workqueue.c 139.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
73

T
Tejun Heo 已提交
74 75 76
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
77
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
78
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
79
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
80
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
81

82 83
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
84

85
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
86

87
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
88
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
89

90 91 92
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

93 94 95
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
96 97 98 99 100 101 102 103
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
104
	HIGHPRI_NICE_LEVEL	= -20,
105 106

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
107
};
L
Linus Torvalds 已提交
108 109

/*
T
Tejun Heo 已提交
110 111
 * Structure fields follow one of the following exclusion rules.
 *
112 113
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
114
 *
115 116 117
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
118
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
119
 *
120 121 122 123
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
124
 *
125
 * A: pool->attach_mutex protected.
126
 *
127
 * PL: wq_pool_mutex protected.
128
 *
129
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
130
 *
131 132
 * WQ: wq->mutex protected.
 *
133
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
134 135
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
136 137
 */

138
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
139

140
struct worker_pool {
141
	spinlock_t		lock;		/* the pool lock */
142
	int			cpu;		/* I: the associated cpu */
143
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
144
	int			id;		/* I: pool ID */
145
	unsigned int		flags;		/* X: flags */
146 147 148

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
149 150

	/* nr_idle includes the ones off idle_list for rebinding */
151 152 153 154 155 156
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

157
	/* a workers is either on busy_hash or idle_list, or the manager */
158 159 160
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

161
	/* see manage_workers() for details on the two manager mutexes */
162
	struct mutex		manager_arb;	/* manager arbitration */
163 164
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
165
	struct completion	*detach_completion; /* all workers detached */
166

167 168
	struct ida		worker_ida;	/* worker IDs for task name */

T
Tejun Heo 已提交
169
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 171
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
172

173 174 175 176 177 178
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 180 181 182 183 184

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
185 186
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
187
/*
188 189 190 191
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
192
 */
193
struct pool_workqueue {
194
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
195
	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 197
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
198
	int			refcnt;		/* L: reference count */
199 200
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
201
	int			nr_active;	/* L: nr of active works */
202
	int			max_active;	/* L: max active works */
203
	struct list_head	delayed_works;	/* L: delayed works */
204
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
206 207 208 209 210

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
211
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
212 213 214
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
215
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
216

217 218 219 220
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
221 222
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
223 224 225
	struct completion	done;		/* flush completion */
};

226 227
struct wq_device;

L
Linus Torvalds 已提交
228
/*
229 230
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
231 232
 */
struct workqueue_struct {
233
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234
	struct list_head	list;		/* PL: list of all workqueues */
235

236 237 238
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
239
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 241 242
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243

244
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 246
	struct worker		*rescuer;	/* I: rescue worker */

247
	int			nr_drainers;	/* WQ: drain in progress */
248
	int			saved_max_active; /* WQ: saved pwq max_active */
249

250
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252

253 254 255
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
256
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
257
	struct lockdep_map	lockdep_map;
258
#endif
259
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 261 262 263

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
265 266
};

267 268
static struct kmem_cache *pwq_cache;

269 270 271 272
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

273 274 275
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

276 277 278 279 280 281 282 283 284
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

285 286
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

287 288 289
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

290
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292

293 294
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 296 297 298 299

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

300
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301

302
/* PL: hash of all unbound pools keyed by pool->attrs */
303 304
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

305
/* I: attributes used when instantiating standard unbound pools on demand */
306 307
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

308 309 310
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

311
struct workqueue_struct *system_wq __read_mostly;
312
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
313
struct workqueue_struct *system_highpri_wq __read_mostly;
314
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
315
struct workqueue_struct *system_long_wq __read_mostly;
316
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
317
struct workqueue_struct *system_unbound_wq __read_mostly;
318
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
319
struct workqueue_struct *system_freezable_wq __read_mostly;
320
EXPORT_SYMBOL_GPL(system_freezable_wq);
321 322 323 324
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325

326 327 328 329
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

330 331 332
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

333
#define assert_rcu_or_pool_mutex()					\
334
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
335 336
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
337

338
#define assert_rcu_or_wq_mutex(wq)					\
339
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340
			   lockdep_is_held(&wq->mutex),			\
341
			   "sched RCU or wq->mutex should be held")
342

343 344 345
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
346
	     (pool)++)
347

T
Tejun Heo 已提交
348 349 350
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
351
 * @pi: integer used for iteration
352
 *
353 354 355
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
356 357 358
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
359
 */
360 361
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
362
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
363
		else
T
Tejun Heo 已提交
364

365 366 367 368 369
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
370
 * This must be called with @pool->attach_mutex.
371 372 373 374
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
375 376
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
377
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
378 379
		else

380 381 382 383
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
384
 *
385
 * This must be called either with wq->mutex held or sched RCU read locked.
386 387
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
388 389 390
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
391 392
 */
#define for_each_pwq(pwq, wq)						\
393
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
394
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
395
		else
396

397 398 399 400
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

401 402 403 404 405
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
441
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
477
	.debug_hint	= work_debug_hint,
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

508 509 510 511 512 513 514
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

515 516 517 518 519
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

520 521 522 523 524 525 526
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
527 528 529 530
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

531
	lockdep_assert_held(&wq_pool_mutex);
532

533 534
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
535
	if (ret >= 0) {
T
Tejun Heo 已提交
536
		pool->id = ret;
537 538
		return 0;
	}
539
	return ret;
540 541
}

542 543 544 545 546 547 548 549
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
550 551
 *
 * Return: The unbound pool_workqueue for @node.
552 553 554 555 556 557 558 559
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
575

576
/*
577 578
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
579
 * is cleared and the high bits contain OFFQ flags and pool ID.
580
 *
581 582
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
583 584
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
585
 *
586
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
587
 * corresponding to a work.  Pool is available once the work has been
588
 * queued anywhere after initialization until it is sync canceled.  pwq is
589
 * available only while the work item is queued.
590
 *
591 592 593 594
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
595
 */
596 597
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
598
{
599
	WARN_ON_ONCE(!work_pending(work));
600 601
	atomic_long_set(&work->data, data | flags | work_static(work));
}
602

603
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
604 605
			 unsigned long extra_flags)
{
606 607
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
608 609
}

610 611 612 613 614 615 616
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

617 618
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
619
{
620 621 622 623 624 625 626
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
627
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
628
}
629

630
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
631
{
632 633
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
634 635
}

636
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
637
{
638
	unsigned long data = atomic_long_read(&work->data);
639

640
	if (data & WORK_STRUCT_PWQ)
641 642 643
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
644 645
}

646 647 648 649
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
650 651 652
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
653 654 655 656 657
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
658 659
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
660 661
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
662
{
663
	unsigned long data = atomic_long_read(&work->data);
664
	int pool_id;
665

666
	assert_rcu_or_pool_mutex();
667

668 669
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
670
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
671

672 673
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
674 675
		return NULL;

676
	return idr_find(&worker_pool_idr, pool_id);
677 678 679 680 681 682
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
683
 * Return: The worker_pool ID @work was last associated with.
684 685 686 687
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
688 689
	unsigned long data = atomic_long_read(&work->data);

690 691
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
692
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
693

694
	return data >> WORK_OFFQ_POOL_SHIFT;
695 696
}

697 698
static void mark_work_canceling(struct work_struct *work)
{
699
	unsigned long pool_id = get_work_pool_id(work);
700

701 702
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
703 704 705 706 707 708
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

709
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
710 711
}

712
/*
713 714
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
715
 * they're being called with pool->lock held.
716 717
 */

718
static bool __need_more_worker(struct worker_pool *pool)
719
{
720
	return !atomic_read(&pool->nr_running);
721 722
}

723
/*
724 725
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
726 727
 *
 * Note that, because unbound workers never contribute to nr_running, this
728
 * function will always return %true for unbound pools as long as the
729
 * worklist isn't empty.
730
 */
731
static bool need_more_worker(struct worker_pool *pool)
732
{
733
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
734
}
735

736
/* Can I start working?  Called from busy but !running workers. */
737
static bool may_start_working(struct worker_pool *pool)
738
{
739
	return pool->nr_idle;
740 741 742
}

/* Do I need to keep working?  Called from currently running workers. */
743
static bool keep_working(struct worker_pool *pool)
744
{
745 746
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
747 748 749
}

/* Do we need a new worker?  Called from manager. */
750
static bool need_to_create_worker(struct worker_pool *pool)
751
{
752
	return need_more_worker(pool) && !may_start_working(pool);
753
}
754

755
/* Do we have too many workers and should some go away? */
756
static bool too_many_workers(struct worker_pool *pool)
757
{
758
	bool managing = mutex_is_locked(&pool->manager_arb);
759 760
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
761

