
169
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 171
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
172

173 174 175 176 177 178
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 180 181 182 183 184

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
185 186
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
187
/*
188 189 190 191
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
192
 */
193
struct pool_workqueue {
194
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
195
	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 197
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
198
	int			refcnt;		/* L: reference count */
199 200
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
201
	int			nr_active;	/* L: nr of active works */
202
	int			max_active;	/* L: max active works */
203
	struct list_head	delayed_works;	/* L: delayed works */
204
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
206 207 208 209 210

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
211
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
212 213 214
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
215
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
216

217 218 219 220
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
221 222
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
223 224 225
	struct completion	done;		/* flush completion */
};

226 227
struct wq_device;

L
Linus Torvalds 已提交
228
/*
229 230
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
231 232
 */
struct workqueue_struct {
233
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234
	struct list_head	list;		/* PR: list of all workqueues */
235

236 237 238
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
239
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 241 242
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243

244
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 246
	struct worker		*rescuer;	/* I: rescue worker */

247
	int			nr_drainers;	/* WQ: drain in progress */
248
	int			saved_max_active; /* WQ: saved pwq max_active */
249

250
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252

253 254 255
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
256
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
257
	struct lockdep_map	lockdep_map;
258
#endif
259
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260

261 262 263 264 265 266 267
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

268 269 270
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
271
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
272 273
};

274 275
static struct kmem_cache *pwq_cache;

276 277 278
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

279 280 281
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

282 283 284 285 286 287 288 289 290
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

291 292
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

293 294 295
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

296
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
297
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
298

299
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
300
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
301

302
static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
303

304 305 306 307
/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

308
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
309

310
/* PL: hash of all unbound pools keyed by pool->attrs */
311 312
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

313
/* I: attributes used when instantiating standard unbound pools on demand */
314 315
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

316 317 318
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

319
struct workqueue_struct *system_wq __read_mostly;
320
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
321
struct workqueue_struct *system_highpri_wq __read_mostly;
322
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
323
struct workqueue_struct *system_long_wq __read_mostly;
324
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
325
struct workqueue_struct *system_unbound_wq __read_mostly;
326
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
327
struct workqueue_struct *system_freezable_wq __read_mostly;
328
EXPORT_SYMBOL_GPL(system_freezable_wq);
329 330 331 332
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
333

334 335 336
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);
337
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
338

339 340 341
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

342
#define assert_rcu_or_pool_mutex()					\
343
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
344 345
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
346

347
#define assert_rcu_or_wq_mutex(wq)					\
348
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
349
			   lockdep_is_held(&wq->mutex),			\
350
			   "sched RCU or wq->mutex should be held")
351

352 353 354
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
355
	     (pool)++)
356

T
Tejun Heo 已提交
357 358 359
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
360
 * @pi: integer used for iteration
361
 *
362 363 364
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
365 366 367
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
368
 */
369 370
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
371
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
372
		else
T
Tejun Heo 已提交
373

374 375 376 377 378
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
379
 * This must be called with @pool->attach_mutex.
380 381 382 383
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
384 385
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
386
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
387 388
		else

389 390 391 392
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
393
 *
394
 * This must be called either with wq->mutex held or sched RCU read locked.
395 396
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
397 398 399
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
400 401
 */
#define for_each_pwq(pwq, wq)						\
402
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
403
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
404
		else
405

406 407 408 409
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

410 411 412 413 414
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
450
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
486
	.debug_hint	= work_debug_hint,
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

517 518 519 520 521 522 523
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

524 525 526 527 528
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

529 530 531 532 533 534 535
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
536 537 538 539
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

540
	lockdep_assert_held(&wq_pool_mutex);
541

542 543
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
544
	if (ret >= 0) {
T
Tejun Heo 已提交
545
		pool->id = ret;
546 547
		return 0;
	}
548
	return ret;
549 550
}

551 552 553 554 555 556 557 558
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
559 560
 *
 * Return: The unbound pool_workqueue for @node.
561 562 563 564 565 566 567 568
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
584

585
/*
586 587
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
588
 * is cleared and the high bits contain OFFQ flags and pool ID.
589
 *
590 591
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
592 593
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
594
 *
595
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
596
 * corresponding to a work.  Pool is available once the work has been
597
 * queued anywhere after initialization until it is sync canceled.  pwq is
598
 * available only while the work item is queued.
599
 *
600 601 602 603
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
604
 */
605 606
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
607
{
608
	WARN_ON_ONCE(!work_pending(work));
609 610
	atomic_long_set(&work->data, data | flags | work_static(work));
}
611

612
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
613 614
			 unsigned long extra_flags)
{
615 616
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
617 618
}

619 620 621 622 623 624 625
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

626 627
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
628
{
629 630 631 632 633 634 635
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
636
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
637
}
638

639
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
640
{
641 642
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
643 644
}

645
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
646
{
647
	unsigned long data = atomic_long_read(&work->data);
648

649
	if (data & WORK_STRUCT_PWQ)
650 651 652
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
653 654
}

655 656 657 658
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
659 660 661
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
662 663 664 665 666
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
667 668
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
669 670
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
671
{
672
	unsigned long data = atomic_long_read(&work->data);
673
	int pool_id;
674

675
	assert_rcu_or_pool_mutex();
676

677 678
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
679
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
680

681 682
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
683 684
		return NULL;

685
	return idr_find(&worker_pool_idr, pool_id);
686 687 688 689 690 691
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
692
 * Return: The worker_pool ID @work was last associated with.
693 694 695 696
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
697 698
	unsigned long data = atomic_long_read(&work->data);

699 700
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
701
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
702

703
	return data >> WORK_OFFQ_POOL_SHIFT;
704 705
}

706 707
static void mark_work_canceling(struct work_struct *work)
{
708
	unsigned long pool_id = get_work_pool_id(work);
709

710 711
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
712 713 714 715 716 717
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

718
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
719 720
}

721
/*
722 723
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
724
 * they're being called with pool->lock held.
725 726
 */

727
static bool __need_more_worker(struct worker_pool *pool)
728
{
729
	return !atomic_read(&pool->nr_running);
730 731
}

732
/*
733 734
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
735 736
 *
 * Note that, because unbound workers never contribute to nr_running, this
737
 * function will always return %true for unbound pools as long as the
738
 * worklist isn't empty.
739
 */
740
static bool need_more_worker(struct worker_pool *pool)
741
{
742
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
743
}
744

745
/* Can I start working?  Called from busy but !running workers. */
746
static bool may_start_working(struct worker_pool *pool)
747
{
748
	return pool->nr_idle;
749 750 751
}

/* Do I need to keep working?  Called from currently running workers. */
752
static bool keep_working(struct worker_pool *pool)
753
{
754 755
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
756 757 758
}

/* Do we need a new worker?  Called from manager. */
759
static bool need_to_create_worker(struct worker_pool *pool)
760
{
761
	return need_more_worker(pool) && !may_start_working(pool);
762
}
763

764
/* Do we have too many workers and should some go away? */
765
static bool too_many_workers(struct worker_pool *pool)
766
{
767
	bool managing = mutex_is_locked(&pool->manager_arb);
768 769
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
770 771

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
772 773
}

774
/*
775 776 777
 * Wake up functions.
 */

778 779
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
780
{
781
	if (unlikely(list_empty(&pool->idle_list)))
782 783
		return NULL;

784
	return list_first_entry(&pool->idle_list, struct worker, entry);
785 786 787 788
}

/**
 * wake_up_worker - wake up an idle worker
789
 * @pool: worker pool to wake worker from
790
 *
791
 * Wake up the first idle worker of @pool.
792 793
 *
 * CONTEXT:
794
 * spin_lock_irq(pool->lock).
795
 */
796
static void wake_up_worker(struct worker_pool *pool)
797
{
798
	struct worker *worker = first_idle_worker(pool);
799 800 801 802 803

	if (likely(worker))
		wake_up_process(worker->task);
}

804
/**
805 806 807 808 809 810 811 812 813 814
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
815
void wq_worker_waking_up(struct task_struct *task, int cpu)
816 817 818
{
	struct worker *worker = kthread_data(task);

819
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
820
		WARN_ON_ONCE(worker->pool->cpu != cpu);
821
		atomic_inc(&worker->pool->nr_running);
822
	}
823 824 825 826 827 828 829 830 831 832 833 834 835 836
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
837
 * Return:
838 839
 * Worker task on @cpu to wake up, %NULL if none.
 */
840
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
841 842
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
843
	struct worker_pool *pool;
844

845 846 847 848 849
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
850
	if (worker->flags & WORKER_NOT_RUNNING)
851 852
		return NULL;

853 854
	pool = worker->pool;

855
	/* this can only happen on the local cpu */
856
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
857
		return NULL;
858 859 860 861 862 863

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
864 865 866
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
867
	 * manipulating idle_list, so dereferencing idle_list without pool
868
	 * lock is safe.
869
	 */
870 871
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
872
		to_wakeup = first_idle_worker(pool);
873 874 875 876 877
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
878
 * @worker: self
879 880
 * @flags: flags to set
 *
881
 * Set @flags in @worker->flags and adjust nr_running accordingly.
882
 *
883
 * CONTEXT:
884
 * spin_lock_irq(pool->lock)
885
 */
886
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
887
{
888
	struct worker_pool *pool = worker->pool;
889

890 891
	WARN_ON_ONCE(worker->task != current);

892
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
893 894
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
895
		atomic_dec(&pool->nr_running);
896 897
	}

