fair.c 250.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched/mm.h>
24 25
#include <linux/sched/topology.h>

26
#include <linux/latencytop.h>
27
#include <linux/cpumask.h>
28
#include <linux/cpuidle.h>
29 30 31
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
32
#include <linux/mempolicy.h>
33
#include <linux/migrate.h>
34
#include <linux/task_work.h>
35 36 37 38

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
39

40
/*
41
 * Targeted preemption latency for CPU-bound tasks:
42
 *
43
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
44 45 46
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
47
 *
I
Ingo Molnar 已提交
48 49
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
50 51
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52
 */
53 54
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55

56 57 58 59
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
60 61 62 63 64 65
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66
 */
67
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68

69
/*
70
 * Minimal preemption granularity for CPU-bound tasks:
71
 *
72
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73
 */
74 75
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 77

/*
78
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79
 */
80
static unsigned int sched_nr_latency = 8;
81 82

/*
83
 * After fork, child runs first. If set to 0 (default) then
84
 * parent will (try to) run first.
85
 */
86
unsigned int sysctl_sched_child_runs_first __read_mostly;
87 88 89 90 91 92 93

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
94 95
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96
 */
97 98
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99

100
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101

T
Tim Chen 已提交
102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

112 113 114 115 116 117 118 119 120
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
121 122 123
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 125
#endif

126 127
/*
 * The margin used when comparing utilization with CPU capacity:
128
 * util * margin < capacity * 1024
129 130
 *
 * (default: ~20%)
131
 */
132
unsigned int capacity_margin				= 1280;
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

152 153 154 155 156 157 158 159 160
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
161
static unsigned int get_update_sysctl_factor(void)
162
{
163
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

199
#define WMULT_CONST	(~0U)
200 201
#define WMULT_SHIFT	32

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
218 219

/*
220 221 222 223
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
224
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 226 227 228 229
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
230
 */
231
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232
{
233 234
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
235

236
	__update_inv_weight(lw);
237

238 239 240 241 242
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
243 244
	}

245 246
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
247

248 249 250 251
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
252

253
	return mul_u64_u32_shr(delta_exec, fact, shift);
254 255 256 257
}


const struct sched_class fair_sched_class;
258

259 260 261 262
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

263
#ifdef CONFIG_FAIR_GROUP_SCHED
264

265
/* cpu runqueue to which this cfs_rq is attached */
266 267
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
268
	return cfs_rq->rq;
269 270
}

271 272
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
273

274 275
static inline struct task_struct *task_of(struct sched_entity *se)
{
276
	SCHED_WARN_ON(!entity_is_task(se));
277 278 279
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

301 302 303
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
304 305
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
306 307 308
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
309 310 311 312 313
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
314 315
		 */
		if (cfs_rq->tg->parent &&
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
336
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357
		}
358 359 360 361 362 363 364 365 366 367 368 369 370

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
371
/* Iterate thr' all leaf cfs_rq's on a runqueue */
372 373 374
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
375 376

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
377
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
378 379 380
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
381
		return se->cfs_rq;
P
Peter Zijlstra 已提交
382

P
Peter Zijlstra 已提交
383
	return NULL;
P
Peter Zijlstra 已提交
384 385 386 387 388 389 390
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

391 392 393 394 395 396 397 398 399 400 401 402 403
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
404 405
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

423 424 425 426 427 428
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
429

430 431 432
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
433 434 435 436
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
437 438
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
439

P
Peter Zijlstra 已提交
440
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
441
{
P
Peter Zijlstra 已提交
442
	return &task_rq(p)->cfs;
443 444
}

P
Peter Zijlstra 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

459 460 461 462 463 464 465 466
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

467 468
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
469 470 471 472 473 474

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

475 476 477 478 479
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
480 481
#endif	/* CONFIG_FAIR_GROUP_SCHED */

482
static __always_inline
483
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
484 485 486 487 488

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

489
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
490
{
491
	s64 delta = (s64)(vruntime - max_vruntime);
492
	if (delta > 0)
493
		max_vruntime = vruntime;
494

495
	return max_vruntime;
496 497
}

498
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
499 500 501 502 503 504 505 506
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

507 508 509 510 511 512
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

513 514
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
515 516
	struct sched_entity *curr = cfs_rq->curr;

517 518
	u64 vruntime = cfs_rq->min_vruntime;

519 520 521 522 523 524
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
525 526 527 528 529 530

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

531
		if (!curr)
532 533 534 535 536
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

537
	/* ensure we never gain time by being placed backwards. */
538
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
539 540 541 542
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
543 544
}

545 546 547
/*
 * Enqueue an entity into the rb-tree:
 */
548
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
565
		if (entity_before(se, entry)) {
566 567 568 569 570 571 572 573 574 575 576
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
577
	if (leftmost)
I
Ingo Molnar 已提交
578
		cfs_rq->rb_leftmost = &se->run_node;
579 580 581 582 583

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

584
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
585
{
P
Peter Zijlstra 已提交
586 587 588 589 590 591
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
592

593 594 595
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

596
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
597
{
598 599 600 601 602 603
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
604 605
}

606 607 608 609 610 611 612 613 614 615 616
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
617
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
618
{
619
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
620

621 622
	if (!last)
		return NULL;
623 624

	return rb_entry(last, struct sched_entity, run_node);
625 626
}

627 628 629 630
/**************************************************************
 * Scheduling class statistics methods:
 */

631
int sched_proc_update_handler(struct ctl_table *table, int write,
632
		void __user *buffer, size_t *lenp,
633 634
		loff_t *ppos)
{
635
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
636
	unsigned int factor = get_update_sysctl_factor();
637 638 639 640 641 642 643

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

644 645 646 647 648 649 650
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

651 652 653
	return 0;
}
#endif
654

655
/*
656
 * delta /= w
657
 */
658
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
659
{
660
	if (unlikely(se->load.weight != NICE_0_LOAD))
661
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
662 663 664 665

	return delta;
}

666 667 668
/*
 * The idea is to set a period in which each task runs once.
 *
669
 * When there are too many tasks (sched_nr_latency) we have to stretch
670 671 672 673
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
674 675
static u64 __sched_period(unsigned long nr_running)
{
676 677 678 679
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
680 681
}

682 683 684 685
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
686
 * s = p*P[w/rw]
687
 */
P
Peter Zijlstra 已提交
688
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
689
{
M
Mike Galbraith 已提交
690
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
691

M
Mike Galbraith 已提交
692
	for_each_sched_entity(se) {
L
Lin Ming 已提交
693
		struct load_weight *load;
694
		struct load_weight lw;
L
Lin Ming 已提交
695 696 697

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
698

M
Mike Galbraith 已提交
699
		if (unlikely(!se->on_rq)) {
700
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
701 702 703 704

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
705
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
706 707
	}
	return slice;
708 709
}

710
/*
A
Andrei Epure 已提交
711
 * We calculate the vruntime slice of a to-be-inserted task.
712
 *
713
 * vs = s/w
714
 */
715
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
716
{
717
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
718 719
}

720
#ifdef CONFIG_SMP
721 722 723

#include "sched-pelt.h"

724
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
725 726
static unsigned long task_h_load(struct task_struct *p);

727 728
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
729
{
730
	struct sched_avg *sa = &se->avg;
731

732 733 734 735 736 737 738
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
739 740 741 742 743 744 745 746
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
		sa->load_avg = scale_load_down(se->load.weight);
747
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
748 749 750 751 752
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
753
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
754
}
755

756
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
757
static void attach_entity_cfs_rq(struct sched_entity *se);
758

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
788
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
789 790 791 792 793 794 795 796 797 798 799 800 801

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
802 803 804 805 806 807 808

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
809
			update_cfs_rq_load_avg(now, cfs_rq);
810 811 812 813 814 815
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
816
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
817 818 819 820
			return;
		}
	}

821
	attach_entity_cfs_rq(se);
822 823
}

824
#else /* !CONFIG_SMP */
825
void init_entity_runnable_average(struct sched_entity *se)
826 827
{
}
828 829 830
void post_init_entity_util_avg(struct sched_entity *se)
{
}
831 832 833
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
834
#endif /* CONFIG_SMP */
835

836
/*
837
 * Update the current task's runtime statistics.
838
 */
839
static void update_curr(struct cfs_rq *cfs_rq)
840
{
841
	struct sched_entity *curr = cfs_rq->curr;
842
	u64 now = rq_clock_task(rq_of(cfs_rq));
843
	u64 delta_exec;
844 845 846 847

	if (unlikely(!curr))
		return;

848 849
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
850
		return;
851

I
Ingo Molnar 已提交
852
	curr->exec_start = now;
853

854 855 856 857
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
858
	schedstat_add(cfs_rq->exec_clock, delta_exec);
859 860 861 862

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

863 864 865
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

866
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
867
		cpuacct_charge(curtask, delta_exec);
868
		account_group_exec_runtime(curtask, delta_exec);
869
	}
870 871

	account_cfs_rq_runtime(cfs_rq, delta_exec);
872 873
}

874 875 876 877 878
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

879
static inline void
880
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
881
{
882 883 884 885 886 887 888
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
889 890

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
891 892
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
893

894
	schedstat_set(se->statistics.wait_start, wait_start);
895 896
}

897
static inline void
898 899 900
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
901 902
	u64 delta;

903 904 905 906
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
907 908 909 910 911 912 913 914 915

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
916
			schedstat_set(se->statistics.wait_start, delta);
917 918 919 920 921
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

922 923 924 925 926
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
927 928
}

929
static inline void
930 931 932
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
933 934 935 936 937 938 939
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
940 941 942 943

	if (entity_is_task(se))
		tsk = task_of(se);

944 945
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
946 947 948 949

		if ((s64)delta < 0)
			delta = 0;

950 951
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
952

953 954
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
955 956 957 958 959 960

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
961 962
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
963 964 965 966

		if ((s64)delta < 0)
			delta = 0;

967 968
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
969

970 971
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
972 973 974

		if (tsk) {
			if (tsk->in_iowait) {
975 976
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
995 996
}

997 998 999
/*
 * Task is being enqueued - update stats:
 */
1000
static inline void
1001
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1002
{
1003 1004 1005
	if (!schedstat_enabled())
		return;

1006 1007 1008 1009
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
1010
	if (se != cfs_rq->curr)
1011
		update_stats_wait_start(cfs_rq, se);
1012 1013 1014

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
1015 1016 1017
}

static inline void
1018
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1019
{
1020 1021 1022 1023

	if (!schedstat_enabled())
		return;

1024 1025 1026 1027
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1028
	if (se != cfs_rq->curr)
1029
		update_stats_wait_end(cfs_rq, se);
1030

1031 1032
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1033

1034 1035 1036 1037 1038 1039
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
1040 1041 1042
	}
}

1043 1044 1045 1046
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1047
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1048 1049 1050 1051
{
	/*
	 * We are starting a new run period:
	 */
1052
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1053 1054 1055 1056 1057 1058
}

/**************************************************
 * Scheduling class queueing methods:
 */

1059 1060
#ifdef CONFIG_NUMA_BALANCING
/*
1061 1062 1063
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1064
 */
1065 1066
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1067 1068 1069

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1070

1071 1072 1073
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1121
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1122 1123 1124
	unsigned int scan, floor;
	unsigned int windows = 1;

1125 1126
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1127 1128 1129 1130 1131 1132
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1152 1153
static unsigned int task_scan_max(struct task_struct *p)
{
1154 1155
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1156 1157 1158

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1174 1175 1176
	return max(smin, smax);
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1189 1190 1191 1192 1193 1194 1195 1196 1197
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1198 1199 1200 1201 1202
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1203 1204 1205 1206 1207 1208 1209
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1210
{
1211
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1212 1213 1214 1215
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1216
	if (!p->numa_faults)
1217 1218
		return 0;

1219 1220
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1221 1222
}

1223 1224 1225 1226 1227
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1228 1229
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1230 1231
}

1232 1233
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1234 1235
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1236 1237
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1339 1340 1341 1342 1343 1344
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1345 1346
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1347
{
1348
	unsigned long faults, total_faults;
1349

1350
	if (!p->numa_faults)
1351 1352 1353 1354 1355 1356 1357
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1358
	faults = task_faults(p, nid);
1359 1360
	faults += score_nearby_nodes(p, nid, dist, true);

1361
	return 1000 * faults / total_faults;
1362 1363
}

1364 1365
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1366
{
1367 1368 1369 1370 1371 1372 1373 1374
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1375 1376
		return 0;

1377
	faults = group_faults(p, nid);
1378 1379
	faults += score_nearby_nodes(p, nid, dist, false);

1380
	return 1000 * faults / total_faults;
1381 1382
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1423 1424
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1425
	 */
1426 1427
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1428 1429 1430
		return true;