762 763 764 765 766 767 768
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

769
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
770 771
}

772
/*
773 774 775
 * Wake up functions.
 */

776
/* Return the first worker.  Safe with preemption disabled */
777
static struct worker *first_worker(struct worker_pool *pool)
778
{
779
	if (unlikely(list_empty(&pool->idle_list)))
780 781
		return NULL;

782
	return list_first_entry(&pool->idle_list, struct worker, entry);
783 784 785 786
}

/**
 * wake_up_worker - wake up an idle worker
787
 * @pool: worker pool to wake worker from
788
 *
789
 * Wake up the first idle worker of @pool.
790 791
 *
 * CONTEXT:
792
 * spin_lock_irq(pool->lock).
793
 */
794
static void wake_up_worker(struct worker_pool *pool)
795
{
796
	struct worker *worker = first_worker(pool);
797 798 799 800 801

	if (likely(worker))
		wake_up_process(worker->task);
}

802
/**
803 804 805 806 807 808 809 810 811 812
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
813
void wq_worker_waking_up(struct task_struct *task, int cpu)
814 815 816
{
	struct worker *worker = kthread_data(task);

817
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
818
		WARN_ON_ONCE(worker->pool->cpu != cpu);
819
		atomic_inc(&worker->pool->nr_running);
820
	}
821 822 823 824 825 826 827 828 829 830 831 832 833 834
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
835
 * Return:
836 837
 * Worker task on @cpu to wake up, %NULL if none.
 */
838
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
839 840
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
841
	struct worker_pool *pool;
842

843 844 845 846 847
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
848
	if (worker->flags & WORKER_NOT_RUNNING)
849 850
		return NULL;

851 852
	pool = worker->pool;

853
	/* this can only happen on the local cpu */
854 855
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
856 857 858 859 860 861

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
862 863 864
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
865
	 * manipulating idle_list, so dereferencing idle_list without pool
866
	 * lock is safe.
867
	 */
868 869
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
870
		to_wakeup = first_worker(pool);
871 872 873 874 875
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
876
 * @worker: self
877 878 879
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
880 881 882
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
883
 *
884
 * CONTEXT:
885
 * spin_lock_irq(pool->lock)
886 887 888 889
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
890
	struct worker_pool *pool = worker->pool;
891

892 893
	WARN_ON_ONCE(worker->task != current);

894 895 896 897 898 899 900 901
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
902
			if (atomic_dec_and_test(&pool->nr_running) &&
903
			    !list_empty(&pool->worklist))
904
				wake_up_worker(pool);
905
		} else
906
			atomic_dec(&pool->nr_running);
907 908
	}

909 910 911 912
	worker->flags |= flags;
}

/**
913
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
914
 * @worker: self
915 916
 * @flags: flags to clear
 *
917
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
918
 *
919
 * CONTEXT:
920
 * spin_lock_irq(pool->lock)
921 922 923
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
924
	struct worker_pool *pool = worker->pool;
925 926
	unsigned int oflags = worker->flags;

927 928
	WARN_ON_ONCE(worker->task != current);

929
	worker->flags &= ~flags;
930

931 932 933 934 935
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
936 937
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
938
			atomic_inc(&pool->nr_running);
939 940
}

941 942
/**
 * find_worker_executing_work - find worker which is executing a work
943
 * @pool: pool of interest
944 945
 * @work: work to find worker for
 *
946 947
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
948 949 950 951 952 953 954 955 956 957 958 959
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
960 961 962 963 964 965
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
966 967
 *
 * CONTEXT:
968
 * spin_lock_irq(pool->lock).
969
 *
970 971
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
972
 * otherwise.
973
 */
974
static struct worker *find_worker_executing_work(struct worker_pool *pool,
975
						 struct work_struct *work)
976
{
977 978
	struct worker *worker;

979
	hash_for_each_possible(pool->busy_hash, worker, hentry,
980 981 982
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
983 984 985
			return worker;

	return NULL;
986 987
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1003
 * spin_lock_irq(pool->lock).
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1087
static void pwq_activate_delayed_work(struct work_struct *work)
1088
{
1089
	struct pool_workqueue *pwq = get_work_pwq(work);
1090 1091

	trace_workqueue_activate_work(work);
1092
	move_linked_works(work, &pwq->pool->worklist, NULL);
1093
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1094
	pwq->nr_active++;
1095 1096
}

1097
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1098
{
1099
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1100 1101
						    struct work_struct, entry);

1102
	pwq_activate_delayed_work(work);
1103 1104
}

1105
/**
1106 1107
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1108 1109 1110
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1111
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1112 1113
 *
 * CONTEXT:
1114
 * spin_lock_irq(pool->lock).
1115
 */
1116
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1117
{
T
Tejun Heo 已提交
1118
	/* uncolored work items don't participate in flushing or nr_active */
1119
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1120
		goto out_put;
1121

1122
	pwq->nr_in_flight[color]--;
1123

1124 1125
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1126
		/* one down, submit a delayed one */
1127 1128
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1129 1130 1131
	}

	/* is flush in progress and are we at the flushing tip? */
1132
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1133
		goto out_put;
1134 1135

	/* are there still in-flight works? */
1136
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1137
		goto out_put;
1138

1139 1140
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1141 1142

	/*
1143
	 * If this was the last pwq, wake up the first flusher.  It
1144 1145
	 * will handle the rest.
	 */
1146 1147
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1148 1149
out_put:
	put_pwq(pwq);
1150 1151
}

1152
/**
1153
 * try_to_grab_pending - steal work item from worklist and disable irq
1154 1155
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1156
 * @flags: place to store irq state
1157 1158
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1159
 * stable state - idle, on timer or on worklist.
1160
 *
1161
 * Return:
1162 1163 1164
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1165 1166
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1167
 *
1168
 * Note:
1169
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1170 1171 1172
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1173 1174 1175 1176
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1177
 * This function is safe to call from any context including IRQ handler.
1178
 */
1179 1180
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1181
{
1182
	struct worker_pool *pool;
1183
	struct pool_workqueue *pwq;
1184

1185 1186
	local_irq_save(*flags);

1187 1188 1189 1190
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1191 1192 1193 1194 1195
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1196 1197 1198 1199 1200
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1201 1202 1203 1204 1205 1206 1207
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1208 1209
	pool = get_work_pool(work);
	if (!pool)
1210
		goto fail;
1211

1212
	spin_lock(&pool->lock);
1213
	/*
1214 1215 1216 1217 1218
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1219 1220
	 * item is currently queued on that pool.
	 */
1221 1222
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1223 1224 1225 1226 1227
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1228
		 * on the delayed_list, will confuse pwq->nr_active
1229 1230 1231 1232
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1233
			pwq_activate_delayed_work(work);
1234 1235

		list_del_init(&work->entry);
1236
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1237

1238
		/* work->data points to pwq iff queued, point to pool */
1239 1240 1241 1242
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1243
	}
1244
	spin_unlock(&pool->lock);
1245 1246 1247 1248 1249
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1250
	return -EAGAIN;
1251 1252
}

T
Tejun Heo 已提交
1253
/**
1254
 * insert_work - insert a work into a pool
1255
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1256 1257 1258 1259
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1260
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1261
 * work_struct flags.
T
Tejun Heo 已提交
1262 1263
 *
 * CONTEXT:
1264
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1265
 */
1266 1267
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1268
{
1269
	struct worker_pool *pool = pwq->pool;
1270

T
Tejun Heo 已提交
1271
	/* we own @work, set data and link */
1272
	set_work_pwq(work, pwq, extra_flags);
1273
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1274
	get_pwq(pwq);
1275 1276

	/*
1277 1278 1279
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1280 1281 1282
	 */
	smp_mb();

1283 1284
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1285 1286
}

1287 1288
/*
 * Test whether @work is being queued from another work executing on the
1289
 * same workqueue.
1290 1291 1292
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1293 1294 1295 1296 1297 1298 1299
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1300
	return worker && worker->current_pwq->wq == wq;
1301 1302
}

1303
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1304 1305
			 struct work_struct *work)
{
1306
	struct pool_workqueue *pwq;
1307
	struct worker_pool *last_pool;
1308
	struct list_head *worklist;
1309
	unsigned int work_flags;
1310
	unsigned int req_cpu = cpu;
1311 1312 1313 1314 1315 1316 1317 1318

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1319

1320
	debug_work_activate(work);
1321

1322
	/* if draining, only works from the same workqueue are allowed */
1323
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1324
	    WARN_ON_ONCE(!is_chained_work(wq)))
1325
		return;
1326
retry:
1327 1328 1329
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1330
	/* pwq which will be used unless @work is executing elsewhere */
1331
	if (!(wq->flags & WQ_UNBOUND))
1332
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1333 1334
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1335

