workqueue.c 137.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131
 * WQ: wq->mutex protected.
 *
132
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133 134
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
135 136
 */

137
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
138

139
struct worker_pool {
140
	spinlock_t		lock;		/* the pool lock */
141
	int			cpu;		/* I: the associated cpu */
142
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
143
	int			id;		/* I: pool ID */
144
	unsigned int		flags;		/* X: flags */
145 146 147

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
148 149

	/* nr_idle includes the ones off idle_list for rebinding */
150 151 152 153 154 155
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

156
	/* a workers is either on busy_hash or idle_list, or the manager */
157 158 159
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

160
	/* see manage_workers() for details on the two manager mutexes */
161
	struct mutex		manager_arb;	/* manager arbitration */
162 163
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
164
	struct completion	*detach_completion; /* all workers detached */
165

166
	struct ida		worker_ida;	/* worker IDs for task name */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PR: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259

260 261 262 263 264 265 266
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

267 268 269
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
270
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
271 272
};

273 274
static struct kmem_cache *pwq_cache;

275 276 277
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

278 279 280
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

281 282 283 284 285 286 287 288 289
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

290 291
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

292 293 294
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

295
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
296
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
297

298
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
299
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
300 301 302 303 304

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

305
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
306

307
/* PL: hash of all unbound pools keyed by pool->attrs */
308 309
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

310
/* I: attributes used when instantiating standard unbound pools on demand */
311 312
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

313 314 315
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

316
struct workqueue_struct *system_wq __read_mostly;
317
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
318
struct workqueue_struct *system_highpri_wq __read_mostly;
319
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
320
struct workqueue_struct *system_long_wq __read_mostly;
321
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
322
struct workqueue_struct *system_unbound_wq __read_mostly;
323
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
324
struct workqueue_struct *system_freezable_wq __read_mostly;
325
EXPORT_SYMBOL_GPL(system_freezable_wq);
326 327 328 329
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
330

331 332 333 334
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

335 336 337
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

338
#define assert_rcu_or_pool_mutex()					\
339
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340 341
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
342

343
#define assert_rcu_or_wq_mutex(wq)					\
344
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
345
			   lockdep_is_held(&wq->mutex),			\
346
			   "sched RCU or wq->mutex should be held")
347

348 349 350
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
351
	     (pool)++)
352

T
Tejun Heo 已提交
353 354 355
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
356
 * @pi: integer used for iteration
357
 *
358 359 360
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
361 362 363
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
364
 */
365 366
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
367
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
368
		else
T
Tejun Heo 已提交
369

370 371 372 373 374
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
375
 * This must be called with @pool->attach_mutex.
376 377 378 379
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
380 381
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
382
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
383 384
		else

385 386 387 388
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
389
 *
390
 * This must be called either with wq->mutex held or sched RCU read locked.
391 392
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
393 394 395
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
396 397
 */
#define for_each_pwq(pwq, wq)						\
398
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
399
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
400
		else
401

402 403 404 405
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

406 407 408 409 410
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
446
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
482
	.debug_hint	= work_debug_hint,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

513 514 515 516 517 518 519
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

520 521 522 523 524
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

525 526 527 528 529 530 531
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
532 533 534 535
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

536
	lockdep_assert_held(&wq_pool_mutex);
537

538 539
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
540
	if (ret >= 0) {
T
Tejun Heo 已提交
541
		pool->id = ret;
542 543
		return 0;
	}
544
	return ret;
545 546
}

547 548 549 550 551 552 553 554
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
555 556
 *
 * Return: The unbound pool_workqueue for @node.
557 558 559 560 561 562 563 564
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
580

581
/*
582 583
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
584
 * is cleared and the high bits contain OFFQ flags and pool ID.
585
 *
586 587
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
588 589
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
590
 *
591
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
592
 * corresponding to a work.  Pool is available once the work has been
593
 * queued anywhere after initialization until it is sync canceled.  pwq is
594
 * available only while the work item is queued.
595
 *
596 597 598 599
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
600
 */
601 602
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
603
{
604
	WARN_ON_ONCE(!work_pending(work));
605 606
	atomic_long_set(&work->data, data | flags | work_static(work));
}
607

608
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
609 610
			 unsigned long extra_flags)
{
611 612
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
613 614
}

615 616 617 618 619 620 621
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

622 623
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
624
{
625 626 627 628 629 630 631
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
632
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
633
}
634

635
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
636
{
637 638
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
639 640
}

641
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
642
{
643
	unsigned long data = atomic_long_read(&work->data);
644

645
	if (data & WORK_STRUCT_PWQ)
646 647 648
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
649 650
}

651 652 653 654
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
655 656 657
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
658 659 660 661 662
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
663 664
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
665 666
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
667
{
668
	unsigned long data = atomic_long_read(&work->data);
669
	int pool_id;
670

671
	assert_rcu_or_pool_mutex();
672

673 674
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
675
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
676

677 678
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
679 680
		return NULL;

681
	return idr_find(&worker_pool_idr, pool_id);
682 683 684 685 686 687
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
688
 * Return: The worker_pool ID @work was last associated with.
689 690 691 692
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
693 694
	unsigned long data = atomic_long_read(&work->data);

695 696
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
697
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
698

699
	return data >> WORK_OFFQ_POOL_SHIFT;
700 701
}

702 703
static void mark_work_canceling(struct work_struct *work)
{
704
	unsigned long pool_id = get_work_pool_id(work);
705

706 707
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
708 709 710 711 712 713
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

714
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
715 716
}

717
/*
718 719
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
720
 * they're being called with pool->lock held.
721 722
 */

723
static bool __need_more_worker(struct worker_pool *pool)
724
{
725
	return !atomic_read(&pool->nr_running);
726 727
}

728
/*
729 730
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
731 732
 *
 * Note that, because unbound workers never contribute to nr_running, this
733
 * function will always return %true for unbound pools as long as the
734
 * worklist isn't empty.
735
 */
736
static bool need_more_worker(struct worker_pool *pool)
737
{
738
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
739
}
740

741
/* Can I start working?  Called from busy but !running workers. */
742
static bool may_start_working(struct worker_pool *pool)
743
{
744
	return pool->nr_idle;
745 746 747
}

/* Do I need to keep working?  Called from currently running workers. */
748
static bool keep_working(struct worker_pool *pool)
749
{
750 751
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
752 753 754
}

/* Do we need a new worker?  Called from manager. */
755
static bool need_to_create_worker(struct worker_pool *pool)
756
{
757
	return need_more_worker(pool) && !may_start_working(pool);
758
}
759

760
/* Do we have too many workers and should some go away? */
761
static bool too_many_workers(struct worker_pool *pool)
762
{
763
	bool managing = mutex_is_locked(&pool->manager_arb);
764 765
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
766 767

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
768 769
}

770
/*
771 772 773
 * Wake up functions.
 */

774 775
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
776
{
777
	if (unlikely(list_empty(&pool->idle_list)))
778 779
		return NULL;

780
	return list_first_entry(&pool->idle_list, struct worker, entry);
781 782 783 784
}

/**
 * wake_up_worker - wake up an idle worker
785
 * @pool: worker pool to wake worker from
786
 *
787
 * Wake up the first idle worker of @pool.
788 789
 *
 * CONTEXT:
790
 * spin_lock_irq(pool->lock).
791
 */
792
static void wake_up_worker(struct worker_pool *pool)
793
{
794
	struct worker *worker = first_idle_worker(pool);
795 796 797 798 799

	if (likely(worker))
		wake_up_process(worker->task);
}

800
/**
801 802 803 804 805 806 807 808 809 810
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
811
void wq_worker_waking_up(struct task_struct *task, int cpu)
812 813 814
{
	struct worker *worker = kthread_data(task);

815
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
816
		WARN_ON_ONCE(worker->pool->cpu != cpu);
817
		atomic_inc(&worker->pool->nr_running);
818
	}
819 820 821 822 823 824 825 826 827 828 829 830 831 832
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
833
 * Return:
834 835
 * Worker task on @cpu to wake up, %NULL if none.
 */
836
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
837 838
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
839
	struct worker_pool *pool;
840

