fair.c 248.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched/mm.h>
24 25
#include <linux/sched/topology.h>

26
#include <linux/latencytop.h>
27
#include <linux/cpumask.h>
28
#include <linux/cpuidle.h>
29 30 31
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
32
#include <linux/mempolicy.h>
33
#include <linux/migrate.h>
34
#include <linux/task_work.h>
35 36 37 38

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
39

40
/*
41
 * Targeted preemption latency for CPU-bound tasks:
42
 *
43
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
44 45 46
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
47
 *
I
Ingo Molnar 已提交
48 49
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
50 51
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52
 */
53 54
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55

56 57 58 59
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
60 61 62 63 64 65
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66
 */
67
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68

69
/*
70
 * Minimal preemption granularity for CPU-bound tasks:
71
 *
72
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73
 */
74 75
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 77

/*
78
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79
 */
80
static unsigned int sched_nr_latency = 8;
81 82

/*
83
 * After fork, child runs first. If set to 0 (default) then
84
 * parent will (try to) run first.
85
 */
86
unsigned int sysctl_sched_child_runs_first __read_mostly;
87 88 89 90 91 92 93

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
94 95
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96
 */
97 98
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99

100
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101

T
Tim Chen 已提交
102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

112 113 114 115 116 117 118 119 120
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
121 122 123
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 125
#endif

126 127
/*
 * The margin used when comparing utilization with CPU capacity:
128
 * util * margin < capacity * 1024
129 130
 *
 * (default: ~20%)
131
 */
132
unsigned int capacity_margin				= 1280;
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

152 153 154 155 156 157 158 159 160
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
161
static unsigned int get_update_sysctl_factor(void)
162
{
163
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

199
#define WMULT_CONST	(~0U)
200 201
#define WMULT_SHIFT	32

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
218 219

/*
220 221 222 223
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
224
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 226 227 228 229
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
230
 */
231
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232
{
233 234
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
235

236
	__update_inv_weight(lw);
237

238 239 240 241 242
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
243 244
	}

245 246
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
247

248 249 250 251
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
252

253
	return mul_u64_u32_shr(delta_exec, fact, shift);
254 255 256 257
}


const struct sched_class fair_sched_class;
258

259 260 261 262
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

263
#ifdef CONFIG_FAIR_GROUP_SCHED
264

265
/* cpu runqueue to which this cfs_rq is attached */
266 267
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
268
	return cfs_rq->rq;
269 270
}

271 272
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
273

274 275
static inline struct task_struct *task_of(struct sched_entity *se)
{
276
	SCHED_WARN_ON(!entity_is_task(se));
277 278 279
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

301 302 303
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
304 305
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
306 307 308
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
309 310 311 312 313
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
314 315
		 */
		if (cfs_rq->tg->parent &&
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
336
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357
		}
358 359 360 361 362 363 364 365 366 367 368 369 370

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
371
/* Iterate thr' all leaf cfs_rq's on a runqueue */
372 373 374
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
375 376

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
377
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
378 379 380
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
381
		return se->cfs_rq;
P
Peter Zijlstra 已提交
382

P
Peter Zijlstra 已提交
383
	return NULL;
P
Peter Zijlstra 已提交
384 385 386 387 388 389 390
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

391 392 393 394 395 396 397 398 399 400 401 402 403
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
404 405
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

423 424 425 426 427 428
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
429

430 431 432
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
433 434 435 436
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
437 438
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
439

P
Peter Zijlstra 已提交
440
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
441
{
P
Peter Zijlstra 已提交
442
	return &task_rq(p)->cfs;
443 444
}

P
Peter Zijlstra 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

459 460 461 462 463 464 465 466
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

467 468
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
469 470 471 472 473 474

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

475 476 477 478 479
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
480 481
#endif	/* CONFIG_FAIR_GROUP_SCHED */

482
static __always_inline
483
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
484 485 486 487 488

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

489
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
490
{
491
	s64 delta = (s64)(vruntime - max_vruntime);
492
	if (delta > 0)
493
		max_vruntime = vruntime;
494

495
	return max_vruntime;
496 497
}

498
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
499 500 501 502 503 504 505 506
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

507 508 509 510 511 512
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

513 514
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
515 516
	struct sched_entity *curr = cfs_rq->curr;

517 518
	u64 vruntime = cfs_rq->min_vruntime;

519 520 521 522 523 524
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
525 526 527 528 529 530

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

531
		if (!curr)
532 533 534 535 536
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

537
	/* ensure we never gain time by being placed backwards. */
538
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
539 540 541 542
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
543 544
}

545 546 547
/*
 * Enqueue an entity into the rb-tree:
 */
548
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
565
		if (entity_before(se, entry)) {
566 567 568 569 570 571 572 573 574 575 576
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
577
	if (leftmost)
I
Ingo Molnar 已提交
578
		cfs_rq->rb_leftmost = &se->run_node;
579 580 581 582 583

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

584
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
585
{
P
Peter Zijlstra 已提交
586 587 588 589 590 591
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
592

593 594 595
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

596
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
597
{
598 599 600 601 602 603
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
604 605
}

606 607 608 609 610 611 612 613 614 615 616
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
617
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
618
{
619
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
620

621 622
	if (!last)
		return NULL;
623 624

	return rb_entry(last, struct sched_entity, run_node);
625 626
}

627 628 629 630
/**************************************************************
 * Scheduling class statistics methods:
 */

631
int sched_proc_update_handler(struct ctl_table *table, int write,
632
		void __user *buffer, size_t *lenp,
633 634
		loff_t *ppos)
{
635
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
636
	unsigned int factor = get_update_sysctl_factor();
637 638 639 640 641 642 643

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

644 645 646 647 648 649 650
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

651 652 653
	return 0;
}
#endif
654

655
/*
656
 * delta /= w
657
 */
658
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
659
{
660
	if (unlikely(se->load.weight != NICE_0_LOAD))
661
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
662 663 664 665

	return delta;
}

666 667 668
/*
 * The idea is to set a period in which each task runs once.
 *
669
 * When there are too many tasks (sched_nr_latency) we have to stretch
670 671 672 673
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
674 675
static u64 __sched_period(unsigned long nr_running)
{
676 677 678 679
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
680 681
}

682 683 684 685
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
686
 * s = p*P[w/rw]
687
 */
P
Peter Zijlstra 已提交
688
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
689
{
M
Mike Galbraith 已提交
690
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
691

M
Mike Galbraith 已提交
692
	for_each_sched_entity(se) {
L
Lin Ming 已提交
693
		struct load_weight *load;
694
		struct load_weight lw;
L
Lin Ming 已提交
695 696 697

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
698

M
Mike Galbraith 已提交
699
		if (unlikely(!se->on_rq)) {
700
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
701 702 703 704

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
705
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
706 707
	}
	return slice;
708 709
}

710
/*
A
Andrei Epure 已提交
711
 * We calculate the vruntime slice of a to-be-inserted task.
712
 *
713
 * vs = s/w
714
 */
715
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
716
{
717
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
718 719
}

720
#ifdef CONFIG_SMP
721 722 723

#include "sched-pelt.h"

724
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
725 726
static unsigned long task_h_load(struct task_struct *p);

727 728
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
729
{
730
	struct sched_avg *sa = &se->avg;
731

732 733 734 735 736 737 738
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
739 740 741 742 743 744 745 746
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
		sa->load_avg = scale_load_down(se->load.weight);
747
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
748 749 750 751 752
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
753
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
754
}
755

756
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
757
static void attach_entity_cfs_rq(struct sched_entity *se);
758

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
788
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
789 790 791 792 793 794 795 796 797 798 799 800 801

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
802 803 804 805 806 807 808

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
809
			update_cfs_rq_load_avg(now, cfs_rq);
810 811 812 813 814 815
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
816
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
817 818 819 820
			return;
		}
	}

821
	attach_entity_cfs_rq(se);
822 823
}

824
#else /* !CONFIG_SMP */
825
void init_entity_runnable_average(struct sched_entity *se)
826 827
{
}
828 829 830
void post_init_entity_util_avg(struct sched_entity *se)
{
}
831 832 833
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
834
#endif /* CONFIG_SMP */
835

836
/*
837
 * Update the current task's runtime statistics.
838
 */
839
static void update_curr(struct cfs_rq *cfs_rq)
840
{
841
	struct sched_entity *curr = cfs_rq->curr;
842
	u64 now = rq_clock_task(rq_of(cfs_rq));
843
	u64 delta_exec;
844 845 846 847

	if (unlikely(!curr))
		return;

848 849
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
850
		return;
851

I
Ingo Molnar 已提交
852
	curr->exec_start = now;
853

854 855 856 857
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
858
	schedstat_add(cfs_rq->exec_clock, delta_exec);
859 860 861 862

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

863 864 865
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

866
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
867
		cpuacct_charge(curtask, delta_exec);
868
		account_group_exec_runtime(curtask, delta_exec);
869
	}
870 871

	account_cfs_rq_runtime(cfs_rq, delta_exec);
872 873
}

874 875 876 877 878
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

879
static inline void
880
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
881
{
882 883 884 885 886 887 888
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
889 890

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
891 892
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
893

894
	schedstat_set(se->statistics.wait_start, wait_start);
895 896
}

897
static inline void
898 899 900
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
901 902
	u64 delta;

903 904 905 906
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
907 908 909 910 911 912 913 914 915

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
916
			schedstat_set(se->statistics.wait_start, delta);
917 918 919 920 921
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

922 923 924 925 926
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
927 928
}

929
static inline void
930 931 932
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
933 934 935 936 937 938 939
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
940 941 942 943

	if (entity_is_task(se))
		tsk = task_of(se);

944 945
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
946 947 948 949

		if ((s64)delta < 0)
			delta = 0;

950 951
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
952

953 954
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
955 956 957 958 959 960

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
961 962
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
963 964 965 966

		if ((s64)delta < 0)
			delta = 0;

967 968
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
969

970 971
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
972 973 974

		if (tsk) {
			if (tsk->in_iowait) {
975 976
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
995 996
}

997 998 999
/*
 * Task is being enqueued - update stats:
 */
1000
static inline void
1001
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1002
{
1003 1004 1005
	if (!schedstat_enabled())
		return;

1006 1007 1008 1009
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
1010
	if (se != cfs_rq->curr)
1011
		update_stats_wait_start(cfs_rq, se);
1012 1013 1014

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
1015 1016 1017
}

static inline void
1018
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1019
{
1020 1021 1022 1023

	if (!schedstat_enabled())
		return;

1024 1025 1026 1027
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1028
	if (se != cfs_rq->curr)
1029
		update_stats_wait_end(cfs_rq, se);
1030

1031 1032
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1033

1034 1035 1036 1037 1038 1039
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
1040 1041 1042
	}
}

1043 1044 1045 1046
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1047
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1048 1049 1050 1051
{
	/*
	 * We are starting a new run period:
	 */
1052
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1053 1054 1055 1056 1057 1058
}

/**************************************************
 * Scheduling class queueing methods:
 */

1059 1060
#ifdef CONFIG_NUMA_BALANCING
/*
1061 1062 1063
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1064
 */
1065 1066
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1067 1068 1069

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1070

1071 1072 1073
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1121
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1122 1123 1124
	unsigned int scan, floor;
	unsigned int windows = 1;

1125 1126
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1127 1128 1129 1130 1131 1132
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1152 1153
static unsigned int task_scan_max(struct task_struct *p)
{
1154 1155
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1156 1157 1158

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1174 1175 1176
	return max(smin, smax);
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1189 1190 1191 1192 1193 1194 1195 1196 1197
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1198 1199 1200 1201 1202
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1203 1204 1205 1206 1207 1208 1209
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1210
{
1211
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1212 1213 1214 1215
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1216
	if (!p->numa_faults)
1217 1218
		return 0;

1219 1220
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1221 1222
}

1223 1224 1225 1226 1227
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1228 1229
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1230 1231
}

1232 1233
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1234 1235
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1236 1237
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1339 1340 1341 1342 1343 1344
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1345 1346
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1347
{
1348
	unsigned long faults, total_faults;
1349

1350
	if (!p->numa_faults)
1351 1352 1353 1354 1355 1356 1357
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1358
	faults = task_faults(p, nid);
1359 1360
	faults += score_nearby_nodes(p, nid, dist, true);

1361
	return 1000 * faults / total_faults;
1362 1363
}

1364 1365
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1366
{
1367 1368 1369 1370 1371 1372 1373 1374
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1375 1376
		return 0;

1377
	faults = group_faults(p, nid);
1378 1379
	faults += score_nearby_nodes(p, nid, dist, false);

1380
	return 1000 * faults / total_faults;
1381 1382
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1423 1424
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1425
	 */
1426 1427
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1428 1429 1430
		return true;

	/*
1431 1432 1433 1434 1435 1436
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1437
	 */
1438 1439
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1440 1441
}

1442
static unsigned long weighted_cpuload(struct rq *rq);
1443 1444
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1445
static unsigned long capacity_of(int cpu);
1446

1447
/* Cached statistics for all CPUs within a node */
1448
struct numa_stats {
1449
	unsigned long nr_running;
1450
	unsigned long load;
1451 1452

	/* Total compute capacity of CPUs on a node */
1453
	unsigned long compute_capacity;
1454 1455

	/* Approximate capacity in terms of runnable tasks on a node */
1456
	unsigned long task_capacity;
1457
	int has_free_capacity;
1458
};
1459

1460 1461 1462 1463 1464
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1465 1466
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1467 1468 1469 1470 1471 1472

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1473
		ns->load += weighted_cpuload(rq);
1474
		ns->compute_capacity += capacity_of(cpu);
1475 1476

		cpus++;
1477 1478
	}

1479 1480 1481 1482 1483
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1484 1485
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1486 1487 1488 1489
	 */
	if (!cpus)
		return;

1490 1491 1492 1493 1494 1495
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1496
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1497 1498
}

1499 1500
struct task_numa_env {
	struct task_struct *p;
1501

1502 1503
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1504

1505
	struct numa_stats src_stats, dst_stats;
1506

1507
	int imbalance_pct;
1508
	int dist;
1509 1510 1511

	struct task_struct *best_task;
	long best_imp;
1512 1513 1514
	int best_cpu;
};

1515 1516 1517 1518 1519
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1520 1521
	if (p)
		get_task_struct(p);
1522 1523 1524 1525 1526 1527

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1528
static bool load_too_imbalanced(long src_load, long dst_load,
1529 1530
				struct task_numa_env *env)
{
1531 1532
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1544 1545

	/* We care about the slope of the imbalance, not the direction. */
1546 1547
	if (dst_load < src_load)
		swap(dst_load, src_load);
1548 1549

	/* Is the difference below the threshold? */
1550 1551
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1552 1553 1554 1555 1556
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1557
	 * Compare it with the old imbalance.
1558
	 */
1559
	orig_src_load = env->src_stats.load;
1560
	orig_dst_load = env->dst_stats.load;
1561

1562 1563
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1564

1565 1566 1567 1568 1569
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1570 1571
}

1572 1573 1574 1575 1576 1577
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1578 1579
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1580 1581 1582 1583
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1584
	long src_load, dst_load;
1585
	long load;
1586
	long imp = env->p->numa_group ? groupimp : taskimp;
1587
	long moveimp = imp;
1588
	int dist = env->dist;
1589 1590

	rcu_read_lock();
1591 1592
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1593 1594
		cur = NULL;