	/*
1431 1432 1433 1434 1435 1436
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1437
	 */
1438 1439
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1440 1441
}

1442
static unsigned long weighted_cpuload(struct rq *rq);
1443 1444
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1445
static unsigned long capacity_of(int cpu);
1446

1447
/* Cached statistics for all CPUs within a node */
1448
struct numa_stats {
1449
	unsigned long nr_running;
1450
	unsigned long load;
1451 1452

	/* Total compute capacity of CPUs on a node */
1453
	unsigned long compute_capacity;
1454 1455

	/* Approximate capacity in terms of runnable tasks on a node */
1456
	unsigned long task_capacity;
1457
	int has_free_capacity;
1458
};
1459

1460 1461 1462 1463 1464
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1465 1466
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1467 1468 1469 1470 1471 1472

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1473
		ns->load += weighted_cpuload(rq);
1474
		ns->compute_capacity += capacity_of(cpu);
1475 1476

		cpus++;
1477 1478
	}

1479 1480 1481 1482 1483
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1484 1485
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1486 1487 1488 1489
	 */
	if (!cpus)
		return;

1490 1491 1492 1493 1494 1495
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1496
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1497 1498
}

1499 1500
struct task_numa_env {
	struct task_struct *p;
1501

1502 1503
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1504

1505
	struct numa_stats src_stats, dst_stats;
1506

1507
	int imbalance_pct;
1508
	int dist;
1509 1510 1511

	struct task_struct *best_task;
	long best_imp;
1512 1513 1514
	int best_cpu;
};

1515 1516 1517 1518 1519
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1520 1521
	if (p)
		get_task_struct(p);
1522 1523 1524 1525 1526 1527

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1528
static bool load_too_imbalanced(long src_load, long dst_load,
1529 1530
				struct task_numa_env *env)
{
1531 1532
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1544 1545

	/* We care about the slope of the imbalance, not the direction. */
1546 1547
	if (dst_load < src_load)
		swap(dst_load, src_load);
1548 1549

	/* Is the difference below the threshold? */
1550 1551
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1552 1553 1554 1555 1556
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1557
	 * Compare it with the old imbalance.
1558
	 */
1559
	orig_src_load = env->src_stats.load;
1560
	orig_dst_load = env->dst_stats.load;
1561

1562 1563
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1564

1565 1566 1567 1568 1569
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1570 1571
}

1572 1573 1574 1575 1576 1577
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1578 1579
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1580 1581 1582 1583
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1584
	long src_load, dst_load;
1585
	long load;
1586
	long imp = env->p->numa_group ? groupimp : taskimp;
1587
	long moveimp = imp;
1588
	int dist = env->dist;
1589 1590

	rcu_read_lock();
1591 1592
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1593 1594
		cur = NULL;

1595 1596 1597 1598 1599 1600 1601
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1602 1603 1604 1605 1606 1607 1608 1609 1610
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
1611
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1612 1613
			goto unlock;

1614 1615
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1616
		 * in any group then look only at task weights.
1617
		 */
1618
		if (cur->numa_group == env->p->numa_group) {
1619 1620
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1621 1622 1623 1624 1625 1626
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1627
		} else {
1628 1629 1630 1631 1632 1633
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1634 1635
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1636
			else
1637 1638
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1639
		}
1640 1641
	}

1642
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1643 1644 1645 1646
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1647
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1648
		    !env->dst_stats.has_free_capacity)
1649 1650 1651 1652 1653 1654
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1655 1656
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1657 1658 1659 1660 1661 1662
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1663 1664 1665
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1684
	if (cur) {
1685 1686 1687
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1688 1689
	}

1690
	if (load_too_imbalanced(src_load, dst_load, env))
1691 1692
		goto unlock;

1693 1694 1695 1696
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1697 1698 1699 1700 1701 1702
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1703 1704
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1705 1706
		local_irq_enable();
	}
1707

1708 1709 1710 1711 1712 1713
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1714 1715
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1716 1717 1718 1719 1720
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1721
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1722 1723 1724
			continue;

		env->dst_cpu = cpu;
1725
		task_numa_compare(env, taskimp, groupimp);
1726 1727 1728
	}
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1746 1747 1748
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1749 1750 1751 1752 1753
		return true;

	return false;
}

1754 1755 1756 1757
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1758

1759
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1760
		.src_nid = task_node(p),
1761 1762 1763 1764 1765

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1766
		.best_cpu = -1,
1767 1768
	};
	struct sched_domain *sd;
1769
	unsigned long taskweight, groupweight;
1770
	int nid, ret, dist;
1771
	long taskimp, groupimp;
1772

1773
	/*
1774 1775 1776 1777 1778 1779
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1780 1781
	 */
	rcu_read_lock();
1782
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1783 1784
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1785 1786
	rcu_read_unlock();

1787 1788 1789 1790 1791 1792 1793
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1794
		p->numa_preferred_nid = task_node(p);
1795 1796 1797
		return -EINVAL;
	}

1798
	env.dst_nid = p->numa_preferred_nid;
1799 1800 1801 1802 1803 1804
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1805
	update_numa_stats(&env.dst_stats, env.dst_nid);
1806

1807
	/* Try to find a spot on the preferred nid. */
1808 1809
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1810

1811 1812 1813 1814 1815 1816 1817
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1818
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1819 1820 1821
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1822

1823
			dist = node_distance(env.src_nid, env.dst_nid);
1824 1825 1826 1827 1828
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1829

1830
			/* Only consider nodes where both task and groups benefit */
1831 1832
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1833
			if (taskimp < 0 && groupimp < 0)
1834 1835
				continue;

1836
			env.dist = dist;
1837 1838
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1839 1840
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1841 1842 1843
		}
	}

1844 1845 1846 1847 1848 1849 1850 1851
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1852
	if (p->numa_group) {
1853 1854
		struct numa_group *ng = p->numa_group;

1855 1856 1857 1858 1859
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1860
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1861 1862 1863 1864 1865 1866
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1867

1868 1869 1870 1871
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
1872
	p->numa_scan_period = task_scan_start(p);
1873

1874
	if (env.best_task == NULL) {
1875 1876 1877
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1878 1879 1880 1881
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1882 1883
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1884 1885
	put_task_struct(env.best_task);
	return ret;
1886 1887
}

1888 1889 1890
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1891 1892
	unsigned long interval = HZ;

1893
	/* This task has no NUMA fault statistics yet */
1894
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1895 1896
		return;

1897
	/* Periodically retry migrating the task to the preferred node */
1898 1899
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1900 1901

	/* Success if task is already running on preferred CPU */
1902
	if (task_node(p) == p->numa_preferred_nid)
1903 1904 1905
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1906
	task_numa_migrate(p);
1907 1908
}

1909
/*
1910
 * Find out how many nodes on the workload is actively running on. Do this by
1911 1912 1913 1914
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1915
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1916 1917
{
	unsigned long faults, max_faults = 0;
1918
	int nid, active_nodes = 0;
1919 1920 1921 1922 1923 1924 1925 1926 1927

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1928 1929
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1930
	}
1931 1932 1933

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1934 1935
}

1936 1937 1938
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1939 1940 1941
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1942 1943
 */
#define NUMA_PERIOD_SLOTS 10
1944
#define NUMA_PERIOD_THRESHOLD 7
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1956
	int lr_ratio, ps_ratio;
1957 1958 1959 1960 1961 1962 1963 1964
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1965 1966 1967
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1968
	 */
1969
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2005 2006 2007 2008 2009
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
2010 2011 2012
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
2013
		 */
2014 2015
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2016 2017 2018 2019 2020 2021 2022
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
2041 2042
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
2043 2044 2045 2046 2047 2048 2049 2050
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2098
		nodemask_t max_group = NODE_MASK_NONE;
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2132 2133
		if (!max_faults)
			break;
2134 2135 2136 2137 2138
		nodes = max_group;
	}
	return nid;
}

2139 2140
static void task_numa_placement(struct task_struct *p)
{
2141 2142
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2143
	unsigned long fault_types[2] = { 0, 0 };
2144 2145
	unsigned long total_faults;
	u64 runtime, period;
2146
	spinlock_t *group_lock = NULL;
2147

2148 2149 2150 2151 2152
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2153
	seq = READ_ONCE(p->mm->numa_scan_seq);
2154 2155 2156
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2157
	p->numa_scan_period_max = task_scan_max(p);
2158

2159 2160 2161 2162
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2163 2164 2165
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2166
		spin_lock_irq(group_lock);
2167 2168
	}

2169 2170
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2171 2172
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2173
		unsigned long faults = 0, group_faults = 0;
2174
		int priv;
2175

2176
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2177
			long diff, f_diff, f_weight;
2178

2179 2180 2181 2182
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2183

2184
			/* Decay existing window, copy faults since last scan */
2185 2186 2187
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2188

2189 2190 2191 2192 2193 2194 2195 2196
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2197
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2198
				   (total_faults + 1);
2199 2200
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2201

2202 2203 2204
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2205
			p->total_numa_faults += diff;
2206
			if (p->numa_group) {
2207 2208 2209 2210 2211 2212 2213 2214 2215
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2216
				p->numa_group->total_faults += diff;
2217
				group_faults += p->numa_group->faults[mem_idx];
2218
			}
2219 2220
		}

2221 2222 2223 2224
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2225 2226 2227 2228 2229 2230 2231

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2232 2233
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2234
	if (p->numa_group) {
2235
		numa_group_count_active_nodes(p->numa_group);
2236
		spin_unlock_irq(group_lock);
2237
		max_nid = preferred_group_nid(p, max_group_nid);
2238 2239
	}

2240 2241 2242 2243 2244 2245 2246
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2247
	}
2248 2249
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2261 2262
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2263 2264 2265 2266 2267 2268 2269 2270 2271
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2272
				    4*nr_node_ids*sizeof(unsigned long);
2273 2274 2275 2276 2277 2278

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2279 2280
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2281
		spin_lock_init(&grp->lock);
2282
		grp->gid = p->pid;
2283
		/* Second half of the array tracks nids where faults happen */
2284 2285
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2286

2287
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2288
			grp->faults[i] = p->numa_faults[i];
2289

2290
		grp->total_faults = p->total_numa_faults;
2291

2292 2293 2294 2295 2296
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2297
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2298 2299

	if (!cpupid_match_pid(tsk, cpupid))
2300
		goto no_join;
2301 2302 2303

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2304
		goto no_join;
2305 2306 2307

	my_grp = p->numa_group;
	if (grp == my_grp)
2308
		goto no_join;
2309 2310 2311 2312 2313 2314

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2315
		goto no_join;
2316 2317 2318 2319 2320

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2321
		goto no_join;
2322

2323 2324 2325 2326 2327 2328 2329
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2330

2331 2332 2333
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2334
	if (join && !get_numa_group(grp))
2335
		goto no_join;
2336 2337 2338 2339 2340 2341

	rcu_read_unlock();

	if (!join)
		return;

2342 2343
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2344

2345
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2346 2347
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2348
	}
2349 2350
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2351 2352 2353 2354 2355

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2356
	spin_unlock_irq(&grp->lock);
2357 2358 2359 2360

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2361 2362 2363 2364 2365
	return;

no_join:
	rcu_read_unlock();
	return;
2366 2367 2368 2369 2370
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2371
	void *numa_faults = p->numa_faults;
2372 2373
	unsigned long flags;
	int i;
2374 2375

	if (grp) {
2376
		spin_lock_irqsave(&grp->lock, flags);
2377
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2378
			grp->faults[i] -= p->numa_faults[i];
2379
		grp->total_faults -= p->total_numa_faults;
2380

2381
		grp->nr_tasks--;
2382
		spin_unlock_irqrestore(&grp->lock, flags);
2383
		RCU_INIT_POINTER(p->numa_group, NULL);
2384 2385 2386
		put_numa_group(grp);
	}

2387
	p->numa_faults = NULL;
2388
	kfree(numa_faults);
2389 2390
}

2391 2392 2393
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2394
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2395 2396
{
	struct task_struct *p = current;
2397
	bool migrated = flags & TNF_MIGRATED;
2398
	int cpu_node = task_node(current);
2399
	int local = !!(flags & TNF_FAULT_LOCAL);
2400
	struct numa_group *ng;
2401
	int priv;
2402

2403
	if (!static_branch_likely(&sched_numa_balancing))
2404 2405
		return;

2406 2407 2408 2409
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2410
	/* Allocate buffer to track faults on a per-node basis */
2411 2412
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2413
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2414

2415 2416
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2417
			return;
2418

2419
		p->total_numa_faults = 0;
2420
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2421
	}
2422

2423 2424 2425 2426 2427 2428 2429 2430
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2431
		if (!priv && !(flags & TNF_NO_GROUP))
2432
			task_numa_group(p, last_cpupid, flags, &priv);
2433 2434
	}