1336 1337 1338 1339 1340 1341 1342 1343
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1344

1345
		spin_lock(&last_pool->lock);
1346

1347
		worker = find_worker_executing_work(last_pool, work);
1348

1349 1350
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1351
		} else {
1352 1353
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1354
			spin_lock(&pwq->pool->lock);
1355
		}
1356
	} else {
1357
		spin_lock(&pwq->pool->lock);
1358 1359
	}

1360 1361 1362 1363
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1364 1365
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1379 1380
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1381

1382
	if (WARN_ON(!list_empty(&work->entry))) {
1383
		spin_unlock(&pwq->pool->lock);
1384 1385
		return;
	}
1386

1387 1388
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1389

1390
	if (likely(pwq->nr_active < pwq->max_active)) {
1391
		trace_workqueue_activate_work(work);
1392 1393
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1394 1395
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1396
		worklist = &pwq->delayed_works;
1397
	}
1398

1399
	insert_work(pwq, work, worklist, work_flags);
1400

1401
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1402 1403
}

1404
/**
1405 1406
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1407 1408 1409
 * @wq: workqueue to use
 * @work: work to queue
 *
1410 1411
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1412 1413
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1414
 */
1415 1416
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1417
{
1418
	bool ret = false;
1419
	unsigned long flags;
1420

1421
	local_irq_save(flags);
1422

1423
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1424
		__queue_work(cpu, wq, work);
1425
		ret = true;
1426
	}
1427

1428
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1429 1430
	return ret;
}
1431
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1432

1433
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1434
{
1435
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1436

1437
	/* should have been called from irqsafe timer with irq already off */
1438
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1439
}
1440
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1441

1442 1443
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1444
{
1445 1446 1447 1448 1449
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1450 1451
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1464
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1465

1466
	dwork->wq = wq;
1467
	dwork->cpu = cpu;
1468 1469 1470 1471 1472 1473
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1474 1475
}

1476 1477 1478 1479
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1480
 * @dwork: work to queue
1481 1482
 * @delay: number of jiffies to wait before queueing
 *
1483
 * Return: %false if @work was already on a queue, %true otherwise.  If
1484 1485
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1486
 */
1487 1488
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1489
{
1490
	struct work_struct *work = &dwork->work;
1491
	bool ret = false;
1492
	unsigned long flags;
1493

1494 1495
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1496

1497
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1498
		__queue_delayed_work(cpu, wq, dwork, delay);
1499
		ret = true;
1500
	}
1501

1502
	local_irq_restore(flags);
1503 1504
	return ret;
}
1505
EXPORT_SYMBOL(queue_delayed_work_on);
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1519
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1520 1521
 * pending and its timer was modified.
 *
1522
 * This function is safe to call from any context including IRQ handler.
1523 1524 1525 1526 1527 1528 1529
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1530

1531 1532 1533
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1534

1535 1536 1537
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1538
	}
1539 1540

	/* -ENOENT from try_to_grab_pending() becomes %true */
1541 1542
	return ret;
}
1543 1544
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1545 1546 1547 1548 1549 1550 1551 1552
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1553
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1554 1555
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1556
{
1557
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1558

1559 1560 1561 1562
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1563

1564 1565
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1566
	pool->nr_idle++;
1567
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1568 1569

	/* idle_list is LIFO */
1570
	list_add(&worker->entry, &pool->idle_list);
1571

1572 1573
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1574

1575
	/*
1576
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1577
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1578 1579
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1580
	 */
1581
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1582
		     pool->nr_workers == pool->nr_idle &&
1583
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1593
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1594 1595 1596
 */
static void worker_leave_idle(struct worker *worker)
{
1597
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1598

1599 1600
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1601
	worker_clr_flags(worker, WORKER_IDLE);
1602
	pool->nr_idle--;
T
Tejun Heo 已提交
1603 1604 1605
	list_del_init(&worker->entry);
}

1606
/**
1607 1608 1609 1610
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1611 1612 1613 1614 1615 1616
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1617
 * This function is to be used by unbound workers and rescuers to bind
1618 1619 1620
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1621
 * verbatim as it's best effort and blocking and pool may be
1622 1623
 * [dis]associated in the meantime.
 *
1624
 * This function tries set_cpus_allowed() and locks pool and verifies the
1625
 * binding against %POOL_DISASSOCIATED which is set during
1626 1627 1628
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1629 1630
 *
 * CONTEXT:
1631
 * Might sleep.  Called without any lock but returns with pool->lock
1632 1633
 * held.
 *
1634
 * Return:
1635
 * %true if the associated pool is online (@worker is successfully
1636 1637
 * bound), %false if offline.
 */
1638
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1639
__acquires(&pool->lock)
1640 1641
{
	while (true) {
1642
		/*
1643 1644 1645
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1646
		 * against POOL_DISASSOCIATED.
1647
		 */
1648
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1649
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1650

1651
		spin_lock_irq(&pool->lock);
1652
		if (pool->flags & POOL_DISASSOCIATED)
1653
			return false;
1654
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1655
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1656
			return true;
1657
		spin_unlock_irq(&pool->lock);
1658

1659 1660 1661 1662 1663 1664
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1665
		cpu_relax();
1666
		cond_resched();
1667 1668 1669
	}
}

T
Tejun Heo 已提交
1670 1671 1672 1673 1674
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1675 1676
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1677
		INIT_LIST_HEAD(&worker->scheduled);
1678
		INIT_LIST_HEAD(&worker->node);
1679 1680
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1681
	}
T
Tejun Heo 已提交
1682 1683 1684
	return worker;
}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1718 1719 1720 1721 1722
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1723 1724 1725
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1726 1727 1728 1729 1730 1731
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1732
	mutex_lock(&pool->attach_mutex);
1733 1734
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1735
		detach_completion = pool->detach_completion;
1736
	mutex_unlock(&pool->attach_mutex);
1737 1738 1739 1740 1741

	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1742 1743
/**
 * create_worker - create a new workqueue worker
1744
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1745
 *
1746 1747
 * Create a new worker which is attached to @pool.  The new worker must be
 * started by start_worker().
T
Tejun Heo 已提交
1748 1749 1750 1751
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1752
 * Return:
T
Tejun Heo 已提交
1753 1754
 * Pointer to the newly created worker.
 */
1755
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1756 1757
{
	struct worker *worker = NULL;
1758
	int id = -1;
1759
	char id_buf[16];
T
Tejun Heo 已提交
1760

1761 1762
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1763 1764
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1765 1766 1767 1768 1769

	worker = alloc_worker();
	if (!worker)
		goto fail;

1770
	worker->pool = pool;
T
Tejun Heo 已提交
1771 1772
	worker->id = id;

1773
	if (pool->cpu >= 0)
1774 1775
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1776
	else
1777 1778
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1779
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1780
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1781 1782 1783
	if (IS_ERR(worker->task))
		goto fail;

1784 1785 1786 1787 1788
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1789
	/* successful, attach the worker to the pool */
1790
	worker_attach_to_pool(worker, pool);
1791

T
Tejun Heo 已提交
1792
	return worker;
1793

T
Tejun Heo 已提交
1794
fail:
1795
	if (id >= 0)
1796
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1797 1798 1799 1800 1801 1802 1803 1804
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1805
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1806 1807
 *
 * CONTEXT:
1808
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1809 1810 1811
 */
static void start_worker(struct worker *worker)
{
1812
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1813
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1814 1815 1816
	wake_up_process(worker->task);
}

1817 1818 1819 1820
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1821
 * Grab the managership of @pool and create and start a new worker for it.
1822 1823
 *
 * Return: 0 on success. A negative error code otherwise.
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1839 1840 1841 1842
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1843 1844
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1845 1846
 *
 * CONTEXT:
1847
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1848 1849 1850
 */
static void destroy_worker(struct worker *worker)
{
1851
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1852

1853 1854
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1855
	/* sanity check frenzy */
1856
	if (WARN_ON(worker->current_work) ||
1857 1858
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1859
		return;
T
Tejun Heo 已提交
1860

1861 1862
	pool->nr_workers--;
	pool->nr_idle--;
T
Tejun Heo 已提交
1863 1864

	list_del_init(&worker->entry);
1865
	worker->flags |= WORKER_DIE;
1866
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1867 1868
}

1869
static void idle_worker_timeout(unsigned long __pool)
1870
{
1871
	struct worker_pool *pool = (void *)__pool;
1872