1595 1596 1597 1598 1599 1600 1601
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1602 1603 1604 1605 1606 1607 1608 1609 1610
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
1611
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1612 1613
			goto unlock;

1614 1615
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1616
		 * in any group then look only at task weights.
1617
		 */
1618
		if (cur->numa_group == env->p->numa_group) {
1619 1620
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1621 1622 1623 1624 1625 1626
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1627
		} else {
1628 1629 1630 1631 1632 1633
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1634 1635
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1636
			else
1637 1638
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1639
		}
1640 1641
	}

1642
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1643 1644 1645 1646
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1647
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1648
		    !env->dst_stats.has_free_capacity)
1649 1650 1651 1652 1653 1654
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1655 1656
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1657 1658 1659 1660 1661 1662
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1663 1664 1665
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1684
	if (cur) {
1685 1686 1687
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1688 1689
	}

1690
	if (load_too_imbalanced(src_load, dst_load, env))
1691 1692
		goto unlock;

1693 1694 1695 1696
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1697 1698 1699 1700 1701 1702
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1703 1704
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1705 1706
		local_irq_enable();
	}
1707

1708 1709 1710 1711 1712 1713
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1714 1715
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1716 1717 1718 1719 1720
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1721
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1722 1723 1724
			continue;

		env->dst_cpu = cpu;
1725
		task_numa_compare(env, taskimp, groupimp);
1726 1727 1728
	}
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1746 1747 1748
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1749 1750 1751 1752 1753
		return true;

	return false;
}

1754 1755 1756 1757
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1758

1759
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1760
		.src_nid = task_node(p),
1761 1762 1763 1764 1765

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1766
		.best_cpu = -1,
1767 1768
	};
	struct sched_domain *sd;
1769
	unsigned long taskweight, groupweight;
1770
	int nid, ret, dist;
1771
	long taskimp, groupimp;
1772

1773
	/*
1774 1775 1776 1777 1778 1779
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1780 1781
	 */
	rcu_read_lock();
1782
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1783 1784
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1785 1786
	rcu_read_unlock();

1787 1788 1789 1790 1791 1792 1793
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1794
		p->numa_preferred_nid = task_node(p);
1795 1796 1797
		return -EINVAL;
	}

1798
	env.dst_nid = p->numa_preferred_nid;
1799 1800 1801 1802 1803 1804
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1805
	update_numa_stats(&env.dst_stats, env.dst_nid);
1806

1807
	/* Try to find a spot on the preferred nid. */
1808 1809
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1810

1811 1812 1813 1814 1815 1816 1817
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1818
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1819 1820 1821
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1822

1823
			dist = node_distance(env.src_nid, env.dst_nid);
1824 1825 1826 1827 1828
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1829

1830
			/* Only consider nodes where both task and groups benefit */
1831 1832
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1833
			if (taskimp < 0 && groupimp < 0)
1834 1835
				continue;

1836
			env.dist = dist;
1837 1838
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1839 1840
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1841 1842 1843
		}
	}

1844 1845 1846 1847 1848 1849 1850 1851
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1852
	if (p->numa_group) {
1853 1854
		struct numa_group *ng = p->numa_group;

1855 1856 1857 1858 1859
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1860
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1861 1862 1863 1864 1865 1866
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1867

1868 1869 1870 1871
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
1872
	p->numa_scan_period = task_scan_start(p);
1873

1874
	if (env.best_task == NULL) {
1875 1876 1877
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1878 1879 1880 1881
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1882 1883
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1884 1885
	put_task_struct(env.best_task);
	return ret;
1886 1887
}

1888 1889 1890
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1891 1892
	unsigned long interval = HZ;

1893
	/* This task has no NUMA fault statistics yet */
1894
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1895 1896
		return;

1897
	/* Periodically retry migrating the task to the preferred node */
1898 1899
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1900 1901

	/* Success if task is already running on preferred CPU */
1902
	if (task_node(p) == p->numa_preferred_nid)
1903 1904 1905
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1906
	task_numa_migrate(p);
1907 1908
}

1909
/*
1910
 * Find out how many nodes on the workload is actively running on. Do this by
1911 1912 1913 1914
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1915
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1916 1917
{
	unsigned long faults, max_faults = 0;
1918
	int nid, active_nodes = 0;
1919 1920 1921 1922 1923 1924 1925 1926 1927

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1928 1929
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1930
	}
1931 1932 1933

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1934 1935
}

1936 1937 1938
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1939 1940 1941
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1942 1943
 */
#define NUMA_PERIOD_SLOTS 10
1944
#define NUMA_PERIOD_THRESHOLD 7
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1956
	int lr_ratio, ps_ratio;
1957 1958 1959 1960 1961 1962 1963 1964
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1965 1966 1967
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1968
	 */
1969
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2005 2006 2007 2008 2009
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
2010 2011 2012
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
2013
		 */
2014 2015
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2016 2017 2018 2019 2020 2021 2022
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
2041 2042
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
2043 2044 2045 2046 2047 2048 2049 2050
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2098
		nodemask_t max_group = NODE_MASK_NONE;
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2132 2133
		if (!max_faults)
			break;
2134 2135 2136 2137 2138
		nodes = max_group;
	}
	return nid;
}

2139 2140
static void task_numa_placement(struct task_struct *p)
{
2141 2142
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2143
	unsigned long fault_types[2] = { 0, 0 };
2144 2145
	unsigned long total_faults;
	u64 runtime, period;
2146
	spinlock_t *group_lock = NULL;
2147

2148 2149 2150 2151 2152
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2153
	seq = READ_ONCE(p->mm->numa_scan_seq);
2154 2155 2156
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2157
	p->numa_scan_period_max = task_scan_max(p);
2158

2159 2160 2161 2162
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2163 2164 2165
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2166
		spin_lock_irq(group_lock);
2167 2168
	}

2169 2170
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2171 2172
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2173
		unsigned long faults = 0, group_faults = 0;
2174
		int priv;
2175

2176
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2177
			long diff, f_diff, f_weight;
2178

2179 2180 2181 2182
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2183

2184
			/* Decay existing window, copy faults since last scan */
2185 2186 2187
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2188

2189 2190 2191 2192 2193 2194 2195 2196
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2197
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2198
				   (total_faults + 1);
2199 2200
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2201

2202 2203 2204
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2205
			p->total_numa_faults += diff;
2206
			if (p->numa_group) {
2207 2208 2209 2210 2211 2212 2213 2214 2215
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2216
				p->numa_group->total_faults += diff;
2217
				group_faults += p->numa_group->faults[mem_idx];
2218
			}
2219 2220
		}

2221 2222 2223 2224
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2225 2226 2227 2228 2229 2230 2231

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2232 2233
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2234
	if (p->numa_group) {
2235
		numa_group_count_active_nodes(p->numa_group);
2236
		spin_unlock_irq(group_lock);
2237
		max_nid = preferred_group_nid(p, max_group_nid);
2238 2239
	}

2240 2241 2242 2243 2244 2245 2246
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2247
	}
2248 2249
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2261 2262
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2263 2264 2265 2266 2267 2268 2269 2270 2271
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2272
				    4*nr_node_ids*sizeof(unsigned long);
2273 2274 2275 2276 2277 2278

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2279 2280
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2281
		spin_lock_init(&grp->lock);
2282
		grp->gid = p->pid;
2283
		/* Second half of the array tracks nids where faults happen */
2284 2285
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2286

2287
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2288
			grp->faults[i] = p->numa_faults[i];
2289

2290
		grp->total_faults = p->total_numa_faults;
2291

2292 2293 2294 2295 2296
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2297
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2298 2299

	if (!cpupid_match_pid(tsk, cpupid))
2300
		goto no_join;
2301 2302 2303

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2304
		goto no_join;
2305 2306 2307

	my_grp = p->numa_group;
	if (grp == my_grp)
2308
		goto no_join;
2309 2310 2311 2312 2313 2314

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2315
		goto no_join;
2316 2317 2318 2319 2320

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2321
		goto no_join;
2322

2323 2324 2325 2326 2327 2328 2329
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2330

2331 2332 2333
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2334
	if (join && !get_numa_group(grp))
2335
		goto no_join;
2336 2337 2338 2339 2340 2341

	rcu_read_unlock();

	if (!join)
		return;

2342 2343
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2344

2345
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2346 2347
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2348
	}
2349 2350
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2351 2352 2353 2354 2355

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2356
	spin_unlock_irq(&grp->lock);
2357 2358 2359 2360

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2361 2362 2363 2364 2365
	return;

no_join:
	rcu_read_unlock();
	return;
2366 2367 2368 2369 2370
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2371
	void *numa_faults = p->numa_faults;
2372 2373
	unsigned long flags;
	int i;
2374 2375

	if (grp) {
2376
		spin_lock_irqsave(&grp->lock, flags);
2377
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2378
			grp->faults[i] -= p->numa_faults[i];
2379
		grp->total_faults -= p->total_numa_faults;
2380

2381
		grp->nr_tasks--;
2382
		spin_unlock_irqrestore(&grp->lock, flags);
2383
		RCU_INIT_POINTER(p->numa_group, NULL);
2384 2385 2386
		put_numa_group(grp);
	}

2387
	p->numa_faults = NULL;
2388
	kfree(numa_faults);
2389 2390
}

2391 2392 2393
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2394
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2395 2396
{
	struct task_struct *p = current;
2397
	bool migrated = flags & TNF_MIGRATED;
2398
	int cpu_node = task_node(current);
2399
	int local = !!(flags & TNF_FAULT_LOCAL);
2400
	struct numa_group *ng;
2401
	int priv;
2402

2403
	if (!static_branch_likely(&sched_numa_balancing))
2404 2405
		return;

2406 2407 2408 2409
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2410
	/* Allocate buffer to track faults on a per-node basis */
2411 2412
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2413
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2414

2415 2416
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2417
			return;
2418

2419
		p->total_numa_faults = 0;
2420
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2421
	}
2422

2423 2424 2425 2426 2427 2428 2429 2430
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2431
		if (!priv && !(flags & TNF_NO_GROUP))
2432
			task_numa_group(p, last_cpupid, flags, &priv);
2433 2434
	}

2435 2436 2437 2438 2439 2440
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2441 2442 2443 2444
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2445 2446
		local = 1;

2447
	task_numa_placement(p);
2448

2449 2450 2451 2452 2453
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2454 2455
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2456 2457
	if (migrated)
		p->numa_pages_migrated += pages;
2458 2459
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2460

2461 2462
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2463
	p->numa_faults_locality[local] += pages;
2464 2465
}

2466 2467
static void reset_ptenuma_scan(struct task_struct *p)
{
2468 2469 2470 2471 2472 2473 2474 2475
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2476
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2477 2478 2479
	p->mm->numa_scan_offset = 0;
}

2480 2481 2482 2483 2484 2485 2486 2487 2488
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2489
	u64 runtime = p->se.sum_exec_runtime;
2490
	struct vm_area_struct *vma;
2491
	unsigned long start, end;
2492
	unsigned long nr_pte_updates = 0;
2493
	long pages, virtpages;
2494

2495
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2509
	if (!mm->numa_next_scan) {
2510 2511
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2512 2513
	}

2514 2515 2516 2517 2518 2519 2520
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2521 2522
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2523
		p->numa_scan_period = task_scan_start(p);
2524
	}
2525

2526
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2527 2528 2529
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2530 2531 2532 2533 2534 2535
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2536 2537 2538
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2539
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2540 2541
	if (!pages)
		return;
2542

2543

2544 2545
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2546
	vma = find_vma(mm, start);
2547 2548
	if (!vma) {
		reset_ptenuma_scan(p);
2549
		start = 0;
2550 2551
		vma = mm->mmap;
	}
2552
	for (; vma; vma = vma->vm_next) {
2553
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2554
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2555
			continue;
2556
		}
2557

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2568 2569 2570 2571 2572 2573
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2574

2575 2576 2577 2578
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2579
			nr_pte_updates = change_prot_numa(vma, start, end);
2580 2581

			/*
2582 2583 2584 2585 2586 2587
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2588 2589 2590
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2591
			virtpages -= (end - start) >> PAGE_SHIFT;
2592

2593
			start = end;
2594
			if (pages <= 0 || virtpages <= 0)
2595
				goto out;
2596 2597

			cond_resched();
2598
		} while (end != vma->vm_end);
2599
	}
2600

2601
out:
2602
	/*
P
Peter Zijlstra 已提交
2603 2604 2605 2606
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2607 2608
	 */
	if (vma)
2609
		mm->numa_scan_offset = start;
2610 2611 2612
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2649
	if (now > curr->node_stamp + period) {
2650
		if (!curr->node_stamp)
2651
			curr->numa_scan_period = task_scan_start(curr);
2652
		curr->node_stamp += period;
2653 2654 2655 2656 2657 2658 2659

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713

/*
 * Can a task be moved from prev_cpu to this_cpu without causing a load
 * imbalance that would trigger the load balancer?
 */
static inline bool numa_wake_affine(struct sched_domain *sd,
				    struct task_struct *p, int this_cpu,
				    int prev_cpu, int sync)
{
	struct numa_stats prev_load, this_load;
	s64 this_eff_load, prev_eff_load;

	update_numa_stats(&prev_load, cpu_to_node(prev_cpu));
	update_numa_stats(&this_load, cpu_to_node(this_cpu));

	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync) {
		unsigned long current_load = task_h_load(current);

		if (this_load.load > current_load)
			this_load.load -= current_load;
		else
			this_load.load = 0;
	}

	/*
	 * In low-load situations, where this_cpu's node is idle due to the
	 * sync cause above having dropped this_load.load to 0, move the task.
	 * Moving to an idle socket will not create a bad imbalance.
	 *
	 * Otherwise check if the nodes are near enough in load to allow this
	 * task to be woken on this_cpu's node.
	 */
	if (this_load.load > 0) {
		unsigned long task_load = task_h_load(p);

		this_eff_load = 100;
		this_eff_load *= prev_load.compute_capacity;

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= this_load.compute_capacity;

		this_eff_load *= this_load.load + task_load;
		prev_eff_load *= prev_load.load - task_load;

		return this_eff_load <= prev_eff_load;
	}

	return true;
}
2714 2715 2716 2717
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2718 2719 2720 2721 2722 2723 2724 2725

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2726

2727
#ifdef CONFIG_SMP
2728 2729 2730 2731 2732 2733
static inline bool numa_wake_affine(struct sched_domain *sd,
				    struct task_struct *p, int this_cpu,
				    int prev_cpu, int sync)
{
	return true;
}
2734
#endif /* !SMP */
2735 2736
#endif /* CONFIG_NUMA_BALANCING */

2737 2738 2739 2740
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2741
	if (!parent_entity(se))
2742
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2743
#ifdef CONFIG_SMP
2744 2745 2746 2747 2748 2749
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2750
#endif
2751 2752 2753 2754 2755 2756 2757
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2758
	if (!parent_entity(se))
2759
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2760
#ifdef CONFIG_SMP
2761 2762
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2763
		list_del_init(&se->group_node);
2764
	}
2765
#endif
2766 2767 2768
	cfs_rq->nr_running--;
}

2769 2770
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2771
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2772
{
2773
	long tg_weight, load, shares;
2774 2775

	/*
2776 2777 2778
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2779
	 */
2780
	load = scale_load_down(cfs_rq->load.weight);
2781

