blk-mq.c 60.1 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35 36 37 38 39 40 41 42 43

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
44
	return sbitmap_any_bit_set(&hctx->ctx_map);
45 46
}

47 48 49 50 51 52
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
53 54
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 56 57 58 59
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
60
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 62
}

63
void blk_mq_freeze_queue_start(struct request_queue *q)
64
{
65
	int freeze_depth;
66

67 68
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
69
		percpu_ref_kill(&q->q_usage_counter);
70
		blk_mq_run_hw_queues(q, false);
71
	}
72
}
73
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
74 75 76

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
77
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
78 79
}

80 81 82 83
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
84
void blk_freeze_queue(struct request_queue *q)
85
{
86 87 88 89 90 91 92
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
93 94 95
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
96 97 98 99 100 101 102 103 104

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
105
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
106

107
void blk_mq_unfreeze_queue(struct request_queue *q)
108
{
109
	int freeze_depth;
110

111 112 113
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
114
		percpu_ref_reinit(&q->q_usage_counter);
115
		wake_up_all(&q->mq_freeze_wq);
116
	}
117
}
118
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

147 148 149 150 151 152 153 154
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
155 156 157 158 159 160 161

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
162 163
}

164 165 166 167 168 169
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

170
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171
			       struct request *rq, unsigned int op)
172
{
173 174 175
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
176
	rq->mq_ctx = ctx;
177
	rq->cmd_flags = op;
178 179
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
180 181 182 183 184 185
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
186
	rq->start_time = jiffies;
187 188
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
189
	set_start_time_ns(rq);
190 191 192 193 194 195 196 197 198 199
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

200 201
	rq->cmd = rq->__cmd;

202 203 204 205 206 207
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
208 209
	rq->timeout = 0;

210 211 212 213
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

214
	ctx->rq_dispatched[op_is_sync(op)]++;
215 216
}

217
static struct request *
218
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
219 220 221 222
{
	struct request *rq;
	unsigned int tag;

223
	tag = blk_mq_get_tag(data);
224
	if (tag != BLK_MQ_TAG_FAIL) {
225
		rq = data->hctx->tags->rqs[tag];
226

227
		if (blk_mq_tag_busy(data->hctx)) {
228
			rq->rq_flags = RQF_MQ_INFLIGHT;
229
			atomic_inc(&data->hctx->nr_active);
230 231 232
		}

		rq->tag = tag;
233
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
234 235 236 237 238 239
		return rq;
	}

	return NULL;
}

240 241
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
242
{
243 244
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
245
	struct request *rq;
246
	struct blk_mq_alloc_data alloc_data;
247
	int ret;
248

249
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
250 251
	if (ret)
		return ERR_PTR(ret);
252

253
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
254
	hctx = blk_mq_map_queue(q, ctx->cpu);
255
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
256
	rq = __blk_mq_alloc_request(&alloc_data, rw);
257
	blk_mq_put_ctx(ctx);
258

K
Keith Busch 已提交
259
	if (!rq) {
260
		blk_queue_exit(q);
261
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
262
	}
263 264 265 266

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
267 268
	return rq;
}
269
EXPORT_SYMBOL(blk_mq_alloc_request);
270

M
Ming Lin 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

296 297 298 299
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
300
	hctx = q->queue_hw_ctx[hctx_idx];
301 302 303 304
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
305 306 307
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
308
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
309
	if (!rq) {
310 311
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
312 313 314
	}

	return rq;
315 316 317 318

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
319 320 321
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

322 323 324 325 326 327
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

328
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
329
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
330 331

	wbt_done(q->rq_wb, &rq->issue_stat);
332
	rq->rq_flags = 0;
333

334
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
335
	blk_mq_put_tag(hctx, ctx, tag);
336
	blk_queue_exit(q);
337 338
}

339
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
340 341 342 343 344
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
345 346 347 348 349 350

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
C
Christoph Hellwig 已提交
351
	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
352
}
J
Jens Axboe 已提交
353
EXPORT_SYMBOL_GPL(blk_mq_free_request);
354