898 899 900 901
	worker->flags |= flags;
}

/**
902
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
903
 * @worker: self
904 905
 * @flags: flags to clear
 *
906
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
907
 *
908
 * CONTEXT:
909
 * spin_lock_irq(pool->lock)
910 911 912
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
913
	struct worker_pool *pool = worker->pool;
914 915
	unsigned int oflags = worker->flags;

916 917
	WARN_ON_ONCE(worker->task != current);

918
	worker->flags &= ~flags;
919

920 921 922 923 924
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
925 926
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
927
			atomic_inc(&pool->nr_running);
928 929
}

930 931
/**
 * find_worker_executing_work - find worker which is executing a work
932
 * @pool: pool of interest
933 934
 * @work: work to find worker for
 *
935 936
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
937 938 939 940 941 942 943 944 945 946 947 948
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
949 950 951 952 953 954
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
955 956
 *
 * CONTEXT:
957
 * spin_lock_irq(pool->lock).
958
 *
959 960
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
961
 * otherwise.
962
 */
963
static struct worker *find_worker_executing_work(struct worker_pool *pool,
964
						 struct work_struct *work)
965
{
966 967
	struct worker *worker;

968
	hash_for_each_possible(pool->busy_hash, worker, hentry,
969 970 971
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
972 973 974
			return worker;

	return NULL;
975 976
}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
992
 * spin_lock_irq(pool->lock).
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1076
static void pwq_activate_delayed_work(struct work_struct *work)
1077
{
1078
	struct pool_workqueue *pwq = get_work_pwq(work);
1079 1080

	trace_workqueue_activate_work(work);
1081
	move_linked_works(work, &pwq->pool->worklist, NULL);
1082
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1083
	pwq->nr_active++;
1084 1085
}

1086
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1087
{
1088
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1089 1090
						    struct work_struct, entry);

1091
	pwq_activate_delayed_work(work);
1092 1093
}

1094
/**
1095 1096
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1097 1098 1099
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1100
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1101 1102
 *
 * CONTEXT:
1103
 * spin_lock_irq(pool->lock).
1104
 */
1105
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1106
{
T
Tejun Heo 已提交
1107
	/* uncolored work items don't participate in flushing or nr_active */
1108
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1109
		goto out_put;
1110

1111
	pwq->nr_in_flight[color]--;
1112

1113 1114
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1115
		/* one down, submit a delayed one */
1116 1117
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1118 1119 1120
	}

	/* is flush in progress and are we at the flushing tip? */
1121
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1122
		goto out_put;
1123 1124

	/* are there still in-flight works? */
1125
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1126
		goto out_put;
1127

1128 1129
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1130 1131

	/*
1132
	 * If this was the last pwq, wake up the first flusher.  It
1133 1134
	 * will handle the rest.
	 */
1135 1136
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1137 1138
out_put:
	put_pwq(pwq);
1139 1140
}

1141
/**
1142
 * try_to_grab_pending - steal work item from worklist and disable irq
1143 1144
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1145
 * @flags: place to store irq state
1146 1147
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1148
 * stable state - idle, on timer or on worklist.
1149
 *
1150
 * Return:
1151 1152 1153
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1154 1155
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1156
 *
1157
 * Note:
1158
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1159 1160 1161
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1162 1163 1164 1165
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1166
 * This function is safe to call from any context including IRQ handler.
1167
 */
1168 1169
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1170
{
1171
	struct worker_pool *pool;
1172
	struct pool_workqueue *pwq;
1173

1174 1175
	local_irq_save(*flags);

1176 1177 1178 1179
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1180 1181 1182 1183 1184
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1185 1186 1187 1188 1189
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1190 1191 1192 1193 1194 1195 1196
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1197 1198
	pool = get_work_pool(work);
	if (!pool)
1199
		goto fail;
1200

1201
	spin_lock(&pool->lock);
1202
	/*
1203 1204 1205 1206 1207
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1208 1209
	 * item is currently queued on that pool.
	 */
1210 1211
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1212 1213 1214 1215 1216
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1217
		 * on the delayed_list, will confuse pwq->nr_active
1218 1219 1220 1221
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1222
			pwq_activate_delayed_work(work);
1223 1224

		list_del_init(&work->entry);
1225
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1226

1227
		/* work->data points to pwq iff queued, point to pool */
1228 1229 1230 1231
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1232
	}
1233
	spin_unlock(&pool->lock);
1234 1235 1236 1237 1238
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1239
	return -EAGAIN;
1240 1241
}

T
Tejun Heo 已提交
1242
/**
1243
 * insert_work - insert a work into a pool
1244
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1245 1246 1247 1248
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1249
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1250
 * work_struct flags.
T
Tejun Heo 已提交
1251 1252
 *
 * CONTEXT:
1253
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1254
 */
1255 1256
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1257
{
1258
	struct worker_pool *pool = pwq->pool;
1259

T
Tejun Heo 已提交
1260
	/* we own @work, set data and link */
1261
	set_work_pwq(work, pwq, extra_flags);
1262
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1263
	get_pwq(pwq);
1264 1265

	/*
1266 1267 1268
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1269 1270 1271
	 */
	smp_mb();

1272 1273
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1274 1275
}

1276 1277
/*
 * Test whether @work is being queued from another work executing on the
1278
 * same workqueue.
1279 1280 1281
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1282 1283 1284 1285 1286 1287 1288
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1289
	return worker && worker->current_pwq->wq == wq;
1290 1291
}

1292
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1293 1294
			 struct work_struct *work)
{
1295
	struct pool_workqueue *pwq;
1296
	struct worker_pool *last_pool;
1297
	struct list_head *worklist;
1298
	unsigned int work_flags;
1299
	unsigned int req_cpu = cpu;
1300 1301 1302 1303 1304 1305 1306 1307

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1308

1309
	debug_work_activate(work);
1310

1311
	/* if draining, only works from the same workqueue are allowed */
1312
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1313
	    WARN_ON_ONCE(!is_chained_work(wq)))
1314
		return;
1315
retry:
1316 1317 1318
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1319
	/* pwq which will be used unless @work is executing elsewhere */
1320
	if (!(wq->flags & WQ_UNBOUND))
1321
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1322 1323
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1324

1325 1326 1327 1328 1329 1330 1331 1332
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1333

1334
		spin_lock(&last_pool->lock);
1335

1336
		worker = find_worker_executing_work(last_pool, work);
1337

1338 1339
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1340
		} else {
1341 1342
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1343
			spin_lock(&pwq->pool->lock);
1344
		}
1345
	} else {
1346
		spin_lock(&pwq->pool->lock);
1347 1348
	}

1349 1350 1351 1352
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1353 1354
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1368 1369
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1370

1371
	if (WARN_ON(!list_empty(&work->entry))) {
1372
		spin_unlock(&pwq->pool->lock);
1373 1374
		return;
	}
1375

1376 1377
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1378

1379
	if (likely(pwq->nr_active < pwq->max_active)) {
1380
		trace_workqueue_activate_work(work);
1381 1382
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1383 1384
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1385
		worklist = &pwq->delayed_works;
1386
	}
1387

1388
	insert_work(pwq, work, worklist, work_flags);
1389

1390
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1391 1392
}

1393
/**
1394 1395
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1396 1397 1398
 * @wq: workqueue to use
 * @work: work to queue
 *
1399 1400
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1401 1402
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1403
 */
1404 1405
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1406
{
1407
	bool ret = false;
1408
	unsigned long flags;
1409

1410
	local_irq_save(flags);
1411

1412
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1413
		__queue_work(cpu, wq, work);
1414
		ret = true;
1415
	}
1416

1417
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1418 1419
	return ret;
}
1420
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1421

1422
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1423
{
1424
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1425

1426
	/* should have been called from irqsafe timer with irq already off */
1427
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1428
}
1429
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1430

1431 1432
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1433
{
1434 1435 1436 1437 1438
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1439 1440
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1453
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1454

1455
	dwork->wq = wq;
1456
	dwork->cpu = cpu;
1457 1458 1459 1460 1461 1462
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1463 1464
}

1465 1466 1467 1468
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1469
 * @dwork: work to queue
1470 1471
 * @delay: number of jiffies to wait before queueing
 *
1472
 * Return: %false if @work was already on a queue, %true otherwise.  If
1473 1474
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1475
 */
1476 1477
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1478
{
1479
	struct work_struct *work = &dwork->work;
1480
	bool ret = false;
1481
	unsigned long flags;
1482

1483 1484
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1485

1486
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1487
		__queue_delayed_work(cpu, wq, dwork, delay);
1488
		ret = true;
1489
	}
1490

1491
	local_irq_restore(flags);
1492 1493
	return ret;
}
1494
EXPORT_SYMBOL(queue_delayed_work_on);
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1508
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1509 1510
 * pending and its timer was modified.
 *
1511
 * This function is safe to call from any context including IRQ handler.
1512 1513 1514 1515 1516 1517 1518
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1519

1520 1521 1522
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1523

1524 1525 1526
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1527
	}
1528 1529

	/* -ENOENT from try_to_grab_pending() becomes %true */
1530 1531
	return ret;
}
1532 1533
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1534 1535 1536 1537 1538 1539 1540 1541
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1542
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1543 1544
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1545
{
1546
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1547

1548 1549 1550 1551
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1552

1553
	/* can't use worker_set_flags(), also called from create_worker() */
1554
	worker->flags |= WORKER_IDLE;
1555
	pool->nr_idle++;
1556
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1557 1558

	/* idle_list is LIFO */
1559
	list_add(&worker->entry, &pool->idle_list);
1560

1561 1562
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1563

1564
	/*
1565
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1566
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1567 1568
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1569
	 */
1570
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1571
		     pool->nr_workers == pool->nr_idle &&
1572
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1582
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1583 1584 1585
 */
static void worker_leave_idle(struct worker *worker)
{
1586
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1587