2782
	tg_weight = atomic_long_read(&tg->load_avg);
2783

2784 2785 2786
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2787 2788

	shares = (tg->shares * load);
2789 2790
	if (tg_weight)
		shares /= tg_weight;
2791

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2804 2805 2806 2807 2808 2809 2810 2811
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2812
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2813 2814 2815 2816
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2817

P
Peter Zijlstra 已提交
2818 2819 2820
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2821 2822 2823 2824
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2825
		account_entity_dequeue(cfs_rq, se);
2826
	}
P
Peter Zijlstra 已提交
2827 2828 2829 2830 2831 2832 2833

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2834 2835
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2836
static void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2837
{
2838
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
P
Peter Zijlstra 已提交
2839
	struct task_group *tg;
2840
	long shares;
P
Peter Zijlstra 已提交
2841

2842 2843 2844 2845
	if (!cfs_rq)
		return;

	if (throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2846
		return;
2847 2848 2849

	tg = cfs_rq->tg;

2850 2851 2852 2853
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2854
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2855 2856 2857

	reweight_entity(cfs_rq_of(se), se, shares);
}
2858

P
Peter Zijlstra 已提交
2859
#else /* CONFIG_FAIR_GROUP_SCHED */
2860
static inline void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2861 2862 2863 2864
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
	if (&this_rq()->cfs == cfs_rq) {
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
		cpufreq_update_util(rq_of(cfs_rq), 0);
	}
}

2888
#ifdef CONFIG_SMP
2889 2890 2891 2892
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
2893
static u64 decay_load(u64 val, u64 n)
2894
{
2895 2896
	unsigned int local_n;

2897
	if (unlikely(n > LOAD_AVG_PERIOD * 63))
2898 2899 2900 2901 2902 2903 2904
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2905 2906
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2907 2908 2909 2910 2911 2912
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2913 2914
	}

2915 2916
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2917 2918
}

2919
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2920
{
2921
	u32 c1, c2, c3 = d3; /* y^0 == 1 */
2922

2923
	/*
P
Peter Zijlstra 已提交
2924
	 * c1 = d1 y^p
2925
	 */
2926
	c1 = decay_load((u64)d1, periods);
2927 2928

	/*
P
Peter Zijlstra 已提交
2929
	 *            p-1
2930 2931
	 * c2 = 1024 \Sum y^n
	 *            n=1
2932
	 *
2933 2934
	 *              inf        inf
	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
P
Peter Zijlstra 已提交
2935
	 *              n=0        n=p
2936
	 */
2937
	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2938 2939

	return c1 + c2 + c3;
2940 2941
}

2942
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2943

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
/*
 * Accumulate the three separate parts of the sum; d1 the remainder
 * of the last (incomplete) period, d2 the span of full periods and d3
 * the remainder of the (incomplete) current period.
 *
 *           d1          d2           d3
 *           ^           ^            ^
 *           |           |            |
 *         |<->|<----------------->|<--->|
 * ... |---x---|------| ... |------|-----x (now)
 *
P
Peter Zijlstra 已提交
2955 2956 2957
 *                           p-1
 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
 *                           n=1
2958
 *
P
Peter Zijlstra 已提交
2959
 *    = u y^p +					(Step 1)
2960
 *
P
Peter Zijlstra 已提交
2961 2962 2963
 *                     p-1
 *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
 *                     n=1
2964 2965 2966 2967 2968 2969
 */
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
	       unsigned long weight, int running, struct cfs_rq *cfs_rq)
{
	unsigned long scale_freq, scale_cpu;
2970
	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	u64 periods;

	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

	delta += sa->period_contrib;
	periods = delta / 1024; /* A period is 1024us (~1ms) */

	/*
	 * Step 1: decay old *_sum if we crossed period boundaries.
	 */
	if (periods) {
		sa->load_sum = decay_load(sa->load_sum, periods);
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods);
		}
		sa->util_sum = decay_load((u64)(sa->util_sum), periods);

2990 2991 2992 2993 2994 2995 2996
		/*
		 * Step 2
		 */
		delta %= 1024;
		contrib = __accumulate_pelt_segments(periods,
				1024 - sa->period_contrib, delta);
	}
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
	sa->period_contrib = delta;

	contrib = cap_scale(contrib, scale_freq);
	if (weight) {
		sa->load_sum += weight * contrib;
		if (cfs_rq)
			cfs_rq->runnable_load_sum += weight * contrib;
	}
	if (running)
		sa->util_sum += contrib * scale_cpu;

	return periods;
}

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
3039
static __always_inline int
3040
___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
3041
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
3042
{
3043
	u64 delta;
3044

3045
	delta = now - sa->last_update_time;
3046 3047 3048 3049 3050
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
3051
		sa->last_update_time = now;
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
3062 3063

	sa->last_update_time += delta << 10;
3064

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
	/*
	 * running is a subset of runnable (weight) so running can't be set if
	 * runnable is clear. But there are some corner cases where the current
	 * se has been already dequeued but cfs_rq->curr still points to it.
	 * This means that weight will be 0 but not running for a sched_entity
	 * but also for a cfs_rq if the latter becomes idle. As an example,
	 * this happens during idle_balance() which calls
	 * update_blocked_averages()
	 */
	if (!weight)
		running = 0;

3077 3078 3079 3080 3081 3082 3083 3084 3085
	/*
	 * Now we know we crossed measurement unit boundaries. The *_avg
	 * accrues by two steps:
	 *
	 * Step 1: accumulate *_sum since last_update_time. If we haven't
	 * crossed period boundaries, finish.
	 */
	if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
		return 0;
3086

3087 3088 3089
	/*
	 * Step 2: update *_avg.
	 */
3090
	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3091 3092
	if (cfs_rq) {
		cfs_rq->runnable_load_avg =
3093
			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3094
	}
3095
	sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
3096

3097
	return 1;
3098 3099
}

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
}

static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return ___update_load_avg(now, cpu, &se->avg,
				  se->on_rq * scale_load_down(se->load.weight),
				  cfs_rq->curr == se, NULL);
}

static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
	return ___update_load_avg(now, cpu, &cfs_rq->avg,
			scale_load_down(cfs_rq->load.weight),
			cfs_rq->curr != NULL, cfs_rq);
}

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

3142
#ifdef CONFIG_FAIR_GROUP_SCHED
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3156
 * Updating tg's load_avg is necessary before update_cfs_share().
3157
 */
3158
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3159
{
3160
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3161

3162 3163 3164 3165 3166 3167
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3168 3169 3170
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3171
	}
3172
}
3173

3174 3175 3176 3177 3178 3179 3180 3181
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3182 3183 3184
	u64 p_last_update_time;
	u64 n_last_update_time;

3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3195 3196
	if (!(se->avg.last_update_time && prev))
		return;
3197 3198

#ifndef CONFIG_64BIT
3199
	{
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3214
	}
3215
#else
3216 3217
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3218
#endif
3219 3220
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3221
}
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342

/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta, load = gcfs_rq->avg.load_avg;

	/*
	 * If the load of group cfs_rq is null, the load of the
	 * sched_entity will also be null so we can skip the formula
	 */
	if (load) {
		long tg_load;

		/* Get tg's load and ensure tg_load > 0 */
		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;

		/* Ensure tg_load >= load and updated with current load*/
		tg_load -= gcfs_rq->tg_load_avg_contrib;
		tg_load += load;

		/*
		 * We need to compute a correction term in the case that the
		 * task group is consuming more CPU than a task of equal
		 * weight. A task with a weight equals to tg->shares will have
		 * a load less or equal to scale_load_down(tg->shares).
		 * Similarly, the sched_entities that represent the task group
		 * at parent level, can't have a load higher than
		 * scale_load_down(tg->shares). And the Sum of sched_entities'
		 * load must be <= scale_load_down(tg->shares).
		 */
		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
			/* scale gcfs_rq's load into tg's shares*/
			load *= scale_load_down(gcfs_rq->tg->shares);
			load /= tg_load;
		}
	}

	delta = load - se->avg.load_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's load */
	se->avg.load_avg = load;
	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq load */
	add_positive(&cfs_rq->avg.load_avg, delta);
	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;

	/*
	 * If the sched_entity is already enqueued, we also have to update the
	 * runnable load avg.
	 */
	if (se->on_rq) {
		/* Update parent cfs_rq runnable_load_avg */
		add_positive(&cfs_rq->runnable_load_avg, delta);
		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
	}
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
	cfs_rq->propagate_avg = 1;
}

static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);

	if (!cfs_rq->propagate_avg)
		return 0;

	cfs_rq->propagate_avg = 0;
	return 1;
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	if (entity_is_task(se))
		return 0;

	if (!test_and_clear_tg_cfs_propagate(se))
		return 0;

	cfs_rq = cfs_rq_of(se);

	set_tg_cfs_propagate(cfs_rq);

	update_tg_cfs_util(cfs_rq, se);
	update_tg_cfs_load(cfs_rq, se);

	return 1;
}

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
	if (gcfs_rq->propagate_avg)
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3373
#else /* CONFIG_FAIR_GROUP_SCHED */
3374

3375
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3376 3377 3378 3379 3380 3381 3382 3383

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}

3384
#endif /* CONFIG_FAIR_GROUP_SCHED */
3385

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3414 3415 3416 3417
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3418
 */
3419
static inline int
3420
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3421
{
3422
	struct sched_avg *sa = &cfs_rq->avg;
3423
	int decayed, removed_load = 0, removed_util = 0;
3424

3425
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3426
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3427 3428
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3429
		removed_load = 1;
3430
		set_tg_cfs_propagate(cfs_rq);
3431
	}
3432

3433 3434
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3435 3436
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3437
		removed_util = 1;
3438
		set_tg_cfs_propagate(cfs_rq);
3439
	}
3440

3441
	decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3442

3443 3444 3445 3446
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3447

3448
	if (decayed || removed_util)
3449
		cfs_rq_util_change(cfs_rq);
3450

3451
	return decayed || removed_load;
3452 3453
}

3454 3455 3456 3457 3458 3459
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2

3460
/* Update task and its cfs_rq load average */
3461
static inline void update_load_avg(struct sched_entity *se, int flags)
3462 3463 3464 3465 3466
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
3467
	int decayed;
3468 3469 3470 3471 3472

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
3473 3474
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);
3475

3476
	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3477 3478 3479
	decayed |= propagate_entity_load_avg(se);

	if (decayed && (flags & UPDATE_TG))
3480
		update_tg_load_avg(cfs_rq, 0);
3481 3482
}

3483 3484 3485 3486 3487 3488 3489 3490
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3491 3492 3493 3494 3495 3496 3497
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3498
	set_tg_cfs_propagate(cfs_rq);
3499 3500

	cfs_rq_util_change(cfs_rq);
3501 3502
}

3503 3504 3505 3506 3507 3508 3509 3510
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3511 3512 3513
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

3514 3515 3516 3517
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3518
	set_tg_cfs_propagate(cfs_rq);
3519 3520

	cfs_rq_util_change(cfs_rq);
3521 3522
}

3523 3524 3525
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3526
{
3527
	struct sched_avg *sa = &se->avg;
3528

3529 3530 3531
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3532
	if (!sa->last_update_time) {
3533
		attach_entity_load_avg(cfs_rq, se);
3534
		update_tg_load_avg(cfs_rq, 0);
3535
	}
3536 3537
}

3538 3539 3540 3541 3542 3543 3544
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3545
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3546 3547
}

3548
#ifndef CONFIG_64BIT
3549 3550
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3551
	u64 last_update_time_copy;
3552
	u64 last_update_time;
3553

3554 3555 3556 3557 3558
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3559 3560 3561

	return last_update_time;
}
3562
#else
3563 3564 3565 3566
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3567 3568
#endif

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3579
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3580 3581
}

3582 3583 3584 3585 3586 3587 3588 3589 3590
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
3591 3592 3593 3594 3595 3596 3597
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3598 3599
	 */

3600
	sync_entity_load_avg(se);
3601 3602
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3603
}
3604

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3615
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3616

3617 3618
#else /* CONFIG_SMP */

3619
static inline int
3620
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3621 3622 3623 3624
{
	return 0;
}

3625 3626 3627 3628
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0

static inline void update_load_avg(struct sched_entity *se, int not_used1)
3629
{
3630
	cfs_rq_util_change(cfs_rq_of(se));
3631 3632
}

3633 3634
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3635 3636
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3637
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3638

3639 3640 3641 3642 3643
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3644
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3645 3646 3647 3648
{
	return 0;
}

3649
#endif /* CONFIG_SMP */
3650

P
Peter Zijlstra 已提交
3651 3652 3653 3654 3655 3656 3657 3658 3659
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3660
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3661 3662 3663
#endif
}

3664 3665 3666
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3667
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3668

3669 3670 3671 3672 3673 3674
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3675
	if (initial && sched_feat(START_DEBIT))
3676
		vruntime += sched_vslice(cfs_rq, se);
3677

3678
	/* sleeps up to a single latency don't count. */
3679
	if (!initial) {
3680
		unsigned long thresh = sysctl_sched_latency;
3681

3682 3683 3684 3685 3686 3687
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3688

3689
		vruntime -= thresh;
3690 3691
	}

3692
	/* ensure we never gain time by being placed backwards. */
3693
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3694 3695
}

3696 3697
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3710
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3711
			     "stat_blocked and stat_runtime require the "
3712
			     "kernel parameter schedstats=enable or "
3713 3714 3715 3716 3717
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3737
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3749
static void
3750
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3751
{
3752 3753 3754
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3755
	/*
3756 3757
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3758
	 */
3759
	if (renorm && curr)
3760 3761
		se->vruntime += cfs_rq->min_vruntime;

3762 3763
	update_curr(cfs_rq);

3764
	/*
3765 3766 3767 3768
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3769
	 */
3770 3771 3772
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3773 3774 3775 3776 3777 3778 3779 3780
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3781
	update_load_avg(se, UPDATE_TG);
3782
	enqueue_entity_load_avg(cfs_rq, se);
3783
	update_cfs_shares(se);
3784
	account_entity_enqueue(cfs_rq, se);
3785

3786
	if (flags & ENQUEUE_WAKEUP)
3787
		place_entity(cfs_rq, se, 0);
3788

3789
	check_schedstat_required();
3790 3791
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3792
	if (!curr)
3793
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3794
	se->on_rq = 1;
3795

3796
	if (cfs_rq->nr_running == 1) {
3797
		list_add_leaf_cfs_rq(cfs_rq);
3798 3799
		check_enqueue_throttle(cfs_rq);
	}
3800 3801
}

3802
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3803
{
3804 3805
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3806
		if (cfs_rq->last != se)
3807
			break;
3808 3809

		cfs_rq->last = NULL;
3810 3811
	}
}
P
Peter Zijlstra 已提交
3812

3813 3814 3815 3816
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3817
		if (cfs_rq->next != se)
3818
			break;
3819 3820

		cfs_rq->next = NULL;
3821
	}
P
Peter Zijlstra 已提交
3822 3823
}

3824 3825 3826 3827
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3828
		if (cfs_rq->skip != se)
3829
			break;
3830 3831

		cfs_rq->skip = NULL;
3832 3833 3834
	}
}

P
Peter Zijlstra 已提交
3835 3836
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3837 3838 3839 3840 3841
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3842 3843 3844