841 842 843 844 845
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
846
	if (worker->flags & WORKER_NOT_RUNNING)
847 848
		return NULL;

849 850
	pool = worker->pool;

851
	/* this can only happen on the local cpu */
852
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
853
		return NULL;
854 855 856 857 858 859

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
860 861 862
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
863
	 * manipulating idle_list, so dereferencing idle_list without pool
864
	 * lock is safe.
865
	 */
866 867
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
868
		to_wakeup = first_idle_worker(pool);
869 870 871 872 873
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
874
 * @worker: self
875 876
 * @flags: flags to set
 *
877
 * Set @flags in @worker->flags and adjust nr_running accordingly.
878
 *
879
 * CONTEXT:
880
 * spin_lock_irq(pool->lock)
881
 */
882
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
883
{
884
	struct worker_pool *pool = worker->pool;
885

886 887
	WARN_ON_ONCE(worker->task != current);

888
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
889 890
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
891
		atomic_dec(&pool->nr_running);
892 893
	}

894 895 896 897
	worker->flags |= flags;
}

/**
898
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
899
 * @worker: self
900 901
 * @flags: flags to clear
 *
902
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
903
 *
904
 * CONTEXT:
905
 * spin_lock_irq(pool->lock)
906 907 908
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
909
	struct worker_pool *pool = worker->pool;
910 911
	unsigned int oflags = worker->flags;

912 913
	WARN_ON_ONCE(worker->task != current);

914
	worker->flags &= ~flags;
915

916 917 918 919 920
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
921 922
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
923
			atomic_inc(&pool->nr_running);
924 925
}

926 927
/**
 * find_worker_executing_work - find worker which is executing a work
928
 * @pool: pool of interest
929 930
 * @work: work to find worker for
 *
931 932
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
933 934 935 936 937 938 939 940 941 942 943 944
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
945 946 947 948 949 950
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
951 952
 *
 * CONTEXT:
953
 * spin_lock_irq(pool->lock).
954
 *
955 956
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
957
 * otherwise.
958
 */
959
static struct worker *find_worker_executing_work(struct worker_pool *pool,
960
						 struct work_struct *work)
961
{
962 963
	struct worker *worker;

964
	hash_for_each_possible(pool->busy_hash, worker, hentry,
965 966 967
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
968 969 970
			return worker;

	return NULL;
971 972
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
988
 * spin_lock_irq(pool->lock).
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1072
static void pwq_activate_delayed_work(struct work_struct *work)
1073
{
1074
	struct pool_workqueue *pwq = get_work_pwq(work);
1075 1076

	trace_workqueue_activate_work(work);
1077
	move_linked_works(work, &pwq->pool->worklist, NULL);
1078
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1079
	pwq->nr_active++;
1080 1081
}

1082
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1083
{
1084
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1085 1086
						    struct work_struct, entry);

1087
	pwq_activate_delayed_work(work);
1088 1089
}

1090
/**
1091 1092
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1093 1094 1095
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1096
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1097 1098
 *
 * CONTEXT:
1099
 * spin_lock_irq(pool->lock).
1100
 */
1101
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1102
{
T
Tejun Heo 已提交
1103
	/* uncolored work items don't participate in flushing or nr_active */
1104
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1105
		goto out_put;
1106

1107
	pwq->nr_in_flight[color]--;
1108

1109 1110
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1111
		/* one down, submit a delayed one */
1112 1113
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1114 1115 1116
	}

	/* is flush in progress and are we at the flushing tip? */
1117
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1118
		goto out_put;
1119 1120

	/* are there still in-flight works? */
1121
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1122
		goto out_put;
1123

1124 1125
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1126 1127

	/*
1128
	 * If this was the last pwq, wake up the first flusher.  It
1129 1130
	 * will handle the rest.
	 */
1131 1132
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1133 1134
out_put:
	put_pwq(pwq);
1135 1136
}

1137
/**
1138
 * try_to_grab_pending - steal work item from worklist and disable irq
1139 1140
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1141
 * @flags: place to store irq state
1142 1143
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1144
 * stable state - idle, on timer or on worklist.
1145
 *
1146
 * Return:
1147 1148 1149
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1150 1151
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1152
 *
1153
 * Note:
1154
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1155 1156 1157
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1158 1159 1160 1161
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1162
 * This function is safe to call from any context including IRQ handler.
1163
 */
1164 1165
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1166
{
1167
	struct worker_pool *pool;
1168
	struct pool_workqueue *pwq;
1169

1170 1171
	local_irq_save(*flags);

1172 1173 1174 1175
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1176 1177 1178 1179 1180
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1181 1182 1183 1184 1185
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1186 1187 1188 1189 1190 1191 1192
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1193 1194
	pool = get_work_pool(work);
	if (!pool)
1195
		goto fail;
1196

1197
	spin_lock(&pool->lock);
1198
	/*
1199 1200 1201 1202 1203
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1204 1205
	 * item is currently queued on that pool.
	 */
1206 1207
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1208 1209 1210 1211 1212
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1213
		 * on the delayed_list, will confuse pwq->nr_active
1214 1215 1216 1217
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1218
			pwq_activate_delayed_work(work);
1219 1220

		list_del_init(&work->entry);
1221
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1222

1223
		/* work->data points to pwq iff queued, point to pool */
1224 1225 1226 1227
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1228
	}
1229
	spin_unlock(&pool->lock);
1230 1231 1232 1233 1234
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1235
	return -EAGAIN;
1236 1237
}

T
Tejun Heo 已提交
1238
/**
1239
 * insert_work - insert a work into a pool
1240
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1241 1242 1243 1244
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1245
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1246
 * work_struct flags.
T
Tejun Heo 已提交
1247 1248
 *
 * CONTEXT:
1249
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1250
 */
1251 1252
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1253
{
1254
	struct worker_pool *pool = pwq->pool;
1255

T
Tejun Heo 已提交
1256
	/* we own @work, set data and link */
1257
	set_work_pwq(work, pwq, extra_flags);
1258
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1259
	get_pwq(pwq);
1260 1261

	/*
1262 1263 1264
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1265 1266 1267
	 */
	smp_mb();

1268 1269
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1270 1271
}

1272 1273
/*
 * Test whether @work is being queued from another work executing on the
1274
 * same workqueue.
1275 1276 1277
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1278 1279 1280 1281 1282 1283 1284
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1285
	return worker && worker->current_pwq->wq == wq;
1286 1287
}

1288
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1289 1290
			 struct work_struct *work)
{
1291
	struct pool_workqueue *pwq;
1292
	struct worker_pool *last_pool;
1293
	struct list_head *worklist;
1294
	unsigned int work_flags;
1295
	unsigned int req_cpu = cpu;
1296 1297 1298 1299 1300 1301 1302 1303

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1304

1305
	debug_work_activate(work);
1306

1307
	/* if draining, only works from the same workqueue are allowed */
1308
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1309
	    WARN_ON_ONCE(!is_chained_work(wq)))
1310
		return;
1311
retry:
1312 1313 1314
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1315
	/* pwq which will be used unless @work is executing elsewhere */
1316
	if (!(wq->flags & WQ_UNBOUND))
1317
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1318 1319
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1320

1321 1322 1323 1324 1325 1326 1327 1328
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1329

1330
		spin_lock(&last_pool->lock);
1331

1332
		worker = find_worker_executing_work(last_pool, work);
1333

1334 1335
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1336
		} else {
1337 1338
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1339
			spin_lock(&pwq->pool->lock);
1340
		}
1341
	} else {
1342
		spin_lock(&pwq->pool->lock);
1343 1344
	}

1345 1346 1347 1348
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1349 1350
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1364 1365
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1366

1367
	if (WARN_ON(!list_empty(&work->entry))) {
1368
		spin_unlock(&pwq->pool->lock);
1369 1370
		return;
	}
1371

1372 1373
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1374

1375
	if (likely(pwq->nr_active < pwq->max_active)) {
1376
		trace_workqueue_activate_work(work);
1377 1378
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1379 1380
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1381
		worklist = &pwq->delayed_works;
1382
	}
1383