355
inline void __blk_mq_end_request(struct request *rq, int error)
356
{
M
Ming Lei 已提交
357 358
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
359
	if (rq->end_io) {
J
Jens Axboe 已提交
360
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
361
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
362 363 364
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
365
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
366
	}
367
}
368
EXPORT_SYMBOL(__blk_mq_end_request);
369

370
void blk_mq_end_request(struct request *rq, int error)
371 372 373
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
374
	__blk_mq_end_request(rq, error);
375
}
376
EXPORT_SYMBOL(blk_mq_end_request);
377

378
static void __blk_mq_complete_request_remote(void *data)
379
{
380
	struct request *rq = data;
381

382
	rq->q->softirq_done_fn(rq);
383 384
}

385
static void blk_mq_ipi_complete_request(struct request *rq)
386 387
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
388
	bool shared = false;
389 390
	int cpu;

C
Christoph Hellwig 已提交
391
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
392 393 394
		rq->q->softirq_done_fn(rq);
		return;
	}
395 396

	cpu = get_cpu();
C
Christoph Hellwig 已提交
397 398 399 400
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
401
		rq->csd.func = __blk_mq_complete_request_remote;
402 403
		rq->csd.info = rq;
		rq->csd.flags = 0;
404
		smp_call_function_single_async(ctx->cpu, &rq->csd);
405
	} else {
406
		rq->q->softirq_done_fn(rq);
407
	}
408 409
	put_cpu();
}
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

426
static void __blk_mq_complete_request(struct request *rq)
427 428 429
{
	struct request_queue *q = rq->q;

430 431
	blk_mq_stat_add(rq);

432
	if (!q->softirq_done_fn)
433
		blk_mq_end_request(rq, rq->errors);
434 435 436 437
	else
		blk_mq_ipi_complete_request(rq);
}

438 439 440 441 442 443 444 445
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
446
void blk_mq_complete_request(struct request *rq, int error)
447
{
448 449 450
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
451
		return;
452 453
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
454
		__blk_mq_complete_request(rq);
455
	}
456 457
}
EXPORT_SYMBOL(blk_mq_complete_request);
458

459 460 461 462 463 464
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

465
void blk_mq_start_request(struct request *rq)
466 467 468 469 470
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
471
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
472 473
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
474

475 476 477
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
478
		wbt_issue(q->rq_wb, &rq->issue_stat);
479 480
	}

481
	blk_add_timer(rq);
482

483 484 485 486 487 488
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

489 490 491 492 493 494
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
495 496 497 498
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
499 500 501 502 503 504 505 506 507

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
508
}
509
EXPORT_SYMBOL(blk_mq_start_request);
510

511
static void __blk_mq_requeue_request(struct request *rq)
512 513 514 515
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
516
	wbt_requeue(q->rq_wb, &rq->issue_stat);
517

518 519 520 521
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
522 523
}

524
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
525 526 527 528
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
529
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
530 531 532
}
EXPORT_SYMBOL(blk_mq_requeue_request);

533 534 535
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
536
		container_of(work, struct request_queue, requeue_work.work);
537 538 539 540 541 542 543 544 545
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
546
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
547 548
			continue;

549
		rq->rq_flags &= ~RQF_SOFTBARRIER;
550 551 552 553 554 555 556 557 558 559
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

560
	blk_mq_run_hw_queues(q, false);
561 562
}

563 564
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
565 566 567 568 569 570 571 572
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
573
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
574 575 576

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
577
		rq->rq_flags |= RQF_SOFTBARRIER;
578 579 580 581 582
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
583 584 585

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
586 587 588 589 590
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
591
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
592 593 594
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

595 596 597 598 599 600 601 602
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

623 624
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
625 626
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
627
		return tags->rqs[tag];
628
	}
629 630

	return NULL;
631 632 633
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

634
struct blk_mq_timeout_data {
635 636
	unsigned long next;
	unsigned int next_set;
637 638
};

639
void blk_mq_rq_timed_out(struct request *req, bool reserved)
640
{
641 642
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
643 644 645 646 647 648 649 650 651 652

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
653 654
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
655

656
	if (ops->timeout)
657
		ret = ops->timeout(req, reserved);
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
673
}
674

675 676 677 678
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
679

680 681 682 683 684
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
685 686 687 688
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
689
		return;
690
	}
691