1588 1589
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1590
	worker_clr_flags(worker, WORKER_IDLE);
1591
	pool->nr_idle--;
T
Tejun Heo 已提交
1592 1593 1594
	list_del_init(&worker->entry);
}

1595
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1596 1597 1598
{
	struct worker *worker;

1599
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1600 1601
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1602
		INIT_LIST_HEAD(&worker->scheduled);
1603
		INIT_LIST_HEAD(&worker->node);
1604 1605
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1606
	}
T
Tejun Heo 已提交
1607 1608 1609
	return worker;
}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1643 1644 1645 1646 1647
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1648 1649 1650
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1651 1652 1653 1654 1655 1656
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1657
	mutex_lock(&pool->attach_mutex);
1658 1659
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1660
		detach_completion = pool->detach_completion;
1661
	mutex_unlock(&pool->attach_mutex);
1662

1663 1664 1665
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1666 1667 1668 1669
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1670 1671
/**
 * create_worker - create a new workqueue worker
1672
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1673
 *
1674
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1675 1676 1677 1678
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1679
 * Return:
T
Tejun Heo 已提交
1680 1681
 * Pointer to the newly created worker.
 */
1682
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1683 1684
{
	struct worker *worker = NULL;
1685
	int id = -1;
1686
	char id_buf[16];
T
Tejun Heo 已提交
1687

1688 1689
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1690 1691
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1692

1693
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1694 1695 1696
	if (!worker)
		goto fail;

1697
	worker->pool = pool;
T
Tejun Heo 已提交
1698 1699
	worker->id = id;

1700
	if (pool->cpu >= 0)
1701 1702
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1703
	else
1704 1705
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1706
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1707
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1708 1709 1710
	if (IS_ERR(worker->task))
		goto fail;

1711 1712 1713 1714 1715
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1716
	/* successful, attach the worker to the pool */
1717
	worker_attach_to_pool(worker, pool);
1718

1719 1720 1721 1722 1723 1724 1725
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1726
	return worker;
1727

T
Tejun Heo 已提交
1728
fail:
1729
	if (id >= 0)
1730
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1731 1732 1733 1734 1735 1736 1737 1738
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1739 1740
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1741 1742
 *
 * CONTEXT:
1743
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1744 1745 1746
 */
static void destroy_worker(struct worker *worker)
{
1747
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1748

1749 1750
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1751
	/* sanity check frenzy */
1752
	if (WARN_ON(worker->current_work) ||
1753 1754
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1755
		return;
T
Tejun Heo 已提交
1756

1757 1758
	pool->nr_workers--;
	pool->nr_idle--;
1759

T
Tejun Heo 已提交
1760
	list_del_init(&worker->entry);
1761
	worker->flags |= WORKER_DIE;
1762
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1763 1764
}

1765
static void idle_worker_timeout(unsigned long __pool)
1766
{
1767
	struct worker_pool *pool = (void *)__pool;
1768

1769
	spin_lock_irq(&pool->lock);
1770

1771
	while (too_many_workers(pool)) {
1772 1773 1774 1775
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1776
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1777 1778
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1779
		if (time_before(jiffies, expires)) {
1780
			mod_timer(&pool->idle_timer, expires);
1781
			break;
1782
		}
1783 1784

		destroy_worker(worker);
1785 1786
	}

1787
	spin_unlock_irq(&pool->lock);
1788
}
1789

1790
static void send_mayday(struct work_struct *work)
1791
{
1792 1793
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1794

1795
	lockdep_assert_held(&wq_mayday_lock);
1796

1797
	if (!wq->rescuer)
1798
		return;
1799 1800

	/* mayday mayday mayday */
1801
	if (list_empty(&pwq->mayday_node)) {
1802 1803 1804 1805 1806 1807
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1808
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1809
		wake_up_process(wq->rescuer->task);
1810
	}
1811 1812
}

1813
static void pool_mayday_timeout(unsigned long __pool)
1814
{
1815
	struct worker_pool *pool = (void *)__pool;
1816 1817
	struct work_struct *work;

1818 1819
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1820

1821
	if (need_to_create_worker(pool)) {
1822 1823 1824 1825 1826 1827
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1828
		list_for_each_entry(work, &pool->worklist, entry)
1829
			send_mayday(work);
L
Linus Torvalds 已提交
1830
	}
1831

1832 1833
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1834

1835
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1836 1837
}

1838 1839
/**
 * maybe_create_worker - create a new worker if necessary
1840
 * @pool: pool to create a new worker for
1841
 *
1842
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1843 1844
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1845
 * sent to all rescuers with works scheduled on @pool to resolve
1846 1847
 * possible allocation deadlock.
 *
1848 1849
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1850 1851
 *
 * LOCKING:
1852
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1853 1854 1855
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1856
static void maybe_create_worker(struct worker_pool *pool)
1857 1858
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1859
{
1860
restart:
1861
	spin_unlock_irq(&pool->lock);
1862

1863
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1864
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1865 1866

	while (true) {
1867
		if (create_worker(pool) || !need_to_create_worker(pool))
1868
			break;
L
Linus Torvalds 已提交
1869

1870
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1871

1872
		if (!need_to_create_worker(pool))
1873 1874 1875
			break;
	}

1876
	del_timer_sync(&pool->mayday_timer);
1877
	spin_lock_irq(&pool->lock);
1878 1879 1880 1881 1882
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1883
	if (need_to_create_worker(pool))
1884 1885 1886
		goto restart;
}

1887
/**
1888 1889
 * manage_workers - manage worker pool
 * @worker: self
1890
 *
1891
 * Assume the manager role and manage the worker pool @worker belongs
1892
 * to.  At any given time, there can be only zero or one manager per
1893
 * pool.  The exclusion is handled automatically by this function.
1894 1895 1896 1897
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1898 1899
 *
 * CONTEXT:
1900
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1901 1902
 * multiple times.  Does GFP_KERNEL allocations.
 *
1903
 * Return:
1904 1905 1906 1907
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1908
 */
1909
static bool manage_workers(struct worker *worker)
1910
{
1911
	struct worker_pool *pool = worker->pool;
1912

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1923
	if (!mutex_trylock(&pool->manager_arb))
1924
		return false;
1925
	pool->manager = worker;
1926

1927
	maybe_create_worker(pool);
1928

1929
	pool->manager = NULL;
1930
	mutex_unlock(&pool->manager_arb);
1931
	return true;
1932 1933
}

1934 1935
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1936
 * @worker: self
1937 1938 1939 1940 1941 1942 1943 1944 1945
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1946
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1947
 */
T
Tejun Heo 已提交
1948
static void process_one_work(struct worker *worker, struct work_struct *work)
1949 1950
__releases(&pool->lock)
__acquires(&pool->lock)
1951
{
1952
	struct pool_workqueue *pwq = get_work_pwq(work);
1953
	struct worker_pool *pool = worker->pool;
1954
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1955
	int work_color;
1956
	struct worker *collision;
1957 1958 1959 1960 1961 1962 1963 1964
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1965 1966 1967
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1968
#endif
1969
	/* ensure we're on the correct CPU */
1970
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1971
		     raw_smp_processor_id() != pool->cpu);
1972

1973 1974 1975 1976 1977 1978
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
1979
	collision = find_worker_executing_work(pool, work);
1980 1981 1982 1983 1984
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1985
	/* claim and dequeue */
1986
	debug_work_deactivate(work);
1987
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
1988
	worker->current_work = work;
1989
	worker->current_func = work->func;
1990
	worker->current_pwq = pwq;
1991
	work_color = get_work_color(work);
1992

1993 1994
	list_del_init(&work->entry);

1995
	/*
1996 1997 1998 1999
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
2000 2001
	 */
	if (unlikely(cpu_intensive))
2002
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2003

2004
	/*
2005 2006 2007 2008
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2009
	 * UNBOUND and CPU_INTENSIVE ones.
2010
	 */
2011
	if (need_more_worker(pool))
2012
		wake_up_worker(pool);
2013

2014
	/*
2015
	 * Record the last pool and clear PENDING which should be the last
2016
	 * update to @work.  Also, do this inside @pool->lock so that
2017 2018
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2019
	 */
2020
	set_work_pool_and_clear_pending(work, pool->id);
2021

2022
	spin_unlock_irq(&pool->lock);
2023

2024
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2025
	lock_map_acquire(&lockdep_map);
2026
	trace_workqueue_execute_start(work);
2027
	worker->current_func(work);
2028 2029 2030 2031 2032
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2033
	lock_map_release(&lockdep_map);
2034
	lock_map_release(&pwq->wq->lockdep_map);
2035 2036

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2037 2038
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2039 2040
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2041 2042 2043 2044
		debug_show_held_locks(current);
		dump_stack();
	}

2045 2046 2047 2048 2049
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2050 2051
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2052
	 */
2053
	cond_resched_rcu_qs();
2054

2055
	spin_lock_irq(&pool->lock);
2056

2057 2058 2059 2060
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2061
	/* we're done with it, release */
2062
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2063
	worker->current_work = NULL;
2064
	worker->current_func = NULL;
2065
	worker->current_pwq = NULL;
2066
	worker->desc_valid = false;
2067
	pwq_dec_nr_in_flight(pwq, work_color);
2068 2069
}

2070 2071 2072 2073 2074 2075 2076 2077 2078
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2079
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2080 2081 2082
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2083
{
2084 2085
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2086
						struct work_struct, entry);
T
Tejun Heo 已提交
2087
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2088 2089 2090
	}
}