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3845 3846
}

3847
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3848

3849
static void
3850
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3851
{
3852 3853 3854 3855
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3856 3857 3858 3859 3860 3861 3862 3863 3864

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3865
	update_load_avg(se, UPDATE_TG);
3866
	dequeue_entity_load_avg(cfs_rq, se);
3867

3868
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3869

P
Peter Zijlstra 已提交
3870
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3871

3872
	if (se != cfs_rq->curr)
3873
		__dequeue_entity(cfs_rq, se);
3874
	se->on_rq = 0;
3875
	account_entity_dequeue(cfs_rq, se);
3876 3877

	/*
3878 3879 3880 3881
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3882
	 */
3883
	if (!(flags & DEQUEUE_SLEEP))
3884
		se->vruntime -= cfs_rq->min_vruntime;
3885

3886 3887 3888
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3889
	update_cfs_shares(se);
3890 3891 3892 3893 3894 3895 3896 3897 3898

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3899 3900 3901 3902 3903
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3904
static void
I
Ingo Molnar 已提交
3905
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3906
{
3907
	unsigned long ideal_runtime, delta_exec;
3908 3909
	struct sched_entity *se;
	s64 delta;
3910

P
Peter Zijlstra 已提交
3911
	ideal_runtime = sched_slice(cfs_rq, curr);
3912
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3913
	if (delta_exec > ideal_runtime) {
3914
		resched_curr(rq_of(cfs_rq));
3915 3916 3917 3918 3919
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3931 3932
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3933

3934 3935
	if (delta < 0)
		return;
3936

3937
	if (delta > ideal_runtime)
3938
		resched_curr(rq_of(cfs_rq));
3939 3940
}

3941
static void
3942
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3943
{
3944 3945 3946 3947 3948 3949 3950
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3951
		update_stats_wait_end(cfs_rq, se);
3952
		__dequeue_entity(cfs_rq, se);
3953
		update_load_avg(se, UPDATE_TG);
3954 3955
	}

3956
	update_stats_curr_start(cfs_rq, se);
3957
	cfs_rq->curr = se;
3958

I
Ingo Molnar 已提交
3959 3960 3961 3962 3963
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3964
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3965 3966 3967
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
3968
	}
3969

3970
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3971 3972
}

3973 3974 3975
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3976 3977 3978 3979 3980 3981 3982
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3983 3984
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3985
{
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3997

3998 3999 4000 4001 4002
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4013 4014 4015
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4016

4017 4018 4019 4020 4021 4022
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4023 4024 4025 4026 4027 4028
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4029
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4030 4031

	return se;
4032 4033
}

4034
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4035

4036
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4037 4038 4039 4040 4041 4042
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4043
		update_curr(cfs_rq);
4044

4045 4046 4047
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4048
	check_spread(cfs_rq, prev);
4049

4050
	if (prev->on_rq) {
4051
		update_stats_wait_start(cfs_rq, prev);
4052 4053
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4054
		/* in !on_rq case, update occurred at dequeue */
4055
		update_load_avg(prev, 0);
4056
	}
4057
	cfs_rq->curr = NULL;
4058 4059
}

P
Peter Zijlstra 已提交
4060 4061
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4062 4063
{
	/*
4064
	 * Update run-time statistics of the 'current'.
4065
	 */
4066
	update_curr(cfs_rq);
4067

4068 4069 4070
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4071
	update_load_avg(curr, UPDATE_TG);
4072
	update_cfs_shares(curr);
4073

P
Peter Zijlstra 已提交
4074 4075 4076 4077 4078
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4079
	if (queued) {
4080
		resched_curr(rq_of(cfs_rq));
4081 4082
		return;
	}
P
Peter Zijlstra 已提交
4083 4084 4085 4086 4087 4088 4089 4090
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4091
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4092
		check_preempt_tick(cfs_rq, curr);
4093 4094
}

4095 4096 4097 4098 4099 4100

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4101 4102

#ifdef HAVE_JUMP_LABEL
4103
static struct static_key __cfs_bandwidth_used;
4104 4105 4106

static inline bool cfs_bandwidth_used(void)
{
4107
	return static_key_false(&__cfs_bandwidth_used);
4108 4109
}

4110
void cfs_bandwidth_usage_inc(void)
4111
{
4112 4113 4114 4115 4116 4117
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
4118 4119 4120 4121 4122 4123 4124
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4125 4126
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4127 4128
#endif /* HAVE_JUMP_LABEL */

4129 4130 4131 4132 4133 4134 4135 4136
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4137 4138 4139 4140 4141 4142

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4143 4144 4145 4146 4147 4148 4149
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4150
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

4162 4163 4164 4165 4166
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4167 4168 4169 4170
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4171
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4172

4173
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4174 4175
}

4176 4177
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4178 4179 4180
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4181
	u64 amount = 0, min_amount, expires;
4182 4183 4184 4185 4186 4187 4188

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4189
	else {
P
Peter Zijlstra 已提交
4190
		start_cfs_bandwidth(cfs_b);
4191 4192 4193 4194 4195 4196

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4197
	}
P
Paul Turner 已提交
4198
	expires = cfs_b->runtime_expires;
4199 4200 4201
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4202 4203 4204 4205 4206 4207 4208
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4209 4210

	return cfs_rq->runtime_remaining > 0;
4211 4212
}

P
Paul Turner 已提交
4213 4214 4215 4216 4217
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4218
{
P
Paul Turner 已提交
4219 4220 4221
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4222
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4223 4224
		return;

P
Paul Turner 已提交
4225 4226 4227 4228 4229 4230 4231 4232 4233
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4234 4235 4236
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4237 4238
	 */

4239
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4240 4241 4242 4243 4244 4245 4246 4247
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4248
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4249 4250
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4251
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4252 4253 4254
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4255 4256
		return;

4257 4258 4259 4260 4261
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4262
		resched_curr(rq_of(cfs_rq));
4263 4264
}

4265
static __always_inline
4266
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4267
{
4268
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4269 4270 4271 4272 4273
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4274 4275
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4276
	return cfs_bandwidth_used() && cfs_rq->throttled;
4277 4278
}

4279 4280 4281
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4282
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4310
		/* adjust cfs_rq_clock_task() */
4311
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4312
					     cfs_rq->throttled_clock_task;
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4323 4324
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4325
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4326 4327 4328 4329 4330
	cfs_rq->throttle_count++;

	return 0;
}

4331
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4332 4333 4334 4335 4336
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4337
	bool empty;
4338 4339 4340

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4341
	/* freeze hierarchy runnable averages while throttled */
4342 4343 4344
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4362
		sub_nr_running(rq, task_delta);
4363 4364

	cfs_rq->throttled = 1;
4365
	cfs_rq->throttled_clock = rq_clock(rq);
4366
	raw_spin_lock(&cfs_b->lock);
4367
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4368

4369 4370 4371 4372 4373
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4374 4375 4376 4377 4378 4379 4380 4381

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4382 4383 4384
	raw_spin_unlock(&cfs_b->lock);
}

4385
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4386 4387 4388 4389 4390 4391 4392
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4393
	se = cfs_rq->tg->se[cpu_of(rq)];
4394 4395

	cfs_rq->throttled = 0;
4396 4397 4398

	update_rq_clock(rq);

4399
	raw_spin_lock(&cfs_b->lock);
4400
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4401 4402 4403
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4404 4405 4406
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4425
		add_nr_running(rq, task_delta);
4426 4427 4428

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4429
		resched_curr(rq);
4430 4431 4432 4433 4434 4435
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4436 4437
	u64 runtime;
	u64 starting_runtime = remaining;
4438 4439 4440 4441 4442

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4443
		struct rq_flags rf;
4444

4445
		rq_lock(rq, &rf);
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4462
		rq_unlock(rq, &rf);
4463 4464 4465 4466 4467 4468

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4469
	return starting_runtime - remaining;
4470 4471
}

4472 4473 4474 4475 4476 4477 4478 4479
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4480
	u64 runtime, runtime_expires;
4481
	int throttled;
4482 4483 4484

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4485
		goto out_deactivate;
4486

4487
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4488
	cfs_b->nr_periods += overrun;
4489

4490 4491 4492 4493 4494 4495
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4496 4497 4498

	__refill_cfs_bandwidth_runtime(cfs_b);

4499 4500 4501
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4502
		return 0;
4503 4504
	}

4505 4506 4507
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4508 4509 4510
	runtime_expires = cfs_b->runtime_expires;

	/*
4511 4512 4513 4514 4515
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4516
	 */
4517 4518
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4519 4520 4521 4522 4523 4524 4525
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4526 4527

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4528
	}
4529

4530 4531 4532 4533 4534 4535 4536
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4537

4538 4539 4540 4541
	return 0;

out_deactivate:
	return 1;
4542
}
4543

4544 4545 4546 4547 4548 4549 4550
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4551 4552 4553 4554
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4555
 * hrtimer base being cleared by hrtimer_start. In the case of
4556 4557
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4583 4584 4585
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4615 4616 4617
	if (!cfs_bandwidth_used())
		return;

4618
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4634 4635 4636
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4637
		return;
4638
	}
4639

4640
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4641
		runtime = cfs_b->runtime;
4642

4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4653
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4654 4655 4656
	raw_spin_unlock(&cfs_b->lock);
}

4657 4658 4659 4660 4661 4662 4663
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4664 4665 4666
	if (!cfs_bandwidth_used())
		return;

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4695
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4696 4697
}

4698
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4699
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4700
{
4701
	if (!cfs_bandwidth_used())
4702
		return false;
4703

4704
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4705
		return false;
4706 4707 4708 4709 4710 4711

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4712
		return true;
4713 4714

	throttle_cfs_rq(cfs_rq);
4715
	return true;
4716
}
4717 4718 4719 4720 4721

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4722

4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4735
	raw_spin_lock(&cfs_b->lock);
4736
	for (;;) {
P
Peter Zijlstra 已提交
4737
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4738 4739 4740 4741 4742
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4743 4744
	if (idle)
		cfs_b->period_active = 0;
4745
	raw_spin_unlock(&cfs_b->lock);
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4758
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4770
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4771
{
P
Peter Zijlstra 已提交
4772
	lockdep_assert_held(&cfs_b->lock);
4773

P
Peter Zijlstra 已提交
4774 4775 4776 4777 4778
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4779 4780 4781 4782
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4783 4784 4785 4786
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4787 4788 4789 4790
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4791 4792 4793 4794 4795 4796 4797 4798
/*
 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
4799 4800
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
4801
	struct task_group *tg;
4802

4803 4804 4805 4806 4807 4808
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4809 4810 4811 4812 4813

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
4814
	rcu_read_unlock();
4815 4816
}

4817
/* cpu offline callback */
4818
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4819
{
4820 4821 4822 4823 4824 4825 4826
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4827 4828 4829 4830 4831 4832 4833 4834

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4835
		cfs_rq->runtime_remaining = 1;
4836 4837 4838 4839 4840 4841
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4842 4843 4844
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
4845
	rcu_read_unlock();
4846 4847 4848
}

#else /* CONFIG_CFS_BANDWIDTH */
4849 4850
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4851
	return rq_clock_task(rq_of(cfs_rq));
4852 4853
}

4854
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4855
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4856
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4857
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4858
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4859 4860 4861 4862 4863

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4875 4876 4877 4878 4879

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4880 4881
#endif

4882 4883 4884 4885 4886
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4887
static inline void update_runtime_enabled(struct rq *rq) {}
4888
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4889 4890 4891

#endif /* CONFIG_CFS_BANDWIDTH */

4892 4893 4894 4895
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4896 4897 4898 4899 4900 4901
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4902
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4903

4904
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4905 4906 4907 4908 4909 4910
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4911
				resched_curr(rq);
P
Peter Zijlstra 已提交
4912 4913
			return;
		}
4914
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4915 4916
	}
}
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4927
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4928 4929 4930 4931 4932
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4933
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4934 4935 4936 4937
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4938 4939 4940 4941

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4942 4943
#endif

4944 4945 4946 4947 4948
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4949
static void
4950
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4951 4952
{
	struct cfs_rq *cfs_rq;
4953
	struct sched_entity *se = &p->se;
4954

4955 4956 4957 4958 4959 4960 4961 4962
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);

4963
	for_each_sched_entity(se) {
4964
		if (se->on_rq)
4965 4966
			break;
		cfs_rq = cfs_rq_of(se);
4967
		enqueue_entity(cfs_rq, se, flags);
4968 4969 4970 4971 4972 4973

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4974
		 */
4975 4976
		if (cfs_rq_throttled(cfs_rq))
			break;
4977
		cfs_rq->h_nr_running++;
4978

4979
		flags = ENQUEUE_WAKEUP;
4980
	}
P
Peter Zijlstra 已提交
4981

P
Peter Zijlstra 已提交
4982
	for_each_sched_entity(se) {
4983
		cfs_rq = cfs_rq_of(se);
4984
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4985

4986 4987 4988
		if (cfs_rq_throttled(cfs_rq))
			break;

4989
		update_load_avg(se, UPDATE_TG);
4990
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4991 4992
	}

Y
Yuyang Du 已提交
4993
	if (!se)
4994
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4995

4996
	hrtick_update(rq);
4997 4998
}

4999 5000
static void set_next_buddy(struct sched_entity *se);

5001 5002 5003 5004 5005
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5006
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5007 5008
{
	struct cfs_rq *cfs_rq;
5009
	struct sched_entity *se = &p->se;
5010
	int task_sleep = flags & DEQUEUE_SLEEP;
5011 5012 5013

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5014
		dequeue_entity(cfs_rq, se, flags);
5015 5016 5017 5018 5019 5020 5021 5022 5023

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5024
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5025

5026
		/* Don't dequeue parent if it has other entities besides us */
5027
		if (cfs_rq->load.weight) {
5028 5029
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5030 5031 5032 5033
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5034 5035
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5036
			break;
5037
		}
5038
		flags |= DEQUEUE_SLEEP;
5039
	}
P
Peter Zijlstra 已提交
5040

P
Peter Zijlstra 已提交
5041
	for_each_sched_entity(se) {
5042
		cfs_rq = cfs_rq_of(se);
5043
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5044

5045 5046 5047
		if (cfs_rq_throttled(cfs_rq))
			break;

5048
		update_load_avg(se, UPDATE_TG);
5049
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
5050 5051
	}

Y
Yuyang Du 已提交
5052
	if (!se)
5053
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5054

5055
	hrtick_update(rq);
5056 5057
}

5058
#ifdef CONFIG_SMP
5059 5060 5061 5062 5063

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5064
#ifdef CONFIG_NO_HZ_COMMON
5065 5066 5067 5068 5069
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5070
 * The exact cpuload calculated at every tick would be:
5071
 *
5072 5073 5074 5075 5076 5077 5078
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5079 5080 5081
 *
 * decay_load_missed() below does efficient calculation of
 *
5082 5083 5084 5085 5086 5087
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5088
 *
5089
 * The calculation is approximated on a 128 point scale.
5090 5091
 */
#define DEGRADE_SHIFT		7
5092 5093 5094 5095 5096 5097 5098 5099 5100

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5130
#endif /* CONFIG_NO_HZ_COMMON */
5131