692 693
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
694
			blk_mq_rq_timed_out(rq, reserved);
695 696 697 698
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
699 700
}

701
static void blk_mq_timeout_work(struct work_struct *work)
702
{
703 704
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
705 706 707 708 709
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
710

711 712 713 714 715 716 717 718 719 720 721 722 723 724
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
725 726
		return;

727
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
728

729 730 731
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
732
	} else {
733 734
		struct blk_mq_hw_ctx *hctx;

735 736 737 738 739
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
740
	}
741
	blk_queue_exit(q);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

801 802 803 804 805 806
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
807 808 809 810
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
811

812
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
813 814
}

815 816 817 818
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
819

820
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
821 822
}

823 824 825 826 827 828
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
829
static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
830 831 832 833
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
834 835
	LIST_HEAD(driver_list);
	struct list_head *dptr;
836
	int queued;
837

838
	if (unlikely(blk_mq_hctx_stopped(hctx)))
839 840 841 842 843 844 845
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
846
	flush_busy_ctxs(hctx, &rq_list);
847 848 849 850 851 852 853 854 855 856 857 858

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

859 860 861 862 863 864
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

865 866 867
	/*
	 * Now process all the entries, sending them to the driver.
	 */
868
	queued = 0;
869
	while (!list_empty(&rq_list)) {
870
		struct blk_mq_queue_data bd;
871 872 873 874 875
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

876 877 878 879 880
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
881 882 883
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
884
			break;
885 886
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
887
			__blk_mq_requeue_request(rq);
888 889 890 891
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
892
			rq->errors = -EIO;
893
			blk_mq_end_request(rq, rq->errors);
894 895 896 897 898
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
899 900 901 902 903 904 905

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
906 907
	}

908
	hctx->dispatched[queued_to_index(queued)]++;
909 910 911 912 913 914 915 916 917

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
918 919 920 921 922 923 924 925 926 927
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
928 929 930
	}
}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		blk_mq_process_rq_list(hctx);
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
		blk_mq_process_rq_list(hctx);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

949 950 951 952 953 954 955 956
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
957 958
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
959 960

	if (--hctx->next_cpu_batch <= 0) {
961
		int next_cpu;
962 963 964 965 966 967 968 969 970

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

971
	return hctx->next_cpu;
972 973
}

974 975
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
976 977
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
978 979
		return;

980
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
981 982
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
983
			__blk_mq_run_hw_queue(hctx);
984
			put_cpu();
985 986
			return;
		}
987

988
		put_cpu();
989
	}
990

991
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
992 993
}

994
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
995 996 997 998 999 1000 1001
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
1002
		    blk_mq_hctx_stopped(hctx))
1003 1004
			continue;

1005
		blk_mq_run_hw_queue(hctx, async);
1006 1007
	}
}
1008
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1009

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1030 1031
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1032
	cancel_work(&hctx->run_work);
1033
	cancel_delayed_work(&hctx->delay_work);
1034 1035 1036 1037
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1048 1049 1050
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1051

1052
	blk_mq_run_hw_queue(hctx, false);
1053 1054 1055
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1066
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1067 1068 1069 1070 1071
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1072
		if (!blk_mq_hctx_stopped(hctx))
1073 1074 1075
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1076
		blk_mq_run_hw_queue(hctx, async);
1077 1078 1079 1080
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1081
static void blk_mq_run_work_fn(struct work_struct *work)
1082 1083 1084
{
	struct blk_mq_hw_ctx *hctx;

1085
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1086

1087 1088 1089
	__blk_mq_run_hw_queue(hctx);
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1102 1103
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1104

1105 1106
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1107 1108 1109
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1110 1111 1112
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1113
{
J
Jens Axboe 已提交
1114 1115
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1116 1117
	trace_block_rq_insert(hctx->queue, rq);

1118 1119 1120 1121
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1122
}
1123

1124 1125 1126 1127 1128
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1129
	__blk_mq_insert_req_list(hctx, rq, at_head);
1130 1131 1132
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1133
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1134
			   bool async)
1135
{
J
Jens Axboe 已提交
1136
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1137
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1138
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1139