T
Tejun Heo 已提交
2091 2092
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2093
 * @__worker: self
T
Tejun Heo 已提交
2094
 *
2095 2096 2097 2098 2099
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2100 2101
 *
 * Return: 0
T
Tejun Heo 已提交
2102
 */
T
Tejun Heo 已提交
2103
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2104
{
T
Tejun Heo 已提交
2105
	struct worker *worker = __worker;
2106
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2107

2108 2109
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2110
woke_up:
2111
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2112

2113 2114
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2115
		spin_unlock_irq(&pool->lock);
2116 2117
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2118 2119

		set_task_comm(worker->task, "kworker/dying");
2120
		ida_simple_remove(&pool->worker_ida, worker->id);
2121 2122
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2123
		return 0;
T
Tejun Heo 已提交
2124
	}
2125

T
Tejun Heo 已提交
2126
	worker_leave_idle(worker);
2127
recheck:
2128
	/* no more worker necessary? */
2129
	if (!need_more_worker(pool))
2130 2131 2132
		goto sleep;

	/* do we need to manage? */
2133
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2134 2135
		goto recheck;

T
Tejun Heo 已提交
2136 2137 2138 2139 2140
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2141
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2142

2143
	/*
2144 2145 2146 2147 2148
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2149
	 */
2150
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2151 2152

	do {
T
Tejun Heo 已提交
2153
		struct work_struct *work =
2154
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2155 2156 2157 2158 2159 2160
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2161
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2162 2163 2164
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2165
		}
2166
	} while (keep_working(pool));
2167

2168
	worker_set_flags(worker, WORKER_PREP);
2169
sleep:
T
Tejun Heo 已提交
2170
	/*
2171 2172 2173 2174 2175
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2176 2177 2178
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2179
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2180 2181
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2182 2183
}

2184 2185
/**
 * rescuer_thread - the rescuer thread function
2186
 * @__rescuer: self
2187 2188
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2189
 * workqueue which has WQ_MEM_RECLAIM set.
2190
 *
2191
 * Regular work processing on a pool may block trying to create a new
2192 2193 2194 2195 2196
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2197 2198
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2199 2200 2201
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2202 2203
 *
 * Return: 0
2204
 */
2205
static int rescuer_thread(void *__rescuer)
2206
{
2207 2208
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2209
	struct list_head *scheduled = &rescuer->scheduled;
2210
	bool should_stop;
2211 2212

	set_user_nice(current, RESCUER_NICE_LEVEL);
2213 2214 2215 2216 2217 2218

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2219 2220 2221
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2222 2223 2224 2225 2226 2227 2228 2229 2230
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2231

2232
	/* see whether any pwq is asking for help */
2233
	spin_lock_irq(&wq_mayday_lock);
2234 2235 2236 2237

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2238
		struct worker_pool *pool = pwq->pool;
2239 2240 2241
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2242 2243
		list_del_init(&pwq->mayday_node);

2244
		spin_unlock_irq(&wq_mayday_lock);
2245

2246 2247 2248
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2249
		rescuer->pool = pool;
2250 2251 2252 2253 2254

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2255
		WARN_ON_ONCE(!list_empty(scheduled));
2256
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2257
			if (get_work_pwq(work) == pwq)
2258 2259
				move_linked_works(work, scheduled, &n);

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2279

2280 2281
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2282
		 * go away while we're still attached to it.
2283 2284 2285
		 */
		put_pwq(pwq);

2286
		/*
2287
		 * Leave this pool.  If need_more_worker() is %true, notify a
2288 2289 2290
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2291
		if (need_more_worker(pool))
2292
			wake_up_worker(pool);
2293

2294
		rescuer->pool = NULL;
2295 2296 2297 2298 2299
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2300 2301
	}

2302
	spin_unlock_irq(&wq_mayday_lock);
2303

2304 2305 2306 2307 2308 2309
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2310 2311
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2312 2313
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2314 2315
}

O
Oleg Nesterov 已提交
2316 2317 2318
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
2319
	struct task_struct	*task;	/* purely informational */
O
Oleg Nesterov 已提交
2320 2321 2322 2323 2324 2325 2326 2327
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2328 2329
/**
 * insert_wq_barrier - insert a barrier work
2330
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2331
 * @barr: wq_barrier to insert
2332 2333
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2334
 *
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2347
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2348 2349
 *
 * CONTEXT:
2350
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2351
 */
2352
static void insert_wq_barrier(struct pool_workqueue *pwq,
2353 2354
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2355
{
2356 2357 2358
	struct list_head *head;
	unsigned int linked = 0;

2359
	/*
2360
	 * debugobject calls are safe here even with pool->lock locked
2361 2362 2363 2364
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2365
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2366
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2367
	init_completion(&barr->done);
2368
	barr->task = current;
2369

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2385
	debug_work_activate(&barr->work);
2386
	insert_work(pwq, &barr->work, head,
2387
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2388 2389
}

2390
/**
2391
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2392 2393 2394 2395
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2396
 * Prepare pwqs for workqueue flushing.
2397
 *
2398 2399 2400 2401 2402
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2403 2404 2405 2406 2407 2408 2409
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2410
 * If @work_color is non-negative, all pwqs should have the same
2411 2412 2413 2414
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2415
 * mutex_lock(wq->mutex).
2416
 *
2417
 * Return:
2418 2419 2420
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2421
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2422
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2423
{
2424
	bool wait = false;
2425
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2426

2427
	if (flush_color >= 0) {
2428
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2429
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2430
	}
2431

2432
	for_each_pwq(pwq, wq) {
2433
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2434

2435
		spin_lock_irq(&pool->lock);
2436

2437
		if (flush_color >= 0) {
2438
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2439

2440 2441 2442
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2443 2444 2445
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2446

2447
		if (work_color >= 0) {
2448
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2449
			pwq->work_color = work_color;
2450
		}
L
Linus Torvalds 已提交
2451

2452
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2453
	}
2454

2455
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2456
		complete(&wq->first_flusher->done);
2457

2458
	return wait;
L
Linus Torvalds 已提交
2459 2460
}

2461
/**
L
Linus Torvalds 已提交
2462
 * flush_workqueue - ensure that any scheduled work has run to completion.
2463
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2464
 *
2465 2466
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2467
 */
2468
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2469
{
2470 2471 2472 2473 2474 2475
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2476

2477 2478
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2479

2480
	mutex_lock(&wq->mutex);
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2493
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2494 2495 2496 2497 2498
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2499
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2500 2501 2502

			wq->first_flusher = &this_flusher;

2503
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2504 2505 2506 2507 2508 2509 2510 2511
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2512
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2513
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2514
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2525
	mutex_unlock(&wq->mutex);
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2538
	mutex_lock(&wq->mutex);
2539

2540 2541 2542 2543
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2544 2545
	wq->first_flusher = NULL;

2546 2547
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2560 2561
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2581
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2582 2583 2584
		}

		if (list_empty(&wq->flusher_queue)) {
2585
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2586 2587 2588 2589 2590
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2591
		 * the new first flusher and arm pwqs.
2592
		 */
2593 2594
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2595 2596 2597 2598

		list_del_init(&next->list);
		wq->first_flusher = next;

2599
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2610
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2611
}
2612
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2613

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2628
	struct pool_workqueue *pwq;
2629 2630 2631 2632

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2633
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2634
	 */
2635
	mutex_lock(&wq->mutex);
2636
	if (!wq->nr_drainers++)
2637
		wq->flags |= __WQ_DRAINING;
2638
	mutex_unlock(&wq->mutex);
2639 2640 2641
reflush:
	flush_workqueue(wq);

2642
	mutex_lock(&wq->mutex);
2643

2644
	for_each_pwq(pwq, wq) {
2645
		bool drained;
2646

2647
		spin_lock_irq(&pwq->pool->lock);
2648
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2649
		spin_unlock_irq(&pwq->pool->lock);
2650 2651

		if (drained)
2652 2653 2654 2655
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2656
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2657
				wq->name, flush_cnt);
2658

2659
		mutex_unlock(&wq->mutex);
2660 2661 2662 2663
		goto reflush;
	}

	if (!--wq->nr_drainers)
2664
		wq->flags &= ~__WQ_DRAINING;
2665
	mutex_unlock(&wq->mutex);
2666 2667 2668
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2669
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2670
{
2671
	struct worker *worker = NULL;
2672
	struct worker_pool *pool;
2673
	struct pool_workqueue *pwq;
2674 2675

	might_sleep();
2676 2677

	local_irq_disable();
2678
	pool = get_work_pool(work);
2679 2680
	if (!pool) {
		local_irq_enable();
2681
		return false;
2682
	}
2683

2684
	spin_lock(&pool->lock);
2685
	/* see the comment in try_to_grab_pending() with the same code */
2686 2687 2688
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2689
			goto already_gone;
2690
	} else {
2691
		worker = find_worker_executing_work(pool, work);
2692
		if (!worker)
T
Tejun Heo 已提交
2693
			goto already_gone;
2694
		pwq = worker->current_pwq;
2695
	}
2696

2697
	insert_wq_barrier(pwq, barr, work, worker);
2698
	spin_unlock_irq(&pool->lock);
2699

2700 2701 2702 2703 2704 2705
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2706
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2707
		lock_map_acquire(&pwq->wq->lockdep_map);
2708
	else
2709 2710
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2711

2712
	return true;
T
Tejun Heo 已提交
2713
already_gone:
2714
	spin_unlock_irq(&pool->lock);
2715
	return false;
2716
}
2717 2718 2719 2720 2721