2435 2436 2437 2438 2439 2440
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2441 2442 2443 2444
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2445 2446
		local = 1;

2447
	task_numa_placement(p);
2448

2449 2450 2451 2452 2453
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2454 2455
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2456 2457
	if (migrated)
		p->numa_pages_migrated += pages;
2458 2459
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2460

2461 2462
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2463
	p->numa_faults_locality[local] += pages;
2464 2465
}

2466 2467
static void reset_ptenuma_scan(struct task_struct *p)
{
2468 2469 2470 2471 2472 2473 2474 2475
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2476
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2477 2478 2479
	p->mm->numa_scan_offset = 0;
}

2480 2481 2482 2483 2484 2485 2486 2487 2488
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2489
	u64 runtime = p->se.sum_exec_runtime;
2490
	struct vm_area_struct *vma;
2491
	unsigned long start, end;
2492
	unsigned long nr_pte_updates = 0;
2493
	long pages, virtpages;
2494

2495
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2509
	if (!mm->numa_next_scan) {
2510 2511
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2512 2513
	}

2514 2515 2516 2517 2518 2519 2520
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2521 2522
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2523
		p->numa_scan_period = task_scan_start(p);
2524
	}
2525

2526
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2527 2528 2529
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2530 2531 2532 2533 2534 2535
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2536 2537 2538
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2539
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2540 2541
	if (!pages)
		return;
2542

2543

2544 2545
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2546
	vma = find_vma(mm, start);
2547 2548
	if (!vma) {
		reset_ptenuma_scan(p);
2549
		start = 0;
2550 2551
		vma = mm->mmap;
	}
2552
	for (; vma; vma = vma->vm_next) {
2553
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2554
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2555
			continue;
2556
		}
2557

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2568 2569 2570 2571 2572 2573
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2574

2575 2576 2577 2578
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2579
			nr_pte_updates = change_prot_numa(vma, start, end);
2580 2581

			/*
2582 2583 2584 2585 2586 2587
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2588 2589 2590
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2591
			virtpages -= (end - start) >> PAGE_SHIFT;
2592

2593
			start = end;
2594
			if (pages <= 0 || virtpages <= 0)
2595
				goto out;
2596 2597

			cond_resched();
2598
		} while (end != vma->vm_end);
2599
	}
2600

2601
out:
2602
	/*
P
Peter Zijlstra 已提交
2603 2604 2605 2606
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2607 2608
	 */
	if (vma)
2609
		mm->numa_scan_offset = start;
2610 2611 2612
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2649
	if (now > curr->node_stamp + period) {
2650
		if (!curr->node_stamp)
2651
			curr->numa_scan_period = task_scan_start(curr);
2652
		curr->node_stamp += period;
2653 2654 2655 2656 2657 2658 2659

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2660

2661 2662 2663 2664
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2665 2666 2667 2668 2669 2670 2671 2672

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2673

2674 2675
#endif /* CONFIG_NUMA_BALANCING */

2676 2677 2678 2679
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2680
	if (!parent_entity(se))
2681
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2682
#ifdef CONFIG_SMP
2683 2684 2685 2686 2687 2688
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2689
#endif
2690 2691 2692 2693 2694 2695 2696
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2697
	if (!parent_entity(se))
2698
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2699
#ifdef CONFIG_SMP
2700 2701
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2702
		list_del_init(&se->group_node);
2703
	}
2704
#endif
2705 2706 2707
	cfs_rq->nr_running--;
}

2708 2709
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2710
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2711
{
2712
	long tg_weight, load, shares;
2713 2714

	/*
2715 2716 2717
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2718
	 */
2719
	load = scale_load_down(cfs_rq->load.weight);
2720

2721
	tg_weight = atomic_long_read(&tg->load_avg);
2722

2723 2724 2725
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2726 2727

	shares = (tg->shares * load);
2728 2729
	if (tg_weight)
		shares /= tg_weight;
2730

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2743 2744 2745 2746 2747 2748 2749 2750
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2751
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2752 2753 2754 2755
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2756

P
Peter Zijlstra 已提交
2757 2758 2759
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2760 2761 2762 2763
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2764
		account_entity_dequeue(cfs_rq, se);
2765
	}
P
Peter Zijlstra 已提交
2766 2767 2768 2769 2770 2771 2772

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2773 2774
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2775
static void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2776
{
2777
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
P
Peter Zijlstra 已提交
2778
	struct task_group *tg;
2779
	long shares;
P
Peter Zijlstra 已提交
2780

2781 2782 2783 2784
	if (!cfs_rq)
		return;

	if (throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2785
		return;
2786 2787 2788

	tg = cfs_rq->tg;

2789 2790 2791 2792
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2793
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2794 2795 2796

	reweight_entity(cfs_rq_of(se), se, shares);
}
2797

P
Peter Zijlstra 已提交
2798
#else /* CONFIG_FAIR_GROUP_SCHED */
2799
static inline void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2800 2801 2802 2803
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
	if (&this_rq()->cfs == cfs_rq) {
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
		cpufreq_update_util(rq_of(cfs_rq), 0);
	}
}

2827
#ifdef CONFIG_SMP
2828 2829 2830 2831
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
2832
static u64 decay_load(u64 val, u64 n)
2833
{
2834 2835
	unsigned int local_n;

2836
	if (unlikely(n > LOAD_AVG_PERIOD * 63))
2837 2838 2839 2840 2841 2842 2843
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2844 2845
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2846 2847 2848 2849 2850 2851
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2852 2853
	}

2854 2855
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2856 2857
}

2858
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2859
{
2860
	u32 c1, c2, c3 = d3; /* y^0 == 1 */
2861

2862
	/*
P
Peter Zijlstra 已提交
2863
	 * c1 = d1 y^p
2864
	 */
2865
	c1 = decay_load((u64)d1, periods);
2866 2867

	/*
P
Peter Zijlstra 已提交
2868
	 *            p-1
2869 2870
	 * c2 = 1024 \Sum y^n
	 *            n=1
2871
	 *
2872 2873
	 *              inf        inf
	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
P
Peter Zijlstra 已提交
2874
	 *              n=0        n=p
2875
	 */
2876
	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2877 2878

	return c1 + c2 + c3;
2879 2880
}

2881
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2882

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
/*
 * Accumulate the three separate parts of the sum; d1 the remainder
 * of the last (incomplete) period, d2 the span of full periods and d3
 * the remainder of the (incomplete) current period.
 *
 *           d1          d2           d3
 *           ^           ^            ^
 *           |           |            |
 *         |<->|<----------------->|<--->|
 * ... |---x---|------| ... |------|-----x (now)
 *
P
Peter Zijlstra 已提交
2894 2895 2896
 *                           p-1
 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
 *                           n=1
2897
 *
P
Peter Zijlstra 已提交
2898
 *    = u y^p +					(Step 1)
2899
 *
P
Peter Zijlstra 已提交
2900 2901 2902
 *                     p-1
 *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
 *                     n=1
2903 2904 2905 2906 2907 2908
 */
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
	       unsigned long weight, int running, struct cfs_rq *cfs_rq)
{
	unsigned long scale_freq, scale_cpu;
2909
	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	u64 periods;

	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

	delta += sa->period_contrib;
	periods = delta / 1024; /* A period is 1024us (~1ms) */

	/*
	 * Step 1: decay old *_sum if we crossed period boundaries.
	 */
	if (periods) {
		sa->load_sum = decay_load(sa->load_sum, periods);
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods);
		}
		sa->util_sum = decay_load((u64)(sa->util_sum), periods);

2929 2930 2931 2932 2933 2934 2935
		/*
		 * Step 2
		 */
		delta %= 1024;
		contrib = __accumulate_pelt_segments(periods,
				1024 - sa->period_contrib, delta);
	}
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	sa->period_contrib = delta;

	contrib = cap_scale(contrib, scale_freq);
	if (weight) {
		sa->load_sum += weight * contrib;
		if (cfs_rq)
			cfs_rq->runnable_load_sum += weight * contrib;
	}
	if (running)
		sa->util_sum += contrib * scale_cpu;

	return periods;
}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2978
static __always_inline int
2979
___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2980
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2981
{
2982
	u64 delta;
2983

2984
	delta = now - sa->last_update_time;
2985 2986 2987 2988 2989
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2990
		sa->last_update_time = now;
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
3001 3002

	sa->last_update_time += delta << 10;
3003

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	/*
	 * running is a subset of runnable (weight) so running can't be set if
	 * runnable is clear. But there are some corner cases where the current
	 * se has been already dequeued but cfs_rq->curr still points to it.
	 * This means that weight will be 0 but not running for a sched_entity
	 * but also for a cfs_rq if the latter becomes idle. As an example,
	 * this happens during idle_balance() which calls
	 * update_blocked_averages()
	 */
	if (!weight)
		running = 0;

3016 3017 3018 3019 3020 3021 3022 3023 3024
	/*
	 * Now we know we crossed measurement unit boundaries. The *_avg
	 * accrues by two steps:
	 *
	 * Step 1: accumulate *_sum since last_update_time. If we haven't
	 * crossed period boundaries, finish.
	 */
	if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
		return 0;
3025

3026 3027 3028
	/*
	 * Step 2: update *_avg.
	 */
3029
	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3030 3031
	if (cfs_rq) {
		cfs_rq->runnable_load_avg =
3032
			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3033
	}
3034
	sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
3035

3036
	return 1;
3037 3038
}

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
}

static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return ___update_load_avg(now, cpu, &se->avg,
				  se->on_rq * scale_load_down(se->load.weight),
				  cfs_rq->curr == se, NULL);
}

static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
	return ___update_load_avg(now, cpu, &cfs_rq->avg,
			scale_load_down(cfs_rq->load.weight),
			cfs_rq->curr != NULL, cfs_rq);
}

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

3081
#ifdef CONFIG_FAIR_GROUP_SCHED
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3095
 * Updating tg's load_avg is necessary before update_cfs_share().
3096
 */
3097
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3098
{
3099
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3100

3101 3102 3103 3104 3105 3106
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3107 3108 3109
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3110
	}
3111
}
3112

3113 3114 3115 3116 3117 3118 3119 3120
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3121 3122 3123
	u64 p_last_update_time;
	u64 n_last_update_time;

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3134 3135
	if (!(se->avg.last_update_time && prev))
		return;
3136 3137

#ifndef CONFIG_64BIT
3138
	{
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3153
	}
3154
#else
3155 3156
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3157
#endif
3158 3159
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3160
}
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281

/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta, load = gcfs_rq->avg.load_avg;

	/*
	 * If the load of group cfs_rq is null, the load of the
	 * sched_entity will also be null so we can skip the formula
	 */
	if (load) {
		long tg_load;

		/* Get tg's load and ensure tg_load > 0 */
		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;

		/* Ensure tg_load >= load and updated with current load*/
		tg_load -= gcfs_rq->tg_load_avg_contrib;
		tg_load += load;

		/*
		 * We need to compute a correction term in the case that the
		 * task group is consuming more CPU than a task of equal
		 * weight. A task with a weight equals to tg->shares will have
		 * a load less or equal to scale_load_down(tg->shares).
		 * Similarly, the sched_entities that represent the task group
		 * at parent level, can't have a load higher than
		 * scale_load_down(tg->shares). And the Sum of sched_entities'
		 * load must be <= scale_load_down(tg->shares).
		 */
		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
			/* scale gcfs_rq's load into tg's shares*/
			load *= scale_load_down(gcfs_rq->tg->shares);
			load /= tg_load;
		}
	}

	delta = load - se->avg.load_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's load */
	se->avg.load_avg = load;
	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq load */
	add_positive(&cfs_rq->avg.load_avg, delta);
	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;

	/*
	 * If the sched_entity is already enqueued, we also have to update the
	 * runnable load avg.
	 */
	if (se->on_rq) {
		/* Update parent cfs_rq runnable_load_avg */
		add_positive(&cfs_rq->runnable_load_avg, delta);
		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
	}
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
	cfs_rq->propagate_avg = 1;
}

static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);

	if (!cfs_rq->propagate_avg)
		return 0;

	cfs_rq->propagate_avg = 0;
	return 1;
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	if (entity_is_task(se))
		return 0;

	if (!test_and_clear_tg_cfs_propagate(se))
		return 0;

	cfs_rq = cfs_rq_of(se);

	set_tg_cfs_propagate(cfs_rq);

	update_tg_cfs_util(cfs_rq, se);
	update_tg_cfs_load(cfs_rq, se);

	return 1;
}

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
	if (gcfs_rq->propagate_avg)
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3312
#else /* CONFIG_FAIR_GROUP_SCHED */
3313

3314
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3315 3316 3317 3318 3319 3320 3321 3322

