workqueue.c 154.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131 132 133 134
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      sched-RCU for reads.
 *
135 136
 * WQ: wq->mutex protected.
 *
137
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138 139
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
140 141
 */

142
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
143

144
struct worker_pool {
145
	spinlock_t		lock;		/* the pool lock */
146
	int			cpu;		/* I: the associated cpu */
147
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
148
	int			id;		/* I: pool ID */
149
	unsigned int		flags;		/* X: flags */
150

T
Tejun Heo 已提交
151 152
	unsigned long		watchdog_ts;	/* L: watchdog timestamp */

153 154
	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
155 156

	/* nr_idle includes the ones off idle_list for rebinding */
157 158 159 160 161 162
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

163
	/* a workers is either on busy_hash or idle_list, or the manager */
164 165 166
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

167
	/* see manage_workers() for details on the two manager mutexes */
168
	struct mutex		manager_arb;	/* manager arbitration */
169
	struct worker		*manager;	/* L: purely informational */
170 171
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
172
	struct completion	*detach_completion; /* all workers detached */
173

174
	struct ida		worker_ida;	/* worker IDs for task name */
175

T
Tejun Heo 已提交
176
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 178
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
179

180 181 182 183 184 185
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 187 188 189 190 191

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
192 193
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
194
/*
195 196 197 198
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
199
 */
200
struct pool_workqueue {
201
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
202
	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 204
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
205
	int			refcnt;		/* L: reference count */
206 207
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
208
	int			nr_active;	/* L: nr of active works */
209
	int			max_active;	/* L: max active works */
210
	struct list_head	delayed_works;	/* L: delayed works */
211
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
213 214 215 216 217

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
218
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
219 220 221
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
222
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
223

224 225 226 227
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
228 229
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
230 231 232
	struct completion	done;		/* flush completion */
};

233 234
struct wq_device;

L
Linus Torvalds 已提交
235
/*
236 237
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
238 239
 */
struct workqueue_struct {
240
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241
	struct list_head	list;		/* PR: list of all workqueues */
242

243 244 245
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
246
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 248 249
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250

251
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 253
	struct worker		*rescuer;	/* I: rescue worker */

254
	int			nr_drainers;	/* WQ: drain in progress */
255
	int			saved_max_active; /* WQ: saved pwq max_active */
256

257 258
	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259

260 261 262
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
263
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
264
	struct lockdep_map	lockdep_map;
265
#endif
266
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267

268 269 270 271 272 273 274
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

275 276 277
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
279 280
};

281 282
static struct kmem_cache *pwq_cache;

283 284 285
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

286 287 288
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

289
/* see the comment above the definition of WQ_POWER_EFFICIENT */
290
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 292
module_param_named(power_efficient, wq_power_efficient, bool, 0444);

T
Tejun Heo 已提交
293
static bool wq_online;			/* can kworkers be created yet? */
294

295 296
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

297 298 299
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

300
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
301
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
302

303
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
304
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
305

306 307 308 309 310
/* PL: allowable cpus for unbound wqs and work items */
static cpumask_var_t wq_unbound_cpumask;

/* CPU where unbound work was last round robin scheduled from this CPU */
static DEFINE_PER_CPU(int, wq_rr_cpu_last);
311

312 313 314 315 316 317 318 319 320 321 322 323
/*
 * Local execution of unbound work items is no longer guaranteed.  The
 * following always forces round-robin CPU selection on unbound work items
 * to uncover usages which depend on it.
 */
#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
static bool wq_debug_force_rr_cpu = true;
#else
static bool wq_debug_force_rr_cpu = false;
#endif
module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);

324
/* the per-cpu worker pools */
325
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
326

327
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
328

329
/* PL: hash of all unbound pools keyed by pool->attrs */
330 331
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

332
/* I: attributes used when instantiating standard unbound pools on demand */
333 334
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

335 336 337
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

338
struct workqueue_struct *system_wq __read_mostly;
339
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
340
struct workqueue_struct *system_highpri_wq __read_mostly;
341
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
342
struct workqueue_struct *system_long_wq __read_mostly;
343
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
344
struct workqueue_struct *system_unbound_wq __read_mostly;
345
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
346
struct workqueue_struct *system_freezable_wq __read_mostly;
347
EXPORT_SYMBOL_GPL(system_freezable_wq);
348 349 350 351
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
352

353
static int worker_thread(void *__worker);
354
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
355

356 357 358
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

359
#define assert_rcu_or_pool_mutex()					\
360 361 362
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU or wq_pool_mutex should be held")
363

364
#define assert_rcu_or_wq_mutex(wq)					\
365 366 367
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex),			\
			 "sched RCU or wq->mutex should be held")
368

369
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
370 371 372 373
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex) &&		\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
374

375 376 377
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378
	     (pool)++)
379

T
Tejun Heo 已提交
380 381 382
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
383
 * @pi: integer used for iteration
384
 *
385 386 387
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
388 389 390
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
391
 */
392 393
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
394
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
395
		else
T
Tejun Heo 已提交
396

397 398 399 400 401
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
402
 * This must be called with @pool->attach_mutex.
403 404 405 406
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
407 408
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
409
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
410 411
		else

412 413 414 415
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
416
 *
417
 * This must be called either with wq->mutex held or sched RCU read locked.
418 419
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
420 421 422
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
423 424
 */
#define for_each_pwq(pwq, wq)						\
425
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
426
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
427
		else
428

429 430 431 432
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

433 434 435 436 437
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

438 439 440 441 442 443 444
static bool work_is_static_object(void *addr)
{
	struct work_struct *work = addr;

	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
}

445 446 447 448
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
449
static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 451 452 453 454 455 456
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
457
		return true;
458
	default:
459
		return false;
460 461 462 463 464 465 466
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
467
static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 469 470 471 472 473 474
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
475
		return true;
476
	default:
477
		return false;
478 479 480 481 482
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
483
	.debug_hint	= work_debug_hint,
484
	.is_static_object = work_is_static_object,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	.fixup_init	= work_fixup_init,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

514 515 516 517 518 519 520
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

521 522 523 524 525
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

526 527 528 529 530 531 532
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
533 534 535 536
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

537
	lockdep_assert_held(&wq_pool_mutex);
538

539 540
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
541
	if (ret >= 0) {
T
Tejun Heo 已提交
542
		pool->id = ret;
543 544
		return 0;
	}
545
	return ret;
546 547
}

548 549 550 551 552
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
553 554
 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 * read locked.
555 556
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
557 558
 *
 * Return: The unbound pool_workqueue for @node.
559 560 561 562
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
563
	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564 565 566 567 568 569 570 571 572 573

	/*
	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
	 * delayed item is pending.  The plan is to keep CPU -> NODE
	 * mapping valid and stable across CPU on/offlines.  Once that
	 * happens, this workaround can be removed.
	 */
	if (unlikely(node == NUMA_NO_NODE))
		return wq->dfl_pwq;

574 575 576
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
592

593
/*
594 595
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
596
 * is cleared and the high bits contain OFFQ flags and pool ID.
597
 *
598 599
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
600 601
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
602
 *
603
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604
 * corresponding to a work.  Pool is available once the work has been
605
 * queued anywhere after initialization until it is sync canceled.  pwq is
606
 * available only while the work item is queued.
607
 *
608 609 610 611
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
612
 */
613 614
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
615
{
616
	WARN_ON_ONCE(!work_pending(work));
617 618
	atomic_long_set(&work->data, data | flags | work_static(work));
}
619

620
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 622
			 unsigned long extra_flags)
{
623 624
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 626
}

627 628 629 630 631 632 633
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

634 635
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
636
{
637 638 639 640 641 642 643
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
644
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
	/*
	 * The following mb guarantees that previous clear of a PENDING bit
	 * will not be reordered with any speculative LOADS or STORES from
	 * work->current_func, which is executed afterwards.  This possible
	 * reordering can lead to a missed execution on attempt to qeueue
	 * the same @work.  E.g. consider this case:
	 *
	 *   CPU#0                         CPU#1
	 *   ----------------------------  --------------------------------
	 *
	 * 1  STORE event_indicated
	 * 2  queue_work_on() {
	 * 3    test_and_set_bit(PENDING)
	 * 4 }                             set_..._and_clear_pending() {
	 * 5                                 set_work_data() # clear bit
	 * 6                                 smp_mb()
	 * 7                               work->current_func() {
	 * 8				      LOAD event_indicated
	 *				   }
	 *
	 * Without an explicit full barrier speculative LOAD on line 8 can
	 * be executed before CPU#0 does STORE on line 1.  If that happens,
	 * CPU#0 observes the PENDING bit is still set and new execution of
	 * a @work is not queued in a hope, that CPU#1 will eventually
	 * finish the queued @work.  Meanwhile CPU#1 does not see
	 * event_indicated is set, because speculative LOAD was executed
	 * before actual STORE.
	 */
	smp_mb();
674
}
675

676
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
677
{
678 679
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
680 681
}

682
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683
{
684
	unsigned long data = atomic_long_read(&work->data);
685

686
	if (data & WORK_STRUCT_PWQ)
687 688 689
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
690 691
}

692 693 694 695
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
696 697 698
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
699 700 701 702 703
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
704 705
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
706 707
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
708
{
709
	unsigned long data = atomic_long_read(&work->data);
710
	int pool_id;
711

712
	assert_rcu_or_pool_mutex();
713

714 715
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
716
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717

718 719
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
720 721
		return NULL;

722
	return idr_find(&worker_pool_idr, pool_id);
723 724 725 726 727 728
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
729
 * Return: The worker_pool ID @work was last associated with.
730 731 732 733
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
734 735
	unsigned long data = atomic_long_read(&work->data);

736 737
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
738
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739

740
	return data >> WORK_OFFQ_POOL_SHIFT;
741 742
}

743 744
static void mark_work_canceling(struct work_struct *work)
{
745
	unsigned long pool_id = get_work_pool_id(work);
746

747 748
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 750 751 752 753 754
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

755
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 757
}

758
/*
759 760
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
761
 * they're being called with pool->lock held.
762 763
 */

764
static bool __need_more_worker(struct worker_pool *pool)
765
{
766
	return !atomic_read(&pool->nr_running);
767 768
}

769
/*
770 771
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
772 773
 *
 * Note that, because unbound workers never contribute to nr_running, this
774
 * function will always return %true for unbound pools as long as the
775
 * worklist isn't empty.
776
 */
777
static bool need_more_worker(struct worker_pool *pool)
778
{
779
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
780
}
781

782
/* Can I start working?  Called from busy but !running workers. */
783
static bool may_start_working(struct worker_pool *pool)
784
{
785
	return pool->nr_idle;
786 787 788
}

/* Do I need to keep working?  Called from currently running workers. */
789
static bool keep_working(struct worker_pool *pool)
790
{
791 792
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
793 794 795
}

/* Do we need a new worker?  Called from manager. */
796
static bool need_to_create_worker(struct worker_pool *pool)
797
{
798
	return need_more_worker(pool) && !may_start_working(pool);
799
}
800

801
/* Do we have too many workers and should some go away? */
802
static bool too_many_workers(struct worker_pool *pool)
803
{
804
	bool managing = mutex_is_locked(&pool->manager_arb);
805 806
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
807 808

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 810
}

811
/*
812 813 814
 * Wake up functions.
 */

815 816
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
817
{
818
	if (unlikely(list_empty(&pool->idle_list)))
819 820
		return NULL;

821
	return list_first_entry(&pool->idle_list, struct worker, entry);
822 823 824 825
}