1140 1141 1142
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
C
Christoph Hellwig 已提交
1155
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

	trace_block_unplug(q, depth, !from_schedule);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1168
		BUG_ON(rq->mq_ctx != ctx);
1169
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1170
		__blk_mq_insert_req_list(hctx, rq, false);
1171
	}
1172
	blk_mq_hctx_mark_pending(hctx, ctx);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1238

1239
	blk_account_io_start(rq, 1);
1240 1241
}

1242 1243 1244 1245 1246 1247
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1248 1249 1250
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1251
{
1252
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1253 1254 1255 1256 1257 1258 1259
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1260 1261
		struct request_queue *q = hctx->queue;

1262 1263 1264 1265 1266
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1267

1268 1269 1270
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1271
	}
1272
}
1273

1274 1275
static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
1276
					  struct blk_mq_alloc_data *data)
1277 1278 1279 1280
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1281

1282
	blk_queue_enter_live(q);
1283
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
1284
	hctx = blk_mq_map_queue(q, ctx->cpu);
1285

1286
	trace_block_getrq(q, bio, bio->bi_opf);
1287
	blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1288
	rq = __blk_mq_alloc_request(data, bio->bi_opf);
1289

1290
	data->hctx->queued++;
1291 1292 1293
	return rq;
}

1294
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1295 1296 1297
{
	int ret;
	struct request_queue *q = rq->q;
1298
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1299 1300 1301 1302 1303
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1304
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1305

1306 1307 1308
	if (blk_mq_hctx_stopped(hctx))
		goto insert;

1309 1310 1311 1312 1313 1314
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1315 1316
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1317
		return;
1318
	}
1319

1320 1321 1322 1323 1324 1325
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1326
		return;
1327
	}
1328

1329 1330
insert:
	blk_mq_insert_request(rq, false, true, true);
1331 1332
}

1333 1334 1335 1336 1337
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1338
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1339
{
1340
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1341
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1342
	struct blk_mq_alloc_data data;
1343
	struct request *rq;
1344
	unsigned int request_count = 0, srcu_idx;
1345
	struct blk_plug *plug;
1346
	struct request *same_queue_rq = NULL;
1347
	blk_qc_t cookie;
J
Jens Axboe 已提交
1348
	unsigned int wb_acct;
1349 1350 1351 1352

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1353
		bio_io_error(bio);
1354
		return BLK_QC_T_NONE;
1355 1356
	}

1357 1358
	blk_queue_split(q, &bio, q->bio_split);

1359 1360 1361
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1362

J
Jens Axboe 已提交
1363 1364
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1365
	rq = blk_mq_map_request(q, bio, &data);
J
Jens Axboe 已提交
1366 1367
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1368
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1369 1370 1371
	}

	wbt_track(&rq->issue_stat, wb_acct);
1372

1373
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1374 1375 1376 1377 1378 1379 1380

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1381
	plug = current->plug;
1382 1383 1384 1385 1386
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1387 1388 1389
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1390 1391 1392 1393

		blk_mq_bio_to_request(rq, bio);

		/*
1394
		 * We do limited plugging. If the bio can be merged, do that.
1395 1396
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1397
		 */
1398
		if (plug) {
1399 1400
			/*
			 * The plug list might get flushed before this. If that
1401 1402 1403
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1404 1405
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1406
				list_del_init(&old_rq->queuelist);
1407
			}
1408 1409 1410 1411 1412
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1413
			goto done;
1414 1415 1416

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1417
			blk_mq_try_issue_directly(old_rq, &cookie);
1418 1419 1420
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1421
			blk_mq_try_issue_directly(old_rq, &cookie);
1422 1423
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1424
		goto done;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1438 1439
done:
	return cookie;
1440 1441 1442 1443 1444 1445
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1446
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1447
{
1448
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1449
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1450 1451
	struct blk_plug *plug;
	unsigned int request_count = 0;
1452
	struct blk_mq_alloc_data data;
1453
	struct request *rq;
1454
	blk_qc_t cookie;
J
Jens Axboe 已提交
1455
	unsigned int wb_acct;
1456 1457 1458 1459

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1460
		bio_io_error(bio);
1461
		return BLK_QC_T_NONE;
1462 1463
	}