5132
/**
5133
 * __cpu_load_update - update the rq->cpu_load[] statistics
5134 5135 5136 5137
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5138
 * Update rq->cpu_load[] statistics. This function is usually called every
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5165
 * term.
5166
 */
5167 5168
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5169
{
5170
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5182
		old_load = this_rq->cpu_load[i];
5183
#ifdef CONFIG_NO_HZ_COMMON
5184
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5185 5186 5187 5188 5189 5190 5191 5192 5193
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5194
#endif
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5210
/* Used instead of source_load when we know the type == 0 */
5211
static unsigned long weighted_cpuload(struct rq *rq)
5212
{
5213
	return cfs_rq_runnable_load_avg(&rq->cfs);
5214 5215
}

5216
#ifdef CONFIG_NO_HZ_COMMON
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5245
		cpu_load_update(this_rq, load, pending_updates);
5246 5247 5248
	}
}

5249 5250 5251 5252
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5253
static void cpu_load_update_idle(struct rq *this_rq)
5254 5255 5256 5257
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5258
	if (weighted_cpuload(this_rq))
5259 5260
		return;

5261
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5262 5263 5264
}

/*
5265 5266 5267 5268
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5269
 */
5270
void cpu_load_update_nohz_start(void)
5271 5272
{
	struct rq *this_rq = this_rq();
5273 5274 5275 5276 5277 5278

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5279
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5280 5281 5282 5283 5284 5285 5286
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5287
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5288 5289
	struct rq *this_rq = this_rq();
	unsigned long load;
5290
	struct rq_flags rf;
5291 5292 5293 5294

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5295
	load = weighted_cpuload(this_rq);
5296
	rq_lock(this_rq, &rf);
5297
	update_rq_clock(this_rq);
5298
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5299
	rq_unlock(this_rq, &rf);
5300
}
5301 5302 5303 5304 5305 5306 5307 5308
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5309
#ifdef CONFIG_NO_HZ_COMMON
5310 5311
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5312
#endif
5313 5314
	cpu_load_update(this_rq, load, 1);
}
5315 5316 5317 5318

/*
 * Called from scheduler_tick()
 */
5319
void cpu_load_update_active(struct rq *this_rq)
5320
{
5321
	unsigned long load = weighted_cpuload(this_rq);
5322 5323 5324 5325 5326

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5327 5328
}

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5339
	unsigned long total = weighted_cpuload(rq);
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5354
	unsigned long total = weighted_cpuload(rq);
5355 5356 5357 5358 5359 5360 5361

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5362
static unsigned long capacity_of(int cpu)
5363
{
5364
	return cpu_rq(cpu)->cpu_capacity;
5365 5366
}

5367 5368 5369 5370 5371
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5372 5373 5374
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5375
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5376
	unsigned long load_avg = weighted_cpuload(rq);
5377 5378

	if (nr_running)
5379
		return load_avg / nr_running;
5380 5381 5382 5383

	return 0;
}

P
Peter Zijlstra 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5401 5402
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5403
 *
M
Mike Galbraith 已提交
5404
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5417
 */
5418 5419
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5420 5421
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5422
	int factor = this_cpu_read(sd_llc_size);
5423

M
Mike Galbraith 已提交
5424 5425 5426 5427 5428
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5429 5430
}

5431 5432
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5433
{
5434 5435
	int this_cpu = smp_processor_id();
	bool affine = false;
5436

5437 5438 5439 5440 5441
	/*
	 * Common case: CPUs are in the same socket, and select_idle_sibling()
	 * will do its thing regardless of what we return:
	 */
	if (cpus_share_cache(prev_cpu, this_cpu))
5442 5443 5444
		affine = true;
	else
		affine = numa_wake_affine(sd, p, this_cpu, prev_cpu, sync);
5445

5446
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5447 5448 5449 5450
	if (affine) {
		schedstat_inc(sd->ttwu_move_affine);
		schedstat_inc(p->se.statistics.nr_wakeups_affine);
	}
5451

5452
	return affine;
5453 5454
}

5455 5456 5457 5458 5459 5460 5461 5462
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}

5463 5464 5465 5466 5467
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5468
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5469
		  int this_cpu, int sd_flag)
5470
{
5471
	struct sched_group *idlest = NULL, *group = sd->groups;
5472
	struct sched_group *most_spare_sg = NULL;
5473 5474
	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5475
	unsigned long most_spare = 0, this_spare = 0;
5476
	int load_idx = sd->forkexec_idx;
5477 5478 5479
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5480

5481 5482 5483
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5484
	do {
5485 5486
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5487 5488
		int local_group;
		int i;
5489

5490
		/* Skip over this group if it has no CPUs allowed */
5491
		if (!cpumask_intersects(sched_group_span(group),
5492
					&p->cpus_allowed))
5493 5494 5495
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5496
					       sched_group_span(group));
5497

5498 5499 5500 5501
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5502
		avg_load = 0;
5503
		runnable_load = 0;
5504
		max_spare_cap = 0;
5505

5506
		for_each_cpu(i, sched_group_span(group)) {
5507 5508 5509 5510 5511 5512
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5513 5514 5515
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5516 5517 5518 5519 5520

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5521 5522
		}

5523
		/* Adjust by relative CPU capacity of the group */
5524 5525 5526 5527
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5528 5529

		if (local_group) {
5530 5531
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5532 5533
			this_spare = max_spare_cap;
		} else {
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5549 5550 5551 5552 5553 5554 5555
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5556 5557 5558
		}
	} while (group = group->next, group != sd->groups);

5559 5560 5561 5562 5563 5564
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5565 5566 5567 5568
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5569
	 */
5570 5571 5572
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5573
	if (this_spare > task_util(p) / 2 &&
5574
	    imbalance_scale*this_spare > 100*most_spare)
5575
		return NULL;
5576 5577

	if (most_spare > task_util(p) / 2)
5578 5579
		return most_spare_sg;

5580
skip_spare:
5581 5582 5583 5584
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5585
		return NULL;
5586 5587 5588 5589 5590

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5601 5602 5603 5604
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5605 5606
	int i;

5607 5608
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5609
		return cpumask_first(sched_group_span(group));
5610

5611
	/* Traverse only the allowed CPUs */
5612
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5635
		} else if (shallowest_idle_cpu == -1) {
5636
			load = weighted_cpuload(cpu_rq(i));
5637 5638 5639 5640
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5641 5642 5643
		}
	}

5644
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5645
}
5646

5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5676
void __update_idle_core(struct rq *rq)
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5706
	int core, cpu;
5707

P
Peter Zijlstra 已提交
5708 5709 5710
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5711 5712 5713
	if (!test_idle_cores(target, false))
		return -1;

5714
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5715

5716
	for_each_cpu_wrap(core, cpus, target) {
5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5744 5745 5746
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5747
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5748
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5775
 */
5776 5777
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5778
	struct sched_domain *this_sd;
5779
	u64 avg_cost, avg_idle;
5780 5781
	u64 time, cost;
	s64 delta;
5782
	int cpu, nr = INT_MAX;
5783

5784 5785 5786 5787
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

5788 5789 5790 5791
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
5792 5793 5794 5795
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5796 5797
		return -1;

5798 5799 5800 5801 5802 5803 5804 5805
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

5806 5807
	time = local_clock();

5808
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5809 5810
		if (!--nr)
			return -1;
5811
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5827
 */
5828
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5829
{
5830
	struct sched_domain *sd;
5831
	int i;
5832

5833 5834
	if (idle_cpu(target))
		return target;
5835 5836

	/*
5837
	 * If the previous cpu is cache affine and idle, don't be stupid.
5838
	 */
5839 5840
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5841

5842
	sd = rcu_dereference(per_cpu(sd_llc, target));
5843 5844
	if (!sd)
		return target;
5845

5846 5847 5848
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5849

5850 5851 5852 5853 5854 5855 5856
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5857

5858 5859
	return target;
}
5860

5861
/*
5862
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5863
 * tasks. The unit of the return value must be the one of capacity so we can
5864 5865
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5886
 */
5887
static int cpu_util(int cpu)
5888
{
5889
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5890 5891
	unsigned long capacity = capacity_orig_of(cpu);

5892
	return (util >= capacity) ? capacity : util;
5893
}
5894

5895 5896 5897 5898 5899
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
static int cpu_util_wake(int cpu, struct task_struct *p)
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

5936 5937 5938
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

5939 5940 5941
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5942
/*
5943 5944 5945
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5946
 *
5947 5948
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5949
 *
5950
 * Returns the target cpu number.
5951 5952 5953
 *
 * preempt must be disabled.
 */
5954
static int
5955
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5956
{
5957
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5958
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5959
	int new_cpu = prev_cpu;
5960
	int want_affine = 0;
5961
	int sync = wake_flags & WF_SYNC;
5962

P
Peter Zijlstra 已提交
5963 5964
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
5965
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5966
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
5967
	}
5968

5969
	rcu_read_lock();
5970
	for_each_domain(cpu, tmp) {
5971
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5972
			break;
5973

5974
		/*
5975 5976
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5977
		 */
5978 5979 5980
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5981
			break;
5982
		}
5983

5984
		if (tmp->flags & sd_flag)
5985
			sd = tmp;
M
Mike Galbraith 已提交
5986 5987
		else if (!want_affine)
			break;
5988 5989
	}

M
Mike Galbraith 已提交
5990 5991
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
5992 5993 5994 5995
		if (cpu == prev_cpu)
			goto pick_cpu;

		if (wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
5996
			new_cpu = cpu;
5997
	}
5998

M
Mike Galbraith 已提交
5999
	if (!sd) {
6000
 pick_cpu:
M
Mike Galbraith 已提交
6001
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6002
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
6003 6004

	} else while (sd) {
6005
		struct sched_group *group;
6006
		int weight;
6007

6008
		if (!(sd->flags & sd_flag)) {
6009 6010 6011
			sd = sd->child;
			continue;
		}
6012

6013
		group = find_idlest_group(sd, p, cpu, sd_flag);
6014 6015 6016 6017
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
6018

6019
		new_cpu = find_idlest_cpu(group, p, cpu);
6020 6021 6022 6023
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
6024
		}
6025 6026 6027

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
6028
		weight = sd->span_weight;
6029 6030
		sd = NULL;
		for_each_domain(cpu, tmp) {
6031
			if (weight <= tmp->span_weight)
6032
				break;
6033
			if (tmp->flags & sd_flag)
6034 6035 6036
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
6037
	}
6038
	rcu_read_unlock();
6039

6040
	return new_cpu;
6041
}
6042 6043 6044 6045

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6046
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6047
 */
6048
static void migrate_task_rq_fair(struct task_struct *p)
6049
{
6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6076
	/*
6077 6078 6079 6080 6081
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
6082
	 */
6083 6084 6085 6086
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6087 6088

	/* We have migrated, no longer consider this task hot */
6089
	p->se.exec_start = 0;
6090
}
6091 6092 6093 6094 6095

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6096 6097
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
6098 6099
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6100 6101 6102 6103
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6104 6105
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6106 6107 6108 6109 6110 6111 6112 6113 6114
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6115
	 */
6116
	return calc_delta_fair(gran, se);
6117 6118
}

6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
6141
	gran = wakeup_gran(curr, se);
6142 6143 6144 6145 6146 6147
	if (vdiff > gran)
		return 1;

	return 0;
}

6148 6149
static void set_last_buddy(struct sched_entity *se)
{
6150 6151 6152
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6153 6154 6155
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6156
		cfs_rq_of(se)->last = se;
6157
	}
6158 6159 6160 6161
}

static void set_next_buddy(struct sched_entity *se)
{
6162 6163 6164
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6165 6166 6167
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6168
		cfs_rq_of(se)->next = se;
6169
	}
6170 6171
}

6172 6173
static void set_skip_buddy(struct sched_entity *se)
{
6174 6175
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6176 6177
}

6178 6179 6180
/*
 * Preempt the current task with a newly woken task if needed:
 */
6181
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6182 6183
{
	struct task_struct *curr = rq->curr;
6184
	struct sched_entity *se = &curr->se, *pse = &p->se;
6185
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6186
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6187
	int next_buddy_marked = 0;
6188

I
Ingo Molnar 已提交
6189 6190 6191
	if (unlikely(se == pse))
		return;

6192
	/*
6193
	 * This is possible from callers such as attach_tasks(), in which we
6194 6195 6196 6197 6198 6199 6200
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6201
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6202
		set_next_buddy(pse);
6203 6204
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6205

6206 6207 6208
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6209 6210 6211 6212 6213 6214
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6215 6216 6217 6218
	 */
	if (test_tsk_need_resched(curr))
		return;

6219 6220 6221 6222 6223
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6224
	/*
6225 6226
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6227
	 */
6228
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6229
		return;
6230

6231
	find_matching_se(&se, &pse);
6232
	update_curr(cfs_rq_of(se));
6233
	BUG_ON(!pse);
6234 6235 6236 6237 6238 6239 6240
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6241
		goto preempt;
6242
	}
6243

6244
	return;
6245

6246
preempt:
6247
	resched_curr(rq);
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6262 6263
}

6264
static struct task_struct *
6265
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6266 6267 6268
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6269
	struct task_struct *p;
6270
	int new_tasks;
6271

6272
again:
6273
	if (!cfs_rq->nr_running)
6274
		goto idle;
6275

6276
#ifdef CONFIG_FAIR_GROUP_SCHED
6277
	if (prev->sched_class != &fair_sched_class)
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6297 6298 6299 6300 6301
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6302

6303 6304 6305
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6306
			 * Therefore the nr_running test will indeed
6307 6308
			 * be correct.
			 */
6309 6310 6311 6312 6313 6314
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6315
				goto simple;
6316
			}
6317
		}
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
#endif
6357

6358
	put_prev_task(rq, prev);
6359

6360
	do {
6361
		se = pick_next_entity(cfs_rq, NULL);
6362
		set_next_entity(cfs_rq, se);
6363 6364 6365
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6366
	p = task_of(se);
6367

6368 6369
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6370 6371

	return p;
6372 6373

idle:
6374 6375
	new_tasks = idle_balance(rq, rf);

6376 6377 6378 6379 6380
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6381
	if (new_tasks < 0)
6382 6383
		return RETRY_TASK;

6384
	if (new_tasks > 0)
6385 6386 6387
		goto again;

	return NULL;
6388 6389 6390 6391 6392
}

/*
 * Account for a descheduled task:
 */
6393
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6394 6395 6396 6397 6398 6399
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6400
		put_prev_entity(cfs_rq, se);
6401 6402 6403
	}
}

6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6429 6430 6431 6432 6433
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6434
		rq_clock_skip_update(rq, true);
6435 6436 6437 6438 6439
	}

	set_skip_buddy(se);
}

6440 6441 6442 6443
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6444 6445
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6456
#ifdef CONFIG_SMP
6457
/**************************************************
P
Peter Zijlstra 已提交
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6474
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6475 6476 6477 6478 6479 6480
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6481
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6482 6483 6484 6485 6486 6487
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6488
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6527
 *             log_2 n
P
Peter Zijlstra 已提交
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6573
 */
6574

6575 6576
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6577 6578
enum fbq_type { regular, remote, all };

6579
#define LBF_ALL_PINNED	0x01
6580
#define LBF_NEED_BREAK	0x02
6581 6582
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6583 6584 6585 6586 6587

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6588
	int			src_cpu;
6589 6590 6591 6592

	int			dst_cpu;
	struct rq		*dst_rq;

6593 6594
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6595
	enum cpu_idle_type	idle;
6596
	long			imbalance;
6597 6598 6599
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6600
	unsigned int		flags;
6601 6602 6603 6604