1873
	spin_lock_irq(&pool->lock);
1874

1875
	while (too_many_workers(pool)) {
1876 1877 1878 1879
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1880
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1881 1882
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1883
		if (time_before(jiffies, expires)) {
1884
			mod_timer(&pool->idle_timer, expires);
1885
			break;
1886
		}
1887 1888

		destroy_worker(worker);
1889 1890
	}

1891
	spin_unlock_irq(&pool->lock);
1892
}
1893

1894
static void send_mayday(struct work_struct *work)
1895
{
1896 1897
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1898

1899
	lockdep_assert_held(&wq_mayday_lock);
1900

1901
	if (!wq->rescuer)
1902
		return;
1903 1904

	/* mayday mayday mayday */
1905
	if (list_empty(&pwq->mayday_node)) {
1906 1907 1908 1909 1910 1911
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1912
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1913
		wake_up_process(wq->rescuer->task);
1914
	}
1915 1916
}

1917
static void pool_mayday_timeout(unsigned long __pool)
1918
{
1919
	struct worker_pool *pool = (void *)__pool;
1920 1921
	struct work_struct *work;

1922
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1923
	spin_lock(&pool->lock);
1924

1925
	if (need_to_create_worker(pool)) {
1926 1927 1928 1929 1930 1931
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1932
		list_for_each_entry(work, &pool->worklist, entry)
1933
			send_mayday(work);
L
Linus Torvalds 已提交
1934
	}
1935

1936
	spin_unlock(&pool->lock);
1937
	spin_unlock_irq(&wq_mayday_lock);
1938

1939
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1940 1941
}

1942 1943
/**
 * maybe_create_worker - create a new worker if necessary
1944
 * @pool: pool to create a new worker for
1945
 *
1946
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1947 1948
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1949
 * sent to all rescuers with works scheduled on @pool to resolve
1950 1951
 * possible allocation deadlock.
 *
1952 1953
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1954 1955
 *
 * LOCKING:
1956
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1957 1958 1959
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1960
 * Return:
1961
 * %false if no action was taken and pool->lock stayed locked, %true
1962 1963
 * otherwise.
 */
1964
static bool maybe_create_worker(struct worker_pool *pool)
1965 1966
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1967
{
1968
	if (!need_to_create_worker(pool))
1969 1970
		return false;
restart:
1971
	spin_unlock_irq(&pool->lock);
1972

1973
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1974
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1975 1976 1977 1978

	while (true) {
		struct worker *worker;

1979
		worker = create_worker(pool);
1980
		if (worker) {
1981
			del_timer_sync(&pool->mayday_timer);
1982
			spin_lock_irq(&pool->lock);
1983
			start_worker(worker);
1984 1985
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1986 1987 1988
			return true;
		}

1989
		if (!need_to_create_worker(pool))
1990
			break;
L
Linus Torvalds 已提交
1991

1992 1993
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1994

1995
		if (!need_to_create_worker(pool))
1996 1997 1998
			break;
	}

1999
	del_timer_sync(&pool->mayday_timer);
2000
	spin_lock_irq(&pool->lock);
2001
	if (need_to_create_worker(pool))
2002 2003 2004 2005
		goto restart;
	return true;
}

2006
/**
2007 2008
 * manage_workers - manage worker pool
 * @worker: self
2009
 *
2010
 * Assume the manager role and manage the worker pool @worker belongs
2011
 * to.  At any given time, there can be only zero or one manager per
2012
 * pool.  The exclusion is handled automatically by this function.
2013 2014 2015 2016
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2017 2018
 *
 * CONTEXT:
2019
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2020 2021
 * multiple times.  Does GFP_KERNEL allocations.
 *
2022
 * Return:
2023 2024 2025 2026 2027
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2028
 */
2029
static bool manage_workers(struct worker *worker)
2030
{
2031
	struct worker_pool *pool = worker->pool;
2032
	bool ret = false;
2033

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
2044
	if (!mutex_trylock(&pool->manager_arb))
2045
		return ret;
2046

2047
	ret |= maybe_create_worker(pool);
2048

2049
	mutex_unlock(&pool->manager_arb);
2050
	return ret;
2051 2052
}

2053 2054
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2055
 * @worker: self
2056 2057 2058 2059 2060 2061 2062 2063 2064
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2065
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2066
 */
T
Tejun Heo 已提交
2067
static void process_one_work(struct worker *worker, struct work_struct *work)
2068 2069
__releases(&pool->lock)
__acquires(&pool->lock)
2070
{
2071
	struct pool_workqueue *pwq = get_work_pwq(work);
2072
	struct worker_pool *pool = worker->pool;
2073
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2074
	int work_color;
2075
	struct worker *collision;
2076 2077 2078 2079 2080 2081 2082 2083
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2084 2085 2086
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2087
#endif
2088 2089 2090
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2091
	 * unbound or a disassociated pool.
2092
	 */
2093
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2094
		     !(pool->flags & POOL_DISASSOCIATED) &&
2095
		     raw_smp_processor_id() != pool->cpu);
2096

2097 2098 2099 2100 2101 2102
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2103
	collision = find_worker_executing_work(pool, work);
2104 2105 2106 2107 2108
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2109
	/* claim and dequeue */
2110
	debug_work_deactivate(work);
2111
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2112
	worker->current_work = work;
2113
	worker->current_func = work->func;
2114
	worker->current_pwq = pwq;
2115
	work_color = get_work_color(work);
2116

2117 2118
	list_del_init(&work->entry);

2119 2120 2121 2122 2123 2124 2125
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2126
	/*
2127
	 * Unbound pool isn't concurrency managed and work items should be
2128 2129
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2130 2131
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2132

2133
	/*
2134
	 * Record the last pool and clear PENDING which should be the last
2135
	 * update to @work.  Also, do this inside @pool->lock so that
2136 2137
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2138
	 */
2139
	set_work_pool_and_clear_pending(work, pool->id);
2140

2141
	spin_unlock_irq(&pool->lock);
2142

2143
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2144
	lock_map_acquire(&lockdep_map);
2145
	trace_workqueue_execute_start(work);
2146
	worker->current_func(work);
2147 2148 2149 2150 2151
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2152
	lock_map_release(&lockdep_map);
2153
	lock_map_release(&pwq->wq->lockdep_map);
2154 2155

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2156 2157
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2158 2159
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2160 2161 2162 2163
		debug_show_held_locks(current);
		dump_stack();
	}

2164 2165 2166 2167 2168 2169 2170 2171 2172
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2173
	spin_lock_irq(&pool->lock);
2174

2175 2176 2177 2178
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2179
	/* we're done with it, release */
2180
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2181
	worker->current_work = NULL;
2182
	worker->current_func = NULL;
2183
	worker->current_pwq = NULL;
2184
	worker->desc_valid = false;
2185
	pwq_dec_nr_in_flight(pwq, work_color);
2186 2187
}

2188 2189 2190 2191 2192 2193 2194 2195 2196
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2197
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2198 2199 2200
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2201
{
2202 2203
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2204
						struct work_struct, entry);
T
Tejun Heo 已提交
2205
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2206 2207 2208
	}
}

T
Tejun Heo 已提交
2209 2210
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2211
 * @__worker: self
T
Tejun Heo 已提交
2212
 *
2213 2214 2215 2216 2217
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2218 2219
 *
 * Return: 0
T
Tejun Heo 已提交
2220
 */
T
Tejun Heo 已提交
2221
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2222
{
T
Tejun Heo 已提交
2223
	struct worker *worker = __worker;
2224
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2225

2226 2227
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2228
woke_up:
2229
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2230

2231 2232
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2233
		spin_unlock_irq(&pool->lock);
2234 2235
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2236 2237

		set_task_comm(worker->task, "kworker/dying");
2238
		ida_simple_remove(&pool->worker_ida, worker->id);
2239 2240
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2241
		return 0;
T
Tejun Heo 已提交
2242
	}
2243

T
Tejun Heo 已提交
2244
	worker_leave_idle(worker);
2245
recheck:
2246
	/* no more worker necessary? */
2247
	if (!need_more_worker(pool))
2248 2249 2250
		goto sleep;

	/* do we need to manage? */
2251
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2252 2253
		goto recheck;

T
Tejun Heo 已提交
2254 2255 2256 2257 2258
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2259
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2260

2261
	/*
2262 2263 2264 2265 2266
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2267
	 */
2268
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2269 2270

	do {
T
Tejun Heo 已提交
2271
		struct work_struct *work =
2272
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2273 2274 2275 2276 2277 2278
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2279
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2280 2281 2282
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2283
		}
2284
	} while (keep_working(pool));
2285 2286

	worker_set_flags(worker, WORKER_PREP, false);
2287
sleep:
T
Tejun Heo 已提交
2288
	/*
2289 2290 2291 2292 2293
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2294 2295 2296
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2297
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2298 2299
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2300 2301
}