/**
 * wake_up_worker - wake up an idle worker
826
 * @pool: worker pool to wake worker from
827
 *
828
 * Wake up the first idle worker of @pool.
829 830
 *
 * CONTEXT:
831
 * spin_lock_irq(pool->lock).
832
 */
833
static void wake_up_worker(struct worker_pool *pool)
834
{
835
	struct worker *worker = first_idle_worker(pool);
836 837 838 839 840

	if (likely(worker))
		wake_up_process(worker->task);
}

841
/**
842 843 844 845 846 847 848 849 850 851
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
852
void wq_worker_waking_up(struct task_struct *task, int cpu)
853 854 855
{
	struct worker *worker = kthread_data(task);

856
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
857
		WARN_ON_ONCE(worker->pool->cpu != cpu);
858
		atomic_inc(&worker->pool->nr_running);
859
	}
860 861 862 863 864 865 866 867 868 869 870 871 872
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
873
 * Return:
874 875
 * Worker task on @cpu to wake up, %NULL if none.
 */
876
struct task_struct *wq_worker_sleeping(struct task_struct *task)
877 878
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
879
	struct worker_pool *pool;
880

881 882 883 884 885
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
886
	if (worker->flags & WORKER_NOT_RUNNING)
887 888
		return NULL;

889 890
	pool = worker->pool;

891
	/* this can only happen on the local cpu */
892
	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
893
		return NULL;
894 895 896 897 898 899

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
900 901 902
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
903
	 * manipulating idle_list, so dereferencing idle_list without pool
904
	 * lock is safe.
905
	 */
906 907
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
908
		to_wakeup = first_idle_worker(pool);
909 910 911 912 913
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
914
 * @worker: self
915 916
 * @flags: flags to set
 *
917
 * Set @flags in @worker->flags and adjust nr_running accordingly.
918
 *
919
 * CONTEXT:
920
 * spin_lock_irq(pool->lock)
921
 */
922
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
923
{
924
	struct worker_pool *pool = worker->pool;
925

926 927
	WARN_ON_ONCE(worker->task != current);

928
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
929 930
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
931
		atomic_dec(&pool->nr_running);
932 933
	}

934 935 936 937
	worker->flags |= flags;
}

/**
938
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
939
 * @worker: self
940 941
 * @flags: flags to clear
 *
942
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
943
 *
944
 * CONTEXT:
945
 * spin_lock_irq(pool->lock)
946 947 948
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
949
	struct worker_pool *pool = worker->pool;
950 951
	unsigned int oflags = worker->flags;

952 953
	WARN_ON_ONCE(worker->task != current);

954
	worker->flags &= ~flags;
955

956 957 958 959 960
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
961 962
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
963
			atomic_inc(&pool->nr_running);
964 965
}

966 967
/**
 * find_worker_executing_work - find worker which is executing a work
968
 * @pool: pool of interest
969 970
 * @work: work to find worker for
 *
971 972
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
973 974 975 976 977 978 979 980 981 982 983 984
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
985 986 987 988 989 990
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
991 992
 *
 * CONTEXT:
993
 * spin_lock_irq(pool->lock).
994
 *
995 996
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
997
 * otherwise.
998
 */
999
static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000
						 struct work_struct *work)
1001
{
1002 1003
	struct worker *worker;

1004
	hash_for_each_possible(pool->busy_hash, worker, hentry,
1005 1006 1007
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
1008 1009 1010
			return worker;

	return NULL;
1011 1012
}

1013 1014 1015 1016
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
1017
 * @nextp: out parameter for nested worklist walking
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1028
 * spin_lock_irq(pool->lock).
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1112
static void pwq_activate_delayed_work(struct work_struct *work)
1113
{
1114
	struct pool_workqueue *pwq = get_work_pwq(work);
1115 1116

	trace_workqueue_activate_work(work);
T
Tejun Heo 已提交
1117 1118
	if (list_empty(&pwq->pool->worklist))
		pwq->pool->watchdog_ts = jiffies;
1119
	move_linked_works(work, &pwq->pool->worklist, NULL);
1120
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121
	pwq->nr_active++;
1122 1123
}

1124
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125
{
1126
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127 1128
						    struct work_struct, entry);

1129
	pwq_activate_delayed_work(work);
1130 1131
}

1132
/**
1133 1134
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1135 1136 1137
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1138
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139 1140
 *
 * CONTEXT:
1141
 * spin_lock_irq(pool->lock).
1142
 */
1143
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144
{
T
Tejun Heo 已提交
1145
	/* uncolored work items don't participate in flushing or nr_active */
1146
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1147
		goto out_put;
1148

1149
	pwq->nr_in_flight[color]--;
1150

1151 1152
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1153
		/* one down, submit a delayed one */
1154 1155
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1156 1157 1158
	}

	/* is flush in progress and are we at the flushing tip? */
1159
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1160
		goto out_put;
1161 1162

	/* are there still in-flight works? */
1163
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1164
		goto out_put;
1165

1166 1167
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1168 1169

	/*
1170
	 * If this was the last pwq, wake up the first flusher.  It
1171 1172
	 * will handle the rest.
	 */
1173 1174
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1175 1176
out_put:
	put_pwq(pwq);
1177 1178
}

1179
/**
1180
 * try_to_grab_pending - steal work item from worklist and disable irq
1181 1182
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1183
 * @flags: place to store irq state
1184 1185
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1186
 * stable state - idle, on timer or on worklist.
1187
 *
1188
 * Return:
1189 1190 1191
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192 1193
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1194
 *
1195
 * Note:
1196
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1197 1198 1199
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200 1201 1202 1203
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1204
 * This function is safe to call from any context including IRQ handler.
1205
 */
1206 1207
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1208
{
1209
	struct worker_pool *pool;
1210
	struct pool_workqueue *pwq;
1211

1212 1213
	local_irq_save(*flags);

1214 1215 1216 1217
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1218 1219 1220 1221 1222
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1223 1224 1225 1226 1227
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1228 1229 1230 1231 1232 1233 1234
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1235 1236
	pool = get_work_pool(work);
	if (!pool)
1237
		goto fail;
1238

1239
	spin_lock(&pool->lock);
1240
	/*
1241 1242 1243 1244 1245
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1246 1247
	 * item is currently queued on that pool.
	 */
1248 1249
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1250 1251 1252 1253 1254
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1255
		 * on the delayed_list, will confuse pwq->nr_active
1256 1257 1258 1259
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260
			pwq_activate_delayed_work(work);
1261 1262

		list_del_init(&work->entry);
1263
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264

1265
		/* work->data points to pwq iff queued, point to pool */
1266 1267 1268 1269
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1270
	}
1271
	spin_unlock(&pool->lock);
1272 1273 1274 1275 1276
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1277
	return -EAGAIN;
1278 1279
}

T
Tejun Heo 已提交
1280
/**
1281
 * insert_work - insert a work into a pool
1282
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1283 1284 1285 1286
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1287
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1288
 * work_struct flags.
T
Tejun Heo 已提交
1289 1290
 *
 * CONTEXT:
1291
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1292
 */
1293 1294
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1295
{
1296
	struct worker_pool *pool = pwq->pool;
1297

T
Tejun Heo 已提交
1298
	/* we own @work, set data and link */
1299
	set_work_pwq(work, pwq, extra_flags);
1300
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1301
	get_pwq(pwq);
1302 1303

	/*
1304 1305 1306
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1307 1308 1309
	 */
	smp_mb();

1310 1311
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1312 1313
}

1314 1315
/*
 * Test whether @work is being queued from another work executing on the
1316
 * same workqueue.
1317 1318 1319
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1320 1321 1322 1323 1324 1325 1326
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1327
	return worker && worker->current_pwq->wq == wq;
1328 1329
}

1330 1331 1332 1333 1334 1335 1336
/*
 * When queueing an unbound work item to a wq, prefer local CPU if allowed
 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
 * avoid perturbing sensitive tasks.
 */
static int wq_select_unbound_cpu(int cpu)
{
1337
	static bool printed_dbg_warning;
1338 1339
	int new_cpu;

1340 1341 1342 1343 1344 1345 1346 1347
	if (likely(!wq_debug_force_rr_cpu)) {
		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
			return cpu;
	} else if (!printed_dbg_warning) {
		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
		printed_dbg_warning = true;
	}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	if (cpumask_empty(wq_unbound_cpumask))
		return cpu;

	new_cpu = __this_cpu_read(wq_rr_cpu_last);
	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
	if (unlikely(new_cpu >= nr_cpu_ids)) {
		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
		if (unlikely(new_cpu >= nr_cpu_ids))
			return cpu;
	}
	__this_cpu_write(wq_rr_cpu_last, new_cpu);

	return new_cpu;
}

1363
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1364 1365
			 struct work_struct *work)
{
1366
	struct pool_workqueue *pwq;
1367
	struct worker_pool *last_pool;
1368
	struct list_head *worklist;
1369
	unsigned int work_flags;
1370
	unsigned int req_cpu = cpu;
1371 1372 1373 1374 1375 1376 1377 1378

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1379

1380
	debug_work_activate(work);
1381

1382
	/* if draining, only works from the same workqueue are allowed */
1383
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1384
	    WARN_ON_ONCE(!is_chained_work(wq)))
1385
		return;
1386
retry:
1387
	if (req_cpu == WORK_CPU_UNBOUND)
1388
		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389

1390
	/* pwq which will be used unless @work is executing elsewhere */
1391
	if (!(wq->flags & WQ_UNBOUND))
1392
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393 1394
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1395

1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1404

1405
		spin_lock(&last_pool->lock);
1406

1407
		worker = find_worker_executing_work(last_pool, work);
1408

1409 1410
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1411
		} else {
1412 1413
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1414
			spin_lock(&pwq->pool->lock);
1415
		}
1416
	} else {
1417
		spin_lock(&pwq->pool->lock);
1418 1419
	}

1420 1421 1422 1423
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1424 1425
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1439 1440
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1441

1442
	if (WARN_ON(!list_empty(&work->entry))) {
1443
		spin_unlock(&pwq->pool->lock);
1444 1445
		return;
	}
1446

1447 1448
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1449

1450
	if (likely(pwq->nr_active < pwq->max_active)) {
1451
		trace_workqueue_activate_work(work);
1452 1453
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
T
Tejun Heo 已提交
1454 1455
		if (list_empty(worklist))
			pwq->pool->watchdog_ts = jiffies;
1456 1457
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1458
		worklist = &pwq->delayed_works;
1459
	}
1460

1461
	insert_work(pwq, work, worklist, work_flags);
1462

1463
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1464 1465
}

1466
/**
1467 1468
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1469 1470 1471
 * @wq: workqueue to use
 * @work: work to queue
 *
1472 1473
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1474 1475
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1476
 */
1477 1478
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1479
{
1480
	bool ret = false;
1481
	unsigned long flags;
1482

1483
	local_irq_save(flags);
1484

1485
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1486
		__queue_work(cpu, wq, work);
1487
		ret = true;
1488
	}
1489

1490
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1491 1492
	return ret;
}
1493
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1494

1495
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1496
{
1497
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1498

1499
	/* should have been called from irqsafe timer with irq already off */
1500
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1501
}
1502
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1503

1504 1505
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1506
{
1507 1508 1509
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

1510
	WARN_ON_ONCE(!wq);
1511 1512
	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1513 1514
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1527
	dwork->wq = wq;
1528
	dwork->cpu = cpu;
1529 1530
	timer->expires = jiffies + delay;

1531 1532 1533 1534
	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1535 1536
}