1384
	insert_work(pwq, work, worklist, work_flags);
1385

1386
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1387 1388
}

1389
/**
1390 1391
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1392 1393 1394
 * @wq: workqueue to use
 * @work: work to queue
 *
1395 1396
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1397 1398
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1399
 */
1400 1401
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1402
{
1403
	bool ret = false;
1404
	unsigned long flags;
1405

1406
	local_irq_save(flags);
1407

1408
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1409
		__queue_work(cpu, wq, work);
1410
		ret = true;
1411
	}
1412

1413
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1414 1415
	return ret;
}
1416
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1417

1418
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1419
{
1420
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1421

1422
	/* should have been called from irqsafe timer with irq already off */
1423
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1424
}
1425
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1426

1427 1428
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1429
{
1430 1431 1432 1433 1434
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1435 1436
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1437

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1449
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1450

1451
	dwork->wq = wq;
1452
	dwork->cpu = cpu;
1453 1454 1455 1456 1457 1458
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1459 1460
}

1461 1462 1463 1464
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1465
 * @dwork: work to queue
1466 1467
 * @delay: number of jiffies to wait before queueing
 *
1468
 * Return: %false if @work was already on a queue, %true otherwise.  If
1469 1470
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1471
 */
1472 1473
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1474
{
1475
	struct work_struct *work = &dwork->work;
1476
	bool ret = false;
1477
	unsigned long flags;
1478

1479 1480
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1481

1482
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1483
		__queue_delayed_work(cpu, wq, dwork, delay);
1484
		ret = true;
1485
	}
1486

1487
	local_irq_restore(flags);
1488 1489
	return ret;
}
1490
EXPORT_SYMBOL(queue_delayed_work_on);
1491

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1504
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1505 1506
 * pending and its timer was modified.
 *
1507
 * This function is safe to call from any context including IRQ handler.
1508 1509 1510 1511 1512 1513 1514
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1515

1516 1517 1518
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1519

1520 1521 1522
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1523
	}
1524 1525

	/* -ENOENT from try_to_grab_pending() becomes %true */
1526 1527
	return ret;
}
1528 1529
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1530 1531 1532 1533 1534 1535 1536 1537
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1538
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1539 1540
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1541
{
1542
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1543

1544 1545 1546 1547
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1548

1549
	/* can't use worker_set_flags(), also called from create_worker() */
1550
	worker->flags |= WORKER_IDLE;
1551
	pool->nr_idle++;
1552
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1553 1554

	/* idle_list is LIFO */
1555
	list_add(&worker->entry, &pool->idle_list);
1556

1557 1558
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1559

1560
	/*
1561
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1562
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1563 1564
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1565
	 */
1566
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1567
		     pool->nr_workers == pool->nr_idle &&
1568
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1578
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1579 1580 1581
 */
static void worker_leave_idle(struct worker *worker)
{
1582
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1583

1584 1585
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1586
	worker_clr_flags(worker, WORKER_IDLE);
1587
	pool->nr_idle--;
T
Tejun Heo 已提交
1588 1589 1590
	list_del_init(&worker->entry);
}

1591
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1592 1593 1594
{
	struct worker *worker;

1595
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1596 1597
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1598
		INIT_LIST_HEAD(&worker->scheduled);
1599
		INIT_LIST_HEAD(&worker->node);
1600 1601
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1602
	}
T
Tejun Heo 已提交
1603 1604 1605
	return worker;
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1639 1640 1641 1642 1643
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1644 1645 1646
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1647 1648 1649 1650 1651 1652
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1653
	mutex_lock(&pool->attach_mutex);
1654 1655
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1656
		detach_completion = pool->detach_completion;
1657
	mutex_unlock(&pool->attach_mutex);
1658

1659 1660 1661
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1662 1663 1664 1665
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1666 1667
/**
 * create_worker - create a new workqueue worker
1668
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1669
 *
1670
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1671 1672 1673 1674
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1675
 * Return:
T
Tejun Heo 已提交
1676 1677
 * Pointer to the newly created worker.
 */
1678
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1679 1680
{
	struct worker *worker = NULL;
1681
	int id = -1;
1682
	char id_buf[16];
T
Tejun Heo 已提交
1683

1684 1685
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1686 1687
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1688

1689
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1690 1691 1692
	if (!worker)
		goto fail;

1693
	worker->pool = pool;
T
Tejun Heo 已提交
1694 1695
	worker->id = id;

1696
	if (pool->cpu >= 0)
1697 1698
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1699
	else
1700 1701
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1702
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1703
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1704 1705 1706
	if (IS_ERR(worker->task))
		goto fail;

1707 1708 1709 1710 1711
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1712
	/* successful, attach the worker to the pool */
1713
	worker_attach_to_pool(worker, pool);
1714

1715 1716 1717 1718 1719 1720 1721
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1722
	return worker;
1723

T
Tejun Heo 已提交
1724
fail:
1725
	if (id >= 0)
1726
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1727 1728 1729 1730 1731 1732 1733 1734
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1735 1736
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1737 1738
 *
 * CONTEXT:
1739
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1740 1741 1742
 */
static void destroy_worker(struct worker *worker)
{
1743
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1744

1745 1746
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1747
	/* sanity check frenzy */
1748
	if (WARN_ON(worker->current_work) ||
1749 1750
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1751
		return;
T
Tejun Heo 已提交
1752

1753 1754
	pool->nr_workers--;
	pool->nr_idle--;
1755

T
Tejun Heo 已提交
1756
	list_del_init(&worker->entry);
1757
	worker->flags |= WORKER_DIE;
1758
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1759 1760
}

1761
static void idle_worker_timeout(unsigned long __pool)
1762
{
1763
	struct worker_pool *pool = (void *)__pool;
1764

1765
	spin_lock_irq(&pool->lock);
1766

1767
	while (too_many_workers(pool)) {
1768 1769 1770 1771
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1772
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1773 1774
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1775
		if (time_before(jiffies, expires)) {
1776
			mod_timer(&pool->idle_timer, expires);
1777
			break;
1778
		}
1779 1780

		destroy_worker(worker);
1781 1782
	}

1783
	spin_unlock_irq(&pool->lock);
1784
}
1785

1786
static void send_mayday(struct work_struct *work)
1787
{
1788 1789
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1790

1791
	lockdep_assert_held(&wq_mayday_lock);
1792

1793
	if (!wq->rescuer)
1794
		return;
1795 1796

	/* mayday mayday mayday */
1797
	if (list_empty(&pwq->mayday_node)) {
1798 1799 1800 1801 1802 1803
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1804
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1805
		wake_up_process(wq->rescuer->task);
1806
	}
1807 1808
}

1809
static void pool_mayday_timeout(unsigned long __pool)
1810
{
1811
	struct worker_pool *pool = (void *)__pool;
1812 1813
	struct work_struct *work;

1814 1815
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1816

1817
	if (need_to_create_worker(pool)) {
1818 1819 1820 1821 1822 1823
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1824
		list_for_each_entry(work, &pool->worklist, entry)
1825
			send_mayday(work);
L
Linus Torvalds 已提交
1826
	}
1827

1828 1829
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1830

1831
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1832 1833
}

1834 1835
/**
 * maybe_create_worker - create a new worker if necessary
1836
 * @pool: pool to create a new worker for
1837
 *
1838
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1839 1840
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1841
 * sent to all rescuers with works scheduled on @pool to resolve
1842 1843
 * possible allocation deadlock.
 *
1844 1845
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1846 1847
 *
 * LOCKING:
1848
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1849 1850 1851
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1852
static void maybe_create_worker(struct worker_pool *pool)
1853 1854
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1855
{
1856
restart:
1857
	spin_unlock_irq(&pool->lock);
1858

1859
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1860
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1861 1862

	while (true) {
1863
		if (create_worker(pool) || !need_to_create_worker(pool))
1864
			break;
L
Linus Torvalds 已提交
1865

1866
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1867

1868
		if (!need_to_create_worker(pool))
1869 1870 1871
			break;
	}

1872
	del_timer_sync(&pool->mayday_timer);
1873
	spin_lock_irq(&pool->lock);
1874 1875 1876 1877 1878
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1879
	if (need_to_create_worker(pool))
1880 1881 1882
		goto restart;
}