2302 2303
/**
 * rescuer_thread - the rescuer thread function
2304
 * @__rescuer: self
2305 2306
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2307
 * workqueue which has WQ_MEM_RECLAIM set.
2308
 *
2309
 * Regular work processing on a pool may block trying to create a new
2310 2311 2312 2313 2314
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2315 2316
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2317 2318 2319
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2320 2321
 *
 * Return: 0
2322
 */
2323
static int rescuer_thread(void *__rescuer)
2324
{
2325 2326
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2327
	struct list_head *scheduled = &rescuer->scheduled;
2328
	bool should_stop;
2329 2330

	set_user_nice(current, RESCUER_NICE_LEVEL);
2331 2332 2333 2334 2335 2336

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2337 2338 2339
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2340 2341 2342 2343 2344 2345 2346 2347 2348
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2349

2350
	/* see whether any pwq is asking for help */
2351
	spin_lock_irq(&wq_mayday_lock);
2352 2353 2354 2355

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2356
		struct worker_pool *pool = pwq->pool;
2357 2358 2359
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2360 2361
		list_del_init(&pwq->mayday_node);

2362
		spin_unlock_irq(&wq_mayday_lock);
2363 2364

		/* migrate to the target cpu if possible */
2365
		worker_maybe_bind_and_lock(pool);
2366
		rescuer->pool = pool;
2367 2368 2369 2370 2371

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2372
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2373
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2374
			if (get_work_pwq(work) == pwq)
2375 2376 2377
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2378

2379 2380 2381 2382 2383 2384
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2385
		/*
2386
		 * Leave this pool.  If keep_working() is %true, notify a
2387 2388 2389
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2390 2391
		if (keep_working(pool))
			wake_up_worker(pool);
2392

2393
		rescuer->pool = NULL;
2394
		spin_unlock(&pool->lock);
2395
		spin_lock(&wq_mayday_lock);
2396 2397
	}

2398
	spin_unlock_irq(&wq_mayday_lock);
2399

2400 2401 2402 2403 2404 2405
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2406 2407
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2408 2409
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2410 2411
}

O
Oleg Nesterov 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2423 2424
/**
 * insert_wq_barrier - insert a barrier work
2425
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2426
 * @barr: wq_barrier to insert
2427 2428
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2429
 *
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2442
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2443 2444
 *
 * CONTEXT:
2445
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2446
 */
2447
static void insert_wq_barrier(struct pool_workqueue *pwq,
2448 2449
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2450
{
2451 2452 2453
	struct list_head *head;
	unsigned int linked = 0;

2454
	/*
2455
	 * debugobject calls are safe here even with pool->lock locked
2456 2457 2458 2459
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2460
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2461
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2462
	init_completion(&barr->done);
2463

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2479
	debug_work_activate(&barr->work);
2480
	insert_work(pwq, &barr->work, head,
2481
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2482 2483
}

2484
/**
2485
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2486 2487 2488 2489
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2490
 * Prepare pwqs for workqueue flushing.
2491
 *
2492 2493 2494 2495 2496
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2497 2498 2499 2500 2501 2502 2503
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2504
 * If @work_color is non-negative, all pwqs should have the same
2505 2506 2507 2508
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2509
 * mutex_lock(wq->mutex).
2510
 *
2511
 * Return:
2512 2513 2514
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2515
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2516
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2517
{
2518
	bool wait = false;
2519
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2520

2521
	if (flush_color >= 0) {
2522
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2523
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2524
	}
2525

2526
	for_each_pwq(pwq, wq) {
2527
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2528

2529
		spin_lock_irq(&pool->lock);
2530

2531
		if (flush_color >= 0) {
2532
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2533

2534 2535 2536
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2537 2538 2539
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2540

2541
		if (work_color >= 0) {
2542
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2543
			pwq->work_color = work_color;
2544
		}
L
Linus Torvalds 已提交
2545

2546
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2547
	}
2548

2549
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2550
		complete(&wq->first_flusher->done);
2551

2552
	return wait;
L
Linus Torvalds 已提交
2553 2554
}

2555
/**
L
Linus Torvalds 已提交
2556
 * flush_workqueue - ensure that any scheduled work has run to completion.
2557
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2558
 *
2559 2560
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2561
 */
2562
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2563
{
2564 2565 2566 2567 2568 2569
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2570

2571 2572
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2573

2574
	mutex_lock(&wq->mutex);
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2587
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2588 2589 2590 2591 2592
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2593
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2594 2595 2596

			wq->first_flusher = &this_flusher;

2597
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2598 2599 2600 2601 2602 2603 2604 2605
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2606
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2607
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2608
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2619
	mutex_unlock(&wq->mutex);
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2632
	mutex_lock(&wq->mutex);
2633

2634 2635 2636 2637
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2638 2639
	wq->first_flusher = NULL;

2640 2641
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2654 2655
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2675
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2676 2677 2678
		}

		if (list_empty(&wq->flusher_queue)) {
2679
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2680 2681 2682 2683 2684
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2685
		 * the new first flusher and arm pwqs.
2686
		 */
2687 2688
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2689 2690 2691 2692

		list_del_init(&next->list);
		wq->first_flusher = next;

2693
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2704
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2705
}
2706
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2707

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2722
	struct pool_workqueue *pwq;
2723 2724 2725 2726

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2727
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2728
	 */
2729
	mutex_lock(&wq->mutex);
2730
	if (!wq->nr_drainers++)
2731
		wq->flags |= __WQ_DRAINING;
2732
	mutex_unlock(&wq->mutex);
2733 2734 2735
reflush:
	flush_workqueue(wq);

2736
	mutex_lock(&wq->mutex);
2737

2738
	for_each_pwq(pwq, wq) {
2739
		bool drained;
2740

2741
		spin_lock_irq(&pwq->pool->lock);
2742
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2743
		spin_unlock_irq(&pwq->pool->lock);
2744 2745

		if (drained)
2746 2747 2748 2749
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2750
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2751
				wq->name, flush_cnt);
2752

2753
		mutex_unlock(&wq->mutex);
2754 2755 2756 2757
		goto reflush;
	}

	if (!--wq->nr_drainers)
2758
		wq->flags &= ~__WQ_DRAINING;
2759
	mutex_unlock(&wq->mutex);
2760 2761 2762
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2763
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2764
{
2765
	struct worker *worker = NULL;
2766
	struct worker_pool *pool;
2767
	struct pool_workqueue *pwq;
2768 2769

	might_sleep();
2770 2771

	local_irq_disable();
2772
	pool = get_work_pool(work);
2773 2774
	if (!pool) {
		local_irq_enable();
2775
		return false;
2776
	}
2777

2778
	spin_lock(&pool->lock);
2779
	/* see the comment in try_to_grab_pending() with the same code */
2780 2781 2782
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2783
			goto already_gone;
2784
	} else {
2785
		worker = find_worker_executing_work(pool, work);
2786
		if (!worker)
T
Tejun Heo 已提交
2787
			goto already_gone;
2788
		pwq = worker->current_pwq;
2789
	}
2790

2791
	insert_wq_barrier(pwq, barr, work, worker);
2792
	spin_unlock_irq(&pool->lock);
2793

2794 2795 2796 2797 2798 2799
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2800
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2801
		lock_map_acquire(&pwq->wq->lockdep_map);
2802
	else
2803 2804
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2805

2806
	return true;
T
Tejun Heo 已提交
2807
already_gone:
2808
	spin_unlock_irq(&pool->lock);
2809
	return false;
2810
}
2811 2812 2813 2814 2815

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2816 2817
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2818
 *
2819
 * Return:
2820 2821 2822 2823 2824
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2825 2826
	struct wq_barrier barr;

2827 2828 2829
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2830 2831 2832 2833 2834 2835 2836
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2837
}
2838
EXPORT_SYMBOL_GPL(flush_work);
2839

2840
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2841
{
2842
	unsigned long flags;
2843 2844 2845
	int ret;

	do {
2846 2847 2848 2849 2850 2851
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2852
			flush_work(work);
2853 2854
	} while (unlikely(ret < 0));

2855 2856 2857 2858
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2859
	flush_work(work);
2860
	clear_work_data(work);
2861 2862 2863
	return ret;
}

2864
/**
2865 2866
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2867
 *
2868 2869 2870 2871
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2872
 *
2873 2874
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2875
 *
2876
 * The caller must ensure that the workqueue on which @work was last
2877
 * queued can't be destroyed before this function returns.
2878
 *
2879
 * Return:
2880
 * %true if @work was pending, %false otherwise.
2881
 */
2882
bool cancel_work_sync(struct work_struct *work)
2883
{
2884
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2885
}
2886
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2887