1537 1538 1539 1540
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1541
 * @dwork: work to queue
1542 1543
 * @delay: number of jiffies to wait before queueing
 *
1544
 * Return: %false if @work was already on a queue, %true otherwise.  If
1545 1546
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1547
 */
1548 1549
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1550
{
1551
	struct work_struct *work = &dwork->work;
1552
	bool ret = false;
1553
	unsigned long flags;
1554

1555 1556
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1557

1558
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1559
		__queue_delayed_work(cpu, wq, dwork, delay);
1560
		ret = true;
1561
	}
1562

1563
	local_irq_restore(flags);
1564 1565
	return ret;
}
1566
EXPORT_SYMBOL(queue_delayed_work_on);
1567

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1580
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1581 1582
 * pending and its timer was modified.
 *
1583
 * This function is safe to call from any context including IRQ handler.
1584 1585 1586 1587 1588 1589 1590
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1591

1592 1593 1594
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1595

1596 1597 1598
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1599
	}
1600 1601

	/* -ENOENT from try_to_grab_pending() becomes %true */
1602 1603
	return ret;
}
1604 1605
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1606 1607 1608 1609 1610 1611 1612 1613
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1614
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1615 1616
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1617
{
1618
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1619

1620 1621 1622 1623
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1624

1625
	/* can't use worker_set_flags(), also called from create_worker() */
1626
	worker->flags |= WORKER_IDLE;
1627
	pool->nr_idle++;
1628
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1629 1630

	/* idle_list is LIFO */
1631
	list_add(&worker->entry, &pool->idle_list);
1632

1633 1634
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1635

1636
	/*
1637
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1638
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1639 1640
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1641
	 */
1642
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1643
		     pool->nr_workers == pool->nr_idle &&
1644
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1654
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1655 1656 1657
 */
static void worker_leave_idle(struct worker *worker)
{
1658
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1659

1660 1661
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1662
	worker_clr_flags(worker, WORKER_IDLE);
1663
	pool->nr_idle--;
T
Tejun Heo 已提交
1664 1665 1666
	list_del_init(&worker->entry);
}

1667
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1668 1669 1670
{
	struct worker *worker;

1671
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1672 1673
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1674
		INIT_LIST_HEAD(&worker->scheduled);
1675
		INIT_LIST_HEAD(&worker->node);
1676 1677
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1678
	}
T
Tejun Heo 已提交
1679 1680 1681
	return worker;
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1715 1716 1717 1718 1719
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1720 1721 1722
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1723 1724 1725 1726 1727 1728
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1729
	mutex_lock(&pool->attach_mutex);
1730 1731
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1732
		detach_completion = pool->detach_completion;
1733
	mutex_unlock(&pool->attach_mutex);
1734

1735 1736 1737
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1738 1739 1740 1741
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1742 1743
/**
 * create_worker - create a new workqueue worker
1744
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1745
 *
1746
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1747 1748 1749 1750
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1751
 * Return:
T
Tejun Heo 已提交
1752 1753
 * Pointer to the newly created worker.
 */
1754
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1755 1756
{
	struct worker *worker = NULL;
1757
	int id = -1;
1758
	char id_buf[16];
T
Tejun Heo 已提交
1759

1760 1761
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1762 1763
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1764

1765
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1766 1767 1768
	if (!worker)
		goto fail;

1769
	worker->pool = pool;
T
Tejun Heo 已提交
1770 1771
	worker->id = id;

1772
	if (pool->cpu >= 0)
1773 1774
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1775
	else
1776 1777
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1778
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1779
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1780 1781 1782
	if (IS_ERR(worker->task))
		goto fail;

1783
	set_user_nice(worker->task, pool->attrs->nice);
1784
	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1785

1786
	/* successful, attach the worker to the pool */
1787
	worker_attach_to_pool(worker, pool);
1788

1789 1790 1791 1792 1793 1794 1795
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1796
	return worker;
1797

T
Tejun Heo 已提交
1798
fail:
1799
	if (id >= 0)
1800
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1801 1802 1803 1804 1805 1806 1807 1808
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1809 1810
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1811 1812
 *
 * CONTEXT:
1813
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1814 1815 1816
 */
static void destroy_worker(struct worker *worker)
{
1817
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1818

1819 1820
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1821
	/* sanity check frenzy */
1822
	if (WARN_ON(worker->current_work) ||
1823 1824
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1825
		return;
T
Tejun Heo 已提交
1826

1827 1828
	pool->nr_workers--;
	pool->nr_idle--;
1829

T
Tejun Heo 已提交
1830
	list_del_init(&worker->entry);
1831
	worker->flags |= WORKER_DIE;
1832
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1833 1834
}

1835
static void idle_worker_timeout(unsigned long __pool)
1836
{
1837
	struct worker_pool *pool = (void *)__pool;
1838

1839
	spin_lock_irq(&pool->lock);
1840

1841
	while (too_many_workers(pool)) {
1842 1843 1844 1845
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1846
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1847 1848
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1849
		if (time_before(jiffies, expires)) {
1850
			mod_timer(&pool->idle_timer, expires);
1851
			break;
1852
		}
1853 1854

		destroy_worker(worker);
1855 1856
	}

1857
	spin_unlock_irq(&pool->lock);
1858
}
1859

1860
static void send_mayday(struct work_struct *work)
1861
{
1862 1863
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1864

1865
	lockdep_assert_held(&wq_mayday_lock);
1866

1867
	if (!wq->rescuer)
1868
		return;
1869 1870

	/* mayday mayday mayday */
1871
	if (list_empty(&pwq->mayday_node)) {
1872 1873 1874 1875 1876 1877
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1878
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1879
		wake_up_process(wq->rescuer->task);
1880
	}
1881 1882
}

1883
static void pool_mayday_timeout(unsigned long __pool)
1884
{
1885
	struct worker_pool *pool = (void *)__pool;
1886 1887
	struct work_struct *work;

1888 1889
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1890

1891
	if (need_to_create_worker(pool)) {
1892 1893 1894 1895 1896 1897
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1898
		list_for_each_entry(work, &pool->worklist, entry)
1899
			send_mayday(work);
L
Linus Torvalds 已提交
1900
	}
1901

1902 1903
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1904

1905
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1906 1907
}

1908 1909
/**
 * maybe_create_worker - create a new worker if necessary
1910
 * @pool: pool to create a new worker for
1911
 *
1912
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1913 1914
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1915
 * sent to all rescuers with works scheduled on @pool to resolve
1916 1917
 * possible allocation deadlock.
 *
1918 1919
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1920 1921
 *
 * LOCKING:
1922
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1923 1924 1925
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1926
static void maybe_create_worker(struct worker_pool *pool)
1927 1928
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1929
{
1930
restart:
1931
	spin_unlock_irq(&pool->lock);
1932

1933
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1934
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1935 1936

	while (true) {
1937
		if (create_worker(pool) || !need_to_create_worker(pool))
1938
			break;
L
Linus Torvalds 已提交
1939

1940
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1941

1942
		if (!need_to_create_worker(pool))
1943 1944 1945
			break;
	}

1946
	del_timer_sync(&pool->mayday_timer);
1947
	spin_lock_irq(&pool->lock);
1948 1949 1950 1951 1952
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1953
	if (need_to_create_worker(pool))
1954 1955 1956
		goto restart;
}

1957
/**
1958 1959
 * manage_workers - manage worker pool
 * @worker: self
1960
 *
1961
 * Assume the manager role and manage the worker pool @worker belongs
1962
 * to.  At any given time, there can be only zero or one manager per
1963
 * pool.  The exclusion is handled automatically by this function.
1964 1965 1966 1967
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1968 1969
 *
 * CONTEXT:
1970
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1971 1972
 * multiple times.  Does GFP_KERNEL allocations.
 *
1973
 * Return:
1974 1975 1976 1977
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1978
 */
1979
static bool manage_workers(struct worker *worker)
1980
{
1981
	struct worker_pool *pool = worker->pool;
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1993
	if (!mutex_trylock(&pool->manager_arb))
1994
		return false;
1995
	pool->manager = worker;
1996

1997
	maybe_create_worker(pool);
1998

1999
	pool->manager = NULL;
2000
	mutex_unlock(&pool->manager_arb);
2001
	return true;
2002 2003
}

2004 2005
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2006
 * @worker: self
2007 2008 2009 2010 2011 2012 2013 2014 2015
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2016
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2017
 */
T
Tejun Heo 已提交
2018
static void process_one_work(struct worker *worker, struct work_struct *work)
2019 2020
__releases(&pool->lock)
__acquires(&pool->lock)
2021
{
2022
	struct pool_workqueue *pwq = get_work_pwq(work);
2023
	struct worker_pool *pool = worker->pool;
2024
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2025
	int work_color;
2026
	struct worker *collision;
2027 2028 2029 2030 2031 2032 2033 2034
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2035 2036 2037
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2038
#endif
2039
	/* ensure we're on the correct CPU */
2040
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2041
		     raw_smp_processor_id() != pool->cpu);
2042

2043 2044 2045 2046 2047 2048
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2049
	collision = find_worker_executing_work(pool, work);
2050 2051 2052 2053 2054
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2055
	/* claim and dequeue */
2056
	debug_work_deactivate(work);
2057
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2058
	worker->current_work = work;
2059
	worker->current_func = work->func;
2060
	worker->current_pwq = pwq;
2061
	work_color = get_work_color(work);
2062

2063 2064
	list_del_init(&work->entry);

2065
	/*
2066 2067 2068 2069
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
2070 2071
	 */
	if (unlikely(cpu_intensive))
2072
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2073

2074
	/*
2075 2076 2077 2078
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2079
	 * UNBOUND and CPU_INTENSIVE ones.
2080
	 */
2081
	if (need_more_worker(pool))
2082
		wake_up_worker(pool);
2083

2084
	/*
2085
	 * Record the last pool and clear PENDING which should be the last
2086
	 * update to @work.  Also, do this inside @pool->lock so that
2087 2088
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2089
	 */
2090
	set_work_pool_and_clear_pending(work, pool->id);
2091

2092
	spin_unlock_irq(&pool->lock);
2093

2094
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2095
	lock_map_acquire(&lockdep_map);
2096
	trace_workqueue_execute_start(work);
2097
	worker->current_func(work);
2098 2099 2100 2101 2102
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2103
	lock_map_release(&lockdep_map);
2104
	lock_map_release(&pwq->wq->lockdep_map);
2105 2106

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2107 2108
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2109 2110
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2111 2112 2113 2114
		debug_show_held_locks(current);
		dump_stack();
	}

2115 2116 2117 2118 2119
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2120 2121
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2122
	 */
2123
	cond_resched_rcu_qs();
2124

2125
	spin_lock_irq(&pool->lock);
2126

2127 2128 2129 2130
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2131
	/* we're done with it, release */
2132
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2133
	worker->current_work = NULL;
2134
	worker->current_func = NULL;
2135
	worker->current_pwq = NULL;
2136
	worker->desc_valid = false;
2137
	pwq_dec_nr_in_flight(pwq, work_color);
2138 2139
}

2140 2141 2142 2143 2144 2145 2146 2147 2148
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2149
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2150 2151 2152
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2153
{
2154 2155
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2156
						struct work_struct, entry);
T
Tejun Heo 已提交
2157
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2158 2159 2160
	}
}

T
Tejun Heo 已提交
2161 2162
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2163
 * @__worker: self
T
Tejun Heo 已提交
2164
 *
2165 2166 2167 2168 2169
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2170 2171
 *
 * Return: 0
T
Tejun Heo 已提交
2172
 */
T
Tejun Heo 已提交
2173
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2174
{
T
Tejun Heo 已提交
2175
	struct worker *worker = __worker;
2176
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2177

2178 2179
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2180
woke_up:
2181
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2182