1883
/**
1884 1885
 * manage_workers - manage worker pool
 * @worker: self
1886
 *
1887
 * Assume the manager role and manage the worker pool @worker belongs
1888
 * to.  At any given time, there can be only zero or one manager per
1889
 * pool.  The exclusion is handled automatically by this function.
1890 1891 1892 1893
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1894 1895
 *
 * CONTEXT:
1896
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1897 1898
 * multiple times.  Does GFP_KERNEL allocations.
 *
1899
 * Return:
1900 1901 1902 1903
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1904
 */
1905
static bool manage_workers(struct worker *worker)
1906
{
1907
	struct worker_pool *pool = worker->pool;
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1919
	if (!mutex_trylock(&pool->manager_arb))
1920
		return false;
1921

1922
	maybe_create_worker(pool);
1923

1924
	mutex_unlock(&pool->manager_arb);
1925
	return true;
1926 1927
}

1928 1929
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1930
 * @worker: self
1931 1932 1933 1934 1935 1936 1937 1938 1939
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1940
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1941
 */
T
Tejun Heo 已提交
1942
static void process_one_work(struct worker *worker, struct work_struct *work)
1943 1944
__releases(&pool->lock)
__acquires(&pool->lock)
1945
{
1946
	struct pool_workqueue *pwq = get_work_pwq(work);
1947
	struct worker_pool *pool = worker->pool;
1948
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1949
	int work_color;
1950
	struct worker *collision;
1951 1952 1953 1954 1955 1956 1957 1958
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1959 1960 1961
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1962
#endif
1963
	/* ensure we're on the correct CPU */
1964
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1965
		     raw_smp_processor_id() != pool->cpu);
1966

1967 1968 1969 1970 1971 1972
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
1973
	collision = find_worker_executing_work(pool, work);
1974 1975 1976 1977 1978
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1979
	/* claim and dequeue */
1980
	debug_work_deactivate(work);
1981
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
1982
	worker->current_work = work;
1983
	worker->current_func = work->func;
1984
	worker->current_pwq = pwq;
1985
	work_color = get_work_color(work);
1986

1987 1988
	list_del_init(&work->entry);

1989
	/*
1990 1991 1992 1993
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
1994 1995
	 */
	if (unlikely(cpu_intensive))
1996
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1997

1998
	/*
1999 2000 2001 2002
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2003
	 * UNBOUND and CPU_INTENSIVE ones.
2004
	 */
2005
	if (need_more_worker(pool))
2006
		wake_up_worker(pool);
2007

2008
	/*
2009
	 * Record the last pool and clear PENDING which should be the last
2010
	 * update to @work.  Also, do this inside @pool->lock so that
2011 2012
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2013
	 */
2014
	set_work_pool_and_clear_pending(work, pool->id);
2015

2016
	spin_unlock_irq(&pool->lock);
2017

2018
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2019
	lock_map_acquire(&lockdep_map);
2020
	trace_workqueue_execute_start(work);
2021
	worker->current_func(work);
2022 2023 2024 2025 2026
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2027
	lock_map_release(&lockdep_map);
2028
	lock_map_release(&pwq->wq->lockdep_map);
2029 2030

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2031 2032
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2033 2034
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2035 2036 2037 2038
		debug_show_held_locks(current);
		dump_stack();
	}

2039 2040 2041 2042 2043
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2044 2045
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2046
	 */
2047
	cond_resched_rcu_qs();
2048

2049
	spin_lock_irq(&pool->lock);
2050

2051 2052 2053 2054
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2055
	/* we're done with it, release */
2056
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2057
	worker->current_work = NULL;
2058
	worker->current_func = NULL;
2059
	worker->current_pwq = NULL;
2060
	worker->desc_valid = false;
2061
	pwq_dec_nr_in_flight(pwq, work_color);
2062 2063
}

2064 2065 2066 2067 2068 2069 2070 2071 2072
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2073
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2074 2075 2076
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2077
{
2078 2079
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2080
						struct work_struct, entry);
T
Tejun Heo 已提交
2081
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2082 2083 2084
	}
}

T
Tejun Heo 已提交
2085 2086
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2087
 * @__worker: self
T
Tejun Heo 已提交
2088
 *
2089 2090 2091 2092 2093
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2094 2095
 *
 * Return: 0
T
Tejun Heo 已提交
2096
 */
T
Tejun Heo 已提交
2097
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2098
{
T
Tejun Heo 已提交
2099
	struct worker *worker = __worker;
2100
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2101

2102 2103
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2104
woke_up:
2105
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2106

2107 2108
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2109
		spin_unlock_irq(&pool->lock);
2110 2111
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2112 2113

		set_task_comm(worker->task, "kworker/dying");
2114
		ida_simple_remove(&pool->worker_ida, worker->id);
2115 2116
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2117
		return 0;
T
Tejun Heo 已提交
2118
	}
2119

T
Tejun Heo 已提交
2120
	worker_leave_idle(worker);
2121
recheck:
2122
	/* no more worker necessary? */
2123
	if (!need_more_worker(pool))
2124 2125 2126
		goto sleep;

	/* do we need to manage? */
2127
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2128 2129
		goto recheck;

T
Tejun Heo 已提交
2130 2131 2132 2133 2134
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2135
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2136

2137
	/*
2138 2139 2140 2141 2142
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2143
	 */
2144
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2145 2146

	do {
T
Tejun Heo 已提交
2147
		struct work_struct *work =
2148
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2149 2150 2151 2152 2153 2154
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2155
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2156 2157 2158
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2159
		}
2160
	} while (keep_working(pool));
2161

2162
	worker_set_flags(worker, WORKER_PREP);
2163
sleep:
T
Tejun Heo 已提交
2164
	/*
2165 2166 2167 2168 2169
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2170 2171 2172
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2173
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2174 2175
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2176 2177
}

2178 2179
/**
 * rescuer_thread - the rescuer thread function
2180
 * @__rescuer: self
2181 2182
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2183
 * workqueue which has WQ_MEM_RECLAIM set.
2184
 *
2185
 * Regular work processing on a pool may block trying to create a new
2186 2187 2188 2189 2190
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2191 2192
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2193 2194 2195
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2196 2197
 *
 * Return: 0
2198
 */
2199
static int rescuer_thread(void *__rescuer)
2200
{
2201 2202
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2203
	struct list_head *scheduled = &rescuer->scheduled;
2204
	bool should_stop;
2205 2206

	set_user_nice(current, RESCUER_NICE_LEVEL);
2207 2208 2209 2210 2211 2212

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2213 2214 2215
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2216 2217 2218 2219 2220 2221 2222 2223 2224
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2225

2226
	/* see whether any pwq is asking for help */
2227
	spin_lock_irq(&wq_mayday_lock);
2228 2229 2230 2231

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2232
		struct worker_pool *pool = pwq->pool;
2233 2234 2235
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2236 2237
		list_del_init(&pwq->mayday_node);

2238
		spin_unlock_irq(&wq_mayday_lock);
2239

2240 2241 2242
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2243
		rescuer->pool = pool;
2244 2245 2246 2247 2248

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2249
		WARN_ON_ONCE(!list_empty(scheduled));
2250
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2251
			if (get_work_pwq(work) == pwq)
2252 2253
				move_linked_works(work, scheduled, &n);

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2273

2274 2275
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2276
		 * go away while we're still attached to it.
2277 2278 2279
		 */
		put_pwq(pwq);

2280
		/*
2281
		 * Leave this pool.  If need_more_worker() is %true, notify a
2282 2283 2284
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2285
		if (need_more_worker(pool))
2286
			wake_up_worker(pool);
2287

2288
		rescuer->pool = NULL;
2289 2290 2291 2292 2293
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2294 2295
	}

2296
	spin_unlock_irq(&wq_mayday_lock);
2297

2298 2299 2300 2301 2302 2303
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2304 2305
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2306 2307
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2308 2309
}

O
Oleg Nesterov 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2321 2322
/**
 * insert_wq_barrier - insert a barrier work
2323
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2324
 * @barr: wq_barrier to insert
2325 2326
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2327
 *
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2340
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2341 2342
 *
 * CONTEXT:
2343
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2344
 */
2345
static void insert_wq_barrier(struct pool_workqueue *pwq,
2346 2347
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2348
{
2349 2350 2351
	struct list_head *head;
	unsigned int linked = 0;