2888
/**
2889 2890
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2891
 *
2892 2893 2894
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2895
 *
2896
 * Return:
2897 2898
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2899
 */
2900 2901
bool flush_delayed_work(struct delayed_work *dwork)
{
2902
	local_irq_disable();
2903
	if (del_timer_sync(&dwork->timer))
2904
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2905
	local_irq_enable();
2906 2907 2908 2909
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2910
/**
2911 2912
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2913
 *
2914 2915 2916 2917 2918 2919 2920 2921 2922
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2923
 *
2924
 * This function is safe to call from any context including IRQ handler.
2925
 */
2926
bool cancel_delayed_work(struct delayed_work *dwork)
2927
{
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2938 2939
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2940
	local_irq_restore(flags);
2941
	return ret;
2942
}
2943
EXPORT_SYMBOL(cancel_delayed_work);
2944

2945 2946 2947 2948 2949 2950
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2951
 * Return:
2952 2953 2954
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2955
{
2956
	return __cancel_work_timer(&dwork->work, true);
2957
}
2958
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2959

2960
/**
2961
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2962 2963
 * @func: the function to call
 *
2964 2965
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2966
 * schedule_on_each_cpu() is very slow.
2967
 *
2968
 * Return:
2969
 * 0 on success, -errno on failure.
2970
 */
2971
int schedule_on_each_cpu(work_func_t func)
2972 2973
{
	int cpu;
2974
	struct work_struct __percpu *works;
2975

2976 2977
	works = alloc_percpu(struct work_struct);
	if (!works)
2978
		return -ENOMEM;
2979

2980 2981
	get_online_cpus();

2982
	for_each_online_cpu(cpu) {
2983 2984 2985
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2986
		schedule_work_on(cpu, work);
2987
	}
2988 2989 2990 2991

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2992
	put_online_cpus();
2993
	free_percpu(works);
2994 2995 2996
	return 0;
}

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3021 3022
void flush_scheduled_work(void)
{
3023
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3024
}
3025
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3026

3027 3028 3029 3030 3031 3032 3033 3034 3035
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3036
 * Return:	0 - function was executed
3037 3038
 *		1 - function was scheduled for execution
 */
3039
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3040 3041
{
	if (!in_interrupt()) {
3042
		fn(&ew->work);
3043 3044 3045
		return 0;
	}

3046
	INIT_WORK(&ew->work, fn);
3047 3048 3049 3050 3051 3052
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3080 3081
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3082 3083 3084 3085 3086
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3087
static DEVICE_ATTR_RO(per_cpu);
3088

3089 3090
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3091 3092 3093 3094 3095 3096
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3097 3098 3099
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3110
static DEVICE_ATTR_RW(max_active);
3111

3112 3113 3114 3115
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3116
};
3117
ATTRIBUTE_GROUPS(wq_sysfs);
3118

3119 3120
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3121 3122
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3123 3124
	const char *delim = "";
	int node, written = 0;
3125 3126

	rcu_read_lock_sched();
3127 3128 3129 3130 3131 3132 3133
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3145 3146 3147
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3161 3162 3163
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3179
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3194 3195 3196
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3257
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3258
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3259 3260
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3261
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3262 3263 3264 3265 3266
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3267
	.dev_groups			= wq_sysfs_groups,
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3296
 * Return: 0 on success, -errno on failure.
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3389 3390 3391
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3403
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3404 3405 3406 3407 3408 3409
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3410 3411 3412 3413 3414
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3415 3416 3417 3418 3419 3420
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3421 3422 3423 3424 3425 3426 3427 3428
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3429 3430
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3445 3446 3447 3448 3449
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3450 3451
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3452 3453
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3454 3455
 */
static int init_worker_pool(struct worker_pool *pool)
3456 3457
{
	spin_lock_init(&pool->lock);
3458 3459
	pool->id = -1;
	pool->cpu = -1;
3460
	pool->node = NUMA_NO_NODE;
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3474
	mutex_init(&pool->attach_mutex);
3475
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3476

3477
	ida_init(&pool->worker_ida);
3478 3479 3480 3481
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3482 3483 3484 3485
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3486 3487
}

3488 3489 3490 3491
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3492
	ida_destroy(&pool->worker_ida);
3493 3494 3495 3496 3497 3498 3499 3500 3501
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3502 3503 3504
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3505 3506
 *
 * Should be called with wq_pool_mutex held.
3507 3508 3509
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3510
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3511 3512
	struct worker *worker;

3513 3514 3515
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3516 3517 3518 3519
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3520
	    WARN_ON(!list_empty(&pool->worklist)))
3521 3522 3523 3524 3525 3526 3527
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3528 3529 3530
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
3531
	 * attach_mutex.
3532
	 */
3533 3534
	mutex_lock(&pool->manager_arb);

3535
	spin_lock_irq(&pool->lock);
3536 3537 3538 3539
	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3540

3541
	mutex_lock(&pool->attach_mutex);
3542
	if (!list_empty(&pool->workers))
3543
		pool->detach_completion = &detach_completion;
3544
	mutex_unlock(&pool->attach_mutex);
3545 3546 3547 3548

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3566
 * create a new one.
3567 3568
 *
 * Should be called with wq_pool_mutex held.
3569 3570 3571
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3572 3573 3574 3575 3576
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3577
	int node;
3578

3579
	lockdep_assert_held(&wq_pool_mutex);
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3594 3595 3596
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3597
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3598 3599
	copy_workqueue_attrs(pool->attrs, attrs);

3600 3601 3602 3603 3604 3605
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3617 3618 3619 3620
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3621
	if (create_and_start_worker(pool) < 0)
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3650
	bool is_last;
T
Tejun Heo 已提交
3651 3652 3653 3654

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3655
	/*
3656
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3657 3658 3659
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3660
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3661
	list_del_rcu(&pwq->pwqs_node);
3662
	is_last = list_empty(&wq->pwqs);
3663
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3664

3665
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3666
	put_unbound_pool(pool);
3667 3668
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3669 3670 3671 3672 3673 3674
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3675 3676
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3677
		kfree(wq);
3678
	}
T
Tejun Heo 已提交
3679 3680
}

3681
/**
3682
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3683 3684
 * @pwq: target pool_workqueue
 *
3685 3686 3687
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3688
 */
3689
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3690
{
3691 3692 3693 3694
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3695
	lockdep_assert_held(&wq->mutex);
3696 3697 3698 3699 3700

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3701
	spin_lock_irq(&pwq->pool->lock);
3702 3703 3704

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3705

3706 3707 3708
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3709 3710 3711 3712 3713 3714

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3715 3716 3717 3718
	} else {
		pwq->max_active = 0;
	}

3719
	spin_unlock_irq(&pwq->pool->lock);
3720 3721
}

3722
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3723 3724
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3725 3726 3727
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3728 3729
	memset(pwq, 0, sizeof(*pwq));

3730 3731 3732
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3733
	pwq->refcnt = 1;
3734
	INIT_LIST_HEAD(&pwq->delayed_works);
3735
	INIT_LIST_HEAD(&pwq->pwqs_node);
3736
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3737
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3738
}
3739

3740
/* sync @pwq with the current state of its associated wq and link it */
3741
static void link_pwq(struct pool_workqueue *pwq)
3742 3743 3744 3745
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3746

3747 3748 3749 3750
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3751 3752
	/*
	 * Set the matching work_color.  This is synchronized with
3753
	 * wq->mutex to avoid confusing flush_workqueue().
3754
	 */
3755
	pwq->work_color = wq->work_color;
3756 3757 3758 3759 3760

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3761
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3762
}
3763

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3777
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3778 3779 3780
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3781
	}
3782

3783 3784
	init_pwq(pwq, wq, pool);
	return pwq;
3785 3786
}

3787 3788 3789 3790 3791 3792 3793
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3794
		kmem_cache_free(pwq_cache, pwq);
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3807
 * calculation.  The result is stored in @cpumask.
3808 3809 3810 3811 3812 3813 3814 3815
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3816 3817 3818
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3819 3820 3821 3822
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3823
	if (!wq_numa_enabled || attrs->no_numa)
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3860 3861 3862 3863 3864
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3865 3866 3867 3868 3869 3870
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3871
 *
3872 3873 3874
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3875 3876 3877 3878
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3879 3880
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3881
	int node, ret;
3882

3883
	/* only unbound workqueues can change attributes */
3884 3885 3886
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3887 3888 3889 3890
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3891
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3892
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3893 3894
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3895 3896
		goto enomem;