2183 2184
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2185
		spin_unlock_irq(&pool->lock);
2186 2187
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2188 2189

		set_task_comm(worker->task, "kworker/dying");
2190
		ida_simple_remove(&pool->worker_ida, worker->id);
2191 2192
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2193
		return 0;
T
Tejun Heo 已提交
2194
	}
2195

T
Tejun Heo 已提交
2196
	worker_leave_idle(worker);
2197
recheck:
2198
	/* no more worker necessary? */
2199
	if (!need_more_worker(pool))
2200 2201 2202
		goto sleep;

	/* do we need to manage? */
2203
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2204 2205
		goto recheck;

T
Tejun Heo 已提交
2206 2207 2208 2209 2210
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2211
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2212

2213
	/*
2214 2215 2216 2217 2218
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2219
	 */
2220
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2221 2222

	do {
T
Tejun Heo 已提交
2223
		struct work_struct *work =
2224
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2225 2226
					 struct work_struct, entry);

T
Tejun Heo 已提交
2227 2228
		pool->watchdog_ts = jiffies;

T
Tejun Heo 已提交
2229 2230 2231 2232
		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2233
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2234 2235 2236
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2237
		}
2238
	} while (keep_working(pool));
2239

2240
	worker_set_flags(worker, WORKER_PREP);
2241
sleep:
T
Tejun Heo 已提交
2242
	/*
2243 2244 2245 2246 2247
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2248 2249 2250
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2251
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2252 2253
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2254 2255
}

2256 2257
/**
 * rescuer_thread - the rescuer thread function
2258
 * @__rescuer: self
2259 2260
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2261
 * workqueue which has WQ_MEM_RECLAIM set.
2262
 *
2263
 * Regular work processing on a pool may block trying to create a new
2264 2265 2266 2267 2268
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2269 2270
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2271 2272 2273
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2274 2275
 *
 * Return: 0
2276
 */
2277
static int rescuer_thread(void *__rescuer)
2278
{
2279 2280
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2281
	struct list_head *scheduled = &rescuer->scheduled;
2282
	bool should_stop;
2283 2284

	set_user_nice(current, RESCUER_NICE_LEVEL);
2285 2286 2287 2288 2289 2290

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2291 2292 2293
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2294 2295 2296 2297 2298 2299 2300 2301 2302
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2303

2304
	/* see whether any pwq is asking for help */
2305
	spin_lock_irq(&wq_mayday_lock);
2306 2307 2308 2309

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2310
		struct worker_pool *pool = pwq->pool;
2311
		struct work_struct *work, *n;
T
Tejun Heo 已提交
2312
		bool first = true;
2313 2314

		__set_current_state(TASK_RUNNING);
2315 2316
		list_del_init(&pwq->mayday_node);

2317
		spin_unlock_irq(&wq_mayday_lock);
2318

2319 2320 2321
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2322
		rescuer->pool = pool;
2323 2324 2325 2326 2327

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2328
		WARN_ON_ONCE(!list_empty(scheduled));
T
Tejun Heo 已提交
2329 2330 2331 2332
		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
			if (get_work_pwq(work) == pwq) {
				if (first)
					pool->watchdog_ts = jiffies;
2333
				move_linked_works(work, scheduled, &n);
T
Tejun Heo 已提交
2334 2335 2336
			}
			first = false;
		}
2337

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2357

2358 2359
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2360
		 * go away while we're still attached to it.
2361 2362 2363
		 */
		put_pwq(pwq);

2364
		/*
2365
		 * Leave this pool.  If need_more_worker() is %true, notify a
2366 2367 2368
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2369
		if (need_more_worker(pool))
2370
			wake_up_worker(pool);
2371

2372
		rescuer->pool = NULL;
2373 2374 2375 2376 2377
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2378 2379
	}

2380
	spin_unlock_irq(&wq_mayday_lock);
2381

2382 2383 2384 2385 2386 2387
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2388 2389
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2390 2391
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2392 2393
}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
/**
 * check_flush_dependency - check for flush dependency sanity
 * @target_wq: workqueue being flushed
 * @target_work: work item being flushed (NULL for workqueue flushes)
 *
 * %current is trying to flush the whole @target_wq or @target_work on it.
 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
 * reclaiming memory or running on a workqueue which doesn't have
 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
 * a deadlock.
 */
static void check_flush_dependency(struct workqueue_struct *target_wq,
				   struct work_struct *target_work)
{
	work_func_t target_func = target_work ? target_work->func : NULL;
	struct worker *worker;

	if (target_wq->flags & WQ_MEM_RECLAIM)
		return;

	worker = current_wq_worker();

	WARN_ONCE(current->flags & PF_MEMALLOC,
		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
		  current->pid, current->comm, target_wq->name, target_func);
2419 2420
	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2421 2422 2423 2424 2425
		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
		  worker->current_pwq->wq->name, worker->current_func,
		  target_wq->name, target_func);
}

O
Oleg Nesterov 已提交
2426 2427 2428
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
2429
	struct task_struct	*task;	/* purely informational */
O
Oleg Nesterov 已提交
2430 2431 2432 2433 2434 2435 2436 2437
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2438 2439
/**
 * insert_wq_barrier - insert a barrier work
2440
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2441
 * @barr: wq_barrier to insert
2442 2443
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2444
 *
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2457
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2458 2459
 *
 * CONTEXT:
2460
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2461
 */
2462
static void insert_wq_barrier(struct pool_workqueue *pwq,
2463 2464
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2465
{
2466 2467 2468
	struct list_head *head;
	unsigned int linked = 0;

2469
	/*
2470
	 * debugobject calls are safe here even with pool->lock locked
2471 2472 2473 2474
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2475
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2476
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2477
	init_completion(&barr->done);
2478
	barr->task = current;
2479

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2495
	debug_work_activate(&barr->work);
2496
	insert_work(pwq, &barr->work, head,
2497
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2498 2499
}

2500
/**
2501
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2502 2503 2504 2505
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2506
 * Prepare pwqs for workqueue flushing.
2507
 *
2508 2509 2510 2511 2512
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2513 2514 2515 2516 2517 2518 2519
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2520
 * If @work_color is non-negative, all pwqs should have the same
2521 2522 2523 2524
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2525
 * mutex_lock(wq->mutex).
2526
 *
2527
 * Return:
2528 2529 2530
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2531
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2532
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2533
{
2534
	bool wait = false;
2535
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2536

2537
	if (flush_color >= 0) {
2538
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2539
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2540
	}
2541

2542
	for_each_pwq(pwq, wq) {
2543
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2544

2545
		spin_lock_irq(&pool->lock);
2546

2547
		if (flush_color >= 0) {
2548
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2549

2550 2551 2552
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2553 2554 2555
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2556

2557
		if (work_color >= 0) {
2558
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2559
			pwq->work_color = work_color;
2560
		}
L
Linus Torvalds 已提交
2561

2562
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2563
	}
2564

2565
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2566
		complete(&wq->first_flusher->done);
2567

2568
	return wait;
L
Linus Torvalds 已提交
2569 2570
}

2571
/**
L
Linus Torvalds 已提交
2572
 * flush_workqueue - ensure that any scheduled work has run to completion.
2573
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2574
 *
2575 2576
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2577
 */
2578
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2579
{
2580 2581 2582 2583 2584 2585
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2586

2587 2588 2589
	if (WARN_ON(!wq_online))
		return;

2590 2591
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2592

2593
	mutex_lock(&wq->mutex);
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2606
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2607 2608 2609 2610 2611
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2612
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2613 2614 2615

			wq->first_flusher = &this_flusher;

2616
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2617 2618 2619 2620 2621 2622 2623 2624
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2625
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2626
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2627
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2638 2639
	check_flush_dependency(wq, NULL);

2640
	mutex_unlock(&wq->mutex);
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2653
	mutex_lock(&wq->mutex);
2654

2655 2656 2657 2658
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2659 2660
	wq->first_flusher = NULL;

2661 2662
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2675 2676
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2696
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2697 2698 2699
		}

		if (list_empty(&wq->flusher_queue)) {
2700
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2701 2702 2703 2704 2705
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2706
		 * the new first flusher and arm pwqs.
2707
		 */
2708 2709
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2710 2711 2712 2713

		list_del_init(&next->list);
		wq->first_flusher = next;

2714
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2725
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2726
}
2727
EXPORT_SYMBOL(flush_workqueue);
L
Linus Torvalds 已提交
2728

2729 2730 2731 2732 2733 2734 2735
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
C
Chen Hanxiao 已提交
2736
 * repeatedly until it becomes empty.  The number of flushing is determined
2737 2738 2739 2740 2741 2742
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2743
	struct pool_workqueue *pwq;
2744 2745 2746 2747

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2748
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2749
	 */
2750
	mutex_lock(&wq->mutex);
2751
	if (!wq->nr_drainers++)
2752
		wq->flags |= __WQ_DRAINING;
2753
	mutex_unlock(&wq->mutex);
2754 2755 2756
reflush:
	flush_workqueue(wq);

2757
	mutex_lock(&wq->mutex);
2758

2759
	for_each_pwq(pwq, wq) {
2760
		bool drained;
2761

2762
		spin_lock_irq(&pwq->pool->lock);
2763
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2764
		spin_unlock_irq(&pwq->pool->lock);
2765 2766

		if (drained)
2767 2768 2769 2770
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2771
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2772
				wq->name, flush_cnt);
2773

2774
		mutex_unlock(&wq->mutex);
2775 2776 2777 2778
		goto reflush;
	}

	if (!--wq->nr_drainers)
2779
		wq->flags &= ~__WQ_DRAINING;
2780
	mutex_unlock(&wq->mutex);
2781 2782 2783
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2784
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2785
{
2786
	struct worker *worker = NULL;
2787
	struct worker_pool *pool;
2788
	struct pool_workqueue *pwq;
2789 2790

	might_sleep();
2791 2792

	local_irq_disable();
2793
	pool = get_work_pool(work);
2794 2795
	if (!pool) {
		local_irq_enable();
2796
		return false;
2797
	}
2798

2799
	spin_lock(&pool->lock);
2800
	/* see the comment in try_to_grab_pending() with the same code */
2801 2802 2803
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2804
			goto already_gone;
2805
	} else {
2806
		worker = find_worker_executing_work(pool, work);
2807
		if (!worker)
T
Tejun Heo 已提交
2808
			goto already_gone;
2809
		pwq = worker->current_pwq;
2810
	}
2811

2812 2813
	check_flush_dependency(pwq->wq, work);

2814
	insert_wq_barrier(pwq, barr, work, worker);
2815
	spin_unlock_irq(&pool->lock);
2816

2817 2818 2819 2820 2821 2822
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2823
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2824
		lock_map_acquire(&pwq->wq->lockdep_map);
2825
	else
2826 2827
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2828

2829
	return true;
T
Tejun Heo 已提交
2830
already_gone:
2831
	spin_unlock_irq(&pool->lock);
2832
	return false;
2833
}
2834 2835 2836 2837 2838

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2839 2840
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2841
 *
2842
 * Return:
2843 2844 2845 2846 2847
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2848 2849
	struct wq_barrier barr;

2850 2851 2852
	if (WARN_ON(!wq_online))
		return false;

2853 2854 2855
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2856 2857 2858 2859 2860 2861 2862
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2863
}
2864
EXPORT_SYMBOL_GPL(flush_work);
2865

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
struct cwt_wait {
	wait_queue_t		wait;
	struct work_struct	*work;
};

static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2880
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2881
{
2882
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2883
	unsigned long flags;
2884 2885 2886
	int ret;

	do {
2887 2888
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2903
		 */
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2917 2918
	} while (unlikely(ret < 0));

