workqueue.c 141.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67 68
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74

T
Tejun Heo 已提交
75 76 77
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
78
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82

83 84
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
85

86
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87

88
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
89
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90

91 92 93
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

94 95 96
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
97 98 99 100 101 102 103 104
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
105
	HIGHPRI_NICE_LEVEL	= -20,
106 107

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
108
};
L
Linus Torvalds 已提交
109 110

/*
T
Tejun Heo 已提交
111 112
 * Structure fields follow one of the following exclusion rules.
 *
113 114
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
115
 *
116 117 118
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
119
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
120
 *
121 122 123 124
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
125
 *
126
 * M: pool->manager_mutex protected.
127
 *
128
 * PL: wq_pool_mutex protected.
129
 *
130
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
131
 *
132 133
 * WQ: wq->mutex protected.
 *
134
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
135 136
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
137 138
 */

139
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
140

141
struct worker_pool {
142
	spinlock_t		lock;		/* the pool lock */
143
	int			cpu;		/* I: the associated cpu */
144
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
145
	int			id;		/* I: pool ID */
146
	unsigned int		flags;		/* X: flags */
147 148 149

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
150 151

	/* nr_idle includes the ones off idle_list for rebinding */
152 153 154 155 156 157
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

158
	/* a workers is either on busy_hash or idle_list, or the manager */
159 160 161
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

162
	/* see manage_workers() for details on the two manager mutexes */
163
	struct mutex		manager_arb;	/* manager arbitration */
164
	struct mutex		manager_mutex;	/* manager exclusion */
165
	struct idr		worker_idr;	/* M: worker IDs and iteration */
166
	struct completion	*detach_completion; /* all workers detached */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PL: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 260 261 262

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
264 265
};

266 267
static struct kmem_cache *pwq_cache;

268 269 270 271
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

272 273 274
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

275 276 277 278 279 280 281 282 283
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

284 285
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

286 287 288
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

289
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291

292 293
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 295 296 297 298

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

299
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300

301
/* PL: hash of all unbound pools keyed by pool->attrs */
302 303
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

304
/* I: attributes used when instantiating standard unbound pools on demand */
305 306
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

307 308 309
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

310
struct workqueue_struct *system_wq __read_mostly;
311
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
312
struct workqueue_struct *system_highpri_wq __read_mostly;
313
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
314
struct workqueue_struct *system_long_wq __read_mostly;
315
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
316
struct workqueue_struct *system_unbound_wq __read_mostly;
317
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
318
struct workqueue_struct *system_freezable_wq __read_mostly;
319
EXPORT_SYMBOL_GPL(system_freezable_wq);
320 321 322 323
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324

325 326 327 328
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

329 330 331
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

332
#define assert_rcu_or_pool_mutex()					\
333
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
334 335
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
336

337
#define assert_rcu_or_wq_mutex(wq)					\
338
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
339
			   lockdep_is_held(&wq->mutex),			\
340
			   "sched RCU or wq->mutex should be held")
341

342 343 344
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345
	     (pool)++)
346

T
Tejun Heo 已提交
347 348 349
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
350
 * @pi: integer used for iteration
351
 *
352 353 354
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
355 356 357
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
358
 */
359 360
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
361
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
362
		else
T
Tejun Heo 已提交
363

364 365 366 367 368 369
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
370
 * This must be called with @pool->manager_mutex.
371 372 373 374 375 376
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
377
		if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
378 379
		else

380 381 382 383
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
384
 *
385
 * This must be called either with wq->mutex held or sched RCU read locked.
386 387
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
388 389 390
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
391 392
 */
#define for_each_pwq(pwq, wq)						\
393
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
394
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
395
		else
396

397 398 399 400
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

401 402 403 404 405
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
441
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
477
	.debug_hint	= work_debug_hint,
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

508 509 510 511 512 513 514
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

515 516 517 518 519
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

520 521 522 523 524 525 526
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
527 528 529 530
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

531
	lockdep_assert_held(&wq_pool_mutex);
532

533 534
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
535
	if (ret >= 0) {
T
Tejun Heo 已提交
536
		pool->id = ret;
537 538
		return 0;
	}
539
	return ret;
540 541
}

542 543 544 545 546 547 548 549
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
550 551
 *
 * Return: The unbound pool_workqueue for @node.
552 553 554 555 556 557 558 559
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
575

576
/*
577 578
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
579
 * is cleared and the high bits contain OFFQ flags and pool ID.
580
 *
581 582
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
583 584
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
585
 *
586
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
587
 * corresponding to a work.  Pool is available once the work has been
588
 * queued anywhere after initialization until it is sync canceled.  pwq is
589
 * available only while the work item is queued.
590
 *
591 592 593 594
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
595
 */
596 597
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
598
{
599
	WARN_ON_ONCE(!work_pending(work));
600 601
	atomic_long_set(&work->data, data | flags | work_static(work));
}
602

603
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
604 605
			 unsigned long extra_flags)
{
606 607
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
608 609
}

610 611 612 613 614 615 616
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

617 618
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
619
{
620 621 622 623 624 625 626
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
627
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
628
}
629

630
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
631
{
632 633
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
634 635
}

636
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
637
{
638
	unsigned long data = atomic_long_read(&work->data);
639

640
	if (data & WORK_STRUCT_PWQ)
641 642 643
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
644 645
}

646 647 648 649
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
650 651 652
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
653 654 655 656 657
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
658 659
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
660 661
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
662
{
663
	unsigned long data = atomic_long_read(&work->data);
664
	int pool_id;
665

666
	assert_rcu_or_pool_mutex();
667

668 669
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
670
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
671

672 673
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
674 675
		return NULL;

676
	return idr_find(&worker_pool_idr, pool_id);
677 678 679 680 681 682
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
683
 * Return: The worker_pool ID @work was last associated with.
684 685 686 687
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
688 689
	unsigned long data = atomic_long_read(&work->data);

690 691
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
692
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
693

694
	return data >> WORK_OFFQ_POOL_SHIFT;
695 696
}

697 698
static void mark_work_canceling(struct work_struct *work)
{
699
	unsigned long pool_id = get_work_pool_id(work);
700

701 702
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
703 704 705 706 707 708
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

709
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
710 711
}

712
/*
713 714
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
715
 * they're being called with pool->lock held.
716 717
 */

718
static bool __need_more_worker(struct worker_pool *pool)
719
{
720
	return !atomic_read(&pool->nr_running);
721 722
}

723
/*
724 725
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
726 727
 *
 * Note that, because unbound workers never contribute to nr_running, this
728
 * function will always return %true for unbound pools as long as the
729
 * worklist isn't empty.
730
 */
731
static bool need_more_worker(struct worker_pool *pool)
732
{
733
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
734
}
735

736
/* Can I start working?  Called from busy but !running workers. */
737
static bool may_start_working(struct worker_pool *pool)
738
{
739
	return pool->nr_idle;
740 741 742
}

/* Do I need to keep working?  Called from currently running workers. */
743
static bool keep_working(struct worker_pool *pool)
744
{
745 746
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
747 748 749
}

/* Do we need a new worker?  Called from manager. */
750
static bool need_to_create_worker(struct worker_pool *pool)
751
{
752
	return need_more_worker(pool) && !may_start_working(pool);
753
}
754

755
/* Do I need to be the manager? */
756
static bool need_to_manage_workers(struct worker_pool *pool)
757
{
758
	return need_to_create_worker(pool) ||
759
		(pool->flags & POOL_MANAGE_WORKERS);
760 761 762
}

/* Do we have too many workers and should some go away? */
763
static bool too_many_workers(struct worker_pool *pool)
764
{
765
	bool managing = mutex_is_locked(&pool->manager_arb);
766 767
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
768

769 770 771 772 773 774 775
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

776
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
777 778
}

779
/*
780 781 782
 * Wake up functions.
 */

783
/* Return the first worker.  Safe with preemption disabled */
784
static struct worker *first_worker(struct worker_pool *pool)
785
{
786
	if (unlikely(list_empty(&pool->idle_list)))
787 788
		return NULL;

789
	return list_first_entry(&pool->idle_list, struct worker, entry);
790 791 792 793
}

/**
 * wake_up_worker - wake up an idle worker
794
 * @pool: worker pool to wake worker from
795
 *
796
 * Wake up the first idle worker of @pool.
797 798
 *
 * CONTEXT:
799
 * spin_lock_irq(pool->lock).
800
 */
801
static void wake_up_worker(struct worker_pool *pool)
802
{
803
	struct worker *worker = first_worker(pool);
804 805 806 807 808

	if (likely(worker))
		wake_up_process(worker->task);
}

809
/**
810 811 812 813 814 815 816 817 818 819
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
820
void wq_worker_waking_up(struct task_struct *task, int cpu)
821 822 823
{
	struct worker *worker = kthread_data(task);