3897
	/* make a copy of @attrs and sanitize it */
3898 3899 3900
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3915
	mutex_lock(&wq_pool_mutex);
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3937
	mutex_unlock(&wq_pool_mutex);
3938

3939
	/* all pwqs have been created successfully, let's install'em */
3940
	mutex_lock(&wq->mutex);
3941

3942
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3943 3944

	/* save the previous pwq and install the new one */
3945
	for_each_node(node)
3946 3947 3948 3949 3950
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3951 3952

	mutex_unlock(&wq->mutex);
3953

3954 3955 3956 3957 3958 3959
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3960 3961 3962
	ret = 0;
	/* fall through */
out_free:
3963
	free_workqueue_attrs(tmp_attrs);
3964
	free_workqueue_attrs(new_attrs);
3965
	kfree(pwq_tbl);
3966
	return ret;
3967

3968 3969 3970 3971 3972 3973 3974
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3975
enomem:
3976 3977
	ret = -ENOMEM;
	goto out_free;
3978 3979
}

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4025 4026
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4027 4028 4029 4030 4031 4032 4033 4034

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
4035
	 * wq's, the default pwq should be used.
4036 4037 4038 4039 4040
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
4041
		goto use_dfl_pwq;
4042 4043 4044 4045 4046 4047 4048
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
4049 4050
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
4051 4052
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4075
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4076
{
4077
	bool highpri = wq->flags & WQ_HIGHPRI;
4078
	int cpu, ret;
4079 4080

	if (!(wq->flags & WQ_UNBOUND)) {
4081 4082
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4083 4084 4085
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4086 4087
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4088
			struct worker_pool *cpu_pools =
4089
				per_cpu(cpu_worker_pools, cpu);
4090

4091 4092 4093
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4094
			link_pwq(pwq);
4095
			mutex_unlock(&wq->mutex);
4096
		}
4097
		return 0;
4098 4099 4100 4101 4102 4103 4104
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4105
	} else {
4106
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4107
	}
T
Tejun Heo 已提交
4108 4109
}

4110 4111
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4112
{
4113 4114 4115
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4116 4117
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4118

4119
	return clamp_val(max_active, 1, lim);
4120 4121
}

4122
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4123 4124 4125
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4126
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4127
{
4128
	size_t tbl_size = 0;
4129
	va_list args;
L
Linus Torvalds 已提交
4130
	struct workqueue_struct *wq;
4131
	struct pool_workqueue *pwq;
4132

4133 4134 4135 4136
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4137
	/* allocate wq and format name */
4138 4139 4140 4141
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4142
	if (!wq)
4143
		return NULL;
4144

4145 4146 4147 4148 4149 4150
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4151 4152
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4153
	va_end(args);
L
Linus Torvalds 已提交
4154

4155
	max_active = max_active ?: WQ_DFL_ACTIVE;
4156
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4157

4158
	/* init wq */
4159
	wq->flags = flags;
4160
	wq->saved_max_active = max_active;
4161
	mutex_init(&wq->mutex);
4162
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4163
	INIT_LIST_HEAD(&wq->pwqs);
4164 4165
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4166
	INIT_LIST_HEAD(&wq->maydays);
4167

4168
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4169
	INIT_LIST_HEAD(&wq->list);
4170

4171
	if (alloc_and_link_pwqs(wq) < 0)
4172
		goto err_free_wq;
T
Tejun Heo 已提交
4173

4174 4175 4176 4177 4178
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4179 4180
		struct worker *rescuer;

4181
		rescuer = alloc_worker();
4182
		if (!rescuer)
4183
			goto err_destroy;
4184

4185 4186
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4187
					       wq->name);
4188 4189 4190 4191
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4192

4193
		wq->rescuer = rescuer;
4194
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4195
		wake_up_process(rescuer->task);
4196 4197
	}

4198 4199 4200
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4201
	/*
4202 4203 4204
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4205
	 */
4206
	mutex_lock(&wq_pool_mutex);
4207

4208
	mutex_lock(&wq->mutex);
4209 4210
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4211
	mutex_unlock(&wq->mutex);
4212

T
Tejun Heo 已提交
4213
	list_add(&wq->list, &workqueues);
4214

4215
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4216

4217
	return wq;
4218 4219

err_free_wq:
4220
	free_workqueue_attrs(wq->unbound_attrs);
4221 4222 4223 4224
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4225
	return NULL;
4226
}
4227
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4228

4229 4230 4231 4232 4233 4234 4235 4236
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4237
	struct pool_workqueue *pwq;
4238
	int node;
4239

4240 4241
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4242

4243
	/* sanity checks */
4244
	mutex_lock(&wq->mutex);
4245
	for_each_pwq(pwq, wq) {
4246 4247
		int i;

4248 4249
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4250
				mutex_unlock(&wq->mutex);
4251
				return;
4252 4253 4254
			}
		}

4255
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4256
		    WARN_ON(pwq->nr_active) ||
4257
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4258
			mutex_unlock(&wq->mutex);
4259
			return;
4260
		}
4261
	}
4262
	mutex_unlock(&wq->mutex);
4263

4264 4265 4266 4267
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4268
	mutex_lock(&wq_pool_mutex);
4269
	list_del_init(&wq->list);
4270
	mutex_unlock(&wq_pool_mutex);
4271

4272 4273
	workqueue_sysfs_unregister(wq);

4274
	if (wq->rescuer) {
4275
		kthread_stop(wq->rescuer->task);
4276
		kfree(wq->rescuer);
4277
		wq->rescuer = NULL;
4278 4279
	}

T
Tejun Heo 已提交
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4290 4291
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4292
		 */
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4305
		put_pwq_unlocked(pwq);
4306
	}
4307 4308 4309
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4322
	struct pool_workqueue *pwq;
4323

4324 4325 4326 4327
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4328
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4329

4330
	mutex_lock(&wq->mutex);
4331 4332 4333

	wq->saved_max_active = max_active;

4334 4335
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4336

4337
	mutex_unlock(&wq->mutex);
4338
}
4339
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4340

4341 4342 4343 4344 4345
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4346 4347
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4348 4349 4350 4351 4352
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4353
	return worker && worker->rescue_wq;
4354 4355
}

4356
/**
4357 4358 4359
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4360
 *
4361 4362 4363
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4364
 *
4365 4366 4367 4368 4369 4370
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4371
 * Return:
4372
 * %true if congested, %false otherwise.
4373
 */
4374
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4375
{
4376
	struct pool_workqueue *pwq;
4377 4378
	bool ret;

4379
	rcu_read_lock_sched();
4380

4381 4382 4383
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4384 4385 4386
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4387
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4388

4389
	ret = !list_empty(&pwq->delayed_works);
4390
	rcu_read_unlock_sched();
4391 4392

	return ret;
L
Linus Torvalds 已提交
4393
}
4394
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4395

4396 4397 4398 4399 4400 4401 4402 4403
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4404
 * Return:
4405 4406 4407
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4408
{
4409
	struct worker_pool *pool;
4410 4411
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4412

4413 4414
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4415

4416 4417
	local_irq_save(flags);
	pool = get_work_pool(work);
4418
	if (pool) {
4419
		spin_lock(&pool->lock);
4420 4421
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4422
		spin_unlock(&pool->lock);
4423
	}
4424
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4425

4426
	return ret;
L
Linus Torvalds 已提交
4427
}
4428
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4429

4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
4500
		pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
4501 4502 4503 4504 4505 4506
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4507 4508 4509
/*
 * CPU hotplug.
 *
4510
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4511
 * are a lot of assumptions on strong associations among work, pwq and
4512
 * pool which make migrating pending and scheduled works very
4513
 * difficult to implement without impacting hot paths.  Secondly,
4514
 * worker pools serve mix of short, long and very long running works making
4515 4516
 * blocked draining impractical.
 *
4517
 * This is solved by allowing the pools to be disassociated from the CPU
4518 4519
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4520
 */
L
Linus Torvalds 已提交
4521

4522
static void wq_unbind_fn(struct work_struct *work)
4523
{
4524
	int cpu = smp_processor_id();
4525
	struct worker_pool *pool;
4526
	struct worker *worker;
4527

4528
	for_each_cpu_worker_pool(pool, cpu) {
4529
		WARN_ON_ONCE(cpu != smp_processor_id());
4530

4531
		mutex_lock(&pool->attach_mutex);
4532
		spin_lock_irq(&pool->lock);
4533

4534
		/*
4535
		 * We've blocked all attach/detach operations. Make all workers
4536 4537 4538 4539 4540
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4541
		for_each_pool_worker(worker, pool)
4542
			worker->flags |= WORKER_UNBOUND;
4543