2352
	/*
2353
	 * debugobject calls are safe here even with pool->lock locked
2354 2355 2356 2357
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2358
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2359
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2360
	init_completion(&barr->done);
2361

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2377
	debug_work_activate(&barr->work);
2378
	insert_work(pwq, &barr->work, head,
2379
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2380 2381
}

2382
/**
2383
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2384 2385 2386 2387
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2388
 * Prepare pwqs for workqueue flushing.
2389
 *
2390 2391 2392 2393 2394
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2395 2396 2397 2398 2399 2400 2401
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2402
 * If @work_color is non-negative, all pwqs should have the same
2403 2404 2405 2406
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2407
 * mutex_lock(wq->mutex).
2408
 *
2409
 * Return:
2410 2411 2412
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2413
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2414
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2415
{
2416
	bool wait = false;
2417
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2418

2419
	if (flush_color >= 0) {
2420
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2421
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2422
	}
2423

2424
	for_each_pwq(pwq, wq) {
2425
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2426

2427
		spin_lock_irq(&pool->lock);
2428

2429
		if (flush_color >= 0) {
2430
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2431

2432 2433 2434
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2435 2436 2437
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2438

2439
		if (work_color >= 0) {
2440
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2441
			pwq->work_color = work_color;
2442
		}
L
Linus Torvalds 已提交
2443

2444
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2445
	}
2446

2447
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2448
		complete(&wq->first_flusher->done);
2449

2450
	return wait;
L
Linus Torvalds 已提交
2451 2452
}

2453
/**
L
Linus Torvalds 已提交
2454
 * flush_workqueue - ensure that any scheduled work has run to completion.
2455
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2456
 *
2457 2458
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2459
 */
2460
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2461
{
2462 2463 2464 2465 2466 2467
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2468

2469 2470
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2471

2472
	mutex_lock(&wq->mutex);
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2485
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2486 2487 2488 2489 2490
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2491
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2492 2493 2494

			wq->first_flusher = &this_flusher;

2495
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2496 2497 2498 2499 2500 2501 2502 2503
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2504
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2505
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2506
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2517
	mutex_unlock(&wq->mutex);
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2530
	mutex_lock(&wq->mutex);
2531

2532 2533 2534 2535
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2536 2537
	wq->first_flusher = NULL;

2538 2539
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2552 2553
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2573
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2574 2575 2576
		}

		if (list_empty(&wq->flusher_queue)) {
2577
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2578 2579 2580 2581 2582
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2583
		 * the new first flusher and arm pwqs.
2584
		 */
2585 2586
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2587 2588 2589 2590

		list_del_init(&next->list);
		wq->first_flusher = next;

2591
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2602
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2603
}
2604
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2605

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2620
	struct pool_workqueue *pwq;
2621 2622 2623 2624

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2625
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2626
	 */
2627
	mutex_lock(&wq->mutex);
2628
	if (!wq->nr_drainers++)
2629
		wq->flags |= __WQ_DRAINING;
2630
	mutex_unlock(&wq->mutex);
2631 2632 2633
reflush:
	flush_workqueue(wq);

2634
	mutex_lock(&wq->mutex);
2635

2636
	for_each_pwq(pwq, wq) {
2637
		bool drained;
2638

2639
		spin_lock_irq(&pwq->pool->lock);
2640
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2641
		spin_unlock_irq(&pwq->pool->lock);
2642 2643

		if (drained)
2644 2645 2646 2647
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2648
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2649
				wq->name, flush_cnt);
2650

2651
		mutex_unlock(&wq->mutex);
2652 2653 2654 2655
		goto reflush;
	}

	if (!--wq->nr_drainers)
2656
		wq->flags &= ~__WQ_DRAINING;
2657
	mutex_unlock(&wq->mutex);
2658 2659 2660
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2661
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2662
{
2663
	struct worker *worker = NULL;
2664
	struct worker_pool *pool;
2665
	struct pool_workqueue *pwq;
2666 2667

	might_sleep();
2668 2669

	local_irq_disable();
2670
	pool = get_work_pool(work);
2671 2672
	if (!pool) {
		local_irq_enable();
2673
		return false;
2674
	}
2675

2676
	spin_lock(&pool->lock);
2677
	/* see the comment in try_to_grab_pending() with the same code */
2678 2679 2680
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2681
			goto already_gone;
2682
	} else {
2683
		worker = find_worker_executing_work(pool, work);
2684
		if (!worker)
T
Tejun Heo 已提交
2685
			goto already_gone;
2686
		pwq = worker->current_pwq;
2687
	}
2688

2689
	insert_wq_barrier(pwq, barr, work, worker);
2690
	spin_unlock_irq(&pool->lock);
2691

2692 2693 2694 2695 2696 2697
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2698
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2699
		lock_map_acquire(&pwq->wq->lockdep_map);
2700
	else
2701 2702
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2703

2704
	return true;
T
Tejun Heo 已提交
2705
already_gone:
2706
	spin_unlock_irq(&pool->lock);
2707
	return false;
2708
}
2709 2710 2711 2712 2713

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2714 2715
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2716
 *
2717
 * Return:
2718 2719 2720 2721 2722
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2723 2724
	struct wq_barrier barr;

2725 2726 2727
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2728 2729 2730 2731 2732 2733 2734
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2735
}
2736
EXPORT_SYMBOL_GPL(flush_work);
2737

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
struct cwt_wait {
	wait_queue_t		wait;
	struct work_struct	*work;
};

static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2752
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2753
{
2754
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2755
	unsigned long flags;
2756 2757 2758
	int ret;

	do {
2759 2760
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2775
		 */
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2789 2790
	} while (unlikely(ret < 0));

2791 2792 2793 2794
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2795
	flush_work(work);
2796
	clear_work_data(work);
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2807 2808 2809
	return ret;
}

2810
/**
2811 2812
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2813
 *
2814 2815 2816 2817
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2818
 *
2819 2820
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2821
 *
2822
 * The caller must ensure that the workqueue on which @work was last
2823
 * queued can't be destroyed before this function returns.
2824
 *
2825
 * Return:
2826
 * %true if @work was pending, %false otherwise.
2827
 */
2828
bool cancel_work_sync(struct work_struct *work)
2829
{
2830
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2831
}
2832
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2833

2834
/**
2835 2836
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2837
 *
2838 2839 2840
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2841
 *
2842
 * Return:
2843 2844
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2845
 */
2846 2847
bool flush_delayed_work(struct delayed_work *dwork)
{
2848
	local_irq_disable();
2849
	if (del_timer_sync(&dwork->timer))
2850
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2851
	local_irq_enable();
2852 2853 2854 2855
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2856
/**
2857 2858
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2859
 *
2860 2861 2862 2863 2864 2865 2866 2867 2868
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2869
 *
2870
 * This function is safe to call from any context including IRQ handler.
2871
 */
2872
bool cancel_delayed_work(struct delayed_work *dwork)
2873
{
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2884 2885
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2886
	local_irq_restore(flags);
2887
	return ret;
2888
}
2889
EXPORT_SYMBOL(cancel_delayed_work);
2890

2891 2892 2893 2894 2895 2896
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2897
 * Return:
2898 2899 2900
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2901
{
2902
	return __cancel_work_timer(&dwork->work, true);
2903
}
2904
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2905

2906
/**
2907
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2908 2909
 * @func: the function to call
 *
2910 2911
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2912
 * schedule_on_each_cpu() is very slow.
2913
 *
2914
 * Return:
2915
 * 0 on success, -errno on failure.
2916
 */
2917
int schedule_on_each_cpu(work_func_t func)
2918 2919
{
	int cpu;
2920
	struct work_struct __percpu *works;
2921

2922 2923
	works = alloc_percpu(struct work_struct);
	if (!works)
2924
		return -ENOMEM;
2925

2926 2927
	get_online_cpus();

2928
	for_each_online_cpu(cpu) {
2929 2930 2931
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2932
		schedule_work_on(cpu, work);
2933
	}
2934 2935 2936 2937