824
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
825
		WARN_ON_ONCE(worker->pool->cpu != cpu);
826
		atomic_inc(&worker->pool->nr_running);
827
	}
828 829 830 831 832 833 834 835 836 837 838 839 840 841
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
842
 * Return:
843 844
 * Worker task on @cpu to wake up, %NULL if none.
 */
845
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
846 847
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
848
	struct worker_pool *pool;
849

850 851 852 853 854
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
855
	if (worker->flags & WORKER_NOT_RUNNING)
856 857
		return NULL;

858 859
	pool = worker->pool;

860
	/* this can only happen on the local cpu */
861 862
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
863 864 865 866 867 868

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
869 870 871
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
872
	 * manipulating idle_list, so dereferencing idle_list without pool
873
	 * lock is safe.
874
	 */
875 876
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
877
		to_wakeup = first_worker(pool);
878 879 880 881 882
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
883
 * @worker: self
884 885 886
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
887 888 889
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
890
 *
891
 * CONTEXT:
892
 * spin_lock_irq(pool->lock)
893 894 895 896
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
897
	struct worker_pool *pool = worker->pool;
898

899 900
	WARN_ON_ONCE(worker->task != current);

901 902 903 904 905 906 907 908
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
909
			if (atomic_dec_and_test(&pool->nr_running) &&
910
			    !list_empty(&pool->worklist))
911
				wake_up_worker(pool);
912
		} else
913
			atomic_dec(&pool->nr_running);
914 915
	}

916 917 918 919
	worker->flags |= flags;
}

/**
920
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
921
 * @worker: self
922 923
 * @flags: flags to clear
 *
924
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
925
 *
926
 * CONTEXT:
927
 * spin_lock_irq(pool->lock)
928 929 930
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
931
	struct worker_pool *pool = worker->pool;
932 933
	unsigned int oflags = worker->flags;

934 935
	WARN_ON_ONCE(worker->task != current);

936
	worker->flags &= ~flags;
937

938 939 940 941 942
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
943 944
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
945
			atomic_inc(&pool->nr_running);
946 947
}

948 949
/**
 * find_worker_executing_work - find worker which is executing a work
950
 * @pool: pool of interest
951 952
 * @work: work to find worker for
 *
953 954
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
955 956 957 958 959 960 961 962 963 964 965 966
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
967 968 969 970 971 972
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
973 974
 *
 * CONTEXT:
975
 * spin_lock_irq(pool->lock).
976
 *
977 978
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
979
 * otherwise.
980
 */
981
static struct worker *find_worker_executing_work(struct worker_pool *pool,
982
						 struct work_struct *work)
983
{
984 985
	struct worker *worker;

986
	hash_for_each_possible(pool->busy_hash, worker, hentry,
987 988 989
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
990 991 992
			return worker;

	return NULL;
993 994
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1010
 * spin_lock_irq(pool->lock).
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1094
static void pwq_activate_delayed_work(struct work_struct *work)
1095
{
1096
	struct pool_workqueue *pwq = get_work_pwq(work);
1097 1098

	trace_workqueue_activate_work(work);
1099
	move_linked_works(work, &pwq->pool->worklist, NULL);
1100
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1101
	pwq->nr_active++;
1102 1103
}

1104
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1105
{
1106
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1107 1108
						    struct work_struct, entry);

1109
	pwq_activate_delayed_work(work);
1110 1111
}

1112
/**
1113 1114
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1115 1116 1117
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1118
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1119 1120
 *
 * CONTEXT:
1121
 * spin_lock_irq(pool->lock).
1122
 */
1123
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1124
{
T
Tejun Heo 已提交
1125
	/* uncolored work items don't participate in flushing or nr_active */
1126
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1127
		goto out_put;
1128

1129
	pwq->nr_in_flight[color]--;
1130

1131 1132
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1133
		/* one down, submit a delayed one */
1134 1135
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1136 1137 1138
	}

	/* is flush in progress and are we at the flushing tip? */
1139
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1140
		goto out_put;
1141 1142

	/* are there still in-flight works? */
1143
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1144
		goto out_put;
1145

1146 1147
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1148 1149

	/*
1150
	 * If this was the last pwq, wake up the first flusher.  It
1151 1152
	 * will handle the rest.
	 */
1153 1154
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1155 1156
out_put:
	put_pwq(pwq);
1157 1158
}

1159
/**
1160
 * try_to_grab_pending - steal work item from worklist and disable irq
1161 1162
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1163
 * @flags: place to store irq state
1164 1165
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1166
 * stable state - idle, on timer or on worklist.
1167
 *
1168
 * Return:
1169 1170 1171
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1172 1173
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1174
 *
1175
 * Note:
1176
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1177 1178 1179
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1180 1181 1182 1183
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1184
 * This function is safe to call from any context including IRQ handler.
1185
 */
1186 1187
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1188
{
1189
	struct worker_pool *pool;
1190
	struct pool_workqueue *pwq;
1191

1192 1193
	local_irq_save(*flags);

1194 1195 1196 1197
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1198 1199 1200 1201 1202
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1203 1204 1205 1206 1207
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1208 1209 1210 1211 1212 1213 1214
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1215 1216
	pool = get_work_pool(work);
	if (!pool)
1217
		goto fail;
1218

1219
	spin_lock(&pool->lock);
1220
	/*
1221 1222 1223 1224 1225
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1226 1227
	 * item is currently queued on that pool.
	 */
1228 1229
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1230 1231 1232 1233 1234
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1235
		 * on the delayed_list, will confuse pwq->nr_active
1236 1237 1238 1239
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1240
			pwq_activate_delayed_work(work);
1241 1242

		list_del_init(&work->entry);
1243
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1244

1245
		/* work->data points to pwq iff queued, point to pool */
1246 1247 1248 1249
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1250
	}
1251
	spin_unlock(&pool->lock);
1252 1253 1254 1255 1256
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1257
	return -EAGAIN;
1258 1259
}

T
Tejun Heo 已提交
1260
/**
1261
 * insert_work - insert a work into a pool
1262
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1263 1264 1265 1266
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1267
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1268
 * work_struct flags.
T
Tejun Heo 已提交
1269 1270
 *
 * CONTEXT:
1271
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1272
 */
1273 1274
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1275
{
1276
	struct worker_pool *pool = pwq->pool;
1277

T
Tejun Heo 已提交
1278
	/* we own @work, set data and link */
1279
	set_work_pwq(work, pwq, extra_flags);
1280
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1281
	get_pwq(pwq);
1282 1283

	/*
1284 1285 1286
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1287 1288 1289
	 */
	smp_mb();

1290 1291
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1292 1293
}

1294 1295
/*
 * Test whether @work is being queued from another work executing on the
1296
 * same workqueue.
1297 1298 1299
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1300 1301 1302 1303 1304 1305 1306
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1307
	return worker && worker->current_pwq->wq == wq;
1308 1309
}

1310
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1311 1312
			 struct work_struct *work)
{
1313
	struct pool_workqueue *pwq;
1314
	struct worker_pool *last_pool;
1315
	struct list_head *worklist;
1316
	unsigned int work_flags;
1317
	unsigned int req_cpu = cpu;
1318 1319 1320 1321 1322 1323 1324 1325

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1326

1327
	debug_work_activate(work);
1328

1329
	/* if draining, only works from the same workqueue are allowed */
1330
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1331
	    WARN_ON_ONCE(!is_chained_work(wq)))
1332
		return;
1333
retry:
1334 1335 1336
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1337
	/* pwq which will be used unless @work is executing elsewhere */
1338
	if (!(wq->flags & WQ_UNBOUND))
1339
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1340 1341
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1342

1343 1344 1345 1346 1347 1348 1349 1350
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1351

1352
		spin_lock(&last_pool->lock);
1353

1354
		worker = find_worker_executing_work(last_pool, work);
1355

1356 1357
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1358
		} else {
1359 1360
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1361
			spin_lock(&pwq->pool->lock);
1362
		}
1363
	} else {
1364
		spin_lock(&pwq->pool->lock);
1365 1366
	}

1367 1368 1369 1370
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1371 1372
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1386 1387
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1388

1389
	if (WARN_ON(!list_empty(&work->entry))) {
1390
		spin_unlock(&pwq->pool->lock);
1391 1392
		return;
	}
1393

1394 1395
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1396

1397
	if (likely(pwq->nr_active < pwq->max_active)) {
1398
		trace_workqueue_activate_work(work);
1399 1400
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1401 1402
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1403
		worklist = &pwq->delayed_works;
1404
	}
1405