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2722 2723
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2724
 *
2725
 * Return:
2726 2727 2728 2729 2730
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2731 2732
	struct wq_barrier barr;

2733 2734 2735
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2736 2737 2738 2739 2740 2741 2742
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2743
}
2744
EXPORT_SYMBOL_GPL(flush_work);
2745

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
struct cwt_wait {
	wait_queue_t		wait;
	struct work_struct	*work;
};

static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2760
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2761
{
2762
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2763
	unsigned long flags;
2764 2765 2766
	int ret;

	do {
2767 2768
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2783
		 */
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2797 2798
	} while (unlikely(ret < 0));

2799 2800 2801 2802
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2803
	flush_work(work);
2804
	clear_work_data(work);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2815 2816 2817
	return ret;
}

2818
/**
2819 2820
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2821
 *
2822 2823 2824 2825
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2826
 *
2827 2828
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2829
 *
2830
 * The caller must ensure that the workqueue on which @work was last
2831
 * queued can't be destroyed before this function returns.
2832
 *
2833
 * Return:
2834
 * %true if @work was pending, %false otherwise.
2835
 */
2836
bool cancel_work_sync(struct work_struct *work)
2837
{
2838
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2839
}
2840
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2841

2842
/**
2843 2844
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2845
 *
2846 2847 2848
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2849
 *
2850
 * Return:
2851 2852
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2853
 */
2854 2855
bool flush_delayed_work(struct delayed_work *dwork)
{
2856
	local_irq_disable();
2857
	if (del_timer_sync(&dwork->timer))
2858
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2859
	local_irq_enable();
2860 2861 2862 2863
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2864
/**
2865 2866
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2867
 *
2868 2869 2870 2871 2872 2873 2874 2875 2876
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2877
 *
2878
 * This function is safe to call from any context including IRQ handler.
2879
 */
2880
bool cancel_delayed_work(struct delayed_work *dwork)
2881
{
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2892 2893
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2894
	local_irq_restore(flags);
2895
	return ret;
2896
}
2897
EXPORT_SYMBOL(cancel_delayed_work);
2898

2899 2900 2901 2902 2903 2904
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2905
 * Return:
2906 2907 2908
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2909
{
2910
	return __cancel_work_timer(&dwork->work, true);
2911
}
2912
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2913

2914
/**
2915
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2916 2917
 * @func: the function to call
 *
2918 2919
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2920
 * schedule_on_each_cpu() is very slow.
2921
 *
2922
 * Return:
2923
 * 0 on success, -errno on failure.
2924
 */
2925
int schedule_on_each_cpu(work_func_t func)
2926 2927
{
	int cpu;
2928
	struct work_struct __percpu *works;
2929

2930 2931
	works = alloc_percpu(struct work_struct);
	if (!works)
2932
		return -ENOMEM;
2933

2934 2935
	get_online_cpus();

2936
	for_each_online_cpu(cpu) {
2937 2938 2939
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2940
		schedule_work_on(cpu, work);
2941
	}
2942 2943 2944 2945

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2946
	put_online_cpus();
2947
	free_percpu(works);
2948 2949 2950
	return 0;
}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2975 2976
void flush_scheduled_work(void)
{
2977
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2978
}
2979
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2980

2981 2982 2983 2984 2985 2986 2987 2988 2989
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2990
 * Return:	0 - function was executed
2991 2992
 *		1 - function was scheduled for execution
 */
2993
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2994 2995
{
	if (!in_interrupt()) {
2996
		fn(&ew->work);
2997 2998 2999
		return 0;
	}

3000
	INIT_WORK(&ew->work, fn);
3001 3002 3003 3004 3005 3006
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3007 3008 3009
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
3010
 *
3011
 * Undo alloc_workqueue_attrs().
3012
 */
3013
void free_workqueue_attrs(struct workqueue_attrs *attrs)
3014
{
3015 3016 3017 3018
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
3019 3020
}

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3031
{
3032
	struct workqueue_attrs *attrs;
3033

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_copy(attrs->cpumask, cpu_possible_mask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
3045 3046
}

3047 3048
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
3049
{
3050 3051 3052 3053 3054 3055 3056 3057
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3058 3059
}

3060 3061
/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3062
{
3063
	u32 hash = 0;
3064

3065 3066 3067 3068
	hash = jhash_1word(attrs->nice, hash);
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	return hash;
3069 3070
}

3071 3072 3073
/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
3074
{
3075 3076 3077 3078 3079
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
3080 3081
}

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
 */
static int init_worker_pool(struct worker_pool *pool)
3093
{
3094 3095 3096 3097 3098 3099 3100 3101
	spin_lock_init(&pool->lock);
	pool->id = -1;
	pool->cpu = -1;
	pool->node = NUMA_NO_NODE;
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);
3102

3103 3104 3105
	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;
3106

3107 3108
	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);
3109

3110 3111 3112
	mutex_init(&pool->manager_arb);
	mutex_init(&pool->attach_mutex);
	INIT_LIST_HEAD(&pool->workers);
3113

3114 3115 3116
	ida_init(&pool->worker_ida);
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;
3117

3118 3119 3120 3121 3122
	/* shouldn't fail above this point */
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3123 3124
}

3125
static void rcu_free_wq(struct rcu_head *rcu)
3126
{
3127 3128
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);
3129

3130 3131
	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
3132
	else
3133
		free_workqueue_attrs(wq->unbound_attrs);
3134

3135 3136
	kfree(wq->rescuer);
	kfree(wq);
3137 3138
}

3139
static void rcu_free_pool(struct rcu_head *rcu)
3140
{
3141
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3142

3143 3144 3145
	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
3146 3147
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
 *
 * Should be called with wq_pool_mutex held.
 */
static void put_unbound_pool(struct worker_pool *pool)
3160
{
3161 3162
	DECLARE_COMPLETION_ONSTACK(detach_completion);
	struct worker *worker;
3163

3164
	lockdep_assert_held(&wq_pool_mutex);
3165

3166 3167
	if (--pool->refcnt)
		return;
3168

3169 3170 3171 3172
	/* sanity checks */
	if (WARN_ON(!(pool->cpu < 0)) ||
	    WARN_ON(!list_empty(&pool->worklist)))
		return;
3173

3174 3175 3176 3177
	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);
3178

3179 3180 3181 3182 3183 3184
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * attach_mutex.
	 */
	mutex_lock(&pool->manager_arb);
3185

3186 3187 3188 3189 3190
	spin_lock_irq(&pool->lock);
	while ((worker = first_idle_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3191

3192 3193 3194 3195
	mutex_lock(&pool->attach_mutex);
	if (!list_empty(&pool->workers))
		pool->detach_completion = &detach_completion;
	mutex_unlock(&pool->attach_mutex);
3196

3197 3198
	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);
3199

3200
	mutex_unlock(&pool->manager_arb);
3201

3202 3203 3204
	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);
3205

3206 3207
	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
3208 3209 3210
}

/**
3211 3212
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
3213
 *
3214 3215 3216 3217
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.
3218
 *
3219
 * Should be called with wq_pool_mutex held.
3220
 *
3221 3222
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3223
 */
3224
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3225
{
3226 3227 3228
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	int node;
3229

3230
	lockdep_assert_held(&wq_pool_mutex);
3231

3232 3233 3234 3235 3236 3237 3238
	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			return pool;
		}
	}
3239

3240 3241 3242 3243 3244 3245 3246
	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
	copy_workqueue_attrs(pool->attrs, attrs);
3247 3248

	/*
3249 3250
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
3251
	 */
3252
	pool->attrs->no_numa = false;
3253

3254 3255 3256 3257 3258 3259 3260
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
3261 3262 3263 3264
			}
		}
	}

3265 3266
	if (worker_pool_assign_id(pool) < 0)
		goto fail;
3267

3268 3269 3270
	/* create and start the initial worker */
	if (!create_worker(pool))
		goto fail;
3271

3272 3273
	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3274

3275 3276 3277 3278 3279
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
3280 3281
}

3282
static void rcu_free_pwq(struct rcu_head *rcu)
T
Tejun Heo 已提交
3283
{
3284 3285
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
T
Tejun Heo 已提交
3286 3287
}

3288 3289 3290
/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
T
Tejun Heo 已提交
3291
 */
3292
static void pwq_unbound_release_workfn(struct work_struct *work)
T
Tejun Heo 已提交
3293
{
3294 3295 3296 3297 3298
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	bool is_last;
T
Tejun Heo 已提交
3299

3300 3301
	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;
T
Tejun Heo 已提交
3302

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	mutex_lock(&wq->mutex);
	list_del_rcu(&pwq->pwqs_node);
	is_last = list_empty(&wq->pwqs);
	mutex_unlock(&wq->mutex);

	mutex_lock(&wq_pool_mutex);
	put_unbound_pool(pool);
	mutex_unlock(&wq_pool_mutex);

	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
T
Tejun Heo 已提交
3313

3314
	/*
3315 3316
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Schedule RCU free.
3317
	 */
3318 3319
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
3320 3321
}

T
Tejun Heo 已提交
3322
/**
3323 3324
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
 * @pwq: target pool_workqueue
3325
 *
3326 3327 3328
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
T
Tejun Heo 已提交
3329
 */
3330
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3331
{
3332 3333
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;
3334

3335 3336
	/* for @wq->saved_max_active */
	lockdep_assert_held(&wq->mutex);
3337

3338 3339 3340
	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;
T
Tejun Heo 已提交
3341