1464 1465
	blk_queue_split(q, &bio, q->bio_split);

1466 1467 1468 1469 1470
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1471

J
Jens Axboe 已提交
1472 1473
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1474
	rq = blk_mq_map_request(q, bio, &data);
J
Jens Axboe 已提交
1475 1476
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1477
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1478 1479 1480
	}

	wbt_track(&rq->issue_stat, wb_acct);
1481

1482
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1495 1496
	plug = current->plug;
	if (plug) {
1497 1498
		struct request *last = NULL;

1499
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1500
		if (!request_count)
1501
			trace_block_plug(q);
1502 1503
		else
			last = list_entry_rq(plug->mq_list.prev);
1504 1505 1506

		blk_mq_put_ctx(data.ctx);

1507 1508
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1509 1510
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1511
		}
1512

1513
		list_add_tail(&rq->queuelist, &plug->mq_list);
1514
		return cookie;
1515 1516
	}

1517 1518 1519 1520 1521 1522 1523 1524 1525
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1526 1527
	}

1528
	blk_mq_put_ctx(data.ctx);
1529
	return cookie;
1530 1531
}

1532 1533
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1534
{
1535
	struct page *page;
1536

1537
	if (tags->rqs && set->ops->exit_request) {
1538
		int i;
1539

1540 1541
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1542
				continue;
1543 1544
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1545
			tags->rqs[i] = NULL;
1546
		}
1547 1548
	}

1549 1550
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1551
		list_del_init(&page->lru);
1552 1553 1554 1555 1556
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1557 1558 1559
		__free_pages(page, page->private);
	}

1560
	kfree(tags->rqs);
1561

1562
	blk_mq_free_tags(tags);
1563 1564 1565 1566
}

static size_t order_to_size(unsigned int order)
{
1567
	return (size_t)PAGE_SIZE << order;
1568 1569
}

1570 1571
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1572
{
1573
	struct blk_mq_tags *tags;
1574 1575 1576
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1577
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1578 1579
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1580 1581
	if (!tags)
		return NULL;
1582

1583 1584
	INIT_LIST_HEAD(&tags->page_list);

1585 1586 1587
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1588 1589 1590 1591
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1592 1593 1594 1595 1596

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1597
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1598
				cache_line_size());
1599
	left = rq_size * set->queue_depth;
1600

1601
	for (i = 0; i < set->queue_depth; ) {
1602 1603 1604 1605 1606
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1607
		while (this_order && left < order_to_size(this_order - 1))
1608 1609 1610
			this_order--;

		do {
1611
			page = alloc_pages_node(set->numa_node,
1612
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1613
				this_order);
1614 1615 1616 1617 1618 1619 1620 1621 1622
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1623
			goto fail;
1624 1625

		page->private = this_order;
1626
		list_add_tail(&page->lru, &tags->page_list);
1627 1628

		p = page_address(page);
1629 1630 1631 1632 1633
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1634
		entries_per_page = order_to_size(this_order) / rq_size;
1635
		to_do = min(entries_per_page, set->queue_depth - i);
1636 1637
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1638 1639 1640 1641
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1642 1643
						set->numa_node)) {
					tags->rqs[i] = NULL;
1644
					goto fail;
1645
				}
1646 1647
			}

1648 1649 1650 1651
			p += rq_size;
			i++;
		}
	}
1652
	return tags;
1653

1654 1655 1656
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1657 1658
}

J
Jens Axboe 已提交
1659 1660 1661 1662 1663
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1664
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1665
{
1666
	struct blk_mq_hw_ctx *hctx;
1667 1668 1669
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1670
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1671
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1672 1673 1674 1675 1676 1677 1678 1679 1680

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1681
		return 0;
1682

J
Jens Axboe 已提交
1683 1684 1685
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1686 1687

	blk_mq_run_hw_queue(hctx, true);
1688
	return 0;
1689 1690
}

1691
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1692
{
1693 1694
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1695 1696
}

1697
/* hctx->ctxs will be freed in queue's release handler */
1698 1699 1700 1701
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1702 1703
	unsigned flush_start_tag = set->queue_depth;

1704 1705
	blk_mq_tag_idle(hctx);