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}

3323
#endif /* CONFIG_FAIR_GROUP_SCHED */
3324

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3353 3354 3355 3356
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3357
 */
3358
static inline int
3359
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3360
{
3361
	struct sched_avg *sa = &cfs_rq->avg;
3362
	int decayed, removed_load = 0, removed_util = 0;
3363

3364
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3365
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3366 3367
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3368
		removed_load = 1;
3369
		set_tg_cfs_propagate(cfs_rq);
3370
	}
3371

3372 3373
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3374 3375
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3376
		removed_util = 1;
3377
		set_tg_cfs_propagate(cfs_rq);
3378
	}
3379

3380
	decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3381

3382 3383 3384 3385
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3386

3387
	if (decayed || removed_util)
3388
		cfs_rq_util_change(cfs_rq);
3389

3390
	return decayed || removed_load;
3391 3392
}

3393 3394 3395 3396 3397 3398
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2

3399
/* Update task and its cfs_rq load average */
3400
static inline void update_load_avg(struct sched_entity *se, int flags)
3401 3402 3403 3404 3405
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
3406
	int decayed;
3407 3408 3409 3410 3411

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
3412 3413
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);
3414

3415
	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3416 3417 3418
	decayed |= propagate_entity_load_avg(se);

	if (decayed && (flags & UPDATE_TG))
3419
		update_tg_load_avg(cfs_rq, 0);
3420 3421
}

3422 3423 3424 3425 3426 3427 3428 3429
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3430 3431 3432 3433 3434 3435 3436
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3437
	set_tg_cfs_propagate(cfs_rq);
3438 3439

	cfs_rq_util_change(cfs_rq);
3440 3441
}

3442 3443 3444 3445 3446 3447 3448 3449
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3450 3451 3452
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

3453 3454 3455 3456
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3457
	set_tg_cfs_propagate(cfs_rq);
3458 3459

	cfs_rq_util_change(cfs_rq);
3460 3461
}

3462 3463 3464
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3465
{
3466
	struct sched_avg *sa = &se->avg;
3467

3468 3469 3470
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3471
	if (!sa->last_update_time) {
3472
		attach_entity_load_avg(cfs_rq, se);
3473
		update_tg_load_avg(cfs_rq, 0);
3474
	}
3475 3476
}

3477 3478 3479 3480 3481 3482 3483
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3484
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3485 3486
}

3487
#ifndef CONFIG_64BIT
3488 3489
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3490
	u64 last_update_time_copy;
3491
	u64 last_update_time;
3492

3493 3494 3495 3496 3497
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3498 3499 3500

	return last_update_time;
}
3501
#else
3502 3503 3504 3505
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3506 3507
#endif

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3518
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3519 3520
}

3521 3522 3523 3524 3525 3526 3527 3528 3529
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
3530 3531 3532 3533 3534 3535 3536
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3537 3538
	 */

3539
	sync_entity_load_avg(se);
3540 3541
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3542
}
3543

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3554
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3555

3556 3557
#else /* CONFIG_SMP */

3558
static inline int
3559
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3560 3561 3562 3563
{
	return 0;
}

3564 3565 3566 3567
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0

static inline void update_load_avg(struct sched_entity *se, int not_used1)
3568
{
3569
	cfs_rq_util_change(cfs_rq_of(se));
3570 3571
}

3572 3573
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3574 3575
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3576
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3577

3578 3579 3580 3581 3582
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3583
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3584 3585 3586 3587
{
	return 0;
}

3588
#endif /* CONFIG_SMP */
3589

P
Peter Zijlstra 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3599
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3600 3601 3602
#endif
}

3603 3604 3605
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3606
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3607

3608 3609 3610 3611 3612 3613
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3614
	if (initial && sched_feat(START_DEBIT))
3615
		vruntime += sched_vslice(cfs_rq, se);
3616

3617
	/* sleeps up to a single latency don't count. */
3618
	if (!initial) {
3619
		unsigned long thresh = sysctl_sched_latency;
3620

3621 3622 3623 3624 3625 3626
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3627

3628
		vruntime -= thresh;
3629 3630
	}

3631
	/* ensure we never gain time by being placed backwards. */
3632
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3633 3634
}

3635 3636
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3649
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3650
			     "stat_blocked and stat_runtime require the "
3651
			     "kernel parameter schedstats=enable or "
3652 3653 3654 3655 3656
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3676
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3688
static void
3689
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3690
{
3691 3692 3693
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3694
	/*
3695 3696
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3697
	 */
3698
	if (renorm && curr)
3699 3700
		se->vruntime += cfs_rq->min_vruntime;

3701 3702
	update_curr(cfs_rq);

3703
	/*
3704 3705 3706 3707
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3708
	 */
3709 3710 3711
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3712 3713 3714 3715 3716 3717 3718 3719
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3720
	update_load_avg(se, UPDATE_TG);
3721
	enqueue_entity_load_avg(cfs_rq, se);
3722
	update_cfs_shares(se);
3723
	account_entity_enqueue(cfs_rq, se);
3724

3725
	if (flags & ENQUEUE_WAKEUP)
3726
		place_entity(cfs_rq, se, 0);
3727

3728
	check_schedstat_required();
3729 3730
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3731
	if (!curr)
3732
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3733
	se->on_rq = 1;
3734

3735
	if (cfs_rq->nr_running == 1) {
3736
		list_add_leaf_cfs_rq(cfs_rq);
3737 3738
		check_enqueue_throttle(cfs_rq);
	}
3739 3740
}

3741
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3742
{
3743 3744
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3745
		if (cfs_rq->last != se)
3746
			break;
3747 3748

		cfs_rq->last = NULL;
3749 3750
	}
}
P
Peter Zijlstra 已提交
3751

3752 3753 3754 3755
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3756
		if (cfs_rq->next != se)
3757
			break;
3758 3759

		cfs_rq->next = NULL;
3760
	}
P
Peter Zijlstra 已提交
3761 3762
}

3763 3764 3765 3766
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3767
		if (cfs_rq->skip != se)
3768
			break;
3769 3770

		cfs_rq->skip = NULL;
3771 3772 3773
	}
}

P
Peter Zijlstra 已提交
3774 3775
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3776 3777 3778 3779 3780
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3781 3782 3783

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3784 3785
}

3786
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3787

3788
static void
3789
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3790
{
3791 3792 3793 3794
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3795 3796 3797 3798 3799 3800 3801 3802 3803

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3804
	update_load_avg(se, UPDATE_TG);
3805
	dequeue_entity_load_avg(cfs_rq, se);
3806

3807
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3808

P
Peter Zijlstra 已提交
3809
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3810

3811
	if (se != cfs_rq->curr)
3812
		__dequeue_entity(cfs_rq, se);
3813
	se->on_rq = 0;
3814
	account_entity_dequeue(cfs_rq, se);
3815 3816

	/*
3817 3818 3819 3820
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3821
	 */
3822
	if (!(flags & DEQUEUE_SLEEP))
3823
		se->vruntime -= cfs_rq->min_vruntime;
3824

3825 3826 3827
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3828
	update_cfs_shares(se);
3829 3830 3831 3832 3833 3834 3835 3836 3837

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3838 3839 3840 3841 3842
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3843
static void
I
Ingo Molnar 已提交
3844
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3845
{
3846
	unsigned long ideal_runtime, delta_exec;
3847 3848
	struct sched_entity *se;
	s64 delta;
3849

P
Peter Zijlstra 已提交
3850
	ideal_runtime = sched_slice(cfs_rq, curr);
3851
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3852
	if (delta_exec > ideal_runtime) {
3853
		resched_curr(rq_of(cfs_rq));
3854 3855 3856 3857 3858
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3870 3871
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3872

3873 3874
	if (delta < 0)
		return;
3875

3876
	if (delta > ideal_runtime)
3877
		resched_curr(rq_of(cfs_rq));
3878 3879
}

3880
static void
3881
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3882
{
3883 3884 3885 3886 3887 3888 3889
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3890
		update_stats_wait_end(cfs_rq, se);
3891
		__dequeue_entity(cfs_rq, se);
3892
		update_load_avg(se, UPDATE_TG);
3893 3894
	}

3895
	update_stats_curr_start(cfs_rq, se);
3896
	cfs_rq->curr = se;
3897

I
Ingo Molnar 已提交
3898 3899 3900 3901 3902
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3903
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3904 3905 3906
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
3907
	}
3908

3909
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3910 3911
}

3912 3913 3914
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3915 3916 3917 3918 3919 3920 3921
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3922 3923
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3924
{
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3936

3937 3938 3939 3940 3941
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3952 3953 3954
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3955

3956 3957 3958 3959 3960 3961
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3962 3963 3964 3965 3966 3967
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3968
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3969 3970

	return se;
3971 3972
}

3973
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3974

3975
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3976 3977 3978 3979 3980 3981
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3982
		update_curr(cfs_rq);
3983

3984 3985 3986
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3987
	check_spread(cfs_rq, prev);
3988

3989
	if (prev->on_rq) {
3990
		update_stats_wait_start(cfs_rq, prev);
3991 3992
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3993
		/* in !on_rq case, update occurred at dequeue */
3994
		update_load_avg(prev, 0);
3995
	}
3996
	cfs_rq->curr = NULL;
3997 3998
}

P
Peter Zijlstra 已提交
3999 4000
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4001 4002
{
	/*
4003
	 * Update run-time statistics of the 'current'.
4004
	 */
4005
	update_curr(cfs_rq);
4006

4007 4008 4009
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4010
	update_load_avg(curr, UPDATE_TG);
4011
	update_cfs_shares(curr);
4012

P
Peter Zijlstra 已提交
4013 4014 4015 4016 4017
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4018
	if (queued) {
4019
		resched_curr(rq_of(cfs_rq));
4020 4021
		return;
	}
P
Peter Zijlstra 已提交
4022 4023 4024 4025 4026 4027 4028 4029
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4030
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4031
		check_preempt_tick(cfs_rq, curr);
4032 4033
}

4034 4035 4036 4037 4038 4039

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4040 4041

#ifdef HAVE_JUMP_LABEL
4042
static struct static_key __cfs_bandwidth_used;
4043 4044 4045

static inline bool cfs_bandwidth_used(void)
{
4046
	return static_key_false(&__cfs_bandwidth_used);
4047 4048
}

4049
void cfs_bandwidth_usage_inc(void)
4050
{
4051 4052 4053 4054 4055 4056
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
4057 4058 4059 4060 4061 4062 4063
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4064 4065
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4066 4067
#endif /* HAVE_JUMP_LABEL */

4068 4069 4070 4071 4072 4073 4074 4075
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4076 4077 4078 4079 4080 4081

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4082 4083 4084 4085 4086 4087 4088
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4089
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

4101 4102 4103 4104 4105
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4106 4107 4108 4109
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4110
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4111

4112
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4113 4114
}

4115 4116
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4117 4118 4119
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4120
	u64 amount = 0, min_amount, expires;
4121 4122 4123 4124 4125 4126 4127

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4128
	else {
P
Peter Zijlstra 已提交
4129
		start_cfs_bandwidth(cfs_b);
4130 4131 4132 4133 4134 4135

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4136
	}
P
Paul Turner 已提交
4137
	expires = cfs_b->runtime_expires;
4138 4139 4140
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4141 4142 4143 4144 4145 4146 4147
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4148 4149

	return cfs_rq->runtime_remaining > 0;
4150 4151
}

P
Paul Turner 已提交
4152 4153 4154 4155 4156
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4157
{
P
Paul Turner 已提交
4158 4159 4160
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4161
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4162 4163
		return;

P
Paul Turner 已提交
4164 4165 4166 4167 4168 4169 4170 4171 4172
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4173 4174 4175
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4176 4177
	 */

4178
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4179 4180 4181 4182 4183 4184 4185 4186
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4187
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4188 4189
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4190
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4191 4192 4193
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4194 4195
		return;

4196 4197 4198 4199 4200
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4201
		resched_curr(rq_of(cfs_rq));
4202 4203
}

4204
static __always_inline
4205
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4206
{
4207
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4208 4209 4210 4211 4212
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4213 4214
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4215
	return cfs_bandwidth_used() && cfs_rq->throttled;
4216 4217
}

4218 4219 4220
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4221
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4249
		/* adjust cfs_rq_clock_task() */
4250
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4251
					     cfs_rq->throttled_clock_task;
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4262 4263
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4264
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4265 4266 4267 4268 4269
	cfs_rq->throttle_count++;

	return 0;
}

4270
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4271 4272 4273 4274 4275
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4276
	bool empty;
4277 4278 4279