3342
	spin_lock_irq(&pwq->pool->lock);
3343

3344 3345 3346 3347 3348 3349 3350
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
		pwq->max_active = wq->saved_max_active;
3351

3352 3353 3354
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3355

3356 3357 3358 3359 3360 3361 3362 3363
		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
	} else {
		pwq->max_active = 0;
	}
3364

3365
	spin_unlock_irq(&pwq->pool->lock);
3366 3367
}

3368 3369 3370
/* initialize newly alloced @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3371
{
3372
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3373

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	memset(pwq, 0, sizeof(*pwq));

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
	pwq->refcnt = 1;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->pwqs_node);
	INIT_LIST_HEAD(&pwq->mayday_node);
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3384 3385
}

3386 3387
/* sync @pwq with the current state of its associated wq and link it */
static void link_pwq(struct pool_workqueue *pwq)
3388
{
3389
	struct workqueue_struct *wq = pwq->wq;
3390

3391
	lockdep_assert_held(&wq->mutex);
3392

3393 3394
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
3395 3396
		return;

3397 3398
	/* set the matching work_color */
	pwq->work_color = wq->work_color;
3399

3400 3401
	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);
3402

3403 3404 3405
	/* link in @pwq */
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
}
3406

3407 3408 3409 3410 3411 3412
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;
3413

3414
	lockdep_assert_held(&wq_pool_mutex);
3415

3416 3417 3418
	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;
3419

3420 3421 3422 3423 3424
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
	}
3425

3426 3427 3428
	init_pwq(pwq, wq, pool);
	return pwq;
}
3429 3430

/**
3431
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3432
 * @attrs: the wq_attrs of the default pwq of the target workqueue
3433 3434 3435
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
3436
 *
3437 3438 3439
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.
3440
 *
3441 3442 3443 3444
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
3445
 *
3446 3447 3448 3449 3450
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3451
 */
3452 3453
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
3454
{
3455 3456
	if (!wq_numa_enabled || attrs->no_numa)
		goto use_dfl;
3457

3458 3459 3460 3461
	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);
3462

3463 3464
	if (cpumask_empty(cpumask))
		goto use_dfl;
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3492 3493 3494 3495
/* context to store the prepared attrs & pwqs before applying */
struct apply_wqattrs_ctx {
	struct workqueue_struct	*wq;		/* target workqueue */
	struct workqueue_attrs	*attrs;		/* attrs to apply */
3496
	struct list_head	list;		/* queued for batching commit */
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
	struct pool_workqueue	*dfl_pwq;
	struct pool_workqueue	*pwq_tbl[];
};

/* free the resources after success or abort */
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
{
	if (ctx) {
		int node;

		for_each_node(node)
			put_pwq_unlocked(ctx->pwq_tbl[node]);
		put_pwq_unlocked(ctx->dfl_pwq);

		free_workqueue_attrs(ctx->attrs);

		kfree(ctx);
	}
}

/* allocate the attrs and pwqs for later installation */
static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct *wq,
		      const struct workqueue_attrs *attrs)
3521
{
3522
	struct apply_wqattrs_ctx *ctx;
3523
	struct workqueue_attrs *new_attrs, *tmp_attrs;
3524
	int node;
3525

3526
	lockdep_assert_held(&wq_pool_mutex);
3527

3528 3529
	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
		      GFP_KERNEL);
3530

3531
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3532
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3533 3534
	if (!ctx || !new_attrs || !tmp_attrs)
		goto out_free;
3535

3536 3537 3538 3539 3540
	/*
	 * Calculate the attrs of the default pwq.
	 * If the user configured cpumask doesn't overlap with the
	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
	 */
3541
	copy_workqueue_attrs(new_attrs, attrs);
3542
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3543 3544
	if (unlikely(cpumask_empty(new_attrs->cpumask)))
		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3545

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
3558 3559 3560
	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!ctx->dfl_pwq)
		goto out_free;
3561 3562

	for_each_node(node) {
3563
		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3564 3565 3566
			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!ctx->pwq_tbl[node])
				goto out_free;
3567
		} else {
3568 3569
			ctx->dfl_pwq->refcnt++;
			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3570 3571 3572
		}
	}

3573 3574 3575
	/* save the user configured attrs and sanitize it. */
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3576
	ctx->attrs = new_attrs;
3577

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	ctx->wq = wq;
	free_workqueue_attrs(tmp_attrs);
	return ctx;

out_free:
	free_workqueue_attrs(tmp_attrs);
	free_workqueue_attrs(new_attrs);
	apply_wqattrs_cleanup(ctx);
	return NULL;
}

/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
{
	int node;
3593

3594
	/* all pwqs have been created successfully, let's install'em */
3595
	mutex_lock(&ctx->wq->mutex);
3596

3597
	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3598 3599

	/* save the previous pwq and install the new one */
3600
	for_each_node(node)
3601 3602
		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
							  ctx->pwq_tbl[node]);
3603 3604

	/* @dfl_pwq might not have been used, ensure it's linked */
3605 3606
	link_pwq(ctx->dfl_pwq);
	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3607

3608 3609
	mutex_unlock(&ctx->wq->mutex);
}
3610

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	struct apply_wqattrs_ctx *ctx;
	int ret = -ENOMEM;
3632

3633 3634 3635
	/* only unbound workqueues can change attributes */
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;
3636

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

	mutex_lock(&wq_pool_mutex);
	ctx = apply_wqattrs_prepare(wq, attrs);
3650
	mutex_unlock(&wq_pool_mutex);
3651 3652 3653 3654 3655 3656 3657

	/* the ctx has been prepared successfully, let's commit it */
	if (ctx) {
		apply_wqattrs_commit(ctx);
		ret = 0;
	}

3658
	put_online_cpus();
3659 3660 3661 3662

	apply_wqattrs_cleanup(ctx);

	return ret;
3663 3664
}

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3710 3711
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
3712 3713 3714 3715 3716 3717

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
3718 3719 3720
	 * different from the default pwq's, we need to compare it to @pwq's
	 * and create a new one if they don't match.  If the target cpumask
	 * equals the default pwq's, the default pwq should be used.
3721
	 */
3722
	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3723 3724 3725
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
3726
		goto use_dfl_pwq;
3727 3728 3729 3730 3731 3732 3733
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3734 3735
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3736 3737
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3760
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3761
{
3762
	bool highpri = wq->flags & WQ_HIGHPRI;
3763
	int cpu, ret;
3764 3765

	if (!(wq->flags & WQ_UNBOUND)) {
3766 3767
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3768 3769 3770
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3771 3772
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3773
			struct worker_pool *cpu_pools =
3774
				per_cpu(cpu_worker_pools, cpu);
3775

3776 3777 3778
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3779
			link_pwq(pwq);
3780
			mutex_unlock(&wq->mutex);
3781
		}
3782
		return 0;
3783 3784 3785 3786 3787 3788 3789
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3790
	} else {
3791
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3792
	}
T
Tejun Heo 已提交
3793 3794
}

3795 3796
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3797
{
3798 3799 3800
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3801 3802
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3803

3804
	return clamp_val(max_active, 1, lim);
3805 3806
}

3807
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3808 3809 3810
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3811
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3812
{
3813
	size_t tbl_size = 0;
3814
	va_list args;
L
Linus Torvalds 已提交
3815
	struct workqueue_struct *wq;
3816
	struct pool_workqueue *pwq;
3817

3818 3819 3820 3821
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

3822
	/* allocate wq and format name */
3823
	if (flags & WQ_UNBOUND)
3824
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3825 3826

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3827
	if (!wq)
3828
		return NULL;
3829

3830 3831 3832 3833 3834 3835
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

3836 3837
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3838
	va_end(args);
L
Linus Torvalds 已提交
3839

3840
	max_active = max_active ?: WQ_DFL_ACTIVE;
3841
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3842

3843
	/* init wq */
3844
	wq->flags = flags;
3845
	wq->saved_max_active = max_active;
3846
	mutex_init(&wq->mutex);
3847
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3848
	INIT_LIST_HEAD(&wq->pwqs);
3849 3850
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3851
	INIT_LIST_HEAD(&wq->maydays);
3852

3853
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3854
	INIT_LIST_HEAD(&wq->list);
3855

3856
	if (alloc_and_link_pwqs(wq) < 0)
3857
		goto err_free_wq;
T
Tejun Heo 已提交
3858

3859 3860 3861 3862 3863
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3864 3865
		struct worker *rescuer;

3866
		rescuer = alloc_worker(NUMA_NO_NODE);
3867
		if (!rescuer)
3868
			goto err_destroy;
3869

3870 3871
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3872
					       wq->name);
3873 3874 3875 3876
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3877

3878
		wq->rescuer = rescuer;
3879
		rescuer->task->flags |= PF_NO_SETAFFINITY;
3880
		wake_up_process(rescuer->task);
3881 3882
	}

3883 3884 3885
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3886
	/*
3887 3888 3889
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
3890
	 */
3891
	mutex_lock(&wq_pool_mutex);
3892

3893
	mutex_lock(&wq->mutex);
3894 3895
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3896
	mutex_unlock(&wq->mutex);
3897

3898
	list_add_tail_rcu(&wq->list, &workqueues);
3899

3900
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
3901

3902
	return wq;
3903 3904

err_free_wq:
3905
	free_workqueue_attrs(wq->unbound_attrs);
3906 3907 3908 3909
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3910
	return NULL;
3911
}
3912
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3913

3914 3915 3916 3917 3918 3919 3920 3921
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3922
	struct pool_workqueue *pwq;
3923
	int node;
3924

3925 3926
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3927

3928
	/* sanity checks */
3929
	mutex_lock(&wq->mutex);
3930
	for_each_pwq(pwq, wq) {
3931 3932
		int i;