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2938
	put_online_cpus();
2939
	free_percpu(works);
2940 2941 2942
	return 0;
}

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2967 2968
void flush_scheduled_work(void)
{
2969
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2970
}
2971
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2972

2973 2974 2975 2976 2977 2978 2979 2980 2981
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2982
 * Return:	0 - function was executed
2983 2984
 *		1 - function was scheduled for execution
 */
2985
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2986 2987
{
	if (!in_interrupt()) {
2988
		fn(&ew->work);
2989 2990 2991
		return 0;
	}

2992
	INIT_WORK(&ew->work, fn);
2993 2994 2995 2996 2997 2998
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3026 3027
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3028 3029 3030 3031 3032
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3033
static DEVICE_ATTR_RO(per_cpu);
3034

3035 3036
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3037 3038 3039 3040 3041 3042
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3043 3044 3045
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3056
static DEVICE_ATTR_RW(max_active);
3057

3058 3059 3060 3061
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3062
};
3063
ATTRIBUTE_GROUPS(wq_sysfs);
3064

3065 3066
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3067 3068
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3069 3070
	const char *delim = "";
	int node, written = 0;
3071 3072

	rcu_read_lock_sched();
3073 3074 3075 3076 3077 3078 3079
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3091 3092 3093
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3107 3108 3109
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3125
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3140
	mutex_lock(&wq->mutex);
3141 3142
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
3143
	mutex_unlock(&wq->mutex);
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3202
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3203
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3204 3205
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3206
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3207 3208 3209 3210 3211
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3212
	.dev_groups			= wq_sysfs_groups,
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3241
 * Return: 0 on success, -errno on failure.
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

3291
	dev_set_uevent_suppress(&wq_dev->dev, false);
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3335 3336 3337
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3349
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3350 3351 3352 3353 3354 3355
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3356 3357 3358 3359 3360
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3361 3362 3363 3364 3365 3366
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3367 3368 3369 3370 3371 3372 3373 3374
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3375 3376
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3391 3392 3393 3394 3395
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3396 3397
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3398 3399
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3400 3401
 */
static int init_worker_pool(struct worker_pool *pool)
3402 3403
{
	spin_lock_init(&pool->lock);
3404 3405
	pool->id = -1;
	pool->cpu = -1;
3406
	pool->node = NUMA_NO_NODE;
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3420
	mutex_init(&pool->attach_mutex);
3421
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3422

3423
	ida_init(&pool->worker_ida);
3424 3425 3426 3427
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3428 3429 3430 3431
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3432 3433
}

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
static void rcu_free_wq(struct rcu_head *rcu)
{
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);

	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
	else
		free_workqueue_attrs(wq->unbound_attrs);

	kfree(wq->rescuer);
	kfree(wq);
}

3448 3449 3450 3451
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3452
	ida_destroy(&pool->worker_ida);
3453 3454 3455 3456 3457 3458 3459 3460 3461
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3462 3463 3464
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3465 3466
 *
 * Should be called with wq_pool_mutex held.
3467 3468 3469
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3470
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3471 3472
	struct worker *worker;

3473 3474 3475
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3476 3477 3478
		return;

	/* sanity checks */
3479
	if (WARN_ON(!(pool->cpu < 0)) ||
3480
	    WARN_ON(!list_empty(&pool->worklist)))
3481 3482 3483 3484 3485 3486 3487
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3488 3489 3490
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
3491
	 * attach_mutex.
3492
	 */
3493 3494
	mutex_lock(&pool->manager_arb);

3495
	spin_lock_irq(&pool->lock);
3496
	while ((worker = first_idle_worker(pool)))
3497 3498 3499
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3500

3501
	mutex_lock(&pool->attach_mutex);
3502
	if (!list_empty(&pool->workers))
3503
		pool->detach_completion = &detach_completion;
3504
	mutex_unlock(&pool->attach_mutex);
3505 3506 3507 3508

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3526
 * create a new one.
3527 3528
 *
 * Should be called with wq_pool_mutex held.
3529 3530 3531
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3532 3533 3534 3535 3536
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3537
	int node;
3538

3539
	lockdep_assert_held(&wq_pool_mutex);
3540 3541 3542 3543 3544

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
3545
			return pool;
3546 3547 3548 3549 3550 3551 3552 3553
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3554
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3555 3556
	copy_workqueue_attrs(pool->attrs, attrs);

3557 3558 3559 3560 3561 3562
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3574 3575 3576 3577
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3578
	if (!create_worker(pool))
3579 3580 3581 3582
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3583

3584 3585 3586 3587 3588 3589 3590
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3607
	bool is_last;
T
Tejun Heo 已提交
3608 3609 3610 3611

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3612
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3613
	list_del_rcu(&pwq->pwqs_node);
3614
	is_last = list_empty(&wq->pwqs);
3615
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3616

3617
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3618
	put_unbound_pool(pool);
3619 3620
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3621 3622 3623 3624
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
3625
	 * is gonna access it anymore.  Schedule RCU free.
T
Tejun Heo 已提交
3626
	 */
3627 3628
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
3629 3630
}

3631
/**
3632
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3633 3634
 * @pwq: target pool_workqueue
 *
3635 3636 3637
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3638
 */
3639
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3640
{
3641 3642 3643 3644
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3645
	lockdep_assert_held(&wq->mutex);
3646 3647 3648 3649 3650

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3651
	spin_lock_irq(&pwq->pool->lock);
3652

3653 3654 3655 3656 3657 3658
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
3659
		pwq->max_active = wq->saved_max_active;
3660

3661 3662 3663
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3664 3665 3666 3667 3668 3669

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3670 3671 3672 3673
	} else {
		pwq->max_active = 0;
	}

3674
	spin_unlock_irq(&pwq->pool->lock);
3675 3676
}

3677
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3678 3679
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3680 3681 3682
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3683 3684
	memset(pwq, 0, sizeof(*pwq));

3685 3686 3687
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3688
	pwq->refcnt = 1;
3689
	INIT_LIST_HEAD(&pwq->delayed_works);
3690
	INIT_LIST_HEAD(&pwq->pwqs_node);
3691
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3692
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3693
}
3694

3695
/* sync @pwq with the current state of its associated wq and link it */
3696
static void link_pwq(struct pool_workqueue *pwq)
3697 3698 3699 3700
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3701

3702 3703 3704 3705
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3706
	/* set the matching work_color */
3707
	pwq->work_color = wq->work_color;
3708 3709 3710 3711 3712

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3713
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3714
}
3715

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3729
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3730 3731 3732
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3733
	}
3734

3735 3736
	init_pwq(pwq, wq, pool);
	return pwq;
3737 3738
}

3739 3740 3741 3742 3743 3744 3745
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3746
		kmem_cache_free(pwq_cache, pwq);
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3759
 * calculation.  The result is stored in @cpumask.
3760 3761 3762 3763 3764 3765 3766 3767
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3768 3769 3770
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3771 3772 3773 3774
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3775
	if (!wq_numa_enabled || attrs->no_numa)
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3812 3813 3814 3815 3816
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3817 3818 3819 3820 3821 3822
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3823
 *
3824 3825 3826
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3827 3828 3829 3830
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3831 3832
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3833
	int node, ret;
3834

3835
	/* only unbound workqueues can change attributes */
3836 3837 3838
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3839 3840 3841 3842
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3843
	pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);
3844
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3845 3846
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3847 3848
		goto enomem;

3849
	/* make a copy of @attrs and sanitize it */
3850 3851 3852
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3867
	mutex_lock(&wq_pool_mutex);
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3889
	mutex_unlock(&wq_pool_mutex);
3890

3891
	/* all pwqs have been created successfully, let's install'em */
3892
	mutex_lock(&wq->mutex);
3893

3894
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3895 3896

	/* save the previous pwq and install the new one */
3897
	for_each_node(node)
3898 3899 3900 3901 3902
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3903 3904

	mutex_unlock(&wq->mutex);
3905

3906 3907 3908 3909 3910 3911
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3912 3913 3914
	ret = 0;
	/* fall through */
out_free:
3915
	free_workqueue_attrs(tmp_attrs);
3916
	free_workqueue_attrs(new_attrs);
3917
	kfree(pwq_tbl);
3918
	return ret;
3919