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4280
	/* freeze hierarchy runnable averages while throttled */
4281 4282 4283
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4301
		sub_nr_running(rq, task_delta);
4302 4303

	cfs_rq->throttled = 1;
4304
	cfs_rq->throttled_clock = rq_clock(rq);
4305
	raw_spin_lock(&cfs_b->lock);
4306
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4307

4308 4309 4310 4311 4312
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4313 4314 4315 4316 4317 4318 4319 4320

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4321 4322 4323
	raw_spin_unlock(&cfs_b->lock);
}

4324
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4325 4326 4327 4328 4329 4330 4331
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4332
	se = cfs_rq->tg->se[cpu_of(rq)];
4333 4334

	cfs_rq->throttled = 0;
4335 4336 4337

	update_rq_clock(rq);

4338
	raw_spin_lock(&cfs_b->lock);
4339
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4340 4341 4342
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4343 4344 4345
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4364
		add_nr_running(rq, task_delta);
4365 4366 4367

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4368
		resched_curr(rq);
4369 4370 4371 4372 4373 4374
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4375 4376
	u64 runtime;
	u64 starting_runtime = remaining;
4377 4378 4379 4380 4381

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4382
		struct rq_flags rf;
4383

4384
		rq_lock(rq, &rf);
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4401
		rq_unlock(rq, &rf);
4402 4403 4404 4405 4406 4407

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4408
	return starting_runtime - remaining;
4409 4410
}

4411 4412 4413 4414 4415 4416 4417 4418
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4419
	u64 runtime, runtime_expires;
4420
	int throttled;
4421 4422 4423

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4424
		goto out_deactivate;
4425

4426
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4427
	cfs_b->nr_periods += overrun;
4428

4429 4430 4431 4432 4433 4434
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4435 4436 4437

	__refill_cfs_bandwidth_runtime(cfs_b);

4438 4439 4440
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4441
		return 0;
4442 4443
	}

4444 4445 4446
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4447 4448 4449
	runtime_expires = cfs_b->runtime_expires;

	/*
4450 4451 4452 4453 4454
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4455
	 */
4456 4457
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4458 4459 4460 4461 4462 4463 4464
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4465 4466

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4467
	}
4468

4469 4470 4471 4472 4473 4474 4475
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4476

4477 4478 4479 4480
	return 0;

out_deactivate:
	return 1;
4481
}
4482

4483 4484 4485 4486 4487 4488 4489
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4490 4491 4492 4493
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4494
 * hrtimer base being cleared by hrtimer_start. In the case of
4495 4496
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4522 4523 4524
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4554 4555 4556
	if (!cfs_bandwidth_used())
		return;

4557
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4573 4574 4575
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4576
		return;
4577
	}
4578

4579
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4580
		runtime = cfs_b->runtime;
4581

4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4592
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4593 4594 4595
	raw_spin_unlock(&cfs_b->lock);
}

4596 4597 4598 4599 4600 4601 4602
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4603 4604 4605
	if (!cfs_bandwidth_used())
		return;

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4634
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4635 4636
}

4637
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4638
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4639
{
4640
	if (!cfs_bandwidth_used())
4641
		return false;
4642

4643
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4644
		return false;
4645 4646 4647 4648 4649 4650

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4651
		return true;
4652 4653

	throttle_cfs_rq(cfs_rq);
4654
	return true;
4655
}
4656 4657 4658 4659 4660

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4661

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4674
	raw_spin_lock(&cfs_b->lock);
4675
	for (;;) {
P
Peter Zijlstra 已提交
4676
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4677 4678 4679 4680 4681
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4682 4683
	if (idle)
		cfs_b->period_active = 0;
4684
	raw_spin_unlock(&cfs_b->lock);
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4697
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4709
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4710
{
P
Peter Zijlstra 已提交
4711
	lockdep_assert_held(&cfs_b->lock);
4712

P
Peter Zijlstra 已提交
4713 4714 4715 4716 4717
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4718 4719 4720 4721
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4722 4723 4724 4725
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4726 4727 4728 4729
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4730 4731 4732 4733 4734 4735 4736 4737
/*
 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
4738 4739
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
4740
	struct task_group *tg;
4741

4742 4743 4744 4745 4746 4747
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4748 4749 4750 4751 4752

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
4753
	rcu_read_unlock();
4754 4755
}

4756
/* cpu offline callback */
4757
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4758
{
4759 4760 4761 4762 4763 4764 4765
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4766 4767 4768 4769 4770 4771 4772 4773

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4774
		cfs_rq->runtime_remaining = 1;
4775 4776 4777 4778 4779 4780
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4781 4782 4783
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
4784
	rcu_read_unlock();
4785 4786 4787
}

#else /* CONFIG_CFS_BANDWIDTH */
4788 4789
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4790
	return rq_clock_task(rq_of(cfs_rq));
4791 4792
}

4793
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4794
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4795
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4796
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4797
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4798 4799 4800 4801 4802

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4814 4815 4816 4817 4818

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4819 4820
#endif

4821 4822 4823 4824 4825
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4826
static inline void update_runtime_enabled(struct rq *rq) {}
4827
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4828 4829 4830

#endif /* CONFIG_CFS_BANDWIDTH */

4831 4832 4833 4834
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4835 4836 4837 4838 4839 4840
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4841
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4842

4843
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4844 4845 4846 4847 4848 4849
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4850
				resched_curr(rq);
P
Peter Zijlstra 已提交
4851 4852
			return;
		}
4853
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4854 4855
	}
}
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4866
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4867 4868 4869 4870 4871
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4872
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4873 4874 4875 4876
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4877 4878 4879 4880

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4881 4882
#endif

4883 4884 4885 4886 4887
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4888
static void
4889
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4890 4891
{
	struct cfs_rq *cfs_rq;
4892
	struct sched_entity *se = &p->se;
4893

4894 4895 4896 4897 4898 4899 4900 4901
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);

4902
	for_each_sched_entity(se) {
4903
		if (se->on_rq)
4904 4905
			break;
		cfs_rq = cfs_rq_of(se);
4906
		enqueue_entity(cfs_rq, se, flags);
4907 4908 4909 4910 4911 4912

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4913
		 */
4914 4915
		if (cfs_rq_throttled(cfs_rq))
			break;
4916
		cfs_rq->h_nr_running++;
4917

4918
		flags = ENQUEUE_WAKEUP;
4919
	}
P
Peter Zijlstra 已提交
4920

P
Peter Zijlstra 已提交
4921
	for_each_sched_entity(se) {
4922
		cfs_rq = cfs_rq_of(se);
4923
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4924

4925 4926 4927
		if (cfs_rq_throttled(cfs_rq))
			break;

4928
		update_load_avg(se, UPDATE_TG);
4929
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4930 4931
	}

Y
Yuyang Du 已提交
4932
	if (!se)
4933
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4934

4935
	hrtick_update(rq);
4936 4937
}

4938 4939
static void set_next_buddy(struct sched_entity *se);

4940 4941 4942 4943 4944
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4945
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4946 4947
{
	struct cfs_rq *cfs_rq;
4948
	struct sched_entity *se = &p->se;
4949
	int task_sleep = flags & DEQUEUE_SLEEP;
4950 4951 4952

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4953
		dequeue_entity(cfs_rq, se, flags);
4954 4955 4956 4957 4958 4959 4960 4961 4962

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4963
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4964

4965
		/* Don't dequeue parent if it has other entities besides us */
4966
		if (cfs_rq->load.weight) {
4967 4968
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4969 4970 4971 4972
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4973 4974
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4975
			break;
4976
		}
4977
		flags |= DEQUEUE_SLEEP;
4978
	}
P
Peter Zijlstra 已提交
4979

P
Peter Zijlstra 已提交
4980
	for_each_sched_entity(se) {
4981
		cfs_rq = cfs_rq_of(se);
4982
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4983

4984 4985 4986
		if (cfs_rq_throttled(cfs_rq))
			break;

4987
		update_load_avg(se, UPDATE_TG);
4988
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4989 4990
	}

Y
Yuyang Du 已提交
4991
	if (!se)
4992
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4993

4994
	hrtick_update(rq);
4995 4996
}

4997
#ifdef CONFIG_SMP
4998 4999 5000 5001 5002

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5003
#ifdef CONFIG_NO_HZ_COMMON
5004 5005 5006 5007 5008
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5009
 * The exact cpuload calculated at every tick would be:
5010
 *
5011 5012 5013 5014 5015 5016 5017
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5018 5019 5020
 *
 * decay_load_missed() below does efficient calculation of
 *
5021 5022 5023 5024 5025 5026
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5027
 *
5028
 * The calculation is approximated on a 128 point scale.
5029 5030
 */
#define DEGRADE_SHIFT		7
5031 5032 5033 5034 5035 5036 5037 5038 5039

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5069
#endif /* CONFIG_NO_HZ_COMMON */
5070

5071
/**
5072
 * __cpu_load_update - update the rq->cpu_load[] statistics
5073 5074 5075 5076
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5077
 * Update rq->cpu_load[] statistics. This function is usually called every
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5104
 * term.
5105
 */
5106 5107
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5108
{
5109
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5121
		old_load = this_rq->cpu_load[i];
5122
#ifdef CONFIG_NO_HZ_COMMON
5123
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5124 5125 5126 5127 5128 5129 5130 5131 5132
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5133
#endif
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5149
/* Used instead of source_load when we know the type == 0 */
5150
static unsigned long weighted_cpuload(struct rq *rq)
5151
{
5152
	return cfs_rq_runnable_load_avg(&rq->cfs);
5153 5154
}

5155
#ifdef CONFIG_NO_HZ_COMMON
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5184
		cpu_load_update(this_rq, load, pending_updates);
5185 5186 5187
	}
}

5188 5189 5190 5191
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5192
static void cpu_load_update_idle(struct rq *this_rq)
5193 5194 5195 5196
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5197
	if (weighted_cpuload(this_rq))
5198 5199
		return;

5200
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5201 5202 5203
}

/*
5204 5205 5206 5207
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5208
 */
5209
void cpu_load_update_nohz_start(void)
5210 5211
{
	struct rq *this_rq = this_rq();
5212 5213 5214 5215 5216 5217

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5218
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5219 5220 5221 5222 5223 5224 5225
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5226
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5227 5228
	struct rq *this_rq = this_rq();
	unsigned long load;
5229
	struct rq_flags rf;
5230 5231 5232 5233

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5234
	load = weighted_cpuload(this_rq);
5235
	rq_lock(this_rq, &rf);
5236
	update_rq_clock(this_rq);
5237
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5238
	rq_unlock(this_rq, &rf);
5239
}
5240 5241 5242 5243 5244 5245 5246 5247
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5248
#ifdef CONFIG_NO_HZ_COMMON
5249 5250
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5251
#endif
5252 5253
	cpu_load_update(this_rq, load, 1);
}
5254 5255 5256 5257

/*
 * Called from scheduler_tick()
 */
5258
void cpu_load_update_active(struct rq *this_rq)
5259
{
5260
	unsigned long load = weighted_cpuload(this_rq);
5261 5262 5263 5264 5265

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5266 5267
}

5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5278
	unsigned long total = weighted_cpuload(rq);
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5293
	unsigned long total = weighted_cpuload(rq);
5294 5295 5296 5297 5298 5299 5300

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5301
static unsigned long capacity_of(int cpu)
5302
{
5303
	return cpu_rq(cpu)->cpu_capacity;
5304 5305
}

5306 5307 5308 5309 5310
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5311 5312 5313
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5314
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5315
	unsigned long load_avg = weighted_cpuload(rq);
5316 5317

	if (nr_running)
5318
		return load_avg / nr_running;
5319 5320 5321 5322

	return 0;
}

P
Peter Zijlstra 已提交
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5340 5341
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5342
 *
M
Mike Galbraith 已提交
5343
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5356
 */
5357 5358
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5359 5360
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5361
	int factor = this_cpu_read(sd_llc_size);
5362

M
Mike Galbraith 已提交
5363 5364 5365 5366 5367
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5368 5369
}

5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
struct llc_stats {
	unsigned long	nr_running;
	unsigned long	load;
	unsigned long	capacity;
	int		has_capacity;
};

static bool get_llc_stats(struct llc_stats *stats, int cpu)
{
	struct sched_domain_shared *sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));

	if (!sds)
		return false;

	stats->nr_running	= READ_ONCE(sds->nr_running);
	stats->load		= READ_ONCE(sds->load);
	stats->capacity		= READ_ONCE(sds->capacity);
	stats->has_capacity	= stats->nr_running < per_cpu(sd_llc_size, cpu);

	return true;
}

/*
 * Can a task be moved from prev_cpu to this_cpu without causing a load
 * imbalance that would trigger the load balancer?
 *
 * Since we're running on 'stale' values, we might in fact create an imbalance
 * but recomputing these values is expensive, as that'd mean iteration 2 cache
 * domains worth of CPUs.
 */
static bool
wake_affine_llc(struct sched_domain *sd, struct task_struct *p,
		int this_cpu, int prev_cpu, int sync)
{
	struct llc_stats prev_stats, this_stats;
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

	if (!get_llc_stats(&prev_stats, prev_cpu) ||
	    !get_llc_stats(&this_stats, this_cpu))
		return false;