2919 2920 2921 2922
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2923 2924 2925 2926 2927 2928 2929
	/*
	 * This allows canceling during early boot.  We know that @work
	 * isn't executing.
	 */
	if (wq_online)
		flush_work(work);

2930
	clear_work_data(work);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2941 2942 2943
	return ret;
}

2944
/**
2945 2946
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2947
 *
2948 2949 2950 2951
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2952
 *
2953 2954
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2955
 *
2956
 * The caller must ensure that the workqueue on which @work was last
2957
 * queued can't be destroyed before this function returns.
2958
 *
2959
 * Return:
2960
 * %true if @work was pending, %false otherwise.
2961
 */
2962
bool cancel_work_sync(struct work_struct *work)
2963
{
2964
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2965
}
2966
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2967

2968
/**
2969 2970
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2971
 *
2972 2973 2974
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2975
 *
2976
 * Return:
2977 2978
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2979
 */
2980 2981
bool flush_delayed_work(struct delayed_work *dwork)
{
2982
	local_irq_disable();
2983
	if (del_timer_sync(&dwork->timer))
2984
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2985
	local_irq_enable();
2986 2987 2988 2989
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

J
Jens Axboe 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
static bool __cancel_work(struct work_struct *work, bool is_dwork)
{
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(work, is_dwork, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
	local_irq_restore(flags);
	return ret;
}

/*
 * See cancel_delayed_work()
 */
bool cancel_work(struct work_struct *work)
{
	return __cancel_work(work, false);
}

3015
/**
3016 3017
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
3018
 *
3019 3020 3021 3022 3023 3024 3025 3026 3027
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
3028
 *
3029
 * This function is safe to call from any context including IRQ handler.
3030
 */
3031
bool cancel_delayed_work(struct delayed_work *dwork)
3032
{
J
Jens Axboe 已提交
3033
	return __cancel_work(&dwork->work, true);
3034
}
3035
EXPORT_SYMBOL(cancel_delayed_work);
3036

3037 3038 3039 3040 3041 3042
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
3043
 * Return:
3044 3045 3046
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3047
{
3048
	return __cancel_work_timer(&dwork->work, true);
3049
}
3050
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3051

3052
/**
3053
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3054 3055
 * @func: the function to call
 *
3056 3057
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3058
 * schedule_on_each_cpu() is very slow.
3059
 *
3060
 * Return:
3061
 * 0 on success, -errno on failure.
3062
 */
3063
int schedule_on_each_cpu(work_func_t func)
3064 3065
{
	int cpu;
3066
	struct work_struct __percpu *works;
3067

3068 3069
	works = alloc_percpu(struct work_struct);
	if (!works)
3070
		return -ENOMEM;
3071

3072 3073
	get_online_cpus();

3074
	for_each_online_cpu(cpu) {
3075 3076 3077
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3078
		schedule_work_on(cpu, work);
3079
	}
3080 3081 3082 3083

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3084
	put_online_cpus();
3085
	free_percpu(works);
3086 3087 3088
	return 0;
}

3089 3090 3091 3092 3093 3094 3095 3096 3097
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3098
 * Return:	0 - function was executed
3099 3100
 *		1 - function was scheduled for execution
 */
3101
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3102 3103
{
	if (!in_interrupt()) {
3104
		fn(&ew->work);
3105 3106 3107
		return 0;
	}

3108
	INIT_WORK(&ew->work, fn);
3109 3110 3111 3112 3113 3114
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3115 3116 3117
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
3118
 *
3119
 * Undo alloc_workqueue_attrs().
3120
 */
3121
void free_workqueue_attrs(struct workqueue_attrs *attrs)
3122
{
3123 3124 3125 3126
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
3127 3128
}

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3139
{
3140
	struct workqueue_attrs *attrs;
3141

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_copy(attrs->cpumask, cpu_possible_mask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
3153 3154
}

3155 3156
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
3157
{
3158 3159 3160 3161 3162 3163 3164 3165
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3166 3167
}

3168 3169
/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3170
{
3171
	u32 hash = 0;
3172

3173 3174 3175 3176
	hash = jhash_1word(attrs->nice, hash);
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	return hash;
3177 3178
}

3179 3180 3181
/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
3182
{
3183 3184 3185 3186 3187
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
3188 3189
}

3190 3191 3192 3193
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
3194
 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3195 3196 3197 3198 3199 3200
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
 */
static int init_worker_pool(struct worker_pool *pool)
3201
{
3202 3203 3204 3205 3206
	spin_lock_init(&pool->lock);
	pool->id = -1;
	pool->cpu = -1;
	pool->node = NUMA_NO_NODE;
	pool->flags |= POOL_DISASSOCIATED;
T
Tejun Heo 已提交
3207
	pool->watchdog_ts = jiffies;
3208 3209 3210
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);
3211

3212 3213 3214
	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;
3215

3216 3217
	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);
3218

3219 3220 3221
	mutex_init(&pool->manager_arb);
	mutex_init(&pool->attach_mutex);
	INIT_LIST_HEAD(&pool->workers);
3222

3223 3224 3225
	ida_init(&pool->worker_ida);
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;
3226

3227 3228 3229 3230 3231
	/* shouldn't fail above this point */
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3232 3233
}

3234
static void rcu_free_wq(struct rcu_head *rcu)
3235
{
3236 3237
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);
3238

3239 3240
	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
3241
	else
3242
		free_workqueue_attrs(wq->unbound_attrs);
3243

3244 3245
	kfree(wq->rescuer);
	kfree(wq);
3246 3247
}

3248
static void rcu_free_pool(struct rcu_head *rcu)
3249
{
3250
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3251

3252 3253 3254
	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
3255 3256
}

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
 *
 * Should be called with wq_pool_mutex held.
 */
static void put_unbound_pool(struct worker_pool *pool)
3269
{
3270 3271
	DECLARE_COMPLETION_ONSTACK(detach_completion);
	struct worker *worker;
3272

3273
	lockdep_assert_held(&wq_pool_mutex);
3274

3275 3276
	if (--pool->refcnt)
		return;
3277

3278 3279 3280 3281
	/* sanity checks */
	if (WARN_ON(!(pool->cpu < 0)) ||
	    WARN_ON(!list_empty(&pool->worklist)))
		return;
3282

3283 3284 3285 3286
	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);
3287

3288 3289 3290 3291 3292 3293
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * attach_mutex.
	 */
	mutex_lock(&pool->manager_arb);
3294

3295 3296 3297 3298 3299
	spin_lock_irq(&pool->lock);
	while ((worker = first_idle_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3300

3301 3302 3303 3304
	mutex_lock(&pool->attach_mutex);
	if (!list_empty(&pool->workers))
		pool->detach_completion = &detach_completion;
	mutex_unlock(&pool->attach_mutex);
3305

3306 3307
	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);
3308

3309
	mutex_unlock(&pool->manager_arb);
3310

3311 3312 3313
	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);
3314

3315 3316
	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
3317 3318 3319
}

/**
3320 3321
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
3322
 *
3323 3324 3325 3326
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.
3327
 *
3328
 * Should be called with wq_pool_mutex held.
3329
 *
3330 3331
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3332
 */
3333
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3334
{
3335 3336 3337
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	int node;
3338
	int target_node = NUMA_NO_NODE;
3339

3340
	lockdep_assert_held(&wq_pool_mutex);
3341

3342 3343 3344 3345 3346 3347 3348
	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			return pool;
		}
	}
3349

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				target_node = node;
				break;
			}
		}
	}

3361
	/* nope, create a new one */
3362
	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3363 3364 3365 3366 3367
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
	copy_workqueue_attrs(pool->attrs, attrs);
3368
	pool->node = target_node;
3369 3370

	/*
3371 3372
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
3373
	 */
3374
	pool->attrs->no_numa = false;
3375

3376 3377
	if (worker_pool_assign_id(pool) < 0)
		goto fail;
3378

3379
	/* create and start the initial worker */
3380
	if (wq_online && !create_worker(pool))
3381
		goto fail;
3382

3383 3384
	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3385

3386 3387 3388 3389 3390
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
3391 3392
}

3393
static void rcu_free_pwq(struct rcu_head *rcu)
T
Tejun Heo 已提交
3394
{
3395 3396
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
T
Tejun Heo 已提交
3397 3398
}

3399 3400 3401
/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
T
Tejun Heo 已提交
3402
 */
3403
static void pwq_unbound_release_workfn(struct work_struct *work)
T
Tejun Heo 已提交
3404
{
3405 3406 3407 3408 3409
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	bool is_last;
T
Tejun Heo 已提交
3410

3411 3412
	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;
T
Tejun Heo 已提交
3413

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
	mutex_lock(&wq->mutex);
	list_del_rcu(&pwq->pwqs_node);
	is_last = list_empty(&wq->pwqs);
	mutex_unlock(&wq->mutex);

	mutex_lock(&wq_pool_mutex);
	put_unbound_pool(pool);
	mutex_unlock(&wq_pool_mutex);

	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
T
Tejun Heo 已提交
3424

3425
	/*
3426 3427
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Schedule RCU free.
3428
	 */
3429 3430
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
3431 3432
}

T
Tejun Heo 已提交
3433
/**
3434 3435
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
 * @pwq: target pool_workqueue
3436
 *
3437 3438 3439
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
T
Tejun Heo 已提交
3440
 */
3441
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3442
{
3443 3444
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;
3445
	unsigned long flags;
3446

3447 3448
	/* for @wq->saved_max_active */
	lockdep_assert_held(&wq->mutex);
3449

3450 3451 3452
	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;
T
Tejun Heo 已提交
3453

3454 3455
	/* this function can be called during early boot w/ irq disabled */
	spin_lock_irqsave(&pwq->pool->lock, flags);
3456

3457 3458 3459 3460 3461 3462 3463
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
		pwq->max_active = wq->saved_max_active;
3464

3465 3466 3467
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3468

3469 3470 3471 3472 3473 3474 3475 3476
		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
	} else {
		pwq->max_active = 0;
	}
3477

3478
	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3479 3480
}

3481 3482 3483
/* initialize newly alloced @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3484
{
3485
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	memset(pwq, 0, sizeof(*pwq));

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
	pwq->refcnt = 1;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->pwqs_node);
	INIT_LIST_HEAD(&pwq->mayday_node);
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3497 3498
}

3499 3500
/* sync @pwq with the current state of its associated wq and link it */
static void link_pwq(struct pool_workqueue *pwq)
3501
{
3502
	struct workqueue_struct *wq = pwq->wq;
3503

3504
	lockdep_assert_held(&wq->mutex);
3505

3506 3507
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
3508 3509
		return;

3510 3511
	/* set the matching work_color */
	pwq->work_color = wq->work_color;
3512

3513 3514
	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);
3515

3516 3517 3518
	/* link in @pwq */
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
}
3519

3520 3521 3522 3523 3524 3525
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;
3526

3527
	lockdep_assert_held(&wq_pool_mutex);
3528

3529 3530 3531
	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;
3532

3533 3534 3535 3536 3537
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
	}
3538

3539 3540 3541
	init_pwq(pwq, wq, pool);
	return pwq;
}
3542 3543

/**
3544
 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3545
 * @attrs: the wq_attrs of the default pwq of the target workqueue
3546 3547 3548
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
3549
 *
3550 3551 3552
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.
3553
 *
3554 3555 3556 3557
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
3558
 *
3559 3560 3561 3562 3563
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3564
 */
3565 3566
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
3567
{
3568 3569
	if (!wq_numa_enabled || attrs->no_numa)
		goto use_dfl;
3570

3571 3572 3573 3574
	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);
3575