3933 3934
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
3935
				mutex_unlock(&wq->mutex);
3936
				return;
3937 3938 3939
			}
		}

3940
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
3941
		    WARN_ON(pwq->nr_active) ||
3942
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3943
			mutex_unlock(&wq->mutex);
3944
			return;
3945
		}
3946
	}
3947
	mutex_unlock(&wq->mutex);
3948

3949 3950 3951 3952
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3953
	mutex_lock(&wq_pool_mutex);
3954
	list_del_rcu(&wq->list);
3955
	mutex_unlock(&wq_pool_mutex);
3956

3957 3958
	workqueue_sysfs_unregister(wq);

3959
	if (wq->rescuer)
3960 3961
		kthread_stop(wq->rescuer->task);

T
Tejun Heo 已提交
3962 3963 3964
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
3965
		 * schedule RCU free.
T
Tejun Heo 已提交
3966
		 */
3967
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
3968 3969 3970
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
3971 3972
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
3973
		 */
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
3986
		put_pwq_unlocked(pwq);
3987
	}
3988 3989 3990
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4003
	struct pool_workqueue *pwq;
4004

4005 4006 4007 4008
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4009
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4010

4011
	mutex_lock(&wq->mutex);
4012 4013 4014

	wq->saved_max_active = max_active;

4015 4016
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4017

4018
	mutex_unlock(&wq->mutex);
4019
}
4020
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4021

4022 4023 4024 4025 4026
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4027 4028
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4029 4030 4031 4032 4033
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4034
	return worker && worker->rescue_wq;
4035 4036
}

4037
/**
4038 4039 4040
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4041
 *
4042 4043 4044
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4045
 *
4046 4047 4048 4049 4050 4051
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4052
 * Return:
4053
 * %true if congested, %false otherwise.
4054
 */
4055
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4056
{
4057
	struct pool_workqueue *pwq;
4058 4059
	bool ret;

4060
	rcu_read_lock_sched();
4061

4062 4063 4064
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4065 4066 4067
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4068
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4069

4070
	ret = !list_empty(&pwq->delayed_works);
4071
	rcu_read_unlock_sched();
4072 4073

	return ret;
L
Linus Torvalds 已提交
4074
}
4075
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4076

4077 4078 4079 4080 4081 4082 4083 4084
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4085
 * Return:
4086 4087 4088
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4089
{
4090
	struct worker_pool *pool;
4091 4092
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4093

4094 4095
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4096

4097 4098
	local_irq_save(flags);
	pool = get_work_pool(work);
4099
	if (pool) {
4100
		spin_lock(&pool->lock);
4101 4102
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4103
		spin_unlock(&pool->lock);
4104
	}
4105
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4106

4107
	return ret;
L
Linus Torvalds 已提交
4108
}
4109
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4110

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
static void pr_cont_pool_info(struct worker_pool *pool)
{
	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
	if (pool->node != NUMA_NO_NODE)
		pr_cont(" node=%d", pool->node);
	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
}

static void pr_cont_work(bool comma, struct work_struct *work)
{
	if (work->func == wq_barrier_func) {
		struct wq_barrier *barr;

		barr = container_of(work, struct wq_barrier, work);

		pr_cont("%s BAR(%d)", comma ? "," : "",
			task_pid_nr(barr->task));
	} else {
		pr_cont("%s %pf", comma ? "," : "", work->func);
	}
}

static void show_pwq(struct pool_workqueue *pwq)
{
	struct worker_pool *pool = pwq->pool;
	struct work_struct *work;
	struct worker *worker;
	bool has_in_flight = false, has_pending = false;
	int bkt;

	pr_info("  pwq %d:", pool->id);
	pr_cont_pool_info(pool);

	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (worker->current_pwq == pwq) {
			has_in_flight = true;
			break;
		}
	}
	if (has_in_flight) {
		bool comma = false;

		pr_info("    in-flight:");
		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
			if (worker->current_pwq != pwq)
				continue;

			pr_cont("%s %d%s:%pf", comma ? "," : "",
				task_pid_nr(worker->task),
				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
				worker->current_func);
			list_for_each_entry(work, &worker->scheduled, entry)
				pr_cont_work(false, work);
			comma = true;
		}
		pr_cont("\n");
	}

	list_for_each_entry(work, &pool->worklist, entry) {
		if (get_work_pwq(work) == pwq) {
			has_pending = true;
			break;
		}
	}
	if (has_pending) {
		bool comma = false;

		pr_info("    pending:");
		list_for_each_entry(work, &pool->worklist, entry) {
			if (get_work_pwq(work) != pwq)
				continue;

			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}

	if (!list_empty(&pwq->delayed_works)) {
		bool comma = false;

		pr_info("    delayed:");
		list_for_each_entry(work, &pwq->delayed_works, entry) {
			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}
}

/**
 * show_workqueue_state - dump workqueue state
 *
 * Called from a sysrq handler and prints out all busy workqueues and
 * pools.
 */
void show_workqueue_state(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	unsigned long flags;
	int pi;

	rcu_read_lock_sched();

	pr_info("Showing busy workqueues and worker pools:\n");

	list_for_each_entry_rcu(wq, &workqueues, list) {
		struct pool_workqueue *pwq;
		bool idle = true;

		for_each_pwq(pwq, wq) {
			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
				idle = false;
				break;
			}
		}
		if (idle)
			continue;

		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);

		for_each_pwq(pwq, wq) {
			spin_lock_irqsave(&pwq->pool->lock, flags);
			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
				show_pwq(pwq);
			spin_unlock_irqrestore(&pwq->pool->lock, flags);
		}
	}

	for_each_pool(pool, pi) {
		struct worker *worker;
		bool first = true;

		spin_lock_irqsave(&pool->lock, flags);
		if (pool->nr_workers == pool->nr_idle)
			goto next_pool;

		pr_info("pool %d:", pool->id);
		pr_cont_pool_info(pool);
		pr_cont(" workers=%d", pool->nr_workers);
		if (pool->manager)
			pr_cont(" manager: %d",
				task_pid_nr(pool->manager->task));
		list_for_each_entry(worker, &pool->idle_list, entry) {
			pr_cont(" %s%d", first ? "idle: " : "",
				task_pid_nr(worker->task));
			first = false;
		}
		pr_cont("\n");
	next_pool:
		spin_unlock_irqrestore(&pool->lock, flags);
	}

	rcu_read_unlock_sched();
}

4348 4349 4350
/*
 * CPU hotplug.
 *
4351
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4352
 * are a lot of assumptions on strong associations among work, pwq and
4353
 * pool which make migrating pending and scheduled works very
4354
 * difficult to implement without impacting hot paths.  Secondly,
4355
 * worker pools serve mix of short, long and very long running works making
4356 4357
 * blocked draining impractical.
 *
4358
 * This is solved by allowing the pools to be disassociated from the CPU
4359 4360
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4361
 */
L
Linus Torvalds 已提交
4362

4363
static void wq_unbind_fn(struct work_struct *work)
4364
{
4365
	int cpu = smp_processor_id();
4366
	struct worker_pool *pool;
4367
	struct worker *worker;
4368

4369
	for_each_cpu_worker_pool(pool, cpu) {
4370
		mutex_lock(&pool->attach_mutex);
4371
		spin_lock_irq(&pool->lock);
4372

4373
		/*
4374
		 * We've blocked all attach/detach operations. Make all workers
4375 4376 4377 4378 4379
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4380
		for_each_pool_worker(worker, pool)
4381
			worker->flags |= WORKER_UNBOUND;
4382

4383
		pool->flags |= POOL_DISASSOCIATED;
4384

4385
		spin_unlock_irq(&pool->lock);
4386
		mutex_unlock(&pool->attach_mutex);
4387

4388 4389 4390 4391 4392 4393 4394
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4395

4396 4397 4398 4399 4400 4401 4402 4403
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4404
		atomic_set(&pool->nr_running, 0);
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4415 4416
}

T
Tejun Heo 已提交
4417 4418 4419 4420
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4421
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4422 4423 4424
 */
static void rebind_workers(struct worker_pool *pool)
{
4425
	struct worker *worker;
T
Tejun Heo 已提交
4426

4427
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4428

4429 4430 4431 4432 4433 4434 4435
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4436
	for_each_pool_worker(worker, pool)
4437 4438
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4439

4440
	spin_lock_irq(&pool->lock);
4441
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4442

4443
	for_each_pool_worker(worker, pool) {
4444
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4445 4446

		/*
4447 4448 4449 4450 4451 4452
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4453
		 */
4454 4455
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4456

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4476
	}
4477 4478

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4479 4480
}

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4496
	lockdep_assert_held(&pool->attach_mutex);
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4508
	for_each_pool_worker(worker, pool)
4509 4510 4511 4512
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4513 4514 4515 4516
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4517
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4518 4519
					       unsigned long action,
					       void *hcpu)
4520
{
4521
	int cpu = (unsigned long)hcpu;
4522
	struct worker_pool *pool;
4523
	struct workqueue_struct *wq;
4524
	int pi;
4525

T
Tejun Heo 已提交
4526
	switch (action & ~CPU_TASKS_FROZEN) {
4527
	case CPU_UP_PREPARE:
4528
		for_each_cpu_worker_pool(pool, cpu) {
4529 4530
			if (pool->nr_workers)
				continue;
4531
			if (!create_worker(pool))
4532
				return NOTIFY_BAD;
4533
		}
T
Tejun Heo 已提交
4534
		break;
4535