1406
	insert_work(pwq, work, worklist, work_flags);
1407

1408
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1409 1410
}

1411
/**
1412 1413
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1414 1415 1416
 * @wq: workqueue to use
 * @work: work to queue
 *
1417 1418
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1419 1420
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1421
 */
1422 1423
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1424
{
1425
	bool ret = false;
1426
	unsigned long flags;
1427

1428
	local_irq_save(flags);
1429

1430
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1431
		__queue_work(cpu, wq, work);
1432
		ret = true;
1433
	}
1434

1435
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1436 1437
	return ret;
}
1438
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1439

1440
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1441
{
1442
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1443

1444
	/* should have been called from irqsafe timer with irq already off */
1445
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1446
}
1447
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1448

1449 1450
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1451
{
1452 1453 1454 1455 1456
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1457 1458
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1459

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1471
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1472

1473
	dwork->wq = wq;
1474
	dwork->cpu = cpu;
1475 1476 1477 1478 1479 1480
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1481 1482
}

1483 1484 1485 1486
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1487
 * @dwork: work to queue
1488 1489
 * @delay: number of jiffies to wait before queueing
 *
1490
 * Return: %false if @work was already on a queue, %true otherwise.  If
1491 1492
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1493
 */
1494 1495
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1496
{
1497
	struct work_struct *work = &dwork->work;
1498
	bool ret = false;
1499
	unsigned long flags;
1500

1501 1502
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1503

1504
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1505
		__queue_delayed_work(cpu, wq, dwork, delay);
1506
		ret = true;
1507
	}
1508

1509
	local_irq_restore(flags);
1510 1511
	return ret;
}
1512
EXPORT_SYMBOL(queue_delayed_work_on);
1513

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1526
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1527 1528
 * pending and its timer was modified.
 *
1529
 * This function is safe to call from any context including IRQ handler.
1530 1531 1532 1533 1534 1535 1536
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1537

1538 1539 1540
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1541

1542 1543 1544
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1545
	}
1546 1547

	/* -ENOENT from try_to_grab_pending() becomes %true */
1548 1549
	return ret;
}
1550 1551
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1552 1553 1554 1555 1556 1557 1558 1559
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1560
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1561 1562
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1563
{
1564
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1565

1566 1567 1568 1569
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1570

1571 1572
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1573
	pool->nr_idle++;
1574
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1575 1576

	/* idle_list is LIFO */
1577
	list_add(&worker->entry, &pool->idle_list);
1578

1579 1580
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1581

1582
	/*
1583
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1584
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1585 1586
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1587
	 */
1588
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1589
		     pool->nr_workers == pool->nr_idle &&
1590
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1600
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1601 1602 1603
 */
static void worker_leave_idle(struct worker *worker)
{
1604
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1605

1606 1607
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1608
	worker_clr_flags(worker, WORKER_IDLE);
1609
	pool->nr_idle--;
T
Tejun Heo 已提交
1610 1611 1612
	list_del_init(&worker->entry);
}

1613
/**
1614 1615 1616 1617
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1618 1619 1620 1621 1622 1623
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1624
 * This function is to be used by unbound workers and rescuers to bind
1625 1626 1627
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1628
 * verbatim as it's best effort and blocking and pool may be
1629 1630
 * [dis]associated in the meantime.
 *
1631
 * This function tries set_cpus_allowed() and locks pool and verifies the
1632
 * binding against %POOL_DISASSOCIATED which is set during
1633 1634 1635
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1636 1637
 *
 * CONTEXT:
1638
 * Might sleep.  Called without any lock but returns with pool->lock
1639 1640
 * held.
 *
1641
 * Return:
1642
 * %true if the associated pool is online (@worker is successfully
1643 1644
 * bound), %false if offline.
 */
1645
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1646
__acquires(&pool->lock)
1647 1648
{
	while (true) {
1649
		/*
1650 1651 1652
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1653
		 * against POOL_DISASSOCIATED.
1654
		 */
1655
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1656
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1657

1658
		spin_lock_irq(&pool->lock);
1659
		if (pool->flags & POOL_DISASSOCIATED)
1660
			return false;
1661
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1662
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1663
			return true;
1664
		spin_unlock_irq(&pool->lock);
1665

1666 1667 1668 1669 1670 1671
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1672
		cpu_relax();
1673
		cond_resched();
1674 1675 1676
	}
}

T
Tejun Heo 已提交
1677 1678 1679 1680 1681
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1682 1683
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1684
		INIT_LIST_HEAD(&worker->scheduled);
1685 1686
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1687
	}
T
Tejun Heo 已提交
1688 1689 1690
	return worker;
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
 * Undo the attaching which had been done in create_worker().  The caller
 * worker shouldn't access to the pool after detached except it has other
 * reference to the pool.
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

	mutex_lock(&pool->manager_mutex);
	idr_remove(&pool->worker_idr, worker->id);
	if (idr_is_empty(&pool->worker_idr))
		detach_completion = pool->detach_completion;
	mutex_unlock(&pool->manager_mutex);

	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1715 1716
/**
 * create_worker - create a new workqueue worker
1717
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1718
 *
1719 1720
 * Create a new worker which is attached to @pool.  The new worker must be
 * started by start_worker().
T
Tejun Heo 已提交
1721 1722 1723 1724
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1725
 * Return:
T
Tejun Heo 已提交
1726 1727
 * Pointer to the newly created worker.
 */
1728
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1729 1730
{
	struct worker *worker = NULL;
1731
	int id = -1;
1732
	char id_buf[16];
T
Tejun Heo 已提交
1733

1734 1735
	lockdep_assert_held(&pool->manager_mutex);

1736 1737 1738 1739
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
1740
	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_KERNEL);
1741 1742
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1743 1744 1745 1746 1747

	worker = alloc_worker();
	if (!worker)
		goto fail;

1748
	worker->pool = pool;
T
Tejun Heo 已提交
1749 1750
	worker->id = id;

1751
	if (pool->cpu >= 0)
1752 1753
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1754
	else
1755 1756
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1757
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1758
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1759 1760 1761
	if (IS_ERR(worker->task))
		goto fail;

1762 1763 1764 1765 1766
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1767 1768 1769 1770
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1771
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1772

T
Tejun Heo 已提交
1773 1774 1775 1776 1777 1778
	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1779
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1780

1781 1782 1783
	/* successful, commit the pointer to idr */
	idr_replace(&pool->worker_idr, worker, worker->id);

T
Tejun Heo 已提交
1784
	return worker;
1785

T
Tejun Heo 已提交
1786
fail:
1787
	if (id >= 0)
1788
		idr_remove(&pool->worker_idr, id);
T
Tejun Heo 已提交
1789 1790 1791 1792 1793 1794 1795 1796
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1797
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1798 1799
 *
 * CONTEXT:
1800
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1801 1802 1803
 */
static void start_worker(struct worker *worker)
{
1804
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1805
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1806 1807 1808
	wake_up_process(worker->task);
}

1809 1810 1811 1812
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1813
 * Grab the managership of @pool and create and start a new worker for it.
1814 1815
 *
 * Return: 0 on success. A negative error code otherwise.
1816 1817 1818 1819 1820
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1821 1822
	mutex_lock(&pool->manager_mutex);

1823 1824 1825 1826 1827 1828 1829
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1830 1831
	mutex_unlock(&pool->manager_mutex);

1832 1833 1834
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1835 1836 1837 1838
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1839 1840
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1841 1842
 *
 * CONTEXT:
1843
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1844 1845 1846
 */
static void destroy_worker(struct worker *worker)
{
1847
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1848

1849 1850
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1851
	/* sanity check frenzy */
1852
	if (WARN_ON(worker->current_work) ||
1853 1854
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1855
		return;
T
Tejun Heo 已提交
1856

1857 1858
	pool->nr_workers--;
	pool->nr_idle--;
T
Tejun Heo 已提交
1859 1860

	list_del_init(&worker->entry);
1861
	worker->flags |= WORKER_DIE;
1862
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1863 1864
}

1865
static void idle_worker_timeout(unsigned long __pool)
1866
{
1867
	struct worker_pool *pool = (void *)__pool;
1868

1869
	spin_lock_irq(&pool->lock);
1870

1871
	if (too_many_workers(pool)) {
1872 1873 1874 1875
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1876
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1877 1878 1879
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1880
			mod_timer(&pool->idle_timer, expires);
1881 1882
		else {
			/* it's been idle for too long, wake up manager */
1883
			pool->flags |= POOL_MANAGE_WORKERS;
1884
			wake_up_worker(pool);
1885
		}
1886 1887
	}

1888
	spin_unlock_irq(&pool->lock);
1889
}
1890

1891
static void send_mayday(struct work_struct *work)
1892
{
1893 1894
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1895