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6605 6606

	enum fbq_type		fbq_type;
6607
	struct list_head	tasks;
6608 6609
};

6610 6611 6612
/*
 * Is this task likely cache-hot:
 */
6613
static int task_hot(struct task_struct *p, struct lb_env *env)
6614 6615 6616
{
	s64 delta;

6617 6618
	lockdep_assert_held(&env->src_rq->lock);

6619 6620 6621 6622 6623 6624 6625 6626 6627
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6628
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6629 6630 6631 6632 6633 6634 6635 6636 6637
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6638
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6639 6640 6641 6642

	return delta < (s64)sysctl_sched_migration_cost;
}

6643
#ifdef CONFIG_NUMA_BALANCING
6644
/*
6645 6646 6647
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6648
 */
6649
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6650
{
6651
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6652
	unsigned long src_faults, dst_faults;
6653 6654
	int src_nid, dst_nid;

6655
	if (!static_branch_likely(&sched_numa_balancing))
6656 6657
		return -1;

6658
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6659
		return -1;
6660 6661 6662 6663

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6664
	if (src_nid == dst_nid)
6665
		return -1;
6666

6667 6668 6669 6670 6671 6672 6673
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6674

6675 6676
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6677
		return 0;
6678

6679 6680 6681 6682
	/* Leaving a core idle is often worse than degrading locality. */
	if (env->idle != CPU_NOT_IDLE)
		return -1;

6683 6684 6685 6686 6687 6688
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6689 6690
	}

6691
	return dst_faults < src_faults;
6692 6693
}

6694
#else
6695
static inline int migrate_degrades_locality(struct task_struct *p,
6696 6697
					     struct lb_env *env)
{
6698
	return -1;
6699
}
6700 6701
#endif

6702 6703 6704 6705
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6706
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6707
{
6708
	int tsk_cache_hot;
6709 6710 6711

	lockdep_assert_held(&env->src_rq->lock);

6712 6713
	/*
	 * We do not migrate tasks that are:
6714
	 * 1) throttled_lb_pair, or
6715
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6716 6717
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6718
	 */
6719 6720 6721
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6722
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6723
		int cpu;
6724

6725
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6726

6727 6728
		env->flags |= LBF_SOME_PINNED;

6729 6730 6731 6732 6733
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
6734 6735
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
6736
		 */
6737
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6738 6739
			return 0;

6740 6741
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6742
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6743
				env->flags |= LBF_DST_PINNED;
6744 6745 6746
				env->new_dst_cpu = cpu;
				break;
			}
6747
		}
6748

6749 6750
		return 0;
	}
6751 6752

	/* Record that we found atleast one task that could run on dst_cpu */
6753
	env->flags &= ~LBF_ALL_PINNED;
6754

6755
	if (task_running(env->src_rq, p)) {
6756
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6757 6758 6759 6760 6761
		return 0;
	}

	/*
	 * Aggressive migration if:
6762 6763 6764
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6765
	 */
6766 6767 6768
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6769

6770
	if (tsk_cache_hot <= 0 ||
6771
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6772
		if (tsk_cache_hot == 1) {
6773 6774
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6775
		}
6776 6777 6778
		return 1;
	}

6779
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6780
	return 0;
6781 6782
}

6783
/*
6784 6785 6786 6787 6788 6789 6790
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6791
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6792 6793 6794
	set_task_cpu(p, env->dst_cpu);
}

6795
/*
6796
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6797 6798
 * part of active balancing operations within "domain".
 *
6799
 * Returns a task if successful and NULL otherwise.
6800
 */
6801
static struct task_struct *detach_one_task(struct lb_env *env)
6802 6803 6804
{
	struct task_struct *p, *n;

6805 6806
	lockdep_assert_held(&env->src_rq->lock);

6807 6808 6809
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6810

6811
		detach_task(p, env);
6812

6813
		/*
6814
		 * Right now, this is only the second place where
6815
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6816
		 * so we can safely collect stats here rather than
6817
		 * inside detach_tasks().
6818
		 */
6819
		schedstat_inc(env->sd->lb_gained[env->idle]);
6820
		return p;
6821
	}
6822
	return NULL;
6823 6824
}

6825 6826
static const unsigned int sched_nr_migrate_break = 32;

6827
/*
6828 6829
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6830
 *
6831
 * Returns number of detached tasks if successful and 0 otherwise.
6832
 */
6833
static int detach_tasks(struct lb_env *env)
6834
{
6835 6836
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6837
	unsigned long load;
6838 6839 6840
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6841

6842
	if (env->imbalance <= 0)
6843
		return 0;
6844

6845
	while (!list_empty(tasks)) {
6846 6847 6848 6849 6850 6851 6852
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6853
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6854

6855 6856
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6857
		if (env->loop > env->loop_max)
6858
			break;
6859 6860

		/* take a breather every nr_migrate tasks */
6861
		if (env->loop > env->loop_break) {
6862
			env->loop_break += sched_nr_migrate_break;
6863
			env->flags |= LBF_NEED_BREAK;
6864
			break;
6865
		}
6866

6867
		if (!can_migrate_task(p, env))
6868 6869 6870
			goto next;

		load = task_h_load(p);
6871

6872
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6873 6874
			goto next;

6875
		if ((load / 2) > env->imbalance)
6876
			goto next;
6877

6878 6879 6880 6881
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6882
		env->imbalance -= load;
6883 6884

#ifdef CONFIG_PREEMPT
6885 6886
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6887
		 * kernels will stop after the first task is detached to minimize
6888 6889
		 * the critical section.
		 */
6890
		if (env->idle == CPU_NEWLY_IDLE)
6891
			break;
6892 6893
#endif

6894 6895 6896 6897
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6898
		if (env->imbalance <= 0)
6899
			break;
6900 6901 6902

		continue;
next:
6903
		list_move_tail(&p->se.group_node, tasks);
6904
	}
6905

6906
	/*
6907 6908 6909
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6910
	 */
6911
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6912

6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
6924
	activate_task(rq, p, ENQUEUE_NOCLOCK);
6925
	p->on_rq = TASK_ON_RQ_QUEUED;
6926 6927 6928 6929 6930 6931 6932 6933 6934
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
6935 6936 6937
	struct rq_flags rf;

	rq_lock(rq, &rf);
6938
	update_rq_clock(rq);
6939
	attach_task(rq, p);
6940
	rq_unlock(rq, &rf);
6941 6942 6943 6944 6945 6946 6947 6948 6949 6950
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
6951
	struct rq_flags rf;
6952

6953
	rq_lock(env->dst_rq, &rf);
6954
	update_rq_clock(env->dst_rq);
6955 6956 6957 6958

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6959

6960 6961 6962
		attach_task(env->dst_rq, p);
	}

6963
	rq_unlock(env->dst_rq, &rf);
6964 6965
}

P
Peter Zijlstra 已提交
6966
#ifdef CONFIG_FAIR_GROUP_SCHED
6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984

static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

	if (cfs_rq->runnable_load_sum)
		return false;

	return true;
}

6985
static void update_blocked_averages(int cpu)
6986 6987
{
	struct rq *rq = cpu_rq(cpu);
6988
	struct cfs_rq *cfs_rq, *pos;
6989
	struct rq_flags rf;
6990

6991
	rq_lock_irqsave(rq, &rf);
6992
	update_rq_clock(rq);
6993

6994 6995 6996 6997
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6998
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
6999 7000
		struct sched_entity *se;

7001 7002 7003
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7004

7005
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7006
			update_tg_load_avg(cfs_rq, 0);
7007

7008 7009 7010 7011
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
			update_load_avg(se, 0);
7012 7013 7014 7015 7016 7017 7018

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
7019
	}
7020
	rq_unlock_irqrestore(rq, &rf);
7021 7022
}

7023
/*
7024
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7025 7026 7027
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7028
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7029
{
7030 7031
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7032
	unsigned long now = jiffies;
7033
	unsigned long load;
7034

7035
	if (cfs_rq->last_h_load_update == now)
7036 7037
		return;

7038 7039 7040 7041 7042 7043 7044
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7045

7046
	if (!se) {
7047
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7048 7049 7050 7051 7052
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7053 7054
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7055 7056 7057 7058
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7059 7060
}

7061
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7062
{
7063
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7064

7065
	update_cfs_rq_h_load(cfs_rq);
7066
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7067
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7068 7069
}
#else
7070
static inline void update_blocked_averages(int cpu)
7071
{
7072 7073
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7074
	struct rq_flags rf;
7075

7076
	rq_lock_irqsave(rq, &rf);
7077
	update_rq_clock(rq);
7078
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7079
	rq_unlock_irqrestore(rq, &rf);
7080 7081
}

7082
static unsigned long task_h_load(struct task_struct *p)
7083
{
7084
	return p->se.avg.load_avg;
7085
}
P
Peter Zijlstra 已提交
7086
#endif
7087 7088

/********** Helpers for find_busiest_group ************************/
7089 7090 7091 7092 7093 7094 7095

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7096 7097 7098 7099 7100 7101 7102
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7103
	unsigned long load_per_task;
7104
	unsigned long group_capacity;
7105
	unsigned long group_util; /* Total utilization of the group */
7106 7107 7108
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7109
	enum group_type group_type;
7110
	int group_no_capacity;
7111 7112 7113 7114
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7115 7116
};

J
Joonsoo Kim 已提交
7117 7118 7119 7120 7121 7122 7123 7124
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
7125
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7126 7127 7128
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7129
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7130 7131
};

7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
7144
		.total_capacity = 0UL,
7145 7146
		.busiest_stat = {
			.avg_load = 0UL,
7147 7148
			.sum_nr_running = 0,
			.group_type = group_other,
7149 7150 7151 7152
		},
	};
}

7153 7154 7155
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7156
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7157 7158
 *
 * Return: The load index.
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7181
static unsigned long scale_rt_capacity(int cpu)
7182 7183
{
	struct rq *rq = cpu_rq(cpu);
7184
	u64 total, used, age_stamp, avg;
7185
	s64 delta;
7186

7187 7188 7189 7190
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7191 7192
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7193
	delta = __rq_clock_broken(rq) - age_stamp;
7194

7195 7196 7197 7198
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7199

7200
	used = div_u64(avg, total);
7201

7202 7203
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7204

7205
	return 1;
7206 7207
}

7208
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7209
{
7210
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7211 7212
	struct sched_group *sdg = sd->groups;

7213
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7214

7215
	capacity *= scale_rt_capacity(cpu);
7216
	capacity >>= SCHED_CAPACITY_SHIFT;
7217

7218 7219
	if (!capacity)
		capacity = 1;
7220

7221 7222
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7223
	sdg->sgc->min_capacity = capacity;
7224 7225
}

7226
void update_group_capacity(struct sched_domain *sd, int cpu)
7227 7228 7229
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7230
	unsigned long capacity, min_capacity;
7231 7232 7233 7234
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7235
	sdg->sgc->next_update = jiffies + interval;
7236 7237

	if (!child) {
7238
		update_cpu_capacity(sd, cpu);
7239 7240 7241
		return;
	}

7242
	capacity = 0;
7243
	min_capacity = ULONG_MAX;
7244

P
Peter Zijlstra 已提交
7245 7246 7247 7248 7249 7250
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7251
		for_each_cpu(cpu, sched_group_span(sdg)) {
7252
			struct sched_group_capacity *sgc;
7253
			struct rq *rq = cpu_rq(cpu);
7254

7255
			/*
7256
			 * build_sched_domains() -> init_sched_groups_capacity()
7257 7258 7259
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7260 7261
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7262
			 *
7263
			 * This avoids capacity from being 0 and
7264 7265 7266
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7267
				capacity += capacity_of(cpu);
7268 7269 7270
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7271
			}
7272

7273
			min_capacity = min(capacity, min_capacity);
7274
		}
P
Peter Zijlstra 已提交
7275 7276 7277 7278
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7279
		 */
P
Peter Zijlstra 已提交
7280 7281 7282

		group = child->groups;
		do {
7283 7284 7285 7286
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7287 7288 7289
			group = group->next;
		} while (group != child->groups);
	}
7290

7291
	sdg->sgc->capacity = capacity;
7292
	sdg->sgc->min_capacity = min_capacity;
7293 7294
}

7295
/*
7296 7297 7298
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7299 7300
 */
static inline int
7301
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7302
{
7303 7304
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7305 7306
}

7307 7308
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7309
 * groups is inadequate due to ->cpus_allowed constraints.
7310 7311 7312 7313 7314
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7315 7316
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7317 7318 7319 7320 7321 7322
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7323 7324
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7325 7326
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7327
 * update_sd_pick_busiest(). And calculate_imbalance() and
7328
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7329 7330 7331 7332 7333 7334 7335
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7336
static inline int sg_imbalanced(struct sched_group *group)
7337
{
7338
	return group->sgc->imbalance;
7339 7340
}

7341
/*
7342 7343 7344
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7345 7346
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7347 7348 7349 7350 7351
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7352
 */
7353 7354
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7355
{
7356 7357
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7358

7359
	if ((sgs->group_capacity * 100) >
7360
			(sgs->group_util * env->sd->imbalance_pct))
7361
		return true;
7362

7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7379

7380
	if ((sgs->group_capacity * 100) <
7381
			(sgs->group_util * env->sd->imbalance_pct))
7382
		return true;
7383

7384
	return false;
7385 7386
}

7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7398 7399 7400
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7401
{
7402
	if (sgs->group_no_capacity)
7403 7404 7405 7406 7407 7408 7409 7410
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7411 7412
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7413
 * @env: The load balancing environment.
7414 7415 7416 7417
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7418
 * @overload: Indicate more than one runnable task for any CPU.
7419
 */
7420 7421
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7422 7423
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7424
{
7425
	unsigned long load;
7426
	int i, nr_running;
7427

7428 7429
	memset(sgs, 0, sizeof(*sgs));

7430
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7431 7432 7433
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7434
		if (local_group)
7435
			load = target_load(i, load_idx);
7436
		else
7437 7438 7439
			load = source_load(i, load_idx);

		sgs->group_load += load;
7440
		sgs->group_util += cpu_util(i);
7441
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7442

7443 7444
		nr_running = rq->nr_running;
		if (nr_running > 1)
7445 7446
			*overload = true;

7447 7448 7449 7450
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7451
		sgs->sum_weighted_load += weighted_cpuload(rq);
7452 7453 7454 7455
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7456
			sgs->idle_cpus++;
7457 7458
	}

7459 7460
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7461
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7462

7463
	if (sgs->sum_nr_running)
7464
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7465

7466
	sgs->group_weight = group->group_weight;
7467

7468
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7469
	sgs->group_type = group_classify(group, sgs);
7470 7471
}

7472 7473
/**
 * update_sd_pick_busiest - return 1 on busiest group
7474
 * @env: The load balancing environment.
7475 7476
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7477
 * @sgs: sched_group statistics
7478 7479 7480
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7481 7482 7483
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7484
 */
7485
static bool update_sd_pick_busiest(struct lb_env *env,
7486 7487
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7488
				   struct sg_lb_stats *sgs)
7489
{
7490
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7491

7492
	if (sgs->group_type > busiest->group_type)
7493 7494
		return true;

7495 7496 7497 7498 7499 7500
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7515 7516
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7517 7518
		return true;