3576 3577
	if (cpumask_empty(cpumask))
		goto use_dfl;
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3588 3589 3590 3591 3592 3593 3594
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

3595
	lockdep_assert_held(&wq_pool_mutex);
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3606 3607 3608 3609
/* context to store the prepared attrs & pwqs before applying */
struct apply_wqattrs_ctx {
	struct workqueue_struct	*wq;		/* target workqueue */
	struct workqueue_attrs	*attrs;		/* attrs to apply */
3610
	struct list_head	list;		/* queued for batching commit */
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
	struct pool_workqueue	*dfl_pwq;
	struct pool_workqueue	*pwq_tbl[];
};

/* free the resources after success or abort */
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
{
	if (ctx) {
		int node;

		for_each_node(node)
			put_pwq_unlocked(ctx->pwq_tbl[node]);
		put_pwq_unlocked(ctx->dfl_pwq);

		free_workqueue_attrs(ctx->attrs);

		kfree(ctx);
	}
}

/* allocate the attrs and pwqs for later installation */
static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct *wq,
		      const struct workqueue_attrs *attrs)
3635
{
3636
	struct apply_wqattrs_ctx *ctx;
3637
	struct workqueue_attrs *new_attrs, *tmp_attrs;
3638
	int node;
3639

3640
	lockdep_assert_held(&wq_pool_mutex);
3641

3642 3643
	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
		      GFP_KERNEL);
3644

3645
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3646
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3647 3648
	if (!ctx || !new_attrs || !tmp_attrs)
		goto out_free;
3649

3650 3651 3652 3653 3654
	/*
	 * Calculate the attrs of the default pwq.
	 * If the user configured cpumask doesn't overlap with the
	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
	 */
3655
	copy_workqueue_attrs(new_attrs, attrs);
3656
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3657 3658
	if (unlikely(cpumask_empty(new_attrs->cpumask)))
		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3659

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
3672 3673 3674
	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!ctx->dfl_pwq)
		goto out_free;
3675 3676

	for_each_node(node) {
3677
		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3678 3679 3680
			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!ctx->pwq_tbl[node])
				goto out_free;
3681
		} else {
3682 3683
			ctx->dfl_pwq->refcnt++;
			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3684 3685 3686
		}
	}

3687 3688 3689
	/* save the user configured attrs and sanitize it. */
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3690
	ctx->attrs = new_attrs;
3691

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
	ctx->wq = wq;
	free_workqueue_attrs(tmp_attrs);
	return ctx;

out_free:
	free_workqueue_attrs(tmp_attrs);
	free_workqueue_attrs(new_attrs);
	apply_wqattrs_cleanup(ctx);
	return NULL;
}

/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
{
	int node;
3707

3708
	/* all pwqs have been created successfully, let's install'em */
3709
	mutex_lock(&ctx->wq->mutex);
3710

3711
	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3712 3713

	/* save the previous pwq and install the new one */
3714
	for_each_node(node)
3715 3716
		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
							  ctx->pwq_tbl[node]);
3717 3718

	/* @dfl_pwq might not have been used, ensure it's linked */
3719 3720
	link_pwq(ctx->dfl_pwq);
	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3721

3722 3723
	mutex_unlock(&ctx->wq->mutex);
}
3724

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
static void apply_wqattrs_lock(void)
{
	/* CPUs should stay stable across pwq creations and installations */
	get_online_cpus();
	mutex_lock(&wq_pool_mutex);
}

static void apply_wqattrs_unlock(void)
{
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
}

static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
3740 3741
{
	struct apply_wqattrs_ctx *ctx;
3742

3743 3744 3745
	/* only unbound workqueues can change attributes */
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;
3746

3747 3748 3749 3750 3751
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

	ctx = apply_wqattrs_prepare(wq, attrs);
3752 3753
	if (!ctx)
		return -ENOMEM;
3754 3755

	/* the ctx has been prepared successfully, let's commit it */
3756
	apply_wqattrs_commit(ctx);
3757 3758
	apply_wqattrs_cleanup(ctx);

3759
	return 0;
3760 3761
}

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	int ret;

	apply_wqattrs_lock();
	ret = apply_workqueue_attrs_locked(wq, attrs);
	apply_wqattrs_unlock();

	return ret;
}

3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

3823 3824
	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
	    wq->unbound_attrs->no_numa)
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
3840 3841 3842
	 * different from the default pwq's, we need to compare it to @pwq's
	 * and create a new one if they don't match.  If the target cpumask
	 * equals the default pwq's, the default pwq should be used.
3843
	 */
3844
	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3845
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3846
			return;
3847
	} else {
3848
		goto use_dfl_pwq;
3849 3850 3851 3852 3853
	}

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3854 3855
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3856
		goto use_dfl_pwq;
3857 3858
	}

3859
	/* Install the new pwq. */
3860 3861 3862 3863 3864
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
3865
	mutex_lock(&wq->mutex);
3866 3867 3868 3869 3870 3871 3872 3873 3874
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3875
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3876
{
3877
	bool highpri = wq->flags & WQ_HIGHPRI;
3878
	int cpu, ret;
3879 3880

	if (!(wq->flags & WQ_UNBOUND)) {
3881 3882
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3883 3884 3885
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3886 3887
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3888
			struct worker_pool *cpu_pools =
3889
				per_cpu(cpu_worker_pools, cpu);
3890

3891 3892 3893
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3894
			link_pwq(pwq);
3895
			mutex_unlock(&wq->mutex);
3896
		}
3897
		return 0;
3898 3899 3900 3901 3902 3903 3904
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3905
	} else {
3906
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3907
	}
T
Tejun Heo 已提交
3908 3909
}

3910 3911
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3912
{
3913 3914 3915
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3916 3917
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3918

3919
	return clamp_val(max_active, 1, lim);
3920 3921
}

3922
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3923 3924 3925
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3926
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3927
{
3928
	size_t tbl_size = 0;
3929
	va_list args;
L
Linus Torvalds 已提交
3930
	struct workqueue_struct *wq;
3931
	struct pool_workqueue *pwq;
3932

3933 3934 3935 3936
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

3937
	/* allocate wq and format name */
3938
	if (flags & WQ_UNBOUND)
3939
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3940 3941

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3942
	if (!wq)
3943
		return NULL;
3944

3945 3946 3947 3948 3949 3950
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

3951 3952
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3953
	va_end(args);
L
Linus Torvalds 已提交
3954

3955
	max_active = max_active ?: WQ_DFL_ACTIVE;
3956
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3957

3958
	/* init wq */
3959
	wq->flags = flags;
3960
	wq->saved_max_active = max_active;
3961
	mutex_init(&wq->mutex);
3962
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3963
	INIT_LIST_HEAD(&wq->pwqs);
3964 3965
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3966
	INIT_LIST_HEAD(&wq->maydays);
3967

3968
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3969
	INIT_LIST_HEAD(&wq->list);
3970

3971
	if (alloc_and_link_pwqs(wq) < 0)
3972
		goto err_free_wq;
T
Tejun Heo 已提交
3973

3974 3975 3976 3977 3978
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3979 3980
		struct worker *rescuer;

3981
		rescuer = alloc_worker(NUMA_NO_NODE);
3982
		if (!rescuer)
3983
			goto err_destroy;
3984

3985 3986
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3987
					       wq->name);
3988 3989 3990 3991
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3992

3993
		wq->rescuer = rescuer;
3994
		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3995
		wake_up_process(rescuer->task);
3996 3997
	}

3998 3999 4000
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4001
	/*
4002 4003 4004
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4005
	 */
4006
	mutex_lock(&wq_pool_mutex);
4007

4008
	mutex_lock(&wq->mutex);
4009 4010
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4011
	mutex_unlock(&wq->mutex);
4012

4013
	list_add_tail_rcu(&wq->list, &workqueues);
4014

4015
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4016

4017
	return wq;
4018 4019

err_free_wq:
4020
	free_workqueue_attrs(wq->unbound_attrs);
4021 4022 4023 4024
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4025
	return NULL;
4026
}
4027
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4028

4029 4030 4031 4032 4033 4034 4035 4036
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4037
	struct pool_workqueue *pwq;
4038
	int node;
4039

4040 4041
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4042

4043
	/* sanity checks */
4044
	mutex_lock(&wq->mutex);
4045
	for_each_pwq(pwq, wq) {
4046 4047
		int i;

4048 4049
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4050
				mutex_unlock(&wq->mutex);
4051
				show_workqueue_state();
4052
				return;
4053 4054 4055
			}
		}

4056
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4057
		    WARN_ON(pwq->nr_active) ||
4058
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4059
			mutex_unlock(&wq->mutex);
4060
			show_workqueue_state();
4061
			return;
4062
		}
4063
	}
4064
	mutex_unlock(&wq->mutex);
4065

4066 4067 4068 4069
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4070
	mutex_lock(&wq_pool_mutex);
4071
	list_del_rcu(&wq->list);
4072
	mutex_unlock(&wq_pool_mutex);
4073

4074 4075
	workqueue_sysfs_unregister(wq);

4076
	if (wq->rescuer)
4077 4078
		kthread_stop(wq->rescuer->task);

T
Tejun Heo 已提交
4079 4080 4081
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
4082
		 * schedule RCU free.
T
Tejun Heo 已提交
4083
		 */
4084
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
4085 4086 4087
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4088 4089
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4090
		 */
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4103
		put_pwq_unlocked(pwq);
4104
	}
4105 4106 4107
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4120
	struct pool_workqueue *pwq;
4121

4122 4123 4124 4125
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4126
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4127

4128
	mutex_lock(&wq->mutex);
4129 4130 4131

	wq->saved_max_active = max_active;

4132 4133
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4134

4135
	mutex_unlock(&wq->mutex);
4136
}
4137
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4138

4139 4140 4141 4142 4143
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4144 4145
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4146 4147 4148 4149 4150
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4151
	return worker && worker->rescue_wq;
4152 4153
}

4154
/**
4155 4156 4157
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4158
 *
4159 4160 4161
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4162
 *
4163 4164 4165 4166 4167 4168
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4169
 * Return:
4170
 * %true if congested, %false otherwise.
4171
 */
4172
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4173
{
4174
	struct pool_workqueue *pwq;
4175 4176
	bool ret;

4177
	rcu_read_lock_sched();
4178

4179 4180 4181
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4182 4183 4184
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4185
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4186

4187
	ret = !list_empty(&pwq->delayed_works);
4188
	rcu_read_unlock_sched();
4189 4190

	return ret;
L
Linus Torvalds 已提交
4191
}
4192
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4193

4194 4195 4196 4197 4198 4199 4200 4201
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4202
 * Return:
4203 4204 4205
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4206
{
4207
	struct worker_pool *pool;
4208 4209
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4210

4211 4212
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4213

4214 4215
	local_irq_save(flags);
	pool = get_work_pool(work);
4216
	if (pool) {
4217
		spin_lock(&pool->lock);
4218 4219
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4220
		spin_unlock(&pool->lock);
4221
	}
4222
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4223

4224
	return ret;
L
Linus Torvalds 已提交
4225
}
4226
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4227

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
4281
	worker = kthread_probe_data(task);
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
static void pr_cont_pool_info(struct worker_pool *pool)
{
	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
	if (pool->node != NUMA_NO_NODE)
		pr_cont(" node=%d", pool->node);
	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
}

static void pr_cont_work(bool comma, struct work_struct *work)
{
	if (work->func == wq_barrier_func) {
		struct wq_barrier *barr;

		barr = container_of(work, struct wq_barrier, work);

		pr_cont("%s BAR(%d)", comma ? "," : "",
			task_pid_nr(barr->task));
	} else {
		pr_cont("%s %pf", comma ? "," : "", work->func);
	}
}

static void show_pwq(struct pool_workqueue *pwq)
{
	struct worker_pool *pool = pwq->pool;
	struct work_struct *work;
	struct worker *worker;
	bool has_in_flight = false, has_pending = false;
	int bkt;

	pr_info("  pwq %d:", pool->id);
	pr_cont_pool_info(pool);