1896
	lockdep_assert_held(&wq_mayday_lock);
1897

1898
	if (!wq->rescuer)
1899
		return;
1900 1901

	/* mayday mayday mayday */
1902
	if (list_empty(&pwq->mayday_node)) {
1903 1904 1905 1906 1907 1908
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1909
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1910
		wake_up_process(wq->rescuer->task);
1911
	}
1912 1913
}

1914
static void pool_mayday_timeout(unsigned long __pool)
1915
{
1916
	struct worker_pool *pool = (void *)__pool;
1917 1918
	struct work_struct *work;

1919
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1920
	spin_lock(&pool->lock);
1921

1922
	if (need_to_create_worker(pool)) {
1923 1924 1925 1926 1927 1928
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1929
		list_for_each_entry(work, &pool->worklist, entry)
1930
			send_mayday(work);
L
Linus Torvalds 已提交
1931
	}
1932

1933
	spin_unlock(&pool->lock);
1934
	spin_unlock_irq(&wq_mayday_lock);
1935

1936
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1937 1938
}

1939 1940
/**
 * maybe_create_worker - create a new worker if necessary
1941
 * @pool: pool to create a new worker for
1942
 *
1943
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1944 1945
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1946
 * sent to all rescuers with works scheduled on @pool to resolve
1947 1948
 * possible allocation deadlock.
 *
1949 1950
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1951 1952
 *
 * LOCKING:
1953
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1954 1955 1956
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1957
 * Return:
1958
 * %false if no action was taken and pool->lock stayed locked, %true
1959 1960
 * otherwise.
 */
1961
static bool maybe_create_worker(struct worker_pool *pool)
1962 1963
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1964
{
1965
	if (!need_to_create_worker(pool))
1966 1967
		return false;
restart:
1968
	spin_unlock_irq(&pool->lock);
1969

1970
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1971
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1972 1973 1974 1975

	while (true) {
		struct worker *worker;

1976
		worker = create_worker(pool);
1977
		if (worker) {
1978
			del_timer_sync(&pool->mayday_timer);
1979
			spin_lock_irq(&pool->lock);
1980
			start_worker(worker);
1981 1982
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1983 1984 1985
			return true;
		}

1986
		if (!need_to_create_worker(pool))
1987
			break;
L
Linus Torvalds 已提交
1988

1989 1990
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1991

1992
		if (!need_to_create_worker(pool))
1993 1994 1995
			break;
	}

1996
	del_timer_sync(&pool->mayday_timer);
1997
	spin_lock_irq(&pool->lock);
1998
	if (need_to_create_worker(pool))
1999 2000 2001 2002 2003 2004
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2005
 * @pool: pool to destroy workers for
2006
 *
2007
 * Destroy @pool workers which have been idle for longer than
2008 2009 2010
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2011
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2012 2013
 * multiple times.  Called only from manager.
 *
2014
 * Return:
2015
 * %false if no action was taken and pool->lock stayed locked, %true
2016 2017
 * otherwise.
 */
2018
static bool maybe_destroy_workers(struct worker_pool *pool)
2019 2020
{
	bool ret = false;
L
Linus Torvalds 已提交
2021

2022
	while (too_many_workers(pool)) {
2023 2024
		struct worker *worker;
		unsigned long expires;
2025

2026
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2027
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2028

2029
		if (time_before(jiffies, expires)) {
2030
			mod_timer(&pool->idle_timer, expires);
2031
			break;
2032
		}
L
Linus Torvalds 已提交
2033

2034 2035
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2036
	}
2037

2038
	return ret;
2039 2040
}

2041
/**
2042 2043
 * manage_workers - manage worker pool
 * @worker: self
2044
 *
2045
 * Assume the manager role and manage the worker pool @worker belongs
2046
 * to.  At any given time, there can be only zero or one manager per
2047
 * pool.  The exclusion is handled automatically by this function.
2048 2049 2050 2051
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2052 2053
 *
 * CONTEXT:
2054
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2055 2056
 * multiple times.  Does GFP_KERNEL allocations.
 *
2057
 * Return:
2058 2059 2060 2061 2062
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2063
 */
2064
static bool manage_workers(struct worker *worker)
2065
{
2066
	struct worker_pool *pool = worker->pool;
2067
	bool ret = false;
2068

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2090
	if (!mutex_trylock(&pool->manager_arb))
2091
		return ret;
2092

2093
	/*
2094 2095
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2096
	 */
2097
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2098
		spin_unlock_irq(&pool->lock);
2099
		mutex_lock(&pool->manager_mutex);
2100
		spin_lock_irq(&pool->lock);
2101 2102
		ret = true;
	}
2103

2104
	pool->flags &= ~POOL_MANAGE_WORKERS;
2105 2106

	/*
2107 2108
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2109
	 */
2110 2111
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2112

2113
	mutex_unlock(&pool->manager_mutex);
2114
	mutex_unlock(&pool->manager_arb);
2115
	return ret;
2116 2117
}

2118 2119
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2120
 * @worker: self
2121 2122 2123 2124 2125 2126 2127 2128 2129
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2130
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2131
 */
T
Tejun Heo 已提交
2132
static void process_one_work(struct worker *worker, struct work_struct *work)
2133 2134
__releases(&pool->lock)
__acquires(&pool->lock)
2135
{
2136
	struct pool_workqueue *pwq = get_work_pwq(work);
2137
	struct worker_pool *pool = worker->pool;
2138
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2139
	int work_color;
2140
	struct worker *collision;
2141 2142 2143 2144 2145 2146 2147 2148
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2149 2150 2151
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2152
#endif
2153 2154 2155
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2156
	 * unbound or a disassociated pool.
2157
	 */
2158
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2159
		     !(pool->flags & POOL_DISASSOCIATED) &&
2160
		     raw_smp_processor_id() != pool->cpu);
2161

2162 2163 2164 2165 2166 2167
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2168
	collision = find_worker_executing_work(pool, work);
2169 2170 2171 2172 2173
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2174
	/* claim and dequeue */
2175
	debug_work_deactivate(work);
2176
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2177
	worker->current_work = work;
2178
	worker->current_func = work->func;
2179
	worker->current_pwq = pwq;
2180
	work_color = get_work_color(work);
2181

2182 2183
	list_del_init(&work->entry);

2184 2185 2186 2187 2188 2189 2190
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2191
	/*
2192
	 * Unbound pool isn't concurrency managed and work items should be
2193 2194
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2195 2196
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2197

2198
	/*
2199
	 * Record the last pool and clear PENDING which should be the last
2200
	 * update to @work.  Also, do this inside @pool->lock so that
2201 2202
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2203
	 */
2204
	set_work_pool_and_clear_pending(work, pool->id);
2205

2206
	spin_unlock_irq(&pool->lock);
2207

2208
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2209
	lock_map_acquire(&lockdep_map);
2210
	trace_workqueue_execute_start(work);
2211
	worker->current_func(work);
2212 2213 2214 2215 2216
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2217
	lock_map_release(&lockdep_map);
2218
	lock_map_release(&pwq->wq->lockdep_map);
2219 2220

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2221 2222
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2223 2224
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2225 2226 2227 2228
		debug_show_held_locks(current);
		dump_stack();
	}

2229 2230 2231 2232 2233 2234 2235 2236 2237
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2238
	spin_lock_irq(&pool->lock);
2239

2240 2241 2242 2243
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2244
	/* we're done with it, release */
2245
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2246
	worker->current_work = NULL;
2247
	worker->current_func = NULL;
2248
	worker->current_pwq = NULL;
2249
	worker->desc_valid = false;
2250
	pwq_dec_nr_in_flight(pwq, work_color);
2251 2252
}

2253 2254 2255 2256 2257 2258 2259 2260 2261
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2262
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2263 2264 2265
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2266
{
2267 2268
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2269
						struct work_struct, entry);
T
Tejun Heo 已提交
2270
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2271 2272 2273
	}
}

T
Tejun Heo 已提交
2274 2275
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2276
 * @__worker: self
T
Tejun Heo 已提交
2277
 *
2278 2279 2280 2281 2282
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2283 2284
 *
 * Return: 0
T
Tejun Heo 已提交
2285
 */
T
Tejun Heo 已提交
2286
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2287
{
T
Tejun Heo 已提交
2288
	struct worker *worker = __worker;
2289
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2290

2291 2292
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2293
woke_up:
2294
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2295

2296 2297
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2298
		spin_unlock_irq(&pool->lock);
2299 2300
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2301 2302 2303 2304

		set_task_comm(worker->task, "kworker/dying");
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2305
		return 0;
T
Tejun Heo 已提交
2306
	}
2307

T
Tejun Heo 已提交
2308
	worker_leave_idle(worker);
2309
recheck:
2310
	/* no more worker necessary? */
2311
	if (!need_more_worker(pool))
2312 2313 2314
		goto sleep;