7519 7520 7521
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7522
	/*
T
Tim Chen 已提交
7523 7524 7525
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7526
	 */
T
Tim Chen 已提交
7527 7528
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7529 7530 7531
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7532 7533 7534
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7535 7536 7537 7538 7539 7540
			return true;
	}

	return false;
}

7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7571
/**
7572
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7573
 * @env: The load balancing environment.
7574 7575
 * @sds: variable to hold the statistics for this sched_domain.
 */
7576
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7577
{
7578 7579
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7580
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7581
	struct sg_lb_stats tmp_sgs;
7582
	int load_idx, prefer_sibling = 0;
7583
	bool overload = false;
7584 7585 7586 7587

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7588
	load_idx = get_sd_load_idx(env->sd, env->idle);
7589 7590

	do {
J
Joonsoo Kim 已提交
7591
		struct sg_lb_stats *sgs = &tmp_sgs;
7592 7593
		int local_group;

7594
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
7595 7596
		if (local_group) {
			sds->local = sg;
7597
			sgs = local;
7598 7599

			if (env->idle != CPU_NEWLY_IDLE ||
7600 7601
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7602
		}
7603

7604 7605
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7606

7607 7608 7609
		if (local_group)
			goto next_group;

7610 7611
		/*
		 * In case the child domain prefers tasks go to siblings
7612
		 * first, lower the sg capacity so that we'll try
7613 7614
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7615 7616 7617 7618
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7619
		 */
7620
		if (prefer_sibling && sds->local &&
7621 7622
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7623
			sgs->group_no_capacity = 1;
7624
			sgs->group_type = group_classify(sg, sgs);
7625
		}
7626

7627
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7628
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7629
			sds->busiest_stat = *sgs;
7630 7631
		}

7632 7633 7634
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
7635
		sds->total_capacity += sgs->group_capacity;
7636

7637
		sg = sg->next;
7638
	} while (sg != env->sd->groups);
7639 7640 7641

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7642 7643 7644 7645 7646 7647 7648

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7649 7650 7651 7652
}

/**
 * check_asym_packing - Check to see if the group is packed into the
7653
 *			sched domain.
7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7668
 * Return: 1 when packing is required and a task should be moved to
7669 7670
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7671
 * @env: The load balancing environment.
7672 7673
 * @sds: Statistics of the sched_domain which is to be packed
 */
7674
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7675 7676 7677
{
	int busiest_cpu;

7678
	if (!(env->sd->flags & SD_ASYM_PACKING))
7679 7680
		return 0;

7681 7682 7683
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7684 7685 7686
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
7687 7688
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7689 7690
		return 0;

7691
	env->imbalance = DIV_ROUND_CLOSEST(
7692
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7693
		SCHED_CAPACITY_SCALE);
7694

7695
	return 1;
7696 7697 7698 7699 7700 7701
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7702
 * @env: The load balancing environment.
7703 7704
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7705 7706
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7707
{
7708
	unsigned long tmp, capa_now = 0, capa_move = 0;
7709
	unsigned int imbn = 2;
7710
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7711
	struct sg_lb_stats *local, *busiest;
7712

J
Joonsoo Kim 已提交
7713 7714
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7715

J
Joonsoo Kim 已提交
7716 7717 7718 7719
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7720

J
Joonsoo Kim 已提交
7721
	scaled_busy_load_per_task =
7722
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7723
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7724

7725 7726
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7727
		env->imbalance = busiest->load_per_task;
7728 7729 7730 7731 7732
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7733
	 * however we may be able to increase total CPU capacity used by
7734 7735 7736
	 * moving them.
	 */

7737
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7738
			min(busiest->load_per_task, busiest->avg_load);
7739
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7740
			min(local->load_per_task, local->avg_load);
7741
	capa_now /= SCHED_CAPACITY_SCALE;
7742 7743

	/* Amount of load we'd subtract */
7744
	if (busiest->avg_load > scaled_busy_load_per_task) {
7745
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7746
			    min(busiest->load_per_task,
7747
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7748
	}
7749 7750

	/* Amount of load we'd add */
7751
	if (busiest->avg_load * busiest->group_capacity <
7752
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7753 7754
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7755
	} else {
7756
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7757
		      local->group_capacity;
J
Joonsoo Kim 已提交
7758
	}
7759
	capa_move += local->group_capacity *
7760
		    min(local->load_per_task, local->avg_load + tmp);
7761
	capa_move /= SCHED_CAPACITY_SCALE;
7762 7763

	/* Move if we gain throughput */
7764
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7765
		env->imbalance = busiest->load_per_task;
7766 7767 7768 7769 7770
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7771
 * @env: load balance environment
7772 7773
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7774
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7775
{
7776
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7777 7778 7779 7780
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7781

7782
	if (busiest->group_type == group_imbalanced) {
7783 7784 7785 7786
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7787 7788
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7789 7790
	}

7791
	/*
7792 7793 7794 7795
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7796
	 */
7797 7798
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7799 7800
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7801 7802
	}

7803 7804 7805 7806 7807
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7808
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7809
		if (load_above_capacity > busiest->group_capacity) {
7810
			load_above_capacity -= busiest->group_capacity;
7811
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7812 7813
			load_above_capacity /= busiest->group_capacity;
		} else
7814
			load_above_capacity = ~0UL;
7815 7816 7817 7818 7819 7820
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7821 7822
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7823
	 */
7824
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7825 7826

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7827
	env->imbalance = min(
7828 7829
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7830
	) / SCHED_CAPACITY_SCALE;
7831 7832 7833

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7834
	 * there is no guarantee that any tasks will be moved so we'll have
7835 7836 7837
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7838
	if (env->imbalance < busiest->load_per_task)
7839
		return fix_small_imbalance(env, sds);
7840
}
7841

7842 7843 7844 7845
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7846
 * if there is an imbalance.
7847 7848 7849 7850
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7851
 * @env: The load balancing environment.
7852
 *
7853
 * Return:	- The busiest group if imbalance exists.
7854
 */
J
Joonsoo Kim 已提交
7855
static struct sched_group *find_busiest_group(struct lb_env *env)
7856
{
J
Joonsoo Kim 已提交
7857
	struct sg_lb_stats *local, *busiest;
7858 7859
	struct sd_lb_stats sds;

7860
	init_sd_lb_stats(&sds);
7861 7862 7863 7864 7865

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7866
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7867 7868
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7869

7870
	/* ASYM feature bypasses nice load balance check */
7871
	if (check_asym_packing(env, &sds))
7872 7873
		return sds.busiest;

7874
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7875
	if (!sds.busiest || busiest->sum_nr_running == 0)
7876 7877
		goto out_balanced;

7878 7879
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7880

P
Peter Zijlstra 已提交
7881 7882
	/*
	 * If the busiest group is imbalanced the below checks don't
7883
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7884 7885
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7886
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7887 7888
		goto force_balance;

7889
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7890 7891
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7892 7893
		goto force_balance;

7894
	/*
7895
	 * If the local group is busier than the selected busiest group
7896 7897
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7898
	if (local->avg_load >= busiest->avg_load)
7899 7900
		goto out_balanced;

7901 7902 7903 7904
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7905
	if (local->avg_load >= sds.avg_load)
7906 7907
		goto out_balanced;

7908
	if (env->idle == CPU_IDLE) {
7909
		/*
7910 7911 7912 7913 7914
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7915
		 */
7916 7917
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7918
			goto out_balanced;
7919 7920 7921 7922 7923
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7924 7925
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7926
			goto out_balanced;
7927
	}
7928

7929
force_balance:
7930
	/* Looks like there is an imbalance. Compute it */
7931
	calculate_imbalance(env, &sds);
7932 7933 7934
	return sds.busiest;

out_balanced:
7935
	env->imbalance = 0;
7936 7937 7938 7939 7940 7941
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7942
static struct rq *find_busiest_queue(struct lb_env *env,
7943
				     struct sched_group *group)
7944 7945
{
	struct rq *busiest = NULL, *rq;
7946
	unsigned long busiest_load = 0, busiest_capacity = 1;
7947 7948
	int i;

7949
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7950
		unsigned long capacity, wl;
7951 7952 7953 7954
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7955

7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7978
		capacity = capacity_of(i);
7979

7980
		wl = weighted_cpuload(rq);
7981

7982 7983
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7984
		 * which is not scaled with the cpu capacity.
7985
		 */
7986 7987 7988

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7989 7990
			continue;

7991 7992
		/*
		 * For the load comparisons with the other cpu's, consider
7993 7994 7995
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7996
		 *
7997
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7998
		 * multiplication to rid ourselves of the division works out
7999 8000
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8001
		 */
8002
		if (wl * busiest_capacity > busiest_load * capacity) {
8003
			busiest_load = wl;
8004
			busiest_capacity = capacity;
8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8018
static int need_active_balance(struct lb_env *env)
8019
{
8020 8021 8022
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8023 8024 8025

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8026 8027
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8028
		 */
T
Tim Chen 已提交
8029 8030
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8031
			return 1;
8032 8033
	}

8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8047 8048 8049
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8050 8051
static int active_load_balance_cpu_stop(void *data);

8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	/* Try to find first idle cpu */
8065
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8066
		if (!idle_cpu(cpu))
8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8080
	return balance_cpu == env->dst_cpu;
8081 8082
}

8083 8084 8085 8086 8087 8088
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8089
			int *continue_balancing)
8090
{
8091
	int ld_moved, cur_ld_moved, active_balance = 0;
8092
	struct sched_domain *sd_parent = sd->parent;
8093 8094
	struct sched_group *group;
	struct rq *busiest;
8095
	struct rq_flags rf;
8096
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8097

8098 8099
	struct lb_env env = {
		.sd		= sd,
8100 8101
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8102
		.dst_grpmask    = sched_group_span(sd->groups),
8103
		.idle		= idle,
8104
		.loop_break	= sched_nr_migrate_break,
8105
		.cpus		= cpus,
8106
		.fbq_type	= all,
8107
		.tasks		= LIST_HEAD_INIT(env.tasks),
8108 8109
	};

8110
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8111

8112
	schedstat_inc(sd->lb_count[idle]);
8113 8114

redo:
8115 8116
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8117
		goto out_balanced;
8118
	}
8119

8120
	group = find_busiest_group(&env);
8121
	if (!group) {
8122
		schedstat_inc(sd->lb_nobusyg[idle]);
8123 8124 8125
		goto out_balanced;
	}

8126
	busiest = find_busiest_queue(&env, group);
8127
	if (!busiest) {
8128
		schedstat_inc(sd->lb_nobusyq[idle]);
8129 8130 8131
		goto out_balanced;
	}

8132
	BUG_ON(busiest == env.dst_rq);
8133

8134
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8135

8136 8137 8138
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8139 8140 8141 8142 8143 8144 8145 8146
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8147
		env.flags |= LBF_ALL_PINNED;
8148
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8149

8150
more_balance:
8151
		rq_lock_irqsave(busiest, &rf);
8152
		update_rq_clock(busiest);
8153 8154 8155 8156 8157

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8158
		cur_ld_moved = detach_tasks(&env);
8159 8160

		/*
8161 8162 8163 8164 8165
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8166
		 */
8167

8168
		rq_unlock(busiest, &rf);
8169 8170 8171 8172 8173 8174

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8175
		local_irq_restore(rf.flags);
8176

8177 8178 8179 8180 8181
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8201
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8202

8203 8204 8205
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8206
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8207
			env.dst_cpu	 = env.new_dst_cpu;
8208
			env.flags	&= ~LBF_DST_PINNED;
8209 8210
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8211

8212 8213 8214 8215 8216 8217
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8218

8219 8220 8221 8222
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8223
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8224

8225
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8226 8227 8228
				*group_imbalance = 1;
		}

8229
		/* All tasks on this runqueue were pinned by CPU affinity */
8230
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8231
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8232 8233 8234 8235 8236 8237 8238 8239 8240
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8241 8242
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8243
				goto redo;
8244
			}
8245
			goto out_all_pinned;
8246 8247 8248 8249
		}
	}

	if (!ld_moved) {
8250
		schedstat_inc(sd->lb_failed[idle]);
8251 8252 8253 8254 8255 8256 8257 8258
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8259

8260
		if (need_active_balance(&env)) {
8261 8262
			unsigned long flags;

8263 8264
			raw_spin_lock_irqsave(&busiest->lock, flags);

8265 8266 8267
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8268
			 */
8269
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8270 8271
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8272
				env.flags |= LBF_ALL_PINNED;
8273 8274 8275
				goto out_one_pinned;
			}

8276 8277 8278 8279 8280
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8281 8282 8283 8284 8285 8286
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8287

8288
			if (active_balance) {
8289 8290 8291
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8292
			}
8293

8294
			/* We've kicked active balancing, force task migration. */
8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8308
		 * detach_tasks).
8309 8310 8311 8312 8313 8314 8315 8316
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8334
	schedstat_inc(sd->lb_balanced[idle]);
8335 8336 8337 8338 8339

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8340
	if (((env.flags & LBF_ALL_PINNED) &&
8341
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8342 8343 8344
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8345
	ld_moved = 0;
8346 8347 8348 8349
out:
	return ld_moved;
}

8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8366
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8367 8368 8369
{
	unsigned long interval, next;

8370 8371
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8372 8373 8374 8375 8376 8377
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8378 8379 8380 8381
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8382
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8383
{
8384 8385
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8386 8387
	struct sched_domain *sd;
	int pulled_task = 0;
8388
	u64 curr_cost = 0;
8389

8390 8391 8392 8393 8394 8395
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8396 8397 8398 8399 8400 8401 8402 8403
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8404 8405
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8406 8407 8408
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8409
			update_next_balance(sd, &next_balance);
8410 8411
		rcu_read_unlock();

8412
		goto out;
8413
	}
8414

8415 8416
	raw_spin_unlock(&this_rq->lock);

8417
	update_blocked_averages(this_cpu);
8418
	rcu_read_lock();
8419
	for_each_domain(this_cpu, sd) {
8420
		int continue_balancing = 1;
8421
		u64 t0, domain_cost;
8422 8423 8424 8425

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8426
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8427
			update_next_balance(sd, &next_balance);
8428
			break;
8429
		}
8430

8431
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8432 8433
			t0 = sched_clock_cpu(this_cpu);

8434
			pulled_task = load_balance(this_cpu, this_rq,
8435 8436
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8437 8438 8439 8440 8441 8442

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8443
		}
8444

8445
		update_next_balance(sd, &next_balance);
8446 8447 8448 8449 8450 8451

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8452 8453
			break;
	}
8454
	rcu_read_unlock();
8455 8456 8457

	raw_spin_lock(&this_rq->lock);

8458 8459 8460
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8461
	/*
8462 8463 8464
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8465
	 */
8466
	if (this_rq->cfs.h_nr_running && !pulled_task)
8467
		pulled_task = 1;
8468

8469 8470 8471
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8472
		this_rq->next_balance = next_balance;
8473

8474
	/* Is there a task of a high priority class? */
8475
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8476 8477
		pulled_task = -1;

8478
	if (pulled_task)
8479 8480
		this_rq->idle_stamp = 0;

8481 8482
	rq_repin_lock(this_rq, rf);

8483
	return pulled_task;
8484 8485 8486
}

/*
8487 8488 8489 8490
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8491
 */
8492
static int active_load_balance_cpu_stop(void *data)
8493
{
8494 8495
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8496
	int target_cpu = busiest_rq->push_cpu;
8497
	struct rq *target_rq = cpu_rq(target_cpu);
8498
	struct sched_domain *sd;
8499
	struct task_struct *p = NULL;
8500
	struct rq_flags rf;
8501