1706 1707 1708 1709 1710
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1711 1712 1713
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1714 1715 1716
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1717
	blk_mq_remove_cpuhp(hctx);
1718
	blk_free_flush_queue(hctx->fq);
1719
	sbitmap_free(&hctx->ctx_map);
1720 1721
}

M
Ming Lei 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1731
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1741
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1742 1743 1744
		free_cpumask_var(hctx->cpumask);
}

1745 1746 1747
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1748
{
1749
	int node;
1750
	unsigned flush_start_tag = set->queue_depth;
1751 1752 1753 1754 1755

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1756
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1757 1758 1759 1760 1761
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1762
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1763

1764
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1765 1766

	hctx->tags = set->tags[hctx_idx];
1767 1768

	/*
1769 1770
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1771
	 */
1772 1773 1774 1775
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1776

1777 1778
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1779
		goto free_ctxs;
1780

1781
	hctx->nr_ctx = 0;
1782

1783 1784 1785
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1786

1787 1788 1789
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1790

1791 1792 1793 1794 1795
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1796

1797 1798 1799
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1800
	return 0;
1801

1802 1803 1804 1805 1806
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1807
 free_bitmap:
1808
	sbitmap_free(&hctx->ctx_map);
1809 1810 1811
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1812
	blk_mq_remove_cpuhp(hctx);
1813 1814
	return -1;
}
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
1830 1831
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1832 1833 1834 1835 1836

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1837
		hctx = blk_mq_map_queue(q, i);
1838

1839 1840 1841 1842 1843
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1844
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1845 1846 1847
	}
}

1848 1849
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1850 1851 1852 1853
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1854
	struct blk_mq_tag_set *set = q->tag_set;
1855

1856 1857 1858 1859 1860
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1861
	queue_for_each_hw_ctx(q, hctx, i) {
1862
		cpumask_clear(hctx->cpumask);
1863 1864 1865 1866 1867 1868
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1869
	for_each_possible_cpu(i) {
1870
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1871
		if (!cpumask_test_cpu(i, online_mask))
1872 1873
			continue;

1874
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
1875
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
1876

1877
		cpumask_set_cpu(i, hctx->cpumask);
1878 1879 1880
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1881

1882 1883
	mutex_unlock(&q->sysfs_lock);

1884
	queue_for_each_hw_ctx(q, hctx, i) {
1885
		/*
1886 1887
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1888 1889 1890 1891 1892 1893
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1894
			hctx->tags = NULL;
1895 1896 1897
			continue;
		}

M
Ming Lei 已提交
1898 1899 1900 1901 1902 1903
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1904 1905 1906 1907 1908
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1909
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1910

1911 1912 1913
		/*
		 * Initialize batch roundrobin counts
		 */
1914 1915 1916
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1917 1918
}

1919
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1920 1921 1922 1923
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1935 1936 1937

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1938
		queue_set_hctx_shared(q, shared);
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1949 1950 1951 1952 1953 1954
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1955 1956 1957 1958 1959 1960 1961 1962 1963
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1964 1965 1966 1967 1968 1969 1970 1971 1972

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1973
	list_add_tail(&q->tag_set_list, &set->tag_list);
1974

1975 1976 1977
	mutex_unlock(&set->tag_list_lock);
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1990 1991 1992 1993
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1994
		kfree(hctx);
1995
	}
1996

1997 1998
	q->mq_map = NULL;

1999 2000 2001 2002 2003 2004
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2005
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2021 2022
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2023
{
K
Keith Busch 已提交
2024 2025
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2026

K
Keith Busch 已提交
2027
	blk_mq_sysfs_unregister(q);
2028
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2029
		int node;
2030

K
Keith Busch 已提交
2031 2032 2033 2034
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2035 2036
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2037
		if (!hctxs[i])
K
Keith Busch 已提交
2038
			break;
2039

2040
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2041 2042 2043 2044 2045
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2046

2047
		atomic_set(&hctxs[i]->nr_active, 0);
2048
		hctxs[i]->numa_node = node;
2049
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2050 2051 2052 2053 2054 2055 2056 2057