	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (worker->current_pwq == pwq) {
			has_in_flight = true;
			break;
		}
	}
	if (has_in_flight) {
		bool comma = false;

		pr_info("    in-flight:");
		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
			if (worker->current_pwq != pwq)
				continue;

			pr_cont("%s %d%s:%pf", comma ? "," : "",
				task_pid_nr(worker->task),
				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
				worker->current_func);
			list_for_each_entry(work, &worker->scheduled, entry)
				pr_cont_work(false, work);
			comma = true;
		}
		pr_cont("\n");
	}

	list_for_each_entry(work, &pool->worklist, entry) {
		if (get_work_pwq(work) == pwq) {
			has_pending = true;
			break;
		}
	}
	if (has_pending) {
		bool comma = false;

		pr_info("    pending:");
		list_for_each_entry(work, &pool->worklist, entry) {
			if (get_work_pwq(work) != pwq)
				continue;

			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}

	if (!list_empty(&pwq->delayed_works)) {
		bool comma = false;

		pr_info("    delayed:");
		list_for_each_entry(work, &pwq->delayed_works, entry) {
			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}
}

/**
 * show_workqueue_state - dump workqueue state
 *
4401 4402
 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
 * all busy workqueues and pools.
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
 */
void show_workqueue_state(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	unsigned long flags;
	int pi;

	rcu_read_lock_sched();

	pr_info("Showing busy workqueues and worker pools:\n");

	list_for_each_entry_rcu(wq, &workqueues, list) {
		struct pool_workqueue *pwq;
		bool idle = true;

		for_each_pwq(pwq, wq) {
			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
				idle = false;
				break;
			}
		}
		if (idle)
			continue;

		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);

		for_each_pwq(pwq, wq) {
			spin_lock_irqsave(&pwq->pool->lock, flags);
			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
				show_pwq(pwq);
			spin_unlock_irqrestore(&pwq->pool->lock, flags);
		}
	}

	for_each_pool(pool, pi) {
		struct worker *worker;
		bool first = true;

		spin_lock_irqsave(&pool->lock, flags);
		if (pool->nr_workers == pool->nr_idle)
			goto next_pool;

		pr_info("pool %d:", pool->id);
		pr_cont_pool_info(pool);
T
Tejun Heo 已提交
4448 4449 4450
		pr_cont(" hung=%us workers=%d",
			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
			pool->nr_workers);
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
		if (pool->manager)
			pr_cont(" manager: %d",
				task_pid_nr(pool->manager->task));
		list_for_each_entry(worker, &pool->idle_list, entry) {
			pr_cont(" %s%d", first ? "idle: " : "",
				task_pid_nr(worker->task));
			first = false;
		}
		pr_cont("\n");
	next_pool:
		spin_unlock_irqrestore(&pool->lock, flags);
	}

	rcu_read_unlock_sched();
}

4467 4468 4469
/*
 * CPU hotplug.
 *
4470
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4471
 * are a lot of assumptions on strong associations among work, pwq and
4472
 * pool which make migrating pending and scheduled works very
4473
 * difficult to implement without impacting hot paths.  Secondly,
4474
 * worker pools serve mix of short, long and very long running works making
4475 4476
 * blocked draining impractical.
 *
4477
 * This is solved by allowing the pools to be disassociated from the CPU
4478 4479
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4480
 */
L
Linus Torvalds 已提交
4481

4482
static void wq_unbind_fn(struct work_struct *work)
4483
{
4484
	int cpu = smp_processor_id();
4485
	struct worker_pool *pool;
4486
	struct worker *worker;
4487

4488
	for_each_cpu_worker_pool(pool, cpu) {
4489
		mutex_lock(&pool->attach_mutex);
4490
		spin_lock_irq(&pool->lock);
4491

4492
		/*
4493
		 * We've blocked all attach/detach operations. Make all workers
4494 4495 4496 4497 4498
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4499
		for_each_pool_worker(worker, pool)
4500
			worker->flags |= WORKER_UNBOUND;
4501

4502
		pool->flags |= POOL_DISASSOCIATED;
4503

4504
		spin_unlock_irq(&pool->lock);
4505
		mutex_unlock(&pool->attach_mutex);
4506

4507 4508 4509 4510 4511 4512 4513
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4514

4515 4516 4517 4518 4519 4520 4521 4522
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4523
		atomic_set(&pool->nr_running, 0);
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4534 4535
}

T
Tejun Heo 已提交
4536 4537 4538 4539
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4540
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4541 4542 4543
 */
static void rebind_workers(struct worker_pool *pool)
{
4544
	struct worker *worker;
T
Tejun Heo 已提交
4545

4546
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4547

4548 4549 4550
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
4551
	 * wake-ups for concurrency management happen, restore CPU affinity
4552 4553 4554
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4555
	for_each_pool_worker(worker, pool)
4556 4557
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4558

4559
	spin_lock_irq(&pool->lock);
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570

	/*
	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
	 * being reworked and this can go away in time.
	 */
	if (!(pool->flags & POOL_DISASSOCIATED)) {
		spin_unlock_irq(&pool->lock);
		return;
	}

4571
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4572

4573
	for_each_pool_worker(worker, pool) {
4574
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4575 4576

		/*
4577 4578 4579 4580 4581 4582
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4583
		 */
4584 4585
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4586

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4606
	}
4607 4608

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4609 4610
}

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4626
	lockdep_assert_held(&pool->attach_mutex);
4627 4628 4629 4630 4631 4632 4633 4634

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4635
	for_each_pool_worker(worker, pool)
4636
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4637 4638
}

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
int workqueue_prepare_cpu(unsigned int cpu)
{
	struct worker_pool *pool;

	for_each_cpu_worker_pool(pool, cpu) {
		if (pool->nr_workers)
			continue;
		if (!create_worker(pool))
			return -ENOMEM;
	}
	return 0;
}

int workqueue_online_cpu(unsigned int cpu)
4653
{
4654
	struct worker_pool *pool;
4655
	struct workqueue_struct *wq;
4656
	int pi;
4657

4658
	mutex_lock(&wq_pool_mutex);
4659

4660 4661
	for_each_pool(pool, pi) {
		mutex_lock(&pool->attach_mutex);
4662

4663 4664 4665 4666
		if (pool->cpu == cpu)
			rebind_workers(pool);
		else if (pool->cpu < 0)
			restore_unbound_workers_cpumask(pool, cpu);
4667

4668 4669
		mutex_unlock(&pool->attach_mutex);
	}
4670

4671 4672 4673
	/* update NUMA affinity of unbound workqueues */
	list_for_each_entry(wq, &workqueues, list)
		wq_update_unbound_numa(wq, cpu, true);
4674

4675 4676
	mutex_unlock(&wq_pool_mutex);
	return 0;
4677 4678
}

4679
int workqueue_offline_cpu(unsigned int cpu)
4680 4681 4682 4683
{
	struct work_struct unbind_work;
	struct workqueue_struct *wq;

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
	/* unbinding per-cpu workers should happen on the local CPU */
	INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
	queue_work_on(cpu, system_highpri_wq, &unbind_work);

	/* update NUMA affinity of unbound workqueues */
	mutex_lock(&wq_pool_mutex);
	list_for_each_entry(wq, &workqueues, list)
		wq_update_unbound_numa(wq, cpu, false);
	mutex_unlock(&wq_pool_mutex);

	/* wait for per-cpu unbinding to finish */
	flush_work(&unbind_work);
	destroy_work_on_stack(&unbind_work);
	return 0;
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
}

#ifdef CONFIG_SMP

struct work_for_cpu {
	struct work_struct work;
	long (*fn)(void *);
	void *arg;
	long ret;
};

static void work_for_cpu_fn(struct work_struct *work)
{
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

	wfc->ret = wfc->fn(wfc->arg);
}

/**
4717
 * work_on_cpu - run a function in thread context on a particular cpu
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
 * It is up to the caller to ensure that the cpu doesn't go offline.
 * The caller must not hold any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
{
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };

	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
	destroy_work_on_stack(&wfc.work);
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their delayed_works list instead of
 * pool->worklist.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void freeze_workqueues_begin(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(workqueue_freezing);
	workqueue_freezing = true;

	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

	mutex_unlock(&wq_pool_mutex);
}

/**
 * freeze_workqueues_busy - are freezable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex.
 *
 * Return:
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(!workqueue_freezing);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		rcu_read_lock_sched();
		for_each_pwq(pwq, wq) {
			WARN_ON_ONCE(pwq->nr_active < 0);
			if (pwq->nr_active) {
				busy = true;
				rcu_read_unlock_sched();
				goto out_unlock;
			}
		}
		rcu_read_unlock_sched();
	}
out_unlock:
	mutex_unlock(&wq_pool_mutex);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
 * frozen works are transferred to their respective pool worklists.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void thaw_workqueues(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	if (!workqueue_freezing)
		goto out_unlock;

	workqueue_freezing = false;

	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

out_unlock:
	mutex_unlock(&wq_pool_mutex);
}
#endif /* CONFIG_FREEZER */

4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
static int workqueue_apply_unbound_cpumask(void)
{
	LIST_HEAD(ctxs);
	int ret = 0;
	struct workqueue_struct *wq;
	struct apply_wqattrs_ctx *ctx, *n;

	lockdep_assert_held(&wq_pool_mutex);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_UNBOUND))
			continue;
		/* creating multiple pwqs breaks ordering guarantee */
		if (wq->flags & __WQ_ORDERED)
			continue;

		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
		if (!ctx) {
			ret = -ENOMEM;
			break;
		}

		list_add_tail(&ctx->list, &ctxs);
	}

	list_for_each_entry_safe(ctx, n, &ctxs, list) {
		if (!ret)
			apply_wqattrs_commit(ctx);
		apply_wqattrs_cleanup(ctx);
	}

	return ret;
}

/**
 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
 *  @cpumask: the cpumask to set
 *
 *  The low-level workqueues cpumask is a global cpumask that limits
 *  the affinity of all unbound workqueues.  This function check the @cpumask
 *  and apply it to all unbound workqueues and updates all pwqs of them.
 *
 *  Retun:	0	- Success
 *  		-EINVAL	- Invalid @cpumask
 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
 */
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
{
	int ret = -EINVAL;
	cpumask_var_t saved_cpumask;

	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
		return -ENOMEM;

	cpumask_and(cpumask, cpumask, cpu_possible_mask);
	if (!cpumask_empty(cpumask)) {
4908
		apply_wqattrs_lock();
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920

		/* save the old wq_unbound_cpumask. */
		cpumask_copy(saved_cpumask, wq_unbound_cpumask);

		/* update wq_unbound_cpumask at first and apply it to wqs. */
		cpumask_copy(wq_unbound_cpumask, cpumask);
		ret = workqueue_apply_unbound_cpumask();

		/* restore the wq_unbound_cpumask when failed. */
		if (ret < 0)
			cpumask_copy(wq_unbound_cpumask, saved_cpumask);