	/* do we need to manage? */
2315
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2316 2317
		goto recheck;

T
Tejun Heo 已提交
2318 2319 2320 2321 2322
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2323
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2324

2325
	/*
2326 2327 2328 2329 2330
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2331
	 */
2332
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2333 2334

	do {
T
Tejun Heo 已提交
2335
		struct work_struct *work =
2336
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2337 2338 2339 2340 2341 2342
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2343
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2344 2345 2346
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2347
		}
2348
	} while (keep_working(pool));
2349 2350

	worker_set_flags(worker, WORKER_PREP, false);
2351
sleep:
2352
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2353
		goto recheck;
2354

T
Tejun Heo 已提交
2355
	/*
2356 2357 2358 2359 2360
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2361 2362 2363
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2364
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2365 2366
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2367 2368
}

2369 2370
/**
 * rescuer_thread - the rescuer thread function
2371
 * @__rescuer: self
2372 2373
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2374
 * workqueue which has WQ_MEM_RECLAIM set.
2375
 *
2376
 * Regular work processing on a pool may block trying to create a new
2377 2378 2379 2380 2381
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2382 2383
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2384 2385 2386
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2387 2388
 *
 * Return: 0
2389
 */
2390
static int rescuer_thread(void *__rescuer)
2391
{
2392 2393
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2394
	struct list_head *scheduled = &rescuer->scheduled;
2395
	bool should_stop;
2396 2397

	set_user_nice(current, RESCUER_NICE_LEVEL);
2398 2399 2400 2401 2402 2403

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2404 2405 2406
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2407 2408 2409 2410 2411 2412 2413 2414 2415
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2416

2417
	/* see whether any pwq is asking for help */
2418
	spin_lock_irq(&wq_mayday_lock);
2419 2420 2421 2422

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2423
		struct worker_pool *pool = pwq->pool;
2424 2425 2426
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2427 2428
		list_del_init(&pwq->mayday_node);

2429
		spin_unlock_irq(&wq_mayday_lock);
2430 2431

		/* migrate to the target cpu if possible */
2432
		worker_maybe_bind_and_lock(pool);
2433
		rescuer->pool = pool;
2434 2435 2436 2437 2438

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2439
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2440
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2441
			if (get_work_pwq(work) == pwq)
2442 2443 2444
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2445

2446 2447 2448 2449 2450 2451
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2452
		/*
2453
		 * Leave this pool.  If keep_working() is %true, notify a
2454 2455 2456
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2457 2458
		if (keep_working(pool))
			wake_up_worker(pool);
2459

2460
		rescuer->pool = NULL;
2461
		spin_unlock(&pool->lock);
2462
		spin_lock(&wq_mayday_lock);
2463 2464
	}

2465
	spin_unlock_irq(&wq_mayday_lock);
2466

2467 2468 2469 2470 2471 2472
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2473 2474
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2475 2476
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2477 2478
}

O
Oleg Nesterov 已提交
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2490 2491
/**
 * insert_wq_barrier - insert a barrier work
2492
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2493
 * @barr: wq_barrier to insert
2494 2495
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2496
 *
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2509
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2510 2511
 *
 * CONTEXT:
2512
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2513
 */
2514
static void insert_wq_barrier(struct pool_workqueue *pwq,
2515 2516
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2517
{
2518 2519 2520
	struct list_head *head;
	unsigned int linked = 0;

2521
	/*
2522
	 * debugobject calls are safe here even with pool->lock locked
2523 2524 2525 2526
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2527
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2528
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2529
	init_completion(&barr->done);
2530

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2546
	debug_work_activate(&barr->work);
2547
	insert_work(pwq, &barr->work, head,
2548
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2549 2550
}

2551
/**
2552
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2553 2554 2555 2556
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2557
 * Prepare pwqs for workqueue flushing.
2558
 *
2559 2560 2561 2562 2563
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2564 2565 2566 2567 2568 2569 2570
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2571
 * If @work_color is non-negative, all pwqs should have the same
2572 2573 2574 2575
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2576
 * mutex_lock(wq->mutex).
2577
 *
2578
 * Return:
2579 2580 2581
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2582
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2583
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2584
{
2585
	bool wait = false;
2586
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2587

2588
	if (flush_color >= 0) {
2589
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2590
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2591
	}
2592

2593
	for_each_pwq(pwq, wq) {
2594
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2595

2596
		spin_lock_irq(&pool->lock);
2597

2598
		if (flush_color >= 0) {
2599
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2600

2601 2602 2603
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2604 2605 2606
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2607

2608
		if (work_color >= 0) {
2609
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2610
			pwq->work_color = work_color;
2611
		}
L
Linus Torvalds 已提交
2612

2613
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2614
	}
2615

2616
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2617
		complete(&wq->first_flusher->done);
2618

2619
	return wait;
L
Linus Torvalds 已提交
2620 2621
}

2622
/**
L
Linus Torvalds 已提交
2623
 * flush_workqueue - ensure that any scheduled work has run to completion.
2624
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2625
 *
2626 2627
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2628
 */
2629
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2630
{
2631 2632 2633 2634 2635 2636
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2637

2638 2639
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2640

2641
	mutex_lock(&wq->mutex);
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2654
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2655 2656 2657 2658 2659
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2660
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2661 2662 2663

			wq->first_flusher = &this_flusher;

2664
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2665 2666 2667 2668 2669 2670 2671 2672
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2673
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2674
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2675
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2686
	mutex_unlock(&wq->mutex);
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2699
	mutex_lock(&wq->mutex);
2700

2701 2702 2703 2704
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2705 2706
	wq->first_flusher = NULL;

2707 2708
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2721 2722
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2742
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2743 2744 2745
		}

		if (list_empty(&wq->flusher_queue)) {
2746
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2747 2748 2749 2750 2751
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2752
		 * the new first flusher and arm pwqs.
2753
		 */
2754 2755
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2756 2757 2758 2759

		list_del_init(&next->list);
		wq->first_flusher = next;

2760
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2771
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2772
}
2773
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2774

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2789
	struct pool_workqueue *pwq;
2790 2791 2792 2793

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2794
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2795
	 */
2796
	mutex_lock(&wq->mutex);
2797
	if (!wq->nr_drainers++)
2798
		wq->flags |= __WQ_DRAINING;
2799
	mutex_unlock(&wq->mutex);
2800 2801 2802
reflush:
	flush_workqueue(wq);

2803
	mutex_lock(&wq->mutex);
2804

2805
	for_each_pwq(pwq, wq) {
2806
		bool drained;
2807

2808
		spin_lock_irq(&pwq->pool->lock);
2809
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2810
		spin_unlock_irq(&pwq->pool->lock);
2811 2812

		if (drained)
2813 2814 2815 2816
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2817
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2818
				wq->name, flush_cnt);
2819

2820
		mutex_unlock(&wq->mutex);
2821 2822 2823 2824
		goto reflush;
	}

	if (!--wq->nr_drainers)
2825
		wq->flags &= ~__WQ_DRAINING;
2826
	mutex_unlock(&wq->mutex);
2827 2828 2829
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2830
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2831
{
2832
	struct worker *worker = NULL;
2833
	struct worker_pool *pool;
2834
	struct pool_workqueue *pwq;
2835 2836

	might_sleep();
2837 2838

	local_irq_disable();
2839
	pool = get_work_pool(work);
2840 2841
	if (!pool) {
		local_irq_enable();
2842
		return false;
2843
	}
2844

2845
	spin_lock(&pool->lock);
2846
	/* see the comment in try_to_grab_pending() with the same code */
2847 2848 2849
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2850
			goto already_gone;
2851
	} else {
2852
		worker = find_worker_executing_work(pool, work);
2853
		if (!worker)
T
Tejun Heo 已提交
2854
			goto already_gone;
2855
		pwq = worker->current_pwq;
2856
	}
2857

2858
	insert_wq_barrier(pwq, barr, work, worker);
2859
	spin_unlock_irq(&pool->lock);
2860

2861 2862 2863 2864 2865 2866
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2867
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2868
		lock_map_acquire(&pwq->wq->lockdep_map);
2869
	else
2870 2871
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2872

2873
	return true;
T
Tejun Heo 已提交
2874
already_gone:
2875
	spin_unlock_irq(&pool->lock);
2876
	return false;
2877
}
2878 2879 2880 2881 2882

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2883 2884
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2885
 *
2886
 * Return:
2887 2888 2889 2890 2891
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2892 2893
	struct wq_barrier barr;

2894 2895 2896
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2897 2898 2899 2900 2901 2902 2903
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2904
}
2905
EXPORT_SYMBOL_GPL(flush_work);
2906