3920 3921 3922 3923 3924 3925 3926
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3927
enomem:
3928 3929
	ret = -ENOMEM;
	goto out_free;
3930 3931
}

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3977 3978
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
3979 3980 3981 3982 3983 3984 3985 3986

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
3987
	 * wq's, the default pwq should be used.
3988 3989 3990 3991 3992
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
3993
		goto use_dfl_pwq;
3994 3995 3996 3997 3998 3999 4000
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
4001 4002
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
4003 4004
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4027
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4028
{
4029
	bool highpri = wq->flags & WQ_HIGHPRI;
4030
	int cpu, ret;
4031 4032

	if (!(wq->flags & WQ_UNBOUND)) {
4033 4034
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4035 4036 4037
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4038 4039
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4040
			struct worker_pool *cpu_pools =
4041
				per_cpu(cpu_worker_pools, cpu);
4042

4043 4044 4045
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4046
			link_pwq(pwq);
4047
			mutex_unlock(&wq->mutex);
4048
		}
4049
		return 0;
4050 4051 4052 4053 4054 4055 4056
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4057
	} else {
4058
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4059
	}
T
Tejun Heo 已提交
4060 4061
}

4062 4063
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4064
{
4065 4066 4067
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4068 4069
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4070

4071
	return clamp_val(max_active, 1, lim);
4072 4073
}

4074
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4075 4076 4077
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4078
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4079
{
4080
	size_t tbl_size = 0;
4081
	va_list args;
L
Linus Torvalds 已提交
4082
	struct workqueue_struct *wq;
4083
	struct pool_workqueue *pwq;
4084

4085 4086 4087 4088
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4089
	/* allocate wq and format name */
4090
	if (flags & WQ_UNBOUND)
4091
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4092 4093

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4094
	if (!wq)
4095
		return NULL;
4096

4097 4098 4099 4100 4101 4102
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4103 4104
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4105
	va_end(args);
L
Linus Torvalds 已提交
4106

4107
	max_active = max_active ?: WQ_DFL_ACTIVE;
4108
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4109

4110
	/* init wq */
4111
	wq->flags = flags;
4112
	wq->saved_max_active = max_active;
4113
	mutex_init(&wq->mutex);
4114
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4115
	INIT_LIST_HEAD(&wq->pwqs);
4116 4117
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4118
	INIT_LIST_HEAD(&wq->maydays);
4119

4120
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4121
	INIT_LIST_HEAD(&wq->list);
4122

4123
	if (alloc_and_link_pwqs(wq) < 0)
4124
		goto err_free_wq;
T
Tejun Heo 已提交
4125

4126 4127 4128 4129 4130
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4131 4132
		struct worker *rescuer;

4133
		rescuer = alloc_worker(NUMA_NO_NODE);
4134
		if (!rescuer)
4135
			goto err_destroy;
4136

4137 4138
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4139
					       wq->name);
4140 4141 4142 4143
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4144

4145
		wq->rescuer = rescuer;
4146
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4147
		wake_up_process(rescuer->task);
4148 4149
	}

4150 4151 4152
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4153
	/*
4154 4155 4156
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4157
	 */
4158
	mutex_lock(&wq_pool_mutex);
4159

4160
	mutex_lock(&wq->mutex);
4161 4162
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4163
	mutex_unlock(&wq->mutex);
4164

4165
	list_add_tail_rcu(&wq->list, &workqueues);
4166

4167
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4168

4169
	return wq;
4170 4171

err_free_wq:
4172
	free_workqueue_attrs(wq->unbound_attrs);
4173 4174 4175 4176
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4177
	return NULL;
4178
}
4179
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4180

4181 4182 4183 4184 4185 4186 4187 4188
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4189
	struct pool_workqueue *pwq;
4190
	int node;
4191

4192 4193
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4194

4195
	/* sanity checks */
4196
	mutex_lock(&wq->mutex);
4197
	for_each_pwq(pwq, wq) {
4198 4199
		int i;

4200 4201
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4202
				mutex_unlock(&wq->mutex);
4203
				return;
4204 4205 4206
			}
		}

4207
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4208
		    WARN_ON(pwq->nr_active) ||
4209
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4210
			mutex_unlock(&wq->mutex);
4211
			return;
4212
		}
4213
	}
4214
	mutex_unlock(&wq->mutex);
4215

4216 4217 4218 4219
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4220
	mutex_lock(&wq_pool_mutex);
4221
	list_del_rcu(&wq->list);
4222
	mutex_unlock(&wq_pool_mutex);
4223

4224 4225
	workqueue_sysfs_unregister(wq);

4226
	if (wq->rescuer)
4227 4228
		kthread_stop(wq->rescuer->task);

T
Tejun Heo 已提交
4229 4230 4231
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
4232
		 * schedule RCU free.
T
Tejun Heo 已提交
4233
		 */
4234
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
4235 4236 4237
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4238 4239
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4240
		 */
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4253
		put_pwq_unlocked(pwq);
4254
	}
4255 4256 4257
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4270
	struct pool_workqueue *pwq;
4271

4272 4273 4274 4275
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4276
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4277

4278
	mutex_lock(&wq->mutex);
4279 4280 4281

	wq->saved_max_active = max_active;

4282 4283
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4284

4285
	mutex_unlock(&wq->mutex);
4286
}
4287
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4288

4289 4290 4291 4292 4293
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4294 4295
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4296 4297 4298 4299 4300
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4301
	return worker && worker->rescue_wq;
4302 4303
}

4304
/**
4305 4306 4307
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4308
 *
4309 4310 4311
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4312
 *
4313 4314 4315 4316 4317 4318
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4319
 * Return:
4320
 * %true if congested, %false otherwise.
4321
 */
4322
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4323
{
4324
	struct pool_workqueue *pwq;
4325 4326
	bool ret;

4327
	rcu_read_lock_sched();
4328

4329 4330 4331
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4332 4333 4334
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4335
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4336

4337
	ret = !list_empty(&pwq->delayed_works);
4338
	rcu_read_unlock_sched();
4339 4340

	return ret;
L
Linus Torvalds 已提交
4341
}
4342
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4343

4344 4345 4346 4347 4348 4349 4350 4351
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4352
 * Return:
4353 4354 4355
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4356
{
4357
	struct worker_pool *pool;
4358 4359
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4360

4361 4362
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4363

4364 4365
	local_irq_save(flags);
	pool = get_work_pool(work);
4366
	if (pool) {
4367
		spin_lock(&pool->lock);
4368 4369
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4370
		spin_unlock(&pool->lock);
4371
	}
4372
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4373

4374
	return ret;
L
Linus Torvalds 已提交
4375
}
4376
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4377

4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4455 4456 4457
/*
 * CPU hotplug.
 *
4458
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4459
 * are a lot of assumptions on strong associations among work, pwq and
4460
 * pool which make migrating pending and scheduled works very
4461
 * difficult to implement without impacting hot paths.  Secondly,
4462
 * worker pools serve mix of short, long and very long running works making
4463 4464
 * blocked draining impractical.
 *
4465
 * This is solved by allowing the pools to be disassociated from the CPU
4466 4467
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4468
 */
L
Linus Torvalds 已提交
4469

4470
static void wq_unbind_fn(struct work_struct *work)
4471
{
4472
	int cpu = smp_processor_id();
4473
	struct worker_pool *pool;
4474
	struct worker *worker;
4475

4476
	for_each_cpu_worker_pool(pool, cpu) {
4477
		mutex_lock(&pool->attach_mutex);
4478
		spin_lock_irq(&pool->lock);
4479

4480
		/*
4481
		 * We've blocked all attach/detach operations. Make all workers
4482 4483 4484 4485 4486
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4487
		for_each_pool_worker(worker, pool)
4488
			worker->flags |= WORKER_UNBOUND;
4489

4490
		pool->flags |= POOL_DISASSOCIATED;
4491

4492
		spin_unlock_irq(&pool->lock);
4493
		mutex_unlock(&pool->attach_mutex);
4494

4495 4496 4497 4498 4499 4500 4501
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4502