4544
		pool->flags |= POOL_DISASSOCIATED;
4545

4546
		spin_unlock_irq(&pool->lock);
4547
		mutex_unlock(&pool->attach_mutex);
4548

4549 4550 4551 4552 4553 4554 4555
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4556

4557 4558 4559 4560 4561 4562 4563 4564
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4565
		atomic_set(&pool->nr_running, 0);
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4576 4577
}

T
Tejun Heo 已提交
4578 4579 4580 4581
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4582
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4583 4584 4585
 */
static void rebind_workers(struct worker_pool *pool)
{
4586
	struct worker *worker;
T
Tejun Heo 已提交
4587

4588
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4589

4590 4591 4592 4593 4594 4595 4596
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4597
	for_each_pool_worker(worker, pool)
4598 4599
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4600

4601
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4602

4603
	for_each_pool_worker(worker, pool) {
4604
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4605 4606

		/*
4607 4608 4609 4610 4611 4612
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4613
		 */
4614 4615
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4616

4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4636
	}
4637 4638

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4639 4640
}

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4656
	lockdep_assert_held(&pool->attach_mutex);
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4668
	for_each_pool_worker(worker, pool)
4669 4670 4671 4672
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4673 4674 4675 4676
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4677
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4678 4679
					       unsigned long action,
					       void *hcpu)
4680
{
4681
	int cpu = (unsigned long)hcpu;
4682
	struct worker_pool *pool;
4683
	struct workqueue_struct *wq;
4684
	int pi;
4685

T
Tejun Heo 已提交
4686
	switch (action & ~CPU_TASKS_FROZEN) {
4687
	case CPU_UP_PREPARE:
4688
		for_each_cpu_worker_pool(pool, cpu) {
4689 4690
			if (pool->nr_workers)
				continue;
4691
			if (create_and_start_worker(pool) < 0)
4692
				return NOTIFY_BAD;
4693
		}
T
Tejun Heo 已提交
4694
		break;
4695

4696 4697
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4698
		mutex_lock(&wq_pool_mutex);
4699 4700

		for_each_pool(pool, pi) {
4701
			mutex_lock(&pool->attach_mutex);
4702

4703 4704 4705 4706
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4707

4708 4709 4710 4711
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4712

4713
			mutex_unlock(&pool->attach_mutex);
4714
		}
4715

4716 4717 4718 4719
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4720
		mutex_unlock(&wq_pool_mutex);
4721
		break;
4722
	}
4723 4724 4725 4726 4727 4728 4729
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4730
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4731 4732 4733
						 unsigned long action,
						 void *hcpu)
{
4734
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4735
	struct work_struct unbind_work;
4736
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4737

4738 4739
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4740
		/* unbinding per-cpu workers should happen on the local CPU */
4741
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4742
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4743 4744 4745 4746 4747 4748 4749 4750

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4751
		flush_work(&unbind_work);
4752
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4753
		break;
4754 4755 4756 4757
	}
	return NOTIFY_OK;
}

4758
#ifdef CONFIG_SMP
4759

4760
struct work_for_cpu {
4761
	struct work_struct work;
4762 4763 4764 4765 4766
	long (*fn)(void *);
	void *arg;
	long ret;
};

4767
static void work_for_cpu_fn(struct work_struct *work)
4768
{
4769 4770
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4771 4772 4773 4774 4775 4776 4777 4778 4779
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4780
 * It is up to the caller to ensure that the cpu doesn't go offline.
4781
 * The caller must not hold any locks which would prevent @fn from completing.
4782 4783
 *
 * Return: The value @fn returns.
4784
 */
4785
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4786
{
4787
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4788

4789 4790
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4791
	flush_work(&wfc.work);
4792
	destroy_work_on_stack(&wfc.work);
4793 4794 4795 4796 4797
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4798 4799 4800 4801 4802
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4803
 * Start freezing workqueues.  After this function returns, all freezable
4804
 * workqueues will queue new works to their delayed_works list instead of
4805
 * pool->worklist.
4806 4807
 *
 * CONTEXT:
4808
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4809 4810 4811
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4812
	struct worker_pool *pool;
4813 4814
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4815
	int pi;
4816

4817
	mutex_lock(&wq_pool_mutex);
4818

4819
	WARN_ON_ONCE(workqueue_freezing);
4820 4821
	workqueue_freezing = true;

4822
	/* set FREEZING */
4823
	for_each_pool(pool, pi) {
4824
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4825 4826
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4827
		spin_unlock_irq(&pool->lock);
4828
	}
4829

4830
	list_for_each_entry(wq, &workqueues, list) {
4831
		mutex_lock(&wq->mutex);
4832 4833
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4834
		mutex_unlock(&wq->mutex);
4835
	}
4836

4837
	mutex_unlock(&wq_pool_mutex);
4838 4839 4840
}

/**
4841
 * freeze_workqueues_busy - are freezable workqueues still busy?
4842 4843 4844 4845 4846
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4847
 * Grabs and releases wq_pool_mutex.
4848
 *
4849
 * Return:
4850 4851
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4852 4853 4854 4855
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4856 4857
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4858

4859
	mutex_lock(&wq_pool_mutex);
4860

4861
	WARN_ON_ONCE(!workqueue_freezing);
4862

4863 4864 4865
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4866 4867 4868 4869
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4870
		rcu_read_lock_sched();
4871
		for_each_pwq(pwq, wq) {
4872
			WARN_ON_ONCE(pwq->nr_active < 0);
4873
			if (pwq->nr_active) {
4874
				busy = true;
4875
				rcu_read_unlock_sched();
4876 4877 4878
				goto out_unlock;
			}
		}
4879
		rcu_read_unlock_sched();
4880 4881
	}
out_unlock:
4882
	mutex_unlock(&wq_pool_mutex);
4883 4884 4885 4886 4887 4888 4889
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4890
 * frozen works are transferred to their respective pool worklists.
4891 4892
 *
 * CONTEXT:
4893
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4894 4895 4896
 */
void thaw_workqueues(void)
{
4897 4898 4899
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4900
	int pi;
4901

4902
	mutex_lock(&wq_pool_mutex);
4903 4904 4905 4906

	if (!workqueue_freezing)
		goto out_unlock;

4907
	/* clear FREEZING */
4908
	for_each_pool(pool, pi) {
4909
		spin_lock_irq(&pool->lock);
4910 4911
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4912
		spin_unlock_irq(&pool->lock);
4913
	}
4914

4915 4916
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4917
		mutex_lock(&wq->mutex);
4918 4919
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4920
		mutex_unlock(&wq->mutex);
4921 4922 4923 4924
	}

	workqueue_freezing = false;
out_unlock:
4925
	mutex_unlock(&wq_pool_mutex);
4926 4927 4928
}
#endif /* CONFIG_FREEZER */

4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4941 4942 4943 4944 4945
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4946 4947 4948
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4949 4950 4951 4952 4953 4954 4955 4956 4957
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4958 4959
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4975
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4976
{
T
Tejun Heo 已提交
4977 4978
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4979

4980 4981 4982 4983
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4984
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4985
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4986

4987 4988
	wq_numa_init();

4989
	/* initialize CPU pools */
4990
	for_each_possible_cpu(cpu) {
4991
		struct worker_pool *pool;
4992

T
Tejun Heo 已提交
4993
		i = 0;
4994
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4995
			BUG_ON(init_worker_pool(pool));
4996
			pool->cpu = cpu;
4997
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4998
			pool->attrs->nice = std_nice[i++];
4999
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5000

T
Tejun Heo 已提交
5001
			/* alloc pool ID */
5002
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5003
			BUG_ON(worker_pool_assign_id(pool));
5004
			mutex_unlock(&wq_pool_mutex);
5005
		}
5006 5007
	}

5008
	/* create the initial worker */
5009
	for_each_online_cpu(cpu) {
5010
		struct worker_pool *pool;
5011

5012
		for_each_cpu_worker_pool(pool, cpu) {
5013
			pool->flags &= ~POOL_DISASSOCIATED;
5014
			BUG_ON(create_and_start_worker(pool) < 0);
5015
		}
5016 5017
	}

5018
	/* create default unbound and ordered wq attrs */
5019 5020 5021 5022 5023 5024
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5035 5036
	}

5037
	system_wq = alloc_workqueue("events", 0, 0);
5038
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5039
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5040 5041
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5042 5043
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5044 5045 5046 5047 5048
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5049
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5050 5051 5052
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5053
	return 0;
L
Linus Torvalds 已提交
5054
}
5055
early_initcall(init_workqueues);