	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current LLC.
	 */
	if (sync) {
		unsigned long current_load = task_h_load(current);

		/* in this case load hits 0 and this LLC is considered 'idle' */
		if (current_load > this_stats.load)
			return true;

		this_stats.load -= current_load;
	}

	/*
	 * The has_capacity stuff is not SMT aware, but by trying to balance
	 * the nr_running on both ends we try and fill the domain at equal
	 * rates, thereby first consuming cores before siblings.
	 */

	/* if the old cache has capacity, stay there */
	if (prev_stats.has_capacity && prev_stats.nr_running < this_stats.nr_running+1)
		return false;

	/* if this cache has capacity, come here */
5438
	if (this_stats.has_capacity && this_stats.nr_running+1 < prev_stats.nr_running)
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
		return true;

	/*
	 * Check to see if we can move the load without causing too much
	 * imbalance.
	 */
	task_load = task_h_load(p);

	this_eff_load = 100;
	this_eff_load *= prev_stats.capacity;

	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= this_stats.capacity;

	this_eff_load *= this_stats.load + task_load;
	prev_eff_load *= prev_stats.load - task_load;

	return this_eff_load <= prev_eff_load;
}

5459 5460
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5461
{
5462
	int this_cpu = smp_processor_id();
5463
	bool affine;
5464

5465
	/*
5466 5467 5468
	 * Default to no affine wakeups; wake_affine() should not effect a task
	 * placement the load-balancer feels inclined to undo. The conservative
	 * option is therefore to not move tasks when they wake up.
5469
	 */
5470 5471 5472 5473 5474 5475 5476 5477 5478
	affine = false;

	/*
	 * If the wakeup is across cache domains, try to evaluate if movement
	 * makes sense, otherwise rely on select_idle_siblings() to do
	 * placement inside the cache domain.
	 */
	if (!cpus_share_cache(prev_cpu, this_cpu))
		affine = wake_affine_llc(sd, p, this_cpu, prev_cpu, sync);
5479

5480
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5481 5482 5483 5484
	if (affine) {
		schedstat_inc(sd->ttwu_move_affine);
		schedstat_inc(p->se.statistics.nr_wakeups_affine);
	}
5485

5486
	return affine;
5487 5488
}

5489 5490 5491 5492 5493 5494 5495 5496
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}

5497 5498 5499 5500 5501
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5502
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5503
		  int this_cpu, int sd_flag)
5504
{
5505
	struct sched_group *idlest = NULL, *group = sd->groups;
5506
	struct sched_group *most_spare_sg = NULL;
5507 5508
	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5509
	unsigned long most_spare = 0, this_spare = 0;
5510
	int load_idx = sd->forkexec_idx;
5511 5512 5513
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5514

5515 5516 5517
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5518
	do {
5519 5520
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5521 5522
		int local_group;
		int i;
5523

5524
		/* Skip over this group if it has no CPUs allowed */
5525
		if (!cpumask_intersects(sched_group_span(group),
5526
					&p->cpus_allowed))
5527 5528 5529
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5530
					       sched_group_span(group));
5531

5532 5533 5534 5535
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5536
		avg_load = 0;
5537
		runnable_load = 0;
5538
		max_spare_cap = 0;
5539

5540
		for_each_cpu(i, sched_group_span(group)) {
5541 5542 5543 5544 5545 5546
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5547 5548 5549
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5550 5551 5552 5553 5554

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5555 5556
		}

5557
		/* Adjust by relative CPU capacity of the group */
5558 5559 5560 5561
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5562 5563

		if (local_group) {
5564 5565
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5566 5567
			this_spare = max_spare_cap;
		} else {
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5583 5584 5585 5586 5587 5588 5589
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5590 5591 5592
		}
	} while (group = group->next, group != sd->groups);

5593 5594 5595 5596 5597 5598
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5599 5600 5601 5602
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5603
	 */
5604 5605 5606
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5607
	if (this_spare > task_util(p) / 2 &&
5608
	    imbalance_scale*this_spare > 100*most_spare)
5609
		return NULL;
5610 5611

	if (most_spare > task_util(p) / 2)
5612 5613
		return most_spare_sg;

5614
skip_spare:
5615 5616 5617 5618
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5619
		return NULL;
5620 5621 5622 5623 5624

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5635 5636 5637 5638
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5639 5640
	int i;

5641 5642
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5643
		return cpumask_first(sched_group_span(group));
5644

5645
	/* Traverse only the allowed CPUs */
5646
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5669
		} else if (shallowest_idle_cpu == -1) {
5670
			load = weighted_cpuload(cpu_rq(i));
5671 5672 5673 5674
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5675 5676 5677
		}
	}

5678
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5679
}
5680

5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5710
void __update_idle_core(struct rq *rq)
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5740
	int core, cpu;
5741

P
Peter Zijlstra 已提交
5742 5743 5744
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5745 5746 5747
	if (!test_idle_cores(target, false))
		return -1;

5748
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5749

5750
	for_each_cpu_wrap(core, cpus, target) {
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5778 5779 5780
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5781
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5782
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5809
 */
5810 5811
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5812
	struct sched_domain *this_sd;
5813
	u64 avg_cost, avg_idle;
5814 5815
	u64 time, cost;
	s64 delta;
5816
	int cpu, nr = INT_MAX;
5817

5818 5819 5820 5821
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

5822 5823 5824 5825
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
5826 5827 5828 5829
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5830 5831
		return -1;

5832 5833 5834 5835 5836 5837 5838 5839
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

5840 5841
	time = local_clock();

5842
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5843 5844
		if (!--nr)
			return -1;
5845
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5861
 */
5862
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5863
{
5864
	struct sched_domain *sd;
5865
	int i;
5866

5867 5868
	if (idle_cpu(target))
		return target;
5869 5870

	/*
5871
	 * If the previous cpu is cache affine and idle, don't be stupid.
5872
	 */
5873 5874
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5875

5876
	sd = rcu_dereference(per_cpu(sd_llc, target));
5877 5878
	if (!sd)
		return target;
5879

5880 5881 5882
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5883

5884 5885 5886 5887 5888 5889 5890
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5891

5892 5893
	return target;
}
5894

5895
/*
5896
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5897
 * tasks. The unit of the return value must be the one of capacity so we can
5898 5899
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5920
 */
5921
static int cpu_util(int cpu)
5922
{
5923
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5924 5925
	unsigned long capacity = capacity_orig_of(cpu);

5926
	return (util >= capacity) ? capacity : util;
5927
}
5928

5929 5930 5931 5932 5933
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
static int cpu_util_wake(int cpu, struct task_struct *p)
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

5970 5971 5972
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

5973 5974 5975
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5976
/*
5977 5978 5979
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5980
 *
5981 5982
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5983
 *
5984
 * Returns the target cpu number.
5985 5986 5987
 *
 * preempt must be disabled.
 */
5988
static int
5989
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5990
{
5991
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5992
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5993
	int new_cpu = prev_cpu;
5994
	int want_affine = 0;
5995
	int sync = wake_flags & WF_SYNC;
5996

P
Peter Zijlstra 已提交
5997 5998
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
5999
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6000
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6001
	}
6002

6003
	rcu_read_lock();
6004
	for_each_domain(cpu, tmp) {
6005
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6006
			break;
6007

6008
		/*
6009 6010
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
6011
		 */
6012 6013 6014
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
6015
			break;
6016
		}
6017

6018
		if (tmp->flags & sd_flag)
6019
			sd = tmp;
M
Mike Galbraith 已提交
6020 6021
		else if (!want_affine)
			break;
6022 6023
	}

M
Mike Galbraith 已提交
6024 6025
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
6026 6027 6028 6029
		if (cpu == prev_cpu)
			goto pick_cpu;

		if (wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
6030
			new_cpu = cpu;
6031
	}
6032

M
Mike Galbraith 已提交
6033
	if (!sd) {
6034
 pick_cpu:
M
Mike Galbraith 已提交
6035
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6036
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
6037 6038

	} else while (sd) {
6039
		struct sched_group *group;
6040
		int weight;
6041

6042
		if (!(sd->flags & sd_flag)) {
6043 6044 6045
			sd = sd->child;
			continue;
		}
6046

6047
		group = find_idlest_group(sd, p, cpu, sd_flag);
6048 6049 6050 6051
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
6052

6053
		new_cpu = find_idlest_cpu(group, p, cpu);
6054 6055 6056 6057
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
6058
		}
6059 6060 6061

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
6062
		weight = sd->span_weight;
6063 6064
		sd = NULL;
		for_each_domain(cpu, tmp) {
6065
			if (weight <= tmp->span_weight)
6066
				break;
6067
			if (tmp->flags & sd_flag)
6068 6069 6070
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
6071
	}
6072
	rcu_read_unlock();
6073

6074
	return new_cpu;
6075
}
6076 6077 6078 6079

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6080
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6081
 */
6082
static void migrate_task_rq_fair(struct task_struct *p)
6083
{
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6110
	/*
6111 6112 6113 6114 6115
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
6116
	 */
6117 6118 6119 6120
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6121 6122

	/* We have migrated, no longer consider this task hot */
6123
	p->se.exec_start = 0;
6124
}
6125 6126 6127 6128 6129

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6130 6131
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
6132 6133
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6134 6135 6136 6137
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6138 6139
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6140 6141 6142 6143 6144 6145 6146 6147 6148
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6149
	 */
6150
	return calc_delta_fair(gran, se);
6151 6152
}

6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
6175
	gran = wakeup_gran(curr, se);
6176 6177 6178 6179 6180 6181
	if (vdiff > gran)
		return 1;

	return 0;
}

6182 6183
static void set_last_buddy(struct sched_entity *se)
{
6184 6185 6186
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6187 6188 6189
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6190
		cfs_rq_of(se)->last = se;
6191
	}
6192 6193 6194 6195
}

static void set_next_buddy(struct sched_entity *se)
{
6196 6197 6198
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6199 6200 6201
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6202
		cfs_rq_of(se)->next = se;
6203
	}
6204 6205
}

6206 6207
static void set_skip_buddy(struct sched_entity *se)
{
6208 6209
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6210 6211
}

6212 6213 6214
/*
 * Preempt the current task with a newly woken task if needed:
 */
6215
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6216 6217
{
	struct task_struct *curr = rq->curr;
6218
	struct sched_entity *se = &curr->se, *pse = &p->se;
6219
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6220
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6221
	int next_buddy_marked = 0;
6222

I
Ingo Molnar 已提交
6223 6224 6225
	if (unlikely(se == pse))
		return;

6226
	/*
6227
	 * This is possible from callers such as attach_tasks(), in which we
6228 6229 6230 6231 6232 6233 6234
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6235
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6236
		set_next_buddy(pse);
6237 6238
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6239

6240 6241 6242
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6243 6244 6245 6246 6247 6248
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6249 6250 6251 6252
	 */
	if (test_tsk_need_resched(curr))
		return;

6253 6254 6255 6256 6257
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6258
	/*
6259 6260
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6261
	 */
6262
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6263
		return;
6264

6265
	find_matching_se(&se, &pse);
6266
	update_curr(cfs_rq_of(se));
6267
	BUG_ON(!pse);
6268 6269 6270 6271 6272 6273 6274
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6275
		goto preempt;
6276
	}
6277

6278
	return;
6279

6280
preempt:
6281
	resched_curr(rq);
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6296 6297
}

6298
static struct task_struct *
6299
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6300 6301 6302
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6303
	struct task_struct *p;
6304
	int new_tasks;
6305

6306
again:
6307
	if (!cfs_rq->nr_running)
6308
		goto idle;
6309

6310
#ifdef CONFIG_FAIR_GROUP_SCHED
6311
	if (prev->sched_class != &fair_sched_class)
6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6331 6332 6333 6334 6335
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6336

6337 6338 6339
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6340
			 * Therefore the nr_running test will indeed
6341 6342
			 * be correct.
			 */
6343 6344 6345 6346 6347 6348
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6349
				goto simple;
6350
			}
6351
		}
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
#endif
6391

6392
	put_prev_task(rq, prev);
6393

6394
	do {
6395
		se = pick_next_entity(cfs_rq, NULL);
6396
		set_next_entity(cfs_rq, se);
6397 6398 6399
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6400
	p = task_of(se);
6401

6402 6403
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6404 6405

	return p;
6406 6407

idle:
6408 6409
	new_tasks = idle_balance(rq, rf);