2907
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2908
{
2909
	unsigned long flags;
2910 2911 2912
	int ret;

	do {
2913 2914 2915 2916 2917 2918
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2919
			flush_work(work);
2920 2921
	} while (unlikely(ret < 0));

2922 2923 2924 2925
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2926
	flush_work(work);
2927
	clear_work_data(work);
2928 2929 2930
	return ret;
}

2931
/**
2932 2933
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2934
 *
2935 2936 2937 2938
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2939
 *
2940 2941
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2942
 *
2943
 * The caller must ensure that the workqueue on which @work was last
2944
 * queued can't be destroyed before this function returns.
2945
 *
2946
 * Return:
2947
 * %true if @work was pending, %false otherwise.
2948
 */
2949
bool cancel_work_sync(struct work_struct *work)
2950
{
2951
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2952
}
2953
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2954

2955
/**
2956 2957
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2958
 *
2959 2960 2961
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2962
 *
2963
 * Return:
2964 2965
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2966
 */
2967 2968
bool flush_delayed_work(struct delayed_work *dwork)
{
2969
	local_irq_disable();
2970
	if (del_timer_sync(&dwork->timer))
2971
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2972
	local_irq_enable();
2973 2974 2975 2976
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2977
/**
2978 2979
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2980
 *
2981 2982 2983 2984 2985 2986 2987 2988 2989
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2990
 *
2991
 * This function is safe to call from any context including IRQ handler.
2992
 */
2993
bool cancel_delayed_work(struct delayed_work *dwork)
2994
{
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

3005 3006
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
3007
	local_irq_restore(flags);
3008
	return ret;
3009
}
3010
EXPORT_SYMBOL(cancel_delayed_work);
3011

3012 3013 3014 3015 3016 3017
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
3018
 * Return:
3019 3020 3021
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3022
{
3023
	return __cancel_work_timer(&dwork->work, true);
3024
}
3025
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3026

3027
/**
3028
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3029 3030
 * @func: the function to call
 *
3031 3032
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3033
 * schedule_on_each_cpu() is very slow.
3034
 *
3035
 * Return:
3036
 * 0 on success, -errno on failure.
3037
 */
3038
int schedule_on_each_cpu(work_func_t func)
3039 3040
{
	int cpu;
3041
	struct work_struct __percpu *works;
3042

3043 3044
	works = alloc_percpu(struct work_struct);
	if (!works)
3045
		return -ENOMEM;
3046

3047 3048
	get_online_cpus();

3049
	for_each_online_cpu(cpu) {
3050 3051 3052
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3053
		schedule_work_on(cpu, work);
3054
	}
3055 3056 3057 3058

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3059
	put_online_cpus();
3060
	free_percpu(works);
3061 3062 3063
	return 0;
}

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3088 3089
void flush_scheduled_work(void)
{
3090
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3091
}
3092
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3093

3094 3095 3096 3097 3098 3099 3100 3101 3102
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3103
 * Return:	0 - function was executed
3104 3105
 *		1 - function was scheduled for execution
 */
3106
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3107 3108
{
	if (!in_interrupt()) {
3109
		fn(&ew->work);
3110 3111 3112
		return 0;
	}

3113
	INIT_WORK(&ew->work, fn);
3114 3115 3116 3117 3118 3119
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3147 3148
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3149 3150 3151 3152 3153
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3154
static DEVICE_ATTR_RO(per_cpu);
3155

3156 3157
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3158 3159 3160 3161 3162 3163
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3164 3165 3166
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3177
static DEVICE_ATTR_RW(max_active);
3178

3179 3180 3181 3182
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3183
};
3184
ATTRIBUTE_GROUPS(wq_sysfs);
3185

3186 3187
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3188 3189
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3190 3191
	const char *delim = "";
	int node, written = 0;
3192 3193

	rcu_read_lock_sched();
3194 3195 3196 3197 3198 3199 3200
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3212 3213 3214
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3228 3229 3230
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3246
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3261 3262 3263
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3324
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3325
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3326 3327
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3328
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3329 3330 3331 3332 3333
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3334
	.dev_groups			= wq_sysfs_groups,
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3363
 * Return: 0 on success, -errno on failure.
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3456 3457 3458
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3470
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3471 3472 3473 3474 3475 3476
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3477 3478 3479 3480 3481
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3482 3483 3484 3485 3486 3487
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3488 3489 3490 3491 3492 3493 3494 3495
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3496 3497
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3512 3513 3514 3515 3516
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3517 3518
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3519 3520
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3521 3522
 */
static int init_worker_pool(struct worker_pool *pool)
3523 3524
{
	spin_lock_init(&pool->lock);
3525 3526
	pool->id = -1;
	pool->cpu = -1;
3527
	pool->node = NUMA_NO_NODE;
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3541
	mutex_init(&pool->manager_mutex);
3542
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3543

3544 3545 3546 3547
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3548 3549 3550 3551
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3552 3553
}

3554 3555 3556 3557
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3558
	idr_destroy(&pool->worker_idr);
3559 3560 3561 3562 3563 3564 3565 3566 3567
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3568 3569 3570
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3571 3572
 *
 * Should be called with wq_pool_mutex held.
3573 3574 3575
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3576
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3577 3578
	struct worker *worker;

3579 3580 3581
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3582 3583 3584 3585
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3586
	    WARN_ON(!list_empty(&pool->worklist)))
3587 3588 3589 3590 3591 3592 3593
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3594 3595 3596 3597 3598
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3599 3600
	mutex_lock(&pool->manager_arb);

3601
	spin_lock_irq(&pool->lock);
3602 3603 3604 3605
	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3606 3607 3608 3609

	mutex_lock(&pool->manager_mutex);
	if (!idr_is_empty(&pool->worker_idr))
		pool->detach_completion = &detach_completion;
3610
	mutex_unlock(&pool->manager_mutex);
3611 3612 3613 3614

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3632
 * create a new one.
3633 3634
 *
 * Should be called with wq_pool_mutex held.
3635 3636 3637
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3638 3639 3640 3641 3642
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3643
	int node;
3644

3645
	lockdep_assert_held(&wq_pool_mutex);
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3660 3661 3662
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3663
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3664 3665
	copy_workqueue_attrs(pool->attrs, attrs);

3666 3667 3668 3669 3670 3671
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3683 3684 3685 3686
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3687
	if (create_and_start_worker(pool) < 0)
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3716
	bool is_last;
T
Tejun Heo 已提交
3717 3718 3719 3720

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3721
	/*
3722
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3723 3724 3725
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3726
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3727
	list_del_rcu(&pwq->pwqs_node);
3728
	is_last = list_empty(&wq->pwqs);
3729
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3730

3731
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3732
	put_unbound_pool(pool);
3733 3734
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3735 3736 3737 3738 3739 3740
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3741 3742
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3743
		kfree(wq);
3744
	}
T
Tejun Heo 已提交
3745 3746
}

3747
/**
3748
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3749 3750
 * @pwq: target pool_workqueue
 *
3751 3752 3753
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3754
 */
3755
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3756
{
3757 3758 3759 3760
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3761
	lockdep_assert_held(&wq->mutex);
3762 3763 3764 3765 3766

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3767
	spin_lock_irq(&pwq->pool->lock);
3768 3769 3770

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3771

3772 3773 3774
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3775 3776 3777 3778 3779 3780

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3781 3782 3783 3784
	} else {
		pwq->max_active = 0;
	}

3785
	spin_unlock_irq(&pwq->pool->lock);
3786 3787
}

3788
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3789 3790
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3791 3792 3793
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3794 3795
	memset(pwq, 0, sizeof(*pwq));

3796 3797 3798
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3799
	pwq->refcnt = 1;
3800
	INIT_LIST_HEAD(&pwq->delayed_works);
3801
	INIT_LIST_HEAD(&pwq->pwqs_node);
3802
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3803
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3804
}
3805

3806
/* sync @pwq with the current state of its associated wq and link it */
3807
static void link_pwq(struct pool_workqueue *pwq)
3808 3809 3810 3811
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3812

3813 3814 3815 3816
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3817 3818
	/*
	 * Set the matching work_color.  This is synchronized with
3819
	 * wq->mutex to avoid confusing flush_workqueue().
3820
	 */
3821
	pwq->work_color = wq->work_color;
3822 3823 3824 3825 3826

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3827
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3828
}
3829

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3843
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3844 3845 3846
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3847
	}
3848