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2058
	}
K
Keith Busch 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2083 2084 2085
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2086 2087
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2088
		goto err_exit;
K
Keith Busch 已提交
2089 2090 2091 2092 2093 2094

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2095
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2096 2097 2098 2099

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2100

2101
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2102
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2103 2104 2105

	q->nr_queues = nr_cpu_ids;

2106
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2107

2108 2109 2110
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2111 2112
	q->sg_reserved_size = INT_MAX;

2113
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2114 2115 2116
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2117 2118 2119 2120 2121
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2122 2123 2124 2125 2126
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2127 2128
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2129

2130
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2131

2132
	get_online_cpus();
2133 2134
	mutex_lock(&all_q_mutex);

2135
	list_add_tail(&q->all_q_node, &all_q_list);
2136
	blk_mq_add_queue_tag_set(set, q);
2137
	blk_mq_map_swqueue(q, cpu_online_mask);
2138

2139
	mutex_unlock(&all_q_mutex);
2140
	put_online_cpus();
2141

2142
	return q;
2143

2144
err_hctxs:
K
Keith Busch 已提交
2145
	kfree(q->queue_hw_ctx);
2146
err_percpu:
K
Keith Busch 已提交
2147
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2148 2149
err_exit:
	q->mq_ops = NULL;
2150 2151
	return ERR_PTR(-ENOMEM);
}
2152
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2153 2154 2155

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2156
	struct blk_mq_tag_set	*set = q->tag_set;
2157

2158 2159 2160 2161
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2162 2163
	wbt_exit(q);

2164 2165
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2166 2167
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2168 2169 2170
}

/* Basically redo blk_mq_init_queue with queue frozen */
2171 2172
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2173
{
2174
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2175

2176 2177
	blk_mq_sysfs_unregister(q);

2178 2179 2180 2181 2182 2183
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2184
	blk_mq_map_swqueue(q, online_mask);
2185

2186
	blk_mq_sysfs_register(q);
2187 2188
}

2189 2190 2191 2192 2193 2194 2195 2196
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2197 2198 2199 2200
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2201 2202 2203 2204 2205 2206 2207 2208 2209
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2210
	list_for_each_entry(q, &all_q_list, all_q_node) {
2211 2212
		blk_mq_freeze_queue_wait(q);

2213 2214 2215 2216 2217 2218 2219
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2220
	list_for_each_entry(q, &all_q_list, all_q_node)
2221
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2222 2223 2224 2225

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2226
	mutex_unlock(&all_q_mutex);
2227 2228 2229 2230
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2231
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
 * is ignored.
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2258 2259
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2314 2315 2316 2317 2318 2319
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2320 2321
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2322 2323
	int ret;

B
Bart Van Assche 已提交
2324 2325
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2326 2327
	if (!set->nr_hw_queues)
		return -EINVAL;
2328
	if (!set->queue_depth)
2329 2330 2331 2332
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2333
	if (!set->ops->queue_rq)
2334 2335
		return -EINVAL;

2336 2337 2338 2339 2340
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2341

2342 2343 2344 2345 2346 2347 2348 2349 2350
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2351 2352 2353 2354 2355
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2356

K
Keith Busch 已提交
2357
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2358 2359
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2360
		return -ENOMEM;
2361

2362 2363 2364
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2365 2366 2367
	if (!set->mq_map)
		goto out_free_tags;

2368 2369 2370 2371 2372 2373 2374 2375 2376
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2377
		goto out_free_mq_map;
2378

2379 2380 2381
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2382
	return 0;
2383 2384 2385 2386 2387

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2388 2389
	kfree(set->tags);
	set->tags = NULL;
2390
	return ret;
2391 2392 2393 2394 2395 2396 2397
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2398
	for (i = 0; i < nr_cpu_ids; i++) {
2399
		if (set->tags[i])
2400 2401 2402
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

2403 2404 2405
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2406
	kfree(set->tags);
2407
	set->tags = NULL;
2408 2409 2410
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2422 2423
		if (!hctx->tags)
			continue;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

J
Jens Axboe 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
	rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2528 2529
static int __init blk_mq_init(void)
{
2530 2531
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2532

2533 2534 2535
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2536 2537 2538
	return 0;
}
subsys_initcall(blk_mq_init);