4536 4537
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4538
		mutex_lock(&wq_pool_mutex);
4539 4540

		for_each_pool(pool, pi) {
4541
			mutex_lock(&pool->attach_mutex);
4542

4543
			if (pool->cpu == cpu)
4544
				rebind_workers(pool);
4545
			else if (pool->cpu < 0)
4546
				restore_unbound_workers_cpumask(pool, cpu);
4547

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
			mutex_unlock(&pool->attach_mutex);
		}

		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

		mutex_unlock(&wq_pool_mutex);
		break;
	}
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;
	struct workqueue_struct *wq;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/* unbinding per-cpu workers should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
		queue_work_on(cpu, system_highpri_wq, &unbind_work);

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
		flush_work(&unbind_work);
		destroy_work_on_stack(&unbind_work);
		break;
	}
	return NOTIFY_OK;
}

#ifdef CONFIG_SMP

struct work_for_cpu {
	struct work_struct work;
	long (*fn)(void *);
	void *arg;
	long ret;
};

static void work_for_cpu_fn(struct work_struct *work)
{
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
 * It is up to the caller to ensure that the cpu doesn't go offline.
 * The caller must not hold any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
{
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };

	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
	destroy_work_on_stack(&wfc.work);
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their delayed_works list instead of
 * pool->worklist.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void freeze_workqueues_begin(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(workqueue_freezing);
	workqueue_freezing = true;

	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

	mutex_unlock(&wq_pool_mutex);
}

/**
 * freeze_workqueues_busy - are freezable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex.
 *
 * Return:
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(!workqueue_freezing);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		rcu_read_lock_sched();
		for_each_pwq(pwq, wq) {
			WARN_ON_ONCE(pwq->nr_active < 0);
			if (pwq->nr_active) {
				busy = true;
				rcu_read_unlock_sched();
				goto out_unlock;
			}
		}
		rcu_read_unlock_sched();
	}
out_unlock:
	mutex_unlock(&wq_pool_mutex);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
 * frozen works are transferred to their respective pool worklists.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void thaw_workqueues(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	if (!workqueue_freezing)
		goto out_unlock;

	workqueue_freezing = false;

	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

out_unlock:
	mutex_unlock(&wq_pool_mutex);
}
#endif /* CONFIG_FREEZER */

4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
static int workqueue_apply_unbound_cpumask(void)
{
	LIST_HEAD(ctxs);
	int ret = 0;
	struct workqueue_struct *wq;
	struct apply_wqattrs_ctx *ctx, *n;

	lockdep_assert_held(&wq_pool_mutex);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_UNBOUND))
			continue;
		/* creating multiple pwqs breaks ordering guarantee */
		if (wq->flags & __WQ_ORDERED)
			continue;

		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
		if (!ctx) {
			ret = -ENOMEM;
			break;
		}

		list_add_tail(&ctx->list, &ctxs);
	}

	list_for_each_entry_safe(ctx, n, &ctxs, list) {
		if (!ret)
			apply_wqattrs_commit(ctx);
		apply_wqattrs_cleanup(ctx);
	}

	return ret;
}

/**
 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
 *  @cpumask: the cpumask to set
 *
 *  The low-level workqueues cpumask is a global cpumask that limits
 *  the affinity of all unbound workqueues.  This function check the @cpumask
 *  and apply it to all unbound workqueues and updates all pwqs of them.
 *
 *  Retun:	0	- Success
 *  		-EINVAL	- Invalid @cpumask
 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
 */
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
{
	int ret = -EINVAL;
	cpumask_var_t saved_cpumask;

	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
		return -ENOMEM;

	get_online_cpus();
	cpumask_and(cpumask, cpumask, cpu_possible_mask);
	if (!cpumask_empty(cpumask)) {
		mutex_lock(&wq_pool_mutex);

		/* save the old wq_unbound_cpumask. */
		cpumask_copy(saved_cpumask, wq_unbound_cpumask);

		/* update wq_unbound_cpumask at first and apply it to wqs. */
		cpumask_copy(wq_unbound_cpumask, cpumask);
		ret = workqueue_apply_unbound_cpumask();

		/* restore the wq_unbound_cpumask when failed. */
		if (ret < 0)
			cpumask_copy(wq_unbound_cpumask, saved_cpumask);

		mutex_unlock(&wq_pool_mutex);
	}
	put_online_cpus();

	free_cpumask_var(saved_cpumask);
	return ret;
}

4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
static DEVICE_ATTR_RO(per_cpu);

static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
static DEVICE_ATTR_RW(max_active);

static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
};
ATTRIBUTE_GROUPS(wq_sysfs);

static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	const char *delim = "";
	int node, written = 0;

	rcu_read_lock_sched();
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
	mutex_unlock(&wq->mutex);
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;
4996

4997 4998 4999 5000
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);
5001

5002
	return written;
5003 5004
}

5005 5006
static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
5007
{
5008 5009 5010
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;
5011

5012 5013 5014
	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;
5015

5016 5017 5018 5019
	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
5020
	}
5021 5022 5023

	free_workqueue_attrs(attrs);
	return ret ?: count;
5024 5025
}

5026 5027 5028 5029 5030 5031 5032
static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
	__ATTR_NULL,
};
5033

5034 5035 5036
static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_groups			= wq_sysfs_groups,
5037 5038
};

5039 5040 5041 5042 5043
static ssize_t wq_unbound_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int written;

5044
	mutex_lock(&wq_pool_mutex);
5045 5046
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq_unbound_cpumask));
5047
	mutex_unlock(&wq_pool_mutex);
5048 5049 5050 5051

	return written;
}

5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
static ssize_t wq_unbound_cpumask_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	cpumask_var_t cpumask;
	int ret;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	ret = cpumask_parse(buf, cpumask);
	if (!ret)
		ret = workqueue_set_unbound_cpumask(cpumask);

	free_cpumask_var(cpumask);
	return ret ? ret : count;
}

5069
static struct device_attribute wq_sysfs_cpumask_attr =
5070 5071
	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
	       wq_unbound_cpumask_store);
5072

5073
static int __init wq_sysfs_init(void)
5074
{
5075 5076 5077 5078 5079 5080 5081
	int err;

	err = subsys_virtual_register(&wq_subsys, NULL);
	if (err)
		return err;

	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5082
}
5083
core_initcall(wq_sysfs_init);
5084

5085
static void wq_device_release(struct device *dev)
5086
{
5087
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5088

5089
	kfree(wq_dev);
5090
}
5091 5092

/**
5093 5094
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
5095
 *
5096 5097 5098
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
5099
 *
5100 5101 5102 5103 5104 5105
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Return: 0 on success, -errno on failure.
5106
 */
5107
int workqueue_sysfs_register(struct workqueue_struct *wq)
5108
{
5109 5110
	struct wq_device *wq_dev;
	int ret;
5111

5112 5113 5114 5115 5116 5117 5118
	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;
5119

5120 5121 5122
	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;
5123

5124 5125 5126 5127
	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;
5128

5129 5130 5131 5132 5133
	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);
5134

5135 5136 5137 5138 5139 5140
	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}
5141

5142 5143
	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;
5144

5145 5146 5147 5148 5149 5150
		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
5151 5152 5153
			}
		}
	}
5154 5155 5156 5157

	dev_set_uevent_suppress(&wq_dev->dev, false);
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
5158 5159 5160
}

/**
5161 5162
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
5163
 *
5164
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5165
 */
5166
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5167
{
5168
	struct wq_device *wq_dev = wq->wq_dev;
5169

5170 5171
	if (!wq->wq_dev)
		return;
5172

5173 5174
	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
5175
}
5176 5177 5178
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */
5179

5180 5181 5182 5183 5184 5185 5186 5187
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

5188 5189 5190 5191 5192
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5193 5194 5195
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5196 5197 5198 5199 5200
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
5201
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5202 5203 5204
	BUG_ON(!tbl);

	for_each_node(node)
5205
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5206
				node_online(node) ? node : NUMA_NO_NODE));
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5222
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5223
{
T
Tejun Heo 已提交
5224 5225
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5226

5227 5228
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

5229 5230 5231
	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);

5232 5233
	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5234
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5235
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5236

5237 5238
	wq_numa_init();

5239
	/* initialize CPU pools */
5240
	for_each_possible_cpu(cpu) {
5241
		struct worker_pool *pool;
5242

T
Tejun Heo 已提交
5243
		i = 0;
5244
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5245
			BUG_ON(init_worker_pool(pool));
5246
			pool->cpu = cpu;
5247
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5248
			pool->attrs->nice = std_nice[i++];
5249
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5250

T
Tejun Heo 已提交
5251
			/* alloc pool ID */
5252
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5253
			BUG_ON(worker_pool_assign_id(pool));
5254
			mutex_unlock(&wq_pool_mutex);
5255
		}
5256 5257
	}

5258
	/* create the initial worker */
5259
	for_each_online_cpu(cpu) {
5260
		struct worker_pool *pool;
5261

5262
		for_each_cpu_worker_pool(pool, cpu) {
5263
			pool->flags &= ~POOL_DISASSOCIATED;
5264
			BUG_ON(!create_worker(pool));
5265
		}
5266 5267
	}

5268
	/* create default unbound and ordered wq attrs */
5269 5270 5271 5272 5273 5274
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5285 5286
	}

5287
	system_wq = alloc_workqueue("events", 0, 0);
5288
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5289
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5290 5291
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5292 5293
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5294 5295 5296 5297 5298
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5299
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5300 5301 5302
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5303
	return 0;
L
Linus Torvalds 已提交
5304
}
5305
early_initcall(init_workqueues);