3849 3850
	init_pwq(pwq, wq, pool);
	return pwq;
3851 3852
}

3853 3854 3855 3856 3857 3858 3859
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3860
		kmem_cache_free(pwq_cache, pwq);
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3873
 * calculation.  The result is stored in @cpumask.
3874 3875 3876 3877 3878 3879 3880 3881
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3882 3883 3884
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3885 3886 3887 3888
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3889
	if (!wq_numa_enabled || attrs->no_numa)
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3926 3927 3928 3929 3930
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3931 3932 3933 3934 3935 3936
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3937
 *
3938 3939 3940
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3941 3942 3943 3944
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3945 3946
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3947
	int node, ret;
3948

3949
	/* only unbound workqueues can change attributes */
3950 3951 3952
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3953 3954 3955 3956
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3957
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3958
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3959 3960
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3961 3962
		goto enomem;

3963
	/* make a copy of @attrs and sanitize it */
3964 3965 3966
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3981
	mutex_lock(&wq_pool_mutex);
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

4003
	mutex_unlock(&wq_pool_mutex);
4004

4005
	/* all pwqs have been created successfully, let's install'em */
4006
	mutex_lock(&wq->mutex);
4007

4008
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4009 4010

	/* save the previous pwq and install the new one */
4011
	for_each_node(node)
4012 4013 4014 4015 4016
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
4017 4018

	mutex_unlock(&wq->mutex);
4019

4020 4021 4022 4023 4024 4025
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
4026 4027 4028
	ret = 0;
	/* fall through */
out_free:
4029
	free_workqueue_attrs(tmp_attrs);
4030
	free_workqueue_attrs(new_attrs);
4031
	kfree(pwq_tbl);
4032
	return ret;
4033

4034 4035 4036 4037 4038 4039 4040
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
4041
enomem:
4042 4043
	ret = -ENOMEM;
	goto out_free;
4044 4045
}

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4091 4092
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4093 4094 4095 4096 4097 4098 4099 4100

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
4101
	 * wq's, the default pwq should be used.
4102 4103 4104 4105 4106
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
4107
		goto use_dfl_pwq;
4108 4109 4110 4111 4112 4113 4114
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
4115 4116
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
4117 4118
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4141
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4142
{
4143
	bool highpri = wq->flags & WQ_HIGHPRI;
4144
	int cpu, ret;
4145 4146

	if (!(wq->flags & WQ_UNBOUND)) {
4147 4148
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4149 4150 4151
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4152 4153
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4154
			struct worker_pool *cpu_pools =
4155
				per_cpu(cpu_worker_pools, cpu);
4156

4157 4158 4159
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4160
			link_pwq(pwq);
4161
			mutex_unlock(&wq->mutex);
4162
		}
4163
		return 0;
4164 4165 4166 4167 4168 4169 4170
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4171
	} else {
4172
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4173
	}
T
Tejun Heo 已提交
4174 4175
}

4176 4177
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4178
{
4179 4180 4181
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4182 4183
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4184

4185
	return clamp_val(max_active, 1, lim);
4186 4187
}

4188
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4189 4190 4191
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4192
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4193
{
4194
	size_t tbl_size = 0;
4195
	va_list args;
L
Linus Torvalds 已提交
4196
	struct workqueue_struct *wq;
4197
	struct pool_workqueue *pwq;
4198

4199 4200 4201 4202
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4203
	/* allocate wq and format name */
4204 4205 4206 4207
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4208
	if (!wq)
4209
		return NULL;
4210

4211 4212 4213 4214 4215 4216
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4217 4218
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4219
	va_end(args);
L
Linus Torvalds 已提交
4220

4221
	max_active = max_active ?: WQ_DFL_ACTIVE;
4222
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4223

4224
	/* init wq */
4225
	wq->flags = flags;
4226
	wq->saved_max_active = max_active;
4227
	mutex_init(&wq->mutex);
4228
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4229
	INIT_LIST_HEAD(&wq->pwqs);
4230 4231
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4232
	INIT_LIST_HEAD(&wq->maydays);
4233

4234
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4235
	INIT_LIST_HEAD(&wq->list);
4236

4237
	if (alloc_and_link_pwqs(wq) < 0)
4238
		goto err_free_wq;
T
Tejun Heo 已提交
4239

4240 4241 4242 4243 4244
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4245 4246
		struct worker *rescuer;

4247
		rescuer = alloc_worker();
4248
		if (!rescuer)
4249
			goto err_destroy;
4250

4251 4252
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4253
					       wq->name);
4254 4255 4256 4257
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4258

4259
		wq->rescuer = rescuer;
4260
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4261
		wake_up_process(rescuer->task);
4262 4263
	}

4264 4265 4266
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4267
	/*
4268 4269 4270
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4271
	 */
4272
	mutex_lock(&wq_pool_mutex);
4273

4274
	mutex_lock(&wq->mutex);
4275 4276
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4277
	mutex_unlock(&wq->mutex);
4278

T
Tejun Heo 已提交
4279
	list_add(&wq->list, &workqueues);
4280

4281
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4282

4283
	return wq;
4284 4285

err_free_wq:
4286
	free_workqueue_attrs(wq->unbound_attrs);
4287 4288 4289 4290
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4291
	return NULL;
4292
}
4293
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4294

4295 4296 4297 4298 4299 4300 4301 4302
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4303
	struct pool_workqueue *pwq;
4304
	int node;
4305

4306 4307
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4308

4309
	/* sanity checks */
4310
	mutex_lock(&wq->mutex);
4311
	for_each_pwq(pwq, wq) {
4312 4313
		int i;

4314 4315
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4316
				mutex_unlock(&wq->mutex);
4317
				return;
4318 4319 4320
			}
		}

4321
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4322
		    WARN_ON(pwq->nr_active) ||
4323
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4324
			mutex_unlock(&wq->mutex);
4325
			return;
4326
		}
4327
	}
4328
	mutex_unlock(&wq->mutex);
4329

4330 4331 4332 4333
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4334
	mutex_lock(&wq_pool_mutex);
4335
	list_del_init(&wq->list);
4336
	mutex_unlock(&wq_pool_mutex);
4337

4338 4339
	workqueue_sysfs_unregister(wq);

4340
	if (wq->rescuer) {
4341
		kthread_stop(wq->rescuer->task);
4342
		kfree(wq->rescuer);
4343
		wq->rescuer = NULL;
4344 4345
	}

T
Tejun Heo 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4356 4357
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4358
		 */
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4371
		put_pwq_unlocked(pwq);
4372
	}
4373 4374 4375
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4388
	struct pool_workqueue *pwq;
4389

4390 4391 4392 4393
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4394
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4395

4396
	mutex_lock(&wq->mutex);
4397 4398 4399

	wq->saved_max_active = max_active;

4400 4401
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4402

4403
	mutex_unlock(&wq->mutex);
4404
}
4405
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4406

4407 4408 4409 4410 4411
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4412 4413
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4414 4415 4416 4417 4418
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4419
	return worker && worker->rescue_wq;
4420 4421
}

4422
/**
4423 4424 4425
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4426
 *
4427 4428 4429
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4430
 *
4431 4432 4433 4434 4435 4436
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4437
 * Return:
4438
 * %true if congested, %false otherwise.
4439
 */
4440
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4441
{
4442
	struct pool_workqueue *pwq;
4443 4444
	bool ret;

4445
	rcu_read_lock_sched();
4446

4447 4448 4449
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4450 4451 4452
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4453
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4454

4455
	ret = !list_empty(&pwq->delayed_works);
4456
	rcu_read_unlock_sched();
4457 4458

	return ret;
L
Linus Torvalds 已提交
4459
}
4460
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4461

4462 4463 4464 4465 4466 4467 4468 4469
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4470
 * Return:
4471 4472 4473
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4474
{
4475
	struct worker_pool *pool;
4476 4477
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4478

4479 4480
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4481

4482 4483
	local_irq_save(flags);
	pool = get_work_pool(work);
4484
	if (pool) {
4485
		spin_lock(&pool->lock);
4486 4487
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4488
		spin_unlock(&pool->lock);
4489
	}
4490
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4491

4492
	return ret;
L
Linus Torvalds 已提交
4493
}
4494
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4495

4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
4566
		pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
4567 4568 4569 4570 4571 4572
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4573 4574 4575
/*
 * CPU hotplug.
 *
4576
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4577
 * are a lot of assumptions on strong associations among work, pwq and
4578
 * pool which make migrating pending and scheduled works very
4579
 * difficult to implement without impacting hot paths.  Secondly,
4580
 * worker pools serve mix of short, long and very long running works making
4581 4582
 * blocked draining impractical.
 *
4583
 * This is solved by allowing the pools to be disassociated from the CPU
4584 4585
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4586
 */
L
Linus Torvalds 已提交
4587

4588
static void wq_unbind_fn(struct work_struct *work)
4589
{
4590
	int cpu = smp_processor_id();
4591
	struct worker_pool *pool;
4592
	struct worker *worker;
4593
	int wi;
4594