6410 6411 6412 6413 6414
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6415
	if (new_tasks < 0)
6416 6417
		return RETRY_TASK;

6418
	if (new_tasks > 0)
6419 6420 6421
		goto again;

	return NULL;
6422 6423 6424 6425 6426
}

/*
 * Account for a descheduled task:
 */
6427
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6428 6429 6430 6431 6432 6433
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6434
		put_prev_entity(cfs_rq, se);
6435 6436 6437
	}
}

6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6463 6464 6465 6466 6467
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6468
		rq_clock_skip_update(rq, true);
6469 6470 6471 6472 6473
	}

	set_skip_buddy(se);
}

6474 6475 6476 6477
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6478 6479
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6490
#ifdef CONFIG_SMP
6491
/**************************************************
P
Peter Zijlstra 已提交
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6508
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6509 6510 6511 6512 6513 6514
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6515
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6516 6517 6518 6519 6520 6521
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6522
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6561
 *             log_2 n
P
Peter Zijlstra 已提交
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6607
 */
6608

6609 6610
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6611 6612
enum fbq_type { regular, remote, all };

6613
#define LBF_ALL_PINNED	0x01
6614
#define LBF_NEED_BREAK	0x02
6615 6616
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6617 6618 6619 6620 6621

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6622
	int			src_cpu;
6623 6624 6625 6626

	int			dst_cpu;
	struct rq		*dst_rq;

6627 6628
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6629
	enum cpu_idle_type	idle;
6630
	long			imbalance;
6631 6632 6633
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6634
	unsigned int		flags;
6635 6636 6637 6638

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6639 6640

	enum fbq_type		fbq_type;
6641
	struct list_head	tasks;
6642 6643
};

6644 6645 6646
/*
 * Is this task likely cache-hot:
 */
6647
static int task_hot(struct task_struct *p, struct lb_env *env)
6648 6649 6650
{
	s64 delta;

6651 6652
	lockdep_assert_held(&env->src_rq->lock);

6653 6654 6655 6656 6657 6658 6659 6660 6661
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6662
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6663 6664 6665 6666 6667 6668 6669 6670 6671
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6672
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6673 6674 6675 6676

	return delta < (s64)sysctl_sched_migration_cost;
}

6677
#ifdef CONFIG_NUMA_BALANCING
6678
/*
6679 6680 6681
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6682
 */
6683
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6684
{
6685
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6686
	unsigned long src_faults, dst_faults;
6687 6688
	int src_nid, dst_nid;

6689
	if (!static_branch_likely(&sched_numa_balancing))
6690 6691
		return -1;

6692
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6693
		return -1;
6694 6695 6696 6697

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6698
	if (src_nid == dst_nid)
6699
		return -1;
6700

6701 6702 6703 6704 6705 6706 6707
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6708

6709 6710
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6711
		return 0;
6712

6713 6714 6715 6716
	/* Leaving a core idle is often worse than degrading locality. */
	if (env->idle != CPU_NOT_IDLE)
		return -1;

6717 6718 6719 6720 6721 6722
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6723 6724
	}

6725
	return dst_faults < src_faults;
6726 6727
}

6728
#else
6729
static inline int migrate_degrades_locality(struct task_struct *p,
6730 6731
					     struct lb_env *env)
{
6732
	return -1;
6733
}
6734 6735
#endif

6736 6737 6738 6739
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6740
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6741
{
6742
	int tsk_cache_hot;
6743 6744 6745

	lockdep_assert_held(&env->src_rq->lock);

6746 6747
	/*
	 * We do not migrate tasks that are:
6748
	 * 1) throttled_lb_pair, or
6749
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6750 6751
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6752
	 */
6753 6754 6755
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6756
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6757
		int cpu;
6758

6759
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6760

6761 6762
		env->flags |= LBF_SOME_PINNED;

6763 6764 6765 6766 6767
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
6768 6769
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
6770
		 */
6771
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6772 6773
			return 0;

6774 6775
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6776
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6777
				env->flags |= LBF_DST_PINNED;
6778 6779 6780
				env->new_dst_cpu = cpu;
				break;
			}
6781
		}
6782

6783 6784
		return 0;
	}
6785 6786

	/* Record that we found atleast one task that could run on dst_cpu */
6787
	env->flags &= ~LBF_ALL_PINNED;
6788

6789
	if (task_running(env->src_rq, p)) {
6790
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6791 6792 6793 6794 6795
		return 0;
	}

	/*
	 * Aggressive migration if:
6796 6797 6798
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6799
	 */
6800 6801 6802
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6803

6804
	if (tsk_cache_hot <= 0 ||
6805
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6806
		if (tsk_cache_hot == 1) {
6807 6808
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6809
		}
6810 6811 6812
		return 1;
	}

6813
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6814
	return 0;
6815 6816
}

6817
/*
6818 6819 6820 6821 6822 6823 6824
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6825
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6826 6827 6828
	set_task_cpu(p, env->dst_cpu);
}

6829
/*
6830
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6831 6832
 * part of active balancing operations within "domain".
 *
6833
 * Returns a task if successful and NULL otherwise.
6834
 */
6835
static struct task_struct *detach_one_task(struct lb_env *env)
6836 6837 6838
{
	struct task_struct *p, *n;

6839 6840
	lockdep_assert_held(&env->src_rq->lock);

6841 6842 6843
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6844

6845
		detach_task(p, env);
6846

6847
		/*
6848
		 * Right now, this is only the second place where
6849
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6850
		 * so we can safely collect stats here rather than
6851
		 * inside detach_tasks().
6852
		 */
6853
		schedstat_inc(env->sd->lb_gained[env->idle]);
6854
		return p;
6855
	}
6856
	return NULL;
6857 6858
}

6859 6860
static const unsigned int sched_nr_migrate_break = 32;

6861
/*
6862 6863
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6864
 *
6865
 * Returns number of detached tasks if successful and 0 otherwise.
6866
 */
6867
static int detach_tasks(struct lb_env *env)
6868
{
6869 6870
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6871
	unsigned long load;
6872 6873 6874
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6875

6876
	if (env->imbalance <= 0)
6877
		return 0;
6878

6879
	while (!list_empty(tasks)) {
6880 6881 6882 6883 6884 6885 6886
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6887
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6888

6889 6890
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6891
		if (env->loop > env->loop_max)
6892
			break;
6893 6894

		/* take a breather every nr_migrate tasks */
6895
		if (env->loop > env->loop_break) {
6896
			env->loop_break += sched_nr_migrate_break;
6897
			env->flags |= LBF_NEED_BREAK;
6898
			break;
6899
		}
6900

6901
		if (!can_migrate_task(p, env))
6902 6903 6904
			goto next;

		load = task_h_load(p);
6905

6906
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6907 6908
			goto next;

6909
		if ((load / 2) > env->imbalance)
6910
			goto next;
6911

6912 6913 6914 6915
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6916
		env->imbalance -= load;
6917 6918

#ifdef CONFIG_PREEMPT
6919 6920
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6921
		 * kernels will stop after the first task is detached to minimize
6922 6923
		 * the critical section.
		 */
6924
		if (env->idle == CPU_NEWLY_IDLE)
6925
			break;
6926 6927
#endif

6928 6929 6930 6931
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6932
		if (env->imbalance <= 0)
6933
			break;
6934 6935 6936

		continue;
next:
6937
		list_move_tail(&p->se.group_node, tasks);
6938
	}
6939

6940
	/*
6941 6942 6943
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6944
	 */
6945
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6946

6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
6958
	activate_task(rq, p, ENQUEUE_NOCLOCK);
6959
	p->on_rq = TASK_ON_RQ_QUEUED;
6960 6961 6962 6963 6964 6965 6966 6967 6968
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
6969 6970 6971
	struct rq_flags rf;

	rq_lock(rq, &rf);
6972
	update_rq_clock(rq);
6973
	attach_task(rq, p);
6974
	rq_unlock(rq, &rf);
6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
6985
	struct rq_flags rf;
6986

6987
	rq_lock(env->dst_rq, &rf);
6988
	update_rq_clock(env->dst_rq);
6989 6990 6991 6992

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6993

6994 6995 6996
		attach_task(env->dst_rq, p);
	}

6997
	rq_unlock(env->dst_rq, &rf);
6998 6999
}

P
Peter Zijlstra 已提交
7000
#ifdef CONFIG_FAIR_GROUP_SCHED
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018

static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

	if (cfs_rq->runnable_load_sum)
		return false;

	return true;
}

7019
static void update_blocked_averages(int cpu)
7020 7021
{
	struct rq *rq = cpu_rq(cpu);
7022
	struct cfs_rq *cfs_rq, *pos;
7023
	struct rq_flags rf;
7024

7025
	rq_lock_irqsave(rq, &rf);
7026
	update_rq_clock(rq);
7027

7028 7029 7030 7031
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7032
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7033 7034
		struct sched_entity *se;

7035 7036 7037
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7038

7039
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7040
			update_tg_load_avg(cfs_rq, 0);
7041

7042 7043 7044 7045
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
			update_load_avg(se, 0);
7046 7047 7048 7049 7050 7051 7052

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
7053
	}
7054
	rq_unlock_irqrestore(rq, &rf);
7055 7056
}

7057
/*
7058
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7059 7060 7061
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7062
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7063
{
7064 7065
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7066
	unsigned long now = jiffies;
7067
	unsigned long load;
7068

7069
	if (cfs_rq->last_h_load_update == now)
7070 7071
		return;

7072 7073 7074 7075 7076 7077 7078
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7079

7080
	if (!se) {
7081
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7082 7083 7084 7085 7086
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7087 7088
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7089 7090 7091 7092
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7093 7094
}

7095
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7096
{
7097
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7098

7099
	update_cfs_rq_h_load(cfs_rq);
7100
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7101
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7102 7103
}
#else
7104
static inline void update_blocked_averages(int cpu)
7105
{
7106 7107
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7108
	struct rq_flags rf;
7109

7110
	rq_lock_irqsave(rq, &rf);
7111
	update_rq_clock(rq);
7112
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7113
	rq_unlock_irqrestore(rq, &rf);
7114 7115
}

7116
static unsigned long task_h_load(struct task_struct *p)
7117
{
7118
	return p->se.avg.load_avg;
7119
}
P
Peter Zijlstra 已提交
7120
#endif
7121 7122

/********** Helpers for find_busiest_group ************************/
7123 7124 7125 7126 7127 7128 7129

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7130 7131 7132 7133 7134 7135 7136
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7137
	unsigned long load_per_task;
7138
	unsigned long group_capacity;
7139
	unsigned long group_util; /* Total utilization of the group */
7140 7141 7142
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7143
	enum group_type group_type;
7144
	int group_no_capacity;
7145 7146 7147 7148
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7149 7150
};

J
Joonsoo Kim 已提交
7151 7152 7153 7154 7155 7156 7157
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7158
	unsigned long total_running;
J
Joonsoo Kim 已提交
7159
	unsigned long total_load;	/* Total load of all groups in sd */
7160
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7161 7162 7163
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7164
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7165 7166
};

7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7178
		.total_running = 0UL,
7179
		.total_load = 0UL,
7180
		.total_capacity = 0UL,
7181 7182
		.busiest_stat = {
			.avg_load = 0UL,
7183 7184
			.sum_nr_running = 0,
			.group_type = group_other,
7185 7186 7187 7188
		},
	};
}

7189 7190 7191
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7192
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7193 7194
 *
 * Return: The load index.
7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7217
static unsigned long scale_rt_capacity(int cpu)
7218 7219
{
	struct rq *rq = cpu_rq(cpu);
7220
	u64 total, used, age_stamp, avg;
7221
	s64 delta;
7222

7223 7224 7225 7226
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7227 7228
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7229
	delta = __rq_clock_broken(rq) - age_stamp;
7230

7231 7232 7233 7234
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7235

7236
	used = div_u64(avg, total);
7237

7238 7239
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7240

7241
	return 1;
7242 7243
}

7244
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7245
{
7246
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7247 7248
	struct sched_group *sdg = sd->groups;

7249
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7250

7251
	capacity *= scale_rt_capacity(cpu);
7252
	capacity >>= SCHED_CAPACITY_SHIFT;
7253

7254 7255
	if (!capacity)
		capacity = 1;
7256

7257 7258
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7259
	sdg->sgc->min_capacity = capacity;
7260 7261
}

7262
void update_group_capacity(struct sched_domain *sd, int cpu)
7263 7264 7265
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7266
	unsigned long capacity, min_capacity;
7267 7268 7269 7270
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7271
	sdg->sgc->next_update = jiffies + interval;
7272 7273

	if (!child) {
7274
		update_cpu_capacity(sd, cpu);
7275 7276 7277
		return;
	}

7278
	capacity = 0;
7279
	min_capacity = ULONG_MAX;
7280

P
Peter Zijlstra 已提交
7281 7282 7283 7284 7285 7286
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7287
		for_each_cpu(cpu, sched_group_span(sdg)) {
7288
			struct sched_group_capacity *sgc;
7289
			struct rq *rq = cpu_rq(cpu);
7290