4503 4504 4505 4506 4507 4508 4509 4510
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4511
		atomic_set(&pool->nr_running, 0);
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4522 4523
}

T
Tejun Heo 已提交
4524 4525 4526 4527
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4528
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4529 4530 4531
 */
static void rebind_workers(struct worker_pool *pool)
{
4532
	struct worker *worker;
T
Tejun Heo 已提交
4533

4534
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4535

4536 4537 4538 4539 4540 4541 4542
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4543
	for_each_pool_worker(worker, pool)
4544 4545
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4546

4547
	spin_lock_irq(&pool->lock);
4548
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4549

4550
	for_each_pool_worker(worker, pool) {
4551
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4552 4553

		/*
4554 4555 4556 4557 4558 4559
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4560
		 */
4561 4562
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4563

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4583
	}
4584 4585

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4586 4587
}

4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4603
	lockdep_assert_held(&pool->attach_mutex);
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4615
	for_each_pool_worker(worker, pool)
4616 4617 4618 4619
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4620 4621 4622 4623
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4624
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4625 4626
					       unsigned long action,
					       void *hcpu)
4627
{
4628
	int cpu = (unsigned long)hcpu;
4629
	struct worker_pool *pool;
4630
	struct workqueue_struct *wq;
4631
	int pi;
4632

T
Tejun Heo 已提交
4633
	switch (action & ~CPU_TASKS_FROZEN) {
4634
	case CPU_UP_PREPARE:
4635
		for_each_cpu_worker_pool(pool, cpu) {
4636 4637
			if (pool->nr_workers)
				continue;
4638
			if (!create_worker(pool))
4639
				return NOTIFY_BAD;
4640
		}
T
Tejun Heo 已提交
4641
		break;
4642

4643 4644
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4645
		mutex_lock(&wq_pool_mutex);
4646 4647

		for_each_pool(pool, pi) {
4648
			mutex_lock(&pool->attach_mutex);
4649

4650
			if (pool->cpu == cpu)
4651
				rebind_workers(pool);
4652
			else if (pool->cpu < 0)
4653
				restore_unbound_workers_cpumask(pool, cpu);
4654

4655
			mutex_unlock(&pool->attach_mutex);
4656
		}
4657

4658 4659 4660 4661
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4662
		mutex_unlock(&wq_pool_mutex);
4663
		break;
4664
	}
4665 4666 4667 4668 4669 4670 4671
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4672
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4673 4674 4675
						 unsigned long action,
						 void *hcpu)
{
4676
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4677
	struct work_struct unbind_work;
4678
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4679

4680 4681
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4682
		/* unbinding per-cpu workers should happen on the local CPU */
4683
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4684
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4685 4686 4687 4688 4689 4690 4691 4692

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4693
		flush_work(&unbind_work);
4694
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4695
		break;
4696 4697 4698 4699
	}
	return NOTIFY_OK;
}

4700
#ifdef CONFIG_SMP
4701

4702
struct work_for_cpu {
4703
	struct work_struct work;
4704 4705 4706 4707 4708
	long (*fn)(void *);
	void *arg;
	long ret;
};

4709
static void work_for_cpu_fn(struct work_struct *work)
4710
{
4711 4712
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4713 4714 4715 4716 4717 4718 4719 4720 4721
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4722
 * It is up to the caller to ensure that the cpu doesn't go offline.
4723
 * The caller must not hold any locks which would prevent @fn from completing.
4724 4725
 *
 * Return: The value @fn returns.
4726
 */
4727
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4728
{
4729
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4730

4731 4732
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4733
	flush_work(&wfc.work);
4734
	destroy_work_on_stack(&wfc.work);
4735 4736 4737 4738 4739
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4740 4741 4742 4743 4744
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4745
 * Start freezing workqueues.  After this function returns, all freezable
4746
 * workqueues will queue new works to their delayed_works list instead of
4747
 * pool->worklist.
4748 4749
 *
 * CONTEXT:
4750
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4751 4752 4753
 */
void freeze_workqueues_begin(void)
{
4754 4755
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4756

4757
	mutex_lock(&wq_pool_mutex);
4758

4759
	WARN_ON_ONCE(workqueue_freezing);
4760 4761
	workqueue_freezing = true;

4762
	list_for_each_entry(wq, &workqueues, list) {
4763
		mutex_lock(&wq->mutex);
4764 4765
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4766
		mutex_unlock(&wq->mutex);
4767
	}
4768

4769
	mutex_unlock(&wq_pool_mutex);
4770 4771 4772
}

/**
4773
 * freeze_workqueues_busy - are freezable workqueues still busy?
4774 4775 4776 4777 4778
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4779
 * Grabs and releases wq_pool_mutex.
4780
 *
4781
 * Return:
4782 4783
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4784 4785 4786 4787
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4788 4789
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4790

4791
	mutex_lock(&wq_pool_mutex);
4792

4793
	WARN_ON_ONCE(!workqueue_freezing);
4794

4795 4796 4797
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4798 4799 4800 4801
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4802
		rcu_read_lock_sched();
4803
		for_each_pwq(pwq, wq) {
4804
			WARN_ON_ONCE(pwq->nr_active < 0);
4805
			if (pwq->nr_active) {
4806
				busy = true;
4807
				rcu_read_unlock_sched();
4808 4809 4810
				goto out_unlock;
			}
		}
4811
		rcu_read_unlock_sched();
4812 4813
	}
out_unlock:
4814
	mutex_unlock(&wq_pool_mutex);
4815 4816 4817 4818 4819 4820 4821
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4822
 * frozen works are transferred to their respective pool worklists.
4823 4824
 *
 * CONTEXT:
4825
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4826 4827 4828
 */
void thaw_workqueues(void)
{
4829 4830
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4831

4832
	mutex_lock(&wq_pool_mutex);
4833 4834 4835 4836

	if (!workqueue_freezing)
		goto out_unlock;

4837
	workqueue_freezing = false;
4838

4839 4840
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4841
		mutex_lock(&wq->mutex);
4842 4843
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4844
		mutex_unlock(&wq->mutex);
4845 4846 4847
	}

out_unlock:
4848
	mutex_unlock(&wq_pool_mutex);
4849 4850 4851
}
#endif /* CONFIG_FREEZER */

4852 4853 4854 4855 4856 4857 4858 4859
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

4860 4861 4862 4863 4864
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4865 4866 4867
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4868 4869 4870 4871 4872
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
4873
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
4874 4875 4876
	BUG_ON(!tbl);

	for_each_node(node)
4877
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4878
				node_online(node) ? node : NUMA_NO_NODE));
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4894
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4895
{
T
Tejun Heo 已提交
4896 4897
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4898

4899 4900 4901 4902
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4903
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4904
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4905

4906 4907
	wq_numa_init();

4908
	/* initialize CPU pools */
4909
	for_each_possible_cpu(cpu) {
4910
		struct worker_pool *pool;
4911

T
Tejun Heo 已提交
4912
		i = 0;
4913
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4914
			BUG_ON(init_worker_pool(pool));
4915
			pool->cpu = cpu;
4916
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4917
			pool->attrs->nice = std_nice[i++];
4918
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4919

T
Tejun Heo 已提交
4920
			/* alloc pool ID */
4921
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4922
			BUG_ON(worker_pool_assign_id(pool));
4923
			mutex_unlock(&wq_pool_mutex);
4924
		}
4925 4926
	}

4927
	/* create the initial worker */
4928
	for_each_online_cpu(cpu) {
4929
		struct worker_pool *pool;
4930

4931
		for_each_cpu_worker_pool(pool, cpu) {
4932
			pool->flags &= ~POOL_DISASSOCIATED;
4933
			BUG_ON(!create_worker(pool));
4934
		}
4935 4936
	}

4937
	/* create default unbound and ordered wq attrs */
4938 4939 4940 4941 4942 4943
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
4954 4955
	}

4956
	system_wq = alloc_workqueue("events", 0, 0);
4957
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4958
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4959 4960
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4961 4962
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4963 4964 4965 4966 4967
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
4968
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4969 4970 4971
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
4972
	return 0;
L
Linus Torvalds 已提交
4973
}
4974
early_initcall(init_workqueues);