4595
	for_each_cpu_worker_pool(pool, cpu) {
4596
		WARN_ON_ONCE(cpu != smp_processor_id());
4597

4598
		mutex_lock(&pool->manager_mutex);
4599
		spin_lock_irq(&pool->lock);
4600

4601
		/*
4602
		 * We've blocked all manager operations.  Make all workers
4603 4604 4605 4606 4607
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4608
		for_each_pool_worker(worker, wi, pool)
4609
			worker->flags |= WORKER_UNBOUND;
4610

4611
		pool->flags |= POOL_DISASSOCIATED;
4612

4613
		spin_unlock_irq(&pool->lock);
4614
		mutex_unlock(&pool->manager_mutex);
4615

4616 4617 4618 4619 4620 4621 4622
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4623

4624 4625 4626 4627 4628 4629 4630 4631
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4632
		atomic_set(&pool->nr_running, 0);
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4643 4644
}

T
Tejun Heo 已提交
4645 4646 4647 4648
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4649
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4650 4651 4652
 */
static void rebind_workers(struct worker_pool *pool)
{
4653 4654
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4655 4656 4657

	lockdep_assert_held(&pool->manager_mutex);

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4668

4669
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4670

4671 4672
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4673 4674

		/*
4675 4676 4677 4678 4679 4680
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4681
		 */
4682 4683
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4684

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4704
	}
4705 4706

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4707 4708
}

4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4742 4743 4744 4745
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4746
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4747 4748
					       unsigned long action,
					       void *hcpu)
4749
{
4750
	int cpu = (unsigned long)hcpu;
4751
	struct worker_pool *pool;
4752
	struct workqueue_struct *wq;
4753
	int pi;
4754

T
Tejun Heo 已提交
4755
	switch (action & ~CPU_TASKS_FROZEN) {
4756
	case CPU_UP_PREPARE:
4757
		for_each_cpu_worker_pool(pool, cpu) {
4758 4759
			if (pool->nr_workers)
				continue;
4760
			if (create_and_start_worker(pool) < 0)
4761
				return NOTIFY_BAD;
4762
		}
T
Tejun Heo 已提交
4763
		break;
4764

4765 4766
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4767
		mutex_lock(&wq_pool_mutex);
4768 4769

		for_each_pool(pool, pi) {
4770
			mutex_lock(&pool->manager_mutex);
4771

4772 4773 4774 4775
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4776

4777 4778 4779 4780
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4781

4782
			mutex_unlock(&pool->manager_mutex);
4783
		}
4784

4785 4786 4787 4788
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4789
		mutex_unlock(&wq_pool_mutex);
4790
		break;
4791
	}
4792 4793 4794 4795 4796 4797 4798
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4799
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4800 4801 4802
						 unsigned long action,
						 void *hcpu)
{
4803
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4804
	struct work_struct unbind_work;
4805
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4806

4807 4808
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4809
		/* unbinding per-cpu workers should happen on the local CPU */
4810
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4811
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4812 4813 4814 4815 4816 4817 4818 4819

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4820
		flush_work(&unbind_work);
4821
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4822
		break;
4823 4824 4825 4826
	}
	return NOTIFY_OK;
}

4827
#ifdef CONFIG_SMP
4828

4829
struct work_for_cpu {
4830
	struct work_struct work;
4831 4832 4833 4834 4835
	long (*fn)(void *);
	void *arg;
	long ret;
};

4836
static void work_for_cpu_fn(struct work_struct *work)
4837
{
4838 4839
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4840 4841 4842 4843 4844 4845 4846 4847 4848
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4849
 * It is up to the caller to ensure that the cpu doesn't go offline.
4850
 * The caller must not hold any locks which would prevent @fn from completing.
4851 4852
 *
 * Return: The value @fn returns.
4853
 */
4854
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4855
{
4856
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4857

4858 4859
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4860
	flush_work(&wfc.work);
4861
	destroy_work_on_stack(&wfc.work);
4862 4863 4864 4865 4866
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4867 4868 4869 4870 4871
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4872
 * Start freezing workqueues.  After this function returns, all freezable
4873
 * workqueues will queue new works to their delayed_works list instead of
4874
 * pool->worklist.
4875 4876
 *
 * CONTEXT:
4877
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4878 4879 4880
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4881
	struct worker_pool *pool;
4882 4883
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4884
	int pi;
4885

4886
	mutex_lock(&wq_pool_mutex);
4887

4888
	WARN_ON_ONCE(workqueue_freezing);
4889 4890
	workqueue_freezing = true;

4891
	/* set FREEZING */
4892
	for_each_pool(pool, pi) {
4893
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4894 4895
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4896
		spin_unlock_irq(&pool->lock);
4897
	}
4898

4899
	list_for_each_entry(wq, &workqueues, list) {
4900
		mutex_lock(&wq->mutex);
4901 4902
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4903
		mutex_unlock(&wq->mutex);
4904
	}
4905

4906
	mutex_unlock(&wq_pool_mutex);
4907 4908 4909
}

/**
4910
 * freeze_workqueues_busy - are freezable workqueues still busy?
4911 4912 4913 4914 4915
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4916
 * Grabs and releases wq_pool_mutex.
4917
 *
4918
 * Return:
4919 4920
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4921 4922 4923 4924
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4925 4926
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4927

4928
	mutex_lock(&wq_pool_mutex);
4929

4930
	WARN_ON_ONCE(!workqueue_freezing);
4931

4932 4933 4934
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4935 4936 4937 4938
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4939
		rcu_read_lock_sched();
4940
		for_each_pwq(pwq, wq) {
4941
			WARN_ON_ONCE(pwq->nr_active < 0);
4942
			if (pwq->nr_active) {
4943
				busy = true;
4944
				rcu_read_unlock_sched();
4945 4946 4947
				goto out_unlock;
			}
		}
4948
		rcu_read_unlock_sched();
4949 4950
	}
out_unlock:
4951
	mutex_unlock(&wq_pool_mutex);
4952 4953 4954 4955 4956 4957 4958
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4959
 * frozen works are transferred to their respective pool worklists.
4960 4961
 *
 * CONTEXT:
4962
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4963 4964 4965
 */
void thaw_workqueues(void)
{
4966 4967 4968
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4969
	int pi;
4970

4971
	mutex_lock(&wq_pool_mutex);
4972 4973 4974 4975

	if (!workqueue_freezing)
		goto out_unlock;

4976
	/* clear FREEZING */
4977
	for_each_pool(pool, pi) {
4978
		spin_lock_irq(&pool->lock);
4979 4980
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4981
		spin_unlock_irq(&pool->lock);
4982
	}
4983

4984 4985
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4986
		mutex_lock(&wq->mutex);
4987 4988
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4989
		mutex_unlock(&wq->mutex);
4990 4991 4992 4993
	}

	workqueue_freezing = false;
out_unlock:
4994
	mutex_unlock(&wq_pool_mutex);
4995 4996 4997
}
#endif /* CONFIG_FREEZER */

4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

5010 5011 5012 5013 5014
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5015 5016 5017
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5018 5019 5020 5021 5022 5023 5024 5025 5026
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
5027 5028
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5044
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5045
{
T
Tejun Heo 已提交
5046 5047
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5048

5049 5050 5051 5052
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5053
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5054
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5055

5056 5057
	wq_numa_init();

5058
	/* initialize CPU pools */
5059
	for_each_possible_cpu(cpu) {
5060
		struct worker_pool *pool;
5061

T
Tejun Heo 已提交
5062
		i = 0;
5063
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5064
			BUG_ON(init_worker_pool(pool));
5065
			pool->cpu = cpu;
5066
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5067
			pool->attrs->nice = std_nice[i++];
5068
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5069

T
Tejun Heo 已提交
5070
			/* alloc pool ID */
5071
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5072
			BUG_ON(worker_pool_assign_id(pool));
5073
			mutex_unlock(&wq_pool_mutex);
5074
		}
5075 5076
	}

5077
	/* create the initial worker */
5078
	for_each_online_cpu(cpu) {
5079
		struct worker_pool *pool;
5080

5081
		for_each_cpu_worker_pool(pool, cpu) {
5082
			pool->flags &= ~POOL_DISASSOCIATED;
5083
			BUG_ON(create_and_start_worker(pool) < 0);
5084
		}
5085 5086
	}

5087
	/* create default unbound and ordered wq attrs */
5088 5089 5090 5091 5092 5093
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5104 5105
	}

5106
	system_wq = alloc_workqueue("events", 0, 0);
5107
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5108
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5109 5110
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5111 5112
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5113 5114 5115 5116 5117
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5118
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5119 5120 5121
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5122
	return 0;
L
Linus Torvalds 已提交
5123
}
5124
early_initcall(init_workqueues);