8502
	rq_lock_irq(busiest_rq, &rf);
8503 8504 8505 8506 8507

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8508 8509 8510

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8511
		goto out_unlock;
8512 8513 8514 8515 8516 8517 8518 8519 8520

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8521
	rcu_read_lock();
8522 8523 8524 8525 8526 8527 8528
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8529 8530
		struct lb_env env = {
			.sd		= sd,
8531 8532 8533 8534
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8535
			.idle		= CPU_IDLE,
8536 8537 8538 8539 8540 8541 8542
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8543 8544
		};

8545
		schedstat_inc(sd->alb_count);
8546
		update_rq_clock(busiest_rq);
8547

8548
		p = detach_one_task(&env);
8549
		if (p) {
8550
			schedstat_inc(sd->alb_pushed);
8551 8552 8553
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8554
			schedstat_inc(sd->alb_failed);
8555
		}
8556
	}
8557
	rcu_read_unlock();
8558 8559
out_unlock:
	busiest_rq->active_balance = 0;
8560
	rq_unlock(busiest_rq, &rf);
8561 8562 8563 8564 8565 8566

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8567
	return 0;
8568 8569
}

8570 8571 8572 8573 8574
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8575
#ifdef CONFIG_NO_HZ_COMMON
8576 8577 8578 8579 8580 8581
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8582
static struct {
8583
	cpumask_var_t idle_cpus_mask;
8584
	atomic_t nr_cpus;
8585 8586
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8587

8588
static inline int find_new_ilb(void)
8589
{
8590
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8591

8592 8593 8594 8595
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8596 8597
}

8598 8599 8600 8601 8602
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8603
static void nohz_balancer_kick(void)
8604 8605 8606 8607 8608
{
	int ilb_cpu;

	nohz.next_balance++;

8609
	ilb_cpu = find_new_ilb();
8610

8611 8612
	if (ilb_cpu >= nr_cpu_ids)
		return;
8613

8614
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8615 8616 8617 8618 8619 8620 8621 8622
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8623 8624 8625
	return;
}

8626
void nohz_balance_exit_idle(unsigned int cpu)
8627 8628
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8629 8630 8631 8632 8633 8634 8635
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8636 8637 8638 8639
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8640 8641 8642
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8643
	int cpu = smp_processor_id();
8644 8645

	rcu_read_lock();
8646
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8647 8648 8649 8650 8651

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8652
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8653
unlock:
8654 8655 8656 8657 8658 8659
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8660
	int cpu = smp_processor_id();
8661 8662

	rcu_read_lock();
8663
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8664 8665 8666 8667 8668

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8669
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8670
unlock:
8671 8672 8673
	rcu_read_unlock();
}

8674
/*
8675
 * This routine will record that the cpu is going idle with tick stopped.
8676
 * This info will be used in performing idle load balancing in the future.
8677
 */
8678
void nohz_balance_enter_idle(int cpu)
8679
{
8680 8681 8682 8683 8684 8685
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8686 8687 8688 8689
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
	if (!is_housekeeping_cpu(cpu))
		return;

8690 8691
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8692

8693 8694 8695 8696 8697 8698
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8699 8700 8701
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8702 8703 8704 8705 8706
}
#endif

static DEFINE_SPINLOCK(balancing);

8707 8708 8709 8710
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8711
void update_max_interval(void)
8712 8713 8714 8715
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8716 8717 8718 8719
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8720
 * Balancing parameters are set up in init_sched_domains.
8721
 */
8722
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8723
{
8724
	int continue_balancing = 1;
8725
	int cpu = rq->cpu;
8726
	unsigned long interval;
8727
	struct sched_domain *sd;
8728 8729 8730
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8731 8732
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8733

8734
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8735

8736
	rcu_read_lock();
8737
	for_each_domain(cpu, sd) {
8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8750 8751 8752
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8764
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8765 8766 8767 8768 8769 8770 8771 8772

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8773
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8774
				/*
8775
				 * The LBF_DST_PINNED logic could have changed
8776 8777
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8778
				 */
8779
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8780 8781
			}
			sd->last_balance = jiffies;
8782
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8783 8784 8785 8786 8787 8788 8789 8790
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8791 8792
	}
	if (need_decay) {
8793
		/*
8794 8795
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8796
		 */
8797 8798
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8799
	}
8800
	rcu_read_unlock();
8801 8802 8803 8804 8805 8806

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8807
	if (likely(update_next_balance)) {
8808
		rq->next_balance = next_balance;
8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8823 8824
}

8825
#ifdef CONFIG_NO_HZ_COMMON
8826
/*
8827
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8828 8829
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8830
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8831
{
8832
	int this_cpu = this_rq->cpu;
8833 8834
	struct rq *rq;
	int balance_cpu;
8835 8836 8837
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8838

8839 8840 8841
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8842 8843

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8844
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8845 8846 8847 8848 8849 8850 8851
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8852
		if (need_resched())
8853 8854
			break;

V
Vincent Guittot 已提交
8855 8856
		rq = cpu_rq(balance_cpu);

8857 8858 8859 8860 8861
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
8862 8863 8864
			struct rq_flags rf;

			rq_lock_irq(rq, &rf);
8865
			update_rq_clock(rq);
8866
			cpu_load_update_idle(rq);
8867 8868
			rq_unlock_irq(rq, &rf);

8869 8870
			rebalance_domains(rq, CPU_IDLE);
		}
8871

8872 8873 8874 8875
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8876
	}
8877 8878 8879 8880 8881 8882 8883 8884

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8885 8886
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8887 8888 8889
}

/*
8890
 * Current heuristic for kicking the idle load balancer in the presence
8891
 * of an idle cpu in the system.
8892
 *   - This rq has more than one task.
8893 8894 8895 8896
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8897 8898
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8899
 */
8900
static inline bool nohz_kick_needed(struct rq *rq)
8901 8902
{
	unsigned long now = jiffies;
8903
	struct sched_domain_shared *sds;
8904
	struct sched_domain *sd;
T
Tim Chen 已提交
8905
	int nr_busy, i, cpu = rq->cpu;
8906
	bool kick = false;
8907

8908
	if (unlikely(rq->idle_balance))
8909
		return false;
8910

8911 8912 8913 8914
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8915
	set_cpu_sd_state_busy();
8916
	nohz_balance_exit_idle(cpu);
8917 8918 8919 8920 8921 8922

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8923
		return false;
8924 8925

	if (time_before(now, nohz.next_balance))
8926
		return false;
8927

8928
	if (rq->nr_running >= 2)
8929
		return true;
8930

8931
	rcu_read_lock();
8932 8933 8934 8935 8936 8937 8938
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
8939 8940 8941 8942 8943
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8944
	}
8945

8946 8947 8948 8949 8950 8951 8952 8953
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8954

8955
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
8956 8957 8958 8959 8960
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
8961

T
Tim Chen 已提交
8962 8963 8964 8965 8966 8967
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
8968
unlock:
8969
	rcu_read_unlock();
8970
	return kick;
8971 8972
}
#else
8973
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8974 8975 8976 8977 8978 8979
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8980
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8981
{
8982
	struct rq *this_rq = this_rq();
8983
	enum cpu_idle_type idle = this_rq->idle_balance ?
8984 8985 8986
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8987
	 * If this cpu has a pending nohz_balance_kick, then do the
8988
	 * balancing on behalf of the other idle cpus whose ticks are
8989 8990 8991 8992
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8993
	 */
8994
	nohz_idle_balance(this_rq, idle);
8995
	rebalance_domains(this_rq, idle);
8996 8997 8998 8999 9000
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9001
void trigger_load_balance(struct rq *rq)
9002 9003
{
	/* Don't need to rebalance while attached to NULL domain */
9004 9005 9006 9007
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9008
		raise_softirq(SCHED_SOFTIRQ);
9009
#ifdef CONFIG_NO_HZ_COMMON
9010
	if (nohz_kick_needed(rq))
9011
		nohz_balancer_kick();
9012
#endif
9013 9014
}

9015 9016 9017
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9018 9019

	update_runtime_enabled(rq);
9020 9021 9022 9023 9024
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9025 9026 9027

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9028 9029
}

9030
#endif /* CONFIG_SMP */
9031

9032 9033 9034
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
9035
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9036 9037 9038 9039 9040 9041
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9042
		entity_tick(cfs_rq, se, queued);
9043
	}
9044

9045
	if (static_branch_unlikely(&sched_numa_balancing))
9046
		task_tick_numa(rq, curr);
9047 9048 9049
}

/*
P
Peter Zijlstra 已提交
9050 9051 9052
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9053
 */
P
Peter Zijlstra 已提交
9054
static void task_fork_fair(struct task_struct *p)
9055
{
9056 9057
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9058
	struct rq *rq = this_rq();
9059
	struct rq_flags rf;
9060

9061
	rq_lock(rq, &rf);
9062 9063
	update_rq_clock(rq);

9064 9065
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9066 9067
	if (curr) {
		update_curr(cfs_rq);
9068
		se->vruntime = curr->vruntime;
9069
	}
9070
	place_entity(cfs_rq, se, 1);
9071

P
Peter Zijlstra 已提交
9072
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9073
		/*
9074 9075 9076
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9077
		swap(curr->vruntime, se->vruntime);
9078
		resched_curr(rq);
9079
	}
9080

9081
	se->vruntime -= cfs_rq->min_vruntime;
9082
	rq_unlock(rq, &rf);
9083 9084
}

9085 9086 9087 9088
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9089 9090
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9091
{
9092
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9093 9094
		return;

9095 9096 9097 9098 9099
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9100
	if (rq->curr == p) {
9101
		if (p->prio > oldprio)
9102
			resched_curr(rq);
9103
	} else
9104
		check_preempt_curr(rq, p, 0);
9105 9106
}

9107
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9108 9109 9110 9111
{
	struct sched_entity *se = &p->se;

	/*
9112 9113 9114 9115 9116 9117 9118 9119 9120 9121
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9122
	 *
9123 9124 9125 9126
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9127
	 */
9128 9129 9130 9131 9132 9133
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(se, UPDATE_TG);
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9159
static void detach_entity_cfs_rq(struct sched_entity *se)
9160 9161 9162
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9163
	/* Catch up with the cfs_rq and remove our load when we leave */
9164
	update_load_avg(se, 0);
9165
	detach_entity_load_avg(cfs_rq, se);
9166
	update_tg_load_avg(cfs_rq, false);
9167
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9168 9169
}

9170
static void attach_entity_cfs_rq(struct sched_entity *se)
9171
{
9172
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9173 9174

#ifdef CONFIG_FAIR_GROUP_SCHED
9175 9176 9177 9178 9179 9180
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9181

9182
	/* Synchronize entity with its cfs_rq */
9183
	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9184
	attach_entity_load_avg(cfs_rq, se);
9185
	update_tg_load_avg(cfs_rq, false);
9186
	propagate_entity_cfs_rq(se);
9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9212 9213 9214 9215

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9216

9217 9218 9219 9220 9221 9222 9223 9224
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9225

9226
	if (task_on_rq_queued(p)) {
9227
		/*
9228 9229 9230
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9231
		 */
9232 9233 9234 9235
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9236
	}
9237 9238
}

9239 9240 9241 9242 9243 9244 9245 9246 9247
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9248 9249 9250 9251 9252 9253 9254
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9255 9256
}

9257 9258 9259 9260 9261 9262 9263
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9264
#ifdef CONFIG_SMP
9265 9266 9267
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->propagate_avg = 0;
#endif
9268 9269
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9270
#endif
9271 9272
}

P
Peter Zijlstra 已提交
9273
#ifdef CONFIG_FAIR_GROUP_SCHED
9274 9275 9276 9277 9278 9279 9280 9281
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9282
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9283
{
9284
	detach_task_cfs_rq(p);
9285
	set_task_rq(p, task_cpu(p));
9286 9287 9288 9289 9290

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9291
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9292
}
9293

9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9307 9308 9309 9310 9311 9312 9313 9314 9315
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9316
		if (tg->se)
9317 9318 9319 9320 9321 9322 9323 9324 9325 9326
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9327
	struct cfs_rq *cfs_rq;
9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9354
		init_entity_runnable_average(se);
9355 9356 9357 9358 9359 9360 9361 9362 9363 9364
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9376
		update_rq_clock(rq);
9377
		attach_entity_cfs_rq(se);
9378
		sync_throttle(tg, i);
9379 9380 9381 9382
		raw_spin_unlock_irq(&rq->lock);
	}
}

9383
void unregister_fair_sched_group(struct task_group *tg)
9384 9385
{
	unsigned long flags;
9386 9387
	struct rq *rq;
	int cpu;
9388

9389 9390 9391
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9392

9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9425
	if (!parent) {
9426
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9427 9428
		se->depth = 0;
	} else {
9429
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9430 9431
		se->depth = parent->depth + 1;
	}
9432 9433

	se->my_q = cfs_rq;
9434 9435
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9460 9461
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9462 9463

		/* Propagate contribution to hierarchy */
9464
		rq_lock_irqsave(rq, &rf);
9465
		update_rq_clock(rq);
9466 9467 9468 9469
		for_each_sched_entity(se) {
			update_load_avg(se, UPDATE_TG);
			update_cfs_shares(se);
		}
9470
		rq_unlock_irqrestore(rq, &rf);
9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9486 9487
void online_fair_sched_group(struct task_group *tg) { }

9488
void unregister_fair_sched_group(struct task_group *tg) { }
9489 9490 9491

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9492

9493
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9494 9495 9496 9497 9498 9499 9500 9501 9502
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9503
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9504 9505 9506 9507

	return rr_interval;
}

9508 9509 9510
/*
 * All the scheduling class methods:
 */
9511
const struct sched_class fair_sched_class = {
9512
	.next			= &idle_sched_class,
9513 9514 9515
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9516
	.yield_to_task		= yield_to_task_fair,
9517

I
Ingo Molnar 已提交
9518
	.check_preempt_curr	= check_preempt_wakeup,
9519 9520 9521 9522

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9523
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9524
	.select_task_rq		= select_task_rq_fair,
9525
	.migrate_task_rq	= migrate_task_rq_fair,
9526

9527 9528
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9529

9530
	.task_dead		= task_dead_fair,
9531
	.set_cpus_allowed	= set_cpus_allowed_common,
9532
#endif
9533

9534
	.set_curr_task          = set_curr_task_fair,
9535
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9536
	.task_fork		= task_fork_fair,
9537 9538

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9539
	.switched_from		= switched_from_fair,
9540
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9541

9542 9543
	.get_rr_interval	= get_rr_interval_fair,

9544 9545
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9546
#ifdef CONFIG_FAIR_GROUP_SCHED
9547
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9548
#endif
9549 9550 9551
};

#ifdef CONFIG_SCHED_DEBUG
9552
void print_cfs_stats(struct seq_file *m, int cpu)
9553
{
9554
	struct cfs_rq *cfs_rq, *pos;
9555

9556
	rcu_read_lock();
9557
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9558
		print_cfs_rq(m, cpu, cfs_rq);
9559
	rcu_read_unlock();
9560
}
9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9582 9583 9584 9585 9586 9587

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9588
#ifdef CONFIG_NO_HZ_COMMON
9589
	nohz.next_balance = jiffies;
9590 9591 9592 9593 9594
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}