4921
		apply_wqattrs_unlock();
4922 4923 4924 4925 4926 4927
	}

	free_cpumask_var(saved_cpumask);
	return ret;
}

4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
static DEVICE_ATTR_RO(per_cpu);

static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
static DEVICE_ATTR_RW(max_active);

static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
};
ATTRIBUTE_GROUPS(wq_sysfs);

static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	const char *delim = "";
	int node, written = 0;

	rcu_read_lock_sched();
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

5032 5033
	lockdep_assert_held(&wq_pool_mutex);

5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5047 5048 5049
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5050 5051 5052

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5053
		goto out_unlock;
5054 5055 5056

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5057
		ret = apply_workqueue_attrs_locked(wq, attrs);
5058 5059 5060
	else
		ret = -EINVAL;

5061 5062
out_unlock:
	apply_wqattrs_unlock();
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
	mutex_unlock(&wq->mutex);
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5086 5087 5088
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5089 5090 5091

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5092
		goto out_unlock;
5093 5094 5095

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
5096
		ret = apply_workqueue_attrs_locked(wq, attrs);
5097

5098 5099
out_unlock:
	apply_wqattrs_unlock();
5100 5101 5102 5103 5104 5105 5106 5107 5108
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;
5109

5110 5111 5112 5113
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);
5114

5115
	return written;
5116 5117
}

5118 5119
static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
5120
{
5121 5122
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5123 5124 5125
	int v, ret = -ENOMEM;

	apply_wqattrs_lock();
5126

5127 5128
	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5129
		goto out_unlock;
5130

5131 5132 5133
	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
5134
		ret = apply_workqueue_attrs_locked(wq, attrs);
5135
	}
5136

5137 5138
out_unlock:
	apply_wqattrs_unlock();
5139 5140
	free_workqueue_attrs(attrs);
	return ret ?: count;
5141 5142
}

5143 5144 5145 5146 5147 5148 5149
static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
	__ATTR_NULL,
};
5150

5151 5152 5153
static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_groups			= wq_sysfs_groups,
5154 5155
};

5156 5157 5158 5159 5160
static ssize_t wq_unbound_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int written;

5161
	mutex_lock(&wq_pool_mutex);
5162 5163
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq_unbound_cpumask));
5164
	mutex_unlock(&wq_pool_mutex);
5165 5166 5167 5168

	return written;
}

5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
static ssize_t wq_unbound_cpumask_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	cpumask_var_t cpumask;
	int ret;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	ret = cpumask_parse(buf, cpumask);
	if (!ret)
		ret = workqueue_set_unbound_cpumask(cpumask);

	free_cpumask_var(cpumask);
	return ret ? ret : count;
}

5186
static struct device_attribute wq_sysfs_cpumask_attr =
5187 5188
	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
	       wq_unbound_cpumask_store);
5189

5190
static int __init wq_sysfs_init(void)
5191
{
5192 5193 5194 5195 5196 5197 5198
	int err;

	err = subsys_virtual_register(&wq_subsys, NULL);
	if (err)
		return err;

	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5199
}
5200
core_initcall(wq_sysfs_init);
5201

5202
static void wq_device_release(struct device *dev)
5203
{
5204
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5205

5206
	kfree(wq_dev);
5207
}
5208 5209

/**
5210 5211
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
5212
 *
5213 5214 5215
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
5216
 *
5217 5218 5219 5220 5221 5222
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Return: 0 on success, -errno on failure.
5223
 */
5224
int workqueue_sysfs_register(struct workqueue_struct *wq)
5225
{
5226 5227
	struct wq_device *wq_dev;
	int ret;
5228

5229
	/*
5230
	 * Adjusting max_active or creating new pwqs by applying
5231 5232 5233 5234 5235
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;
5236

5237 5238 5239
	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;
5240

5241 5242 5243
	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.release = wq_device_release;
5244
	dev_set_name(&wq_dev->dev, "%s", wq->name);
5245

5246 5247 5248 5249 5250
	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);
5251

5252 5253 5254 5255 5256 5257
	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}
5258

5259 5260
	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;
5261

5262 5263 5264 5265 5266 5267
		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
5268 5269 5270
			}
		}
	}
5271 5272 5273 5274

	dev_set_uevent_suppress(&wq_dev->dev, false);
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
5275 5276 5277
}

/**
5278 5279
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
5280
 *
5281
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5282
 */
5283
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5284
{
5285
	struct wq_device *wq_dev = wq->wq_dev;
5286

5287 5288
	if (!wq->wq_dev)
		return;
5289

5290 5291
	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
5292
}
5293 5294 5295
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */
5296

T
Tejun Heo 已提交
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
/*
 * Workqueue watchdog.
 *
 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
 * flush dependency, a concurrency managed work item which stays RUNNING
 * indefinitely.  Workqueue stalls can be very difficult to debug as the
 * usual warning mechanisms don't trigger and internal workqueue state is
 * largely opaque.
 *
 * Workqueue watchdog monitors all worker pools periodically and dumps
 * state if some pools failed to make forward progress for a while where
 * forward progress is defined as the first item on ->worklist changing.
 *
 * This mechanism is controlled through the kernel parameter
 * "workqueue.watchdog_thresh" which can be updated at runtime through the
 * corresponding sysfs parameter file.
 */
#ifdef CONFIG_WQ_WATCHDOG

static void wq_watchdog_timer_fn(unsigned long data);

static unsigned long wq_watchdog_thresh = 30;
static struct timer_list wq_watchdog_timer =
	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);

static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;

static void wq_watchdog_reset_touched(void)
{
	int cpu;

	wq_watchdog_touched = jiffies;
	for_each_possible_cpu(cpu)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
}

static void wq_watchdog_timer_fn(unsigned long data)
{
	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
	bool lockup_detected = false;
	struct worker_pool *pool;
	int pi;

	if (!thresh)
		return;

	rcu_read_lock();

	for_each_pool(pool, pi) {
		unsigned long pool_ts, touched, ts;

		if (list_empty(&pool->worklist))
			continue;

		/* get the latest of pool and touched timestamps */
		pool_ts = READ_ONCE(pool->watchdog_ts);
		touched = READ_ONCE(wq_watchdog_touched);

		if (time_after(pool_ts, touched))
			ts = pool_ts;
		else
			ts = touched;

		if (pool->cpu >= 0) {
			unsigned long cpu_touched =
				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
						  pool->cpu));
			if (time_after(cpu_touched, ts))
				ts = cpu_touched;
		}

		/* did we stall? */
		if (time_after(jiffies, ts + thresh)) {
			lockup_detected = true;
			pr_emerg("BUG: workqueue lockup - pool");
			pr_cont_pool_info(pool);
			pr_cont(" stuck for %us!\n",
				jiffies_to_msecs(jiffies - pool_ts) / 1000);
		}
	}

	rcu_read_unlock();

	if (lockup_detected)
		show_workqueue_state();

	wq_watchdog_reset_touched();
	mod_timer(&wq_watchdog_timer, jiffies + thresh);
}

void wq_watchdog_touch(int cpu)
{
	if (cpu >= 0)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
	else
		wq_watchdog_touched = jiffies;
}

static void wq_watchdog_set_thresh(unsigned long thresh)
{
	wq_watchdog_thresh = 0;
	del_timer_sync(&wq_watchdog_timer);

	if (thresh) {
		wq_watchdog_thresh = thresh;
		wq_watchdog_reset_touched();
		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
	}
}

static int wq_watchdog_param_set_thresh(const char *val,
					const struct kernel_param *kp)
{
	unsigned long thresh;
	int ret;

	ret = kstrtoul(val, 0, &thresh);
	if (ret)
		return ret;

	if (system_wq)
		wq_watchdog_set_thresh(thresh);
	else
		wq_watchdog_thresh = thresh;

	return 0;
}

static const struct kernel_param_ops wq_watchdog_thresh_ops = {
	.set	= wq_watchdog_param_set_thresh,
	.get	= param_get_ulong,
};

module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
		0644);

static void wq_watchdog_init(void)
{
	wq_watchdog_set_thresh(wq_watchdog_thresh);
}

#else	/* CONFIG_WQ_WATCHDOG */

static inline void wq_watchdog_init(void) { }

#endif	/* CONFIG_WQ_WATCHDOG */

5445 5446 5447 5448 5449 5450 5451 5452
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

5453 5454 5455 5456 5457
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5458 5459 5460
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5461 5462 5463 5464 5465
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
5466
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5467 5468 5469
	BUG_ON(!tbl);

	for_each_node(node)
5470
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5471
				node_online(node) ? node : NUMA_NO_NODE));
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
/**
 * workqueue_init_early - early init for workqueue subsystem
 *
 * This is the first half of two-staged workqueue subsystem initialization
 * and invoked as soon as the bare basics - memory allocation, cpumasks and
 * idr are up.  It sets up all the data structures and system workqueues
 * and allows early boot code to create workqueues and queue/cancel work
 * items.  Actual work item execution starts only after kthreads can be
 * created and scheduled right before early initcalls.
 */
int __init workqueue_init_early(void)
L
Linus Torvalds 已提交
5498
{
T
Tejun Heo 已提交
5499 5500
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5501

5502 5503
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

5504 5505 5506
	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);

5507 5508
	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5509
	/* initialize CPU pools */
5510
	for_each_possible_cpu(cpu) {
5511
		struct worker_pool *pool;
5512

T
Tejun Heo 已提交
5513
		i = 0;
5514
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5515
			BUG_ON(init_worker_pool(pool));
5516
			pool->cpu = cpu;
5517
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5518
			pool->attrs->nice = std_nice[i++];
5519
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5520

T
Tejun Heo 已提交
5521
			/* alloc pool ID */
5522
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5523
			BUG_ON(worker_pool_assign_id(pool));
5524
			mutex_unlock(&wq_pool_mutex);
5525
		}
5526 5527
	}

5528
	/* create default unbound and ordered wq attrs */
5529 5530 5531 5532 5533 5534
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5545 5546
	}

5547
	system_wq = alloc_workqueue("events", 0, 0);
5548
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5549
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5550 5551
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5552 5553
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5554 5555 5556 5557 5558
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5559
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5560 5561 5562
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
T
Tejun Heo 已提交
5563

5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
	return 0;
}

/**
 * workqueue_init - bring workqueue subsystem fully online
 *
 * This is the latter half of two-staged workqueue subsystem initialization
 * and invoked as soon as kthreads can be created and scheduled.
 * Workqueues have been created and work items queued on them, but there
 * are no kworkers executing the work items yet.  Populate the worker pools
 * with the initial workers and enable future kworker creations.
 */
int __init workqueue_init(void)
{
5578
	struct workqueue_struct *wq;
5579 5580 5581
	struct worker_pool *pool;
	int cpu, bkt;

5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
	/*
	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
	 * CPU to node mapping may not be available that early on some
	 * archs such as power and arm64.  As per-cpu pools created
	 * previously could be missing node hint and unbound pools NUMA
	 * affinity, fix them up.
	 */
	wq_numa_init();

	mutex_lock(&wq_pool_mutex);

	for_each_possible_cpu(cpu) {
		for_each_cpu_worker_pool(pool, cpu) {
			pool->node = cpu_to_node(cpu);
		}
	}

	list_for_each_entry(wq, &workqueues, list)
		wq_update_unbound_numa(wq, smp_processor_id(), true);

	mutex_unlock(&wq_pool_mutex);

5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
	/* create the initial workers */
	for_each_online_cpu(cpu) {
		for_each_cpu_worker_pool(pool, cpu) {
			pool->flags &= ~POOL_DISASSOCIATED;
			BUG_ON(!create_worker(pool));
		}
	}

	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
		BUG_ON(!create_worker(pool));

	wq_online = true;
T
Tejun Heo 已提交
5616 5617
	wq_watchdog_init();

5618
	return 0;
L
Linus Torvalds 已提交
5619
}