7291
			/*
7292
			 * build_sched_domains() -> init_sched_groups_capacity()
7293 7294 7295
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7296 7297
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7298
			 *
7299
			 * This avoids capacity from being 0 and
7300 7301 7302
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7303
				capacity += capacity_of(cpu);
7304 7305 7306
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7307
			}
7308

7309
			min_capacity = min(capacity, min_capacity);
7310
		}
P
Peter Zijlstra 已提交
7311 7312 7313 7314
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7315
		 */
P
Peter Zijlstra 已提交
7316 7317 7318

		group = child->groups;
		do {
7319 7320 7321 7322
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7323 7324 7325
			group = group->next;
		} while (group != child->groups);
	}
7326

7327
	sdg->sgc->capacity = capacity;
7328
	sdg->sgc->min_capacity = min_capacity;
7329 7330
}

7331
/*
7332 7333 7334
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7335 7336
 */
static inline int
7337
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7338
{
7339 7340
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7341 7342
}

7343 7344
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7345
 * groups is inadequate due to ->cpus_allowed constraints.
7346 7347 7348 7349 7350
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7351 7352
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7353 7354 7355 7356 7357 7358
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7359 7360
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7361 7362
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7363
 * update_sd_pick_busiest(). And calculate_imbalance() and
7364
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7365 7366 7367 7368 7369 7370 7371
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7372
static inline int sg_imbalanced(struct sched_group *group)
7373
{
7374
	return group->sgc->imbalance;
7375 7376
}

7377
/*
7378 7379 7380
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7381 7382
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7383 7384 7385 7386 7387
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7388
 */
7389 7390
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7391
{
7392 7393
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7394

7395
	if ((sgs->group_capacity * 100) >
7396
			(sgs->group_util * env->sd->imbalance_pct))
7397
		return true;
7398

7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7415

7416
	if ((sgs->group_capacity * 100) <
7417
			(sgs->group_util * env->sd->imbalance_pct))
7418
		return true;
7419

7420
	return false;
7421 7422
}

7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7434 7435 7436
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7437
{
7438
	if (sgs->group_no_capacity)
7439 7440 7441 7442 7443 7444 7445 7446
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7447 7448
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7449
 * @env: The load balancing environment.
7450 7451 7452 7453
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7454
 * @overload: Indicate more than one runnable task for any CPU.
7455
 */
7456 7457
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7458 7459
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7460
{
7461
	unsigned long load;
7462
	int i, nr_running;
7463

7464 7465
	memset(sgs, 0, sizeof(*sgs));

7466
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7467 7468 7469
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7470
		if (local_group)
7471
			load = target_load(i, load_idx);
7472
		else
7473 7474 7475
			load = source_load(i, load_idx);

		sgs->group_load += load;
7476
		sgs->group_util += cpu_util(i);
7477
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7478

7479 7480
		nr_running = rq->nr_running;
		if (nr_running > 1)
7481 7482
			*overload = true;

7483 7484 7485 7486
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7487
		sgs->sum_weighted_load += weighted_cpuload(rq);
7488 7489 7490 7491
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7492
			sgs->idle_cpus++;
7493 7494
	}

7495 7496
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7497
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7498

7499
	if (sgs->sum_nr_running)
7500
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7501

7502
	sgs->group_weight = group->group_weight;
7503

7504
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7505
	sgs->group_type = group_classify(group, sgs);
7506 7507
}

7508 7509
/**
 * update_sd_pick_busiest - return 1 on busiest group
7510
 * @env: The load balancing environment.
7511 7512
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7513
 * @sgs: sched_group statistics
7514 7515 7516
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7517 7518 7519
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7520
 */
7521
static bool update_sd_pick_busiest(struct lb_env *env,
7522 7523
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7524
				   struct sg_lb_stats *sgs)
7525
{
7526
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7527

7528
	if (sgs->group_type > busiest->group_type)
7529 7530
		return true;

7531 7532 7533 7534 7535 7536
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7551 7552
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7553 7554
		return true;

7555 7556 7557
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7558
	/*
T
Tim Chen 已提交
7559 7560 7561
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7562
	 */
T
Tim Chen 已提交
7563 7564
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7565 7566 7567
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7568 7569 7570
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7571 7572 7573 7574 7575 7576
			return true;
	}

	return false;
}

7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7607
/**
7608
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7609
 * @env: The load balancing environment.
7610 7611
 * @sds: variable to hold the statistics for this sched_domain.
 */
7612
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7613
{
7614
	struct sched_domain_shared *shared = env->sd->shared;
7615 7616
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7617
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7618
	struct sg_lb_stats tmp_sgs;
7619
	int load_idx, prefer_sibling = 0;
7620
	bool overload = false;
7621 7622 7623 7624

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7625
	load_idx = get_sd_load_idx(env->sd, env->idle);
7626 7627

	do {
J
Joonsoo Kim 已提交
7628
		struct sg_lb_stats *sgs = &tmp_sgs;
7629 7630
		int local_group;

7631
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
7632 7633
		if (local_group) {
			sds->local = sg;
7634
			sgs = local;
7635 7636

			if (env->idle != CPU_NEWLY_IDLE ||
7637 7638
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7639
		}
7640

7641 7642
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7643

7644 7645 7646
		if (local_group)
			goto next_group;

7647 7648
		/*
		 * In case the child domain prefers tasks go to siblings
7649
		 * first, lower the sg capacity so that we'll try
7650 7651
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7652 7653 7654 7655
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7656
		 */
7657
		if (prefer_sibling && sds->local &&
7658 7659
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7660
			sgs->group_no_capacity = 1;
7661
			sgs->group_type = group_classify(sg, sgs);
7662
		}
7663

7664
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7665
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7666
			sds->busiest_stat = *sgs;
7667 7668
		}

7669 7670
next_group:
		/* Now, start updating sd_lb_stats */
7671
		sds->total_running += sgs->sum_nr_running;
7672
		sds->total_load += sgs->group_load;
7673
		sds->total_capacity += sgs->group_capacity;
7674

7675
		sg = sg->next;
7676
	} while (sg != env->sd->groups);
7677 7678 7679

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7680 7681 7682 7683 7684 7685 7686

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701
	if (!shared)
		return;

	/*
	 * Since these are sums over groups they can contain some CPUs
	 * multiple times for the NUMA domains.
	 *
	 * Currently only wake_affine_llc() and find_busiest_group()
	 * uses these numbers, only the last is affected by this problem.
	 *
	 * XXX fix that.
	 */
	WRITE_ONCE(shared->nr_running,	sds->total_running);
	WRITE_ONCE(shared->load,	sds->total_load);
	WRITE_ONCE(shared->capacity,	sds->total_capacity);
7702 7703 7704 7705
}

/**
 * check_asym_packing - Check to see if the group is packed into the
7706
 *			sched domain.
7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7721
 * Return: 1 when packing is required and a task should be moved to
7722 7723
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7724
 * @env: The load balancing environment.
7725 7726
 * @sds: Statistics of the sched_domain which is to be packed
 */
7727
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7728 7729 7730
{
	int busiest_cpu;

7731
	if (!(env->sd->flags & SD_ASYM_PACKING))
7732 7733
		return 0;

7734 7735 7736
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7737 7738 7739
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
7740 7741
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7742 7743
		return 0;

7744
	env->imbalance = DIV_ROUND_CLOSEST(
7745
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7746
		SCHED_CAPACITY_SCALE);
7747

7748
	return 1;
7749 7750 7751 7752 7753 7754
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7755
 * @env: The load balancing environment.
7756 7757
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7758 7759
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7760
{
7761
	unsigned long tmp, capa_now = 0, capa_move = 0;
7762
	unsigned int imbn = 2;
7763
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7764
	struct sg_lb_stats *local, *busiest;
7765

J
Joonsoo Kim 已提交
7766 7767
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7768

J
Joonsoo Kim 已提交
7769 7770 7771 7772
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7773

J
Joonsoo Kim 已提交
7774
	scaled_busy_load_per_task =
7775
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7776
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7777

7778 7779
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7780
		env->imbalance = busiest->load_per_task;
7781 7782 7783 7784 7785
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7786
	 * however we may be able to increase total CPU capacity used by
7787 7788 7789
	 * moving them.
	 */

7790
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7791
			min(busiest->load_per_task, busiest->avg_load);
7792
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7793
			min(local->load_per_task, local->avg_load);
7794
	capa_now /= SCHED_CAPACITY_SCALE;
7795 7796

	/* Amount of load we'd subtract */
7797
	if (busiest->avg_load > scaled_busy_load_per_task) {
7798
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7799
			    min(busiest->load_per_task,
7800
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7801
	}
7802 7803

	/* Amount of load we'd add */
7804
	if (busiest->avg_load * busiest->group_capacity <
7805
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7806 7807
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7808
	} else {
7809
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7810
		      local->group_capacity;
J
Joonsoo Kim 已提交
7811
	}
7812
	capa_move += local->group_capacity *
7813
		    min(local->load_per_task, local->avg_load + tmp);
7814
	capa_move /= SCHED_CAPACITY_SCALE;
7815 7816

	/* Move if we gain throughput */
7817
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7818
		env->imbalance = busiest->load_per_task;
7819 7820 7821 7822 7823
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7824
 * @env: load balance environment
7825 7826
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7827
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7828
{
7829
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7830 7831 7832 7833
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7834

7835
	if (busiest->group_type == group_imbalanced) {
7836 7837 7838 7839
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7840 7841
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7842 7843
	}

7844
	/*
7845 7846 7847 7848
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7849
	 */
7850 7851
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7852 7853
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7854 7855
	}

7856 7857 7858 7859 7860
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7861
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7862
		if (load_above_capacity > busiest->group_capacity) {
7863
			load_above_capacity -= busiest->group_capacity;
7864
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7865 7866
			load_above_capacity /= busiest->group_capacity;
		} else
7867
			load_above_capacity = ~0UL;
7868 7869 7870 7871 7872 7873
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7874 7875
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7876
	 */
7877
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7878 7879

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7880
	env->imbalance = min(
7881 7882
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7883
	) / SCHED_CAPACITY_SCALE;
7884 7885 7886

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7887
	 * there is no guarantee that any tasks will be moved so we'll have
7888 7889 7890
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7891
	if (env->imbalance < busiest->load_per_task)
7892
		return fix_small_imbalance(env, sds);
7893
}
7894

7895 7896 7897 7898
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7899
 * if there is an imbalance.
7900 7901 7902 7903
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7904
 * @env: The load balancing environment.
7905
 *
7906
 * Return:	- The busiest group if imbalance exists.
7907
 */
J
Joonsoo Kim 已提交
7908
static struct sched_group *find_busiest_group(struct lb_env *env)
7909
{
J
Joonsoo Kim 已提交
7910
	struct sg_lb_stats *local, *busiest;
7911 7912
	struct sd_lb_stats sds;

7913
	init_sd_lb_stats(&sds);
7914 7915 7916 7917 7918

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7919
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7920 7921
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7922

7923
	/* ASYM feature bypasses nice load balance check */
7924
	if (check_asym_packing(env, &sds))
7925 7926
		return sds.busiest;

7927
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7928
	if (!sds.busiest || busiest->sum_nr_running == 0)
7929 7930
		goto out_balanced;

7931
	/* XXX broken for overlapping NUMA groups */
7932 7933
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7934

P
Peter Zijlstra 已提交
7935 7936
	/*
	 * If the busiest group is imbalanced the below checks don't
7937
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7938 7939
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7940
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7941 7942
		goto force_balance;

7943
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7944 7945
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7946 7947
		goto force_balance;

7948
	/*
7949
	 * If the local group is busier than the selected busiest group
7950 7951
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7952
	if (local->avg_load >= busiest->avg_load)
7953 7954
		goto out_balanced;

7955 7956 7957 7958
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7959
	if (local->avg_load >= sds.avg_load)
7960 7961
		goto out_balanced;

7962
	if (env->idle == CPU_IDLE) {
7963
		/*
7964 7965 7966 7967 7968
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7969
		 */
7970 7971
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7972
			goto out_balanced;
7973 7974 7975 7976 7977
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7978 7979
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7980
			goto out_balanced;
7981
	}
7982

7983
force_balance:
7984
	/* Looks like there is an imbalance. Compute it */
7985
	calculate_imbalance(env, &sds);
7986 7987 7988
	return sds.busiest;

out_balanced:
7989
	env->imbalance = 0;
7990 7991 7992 7993 7994 7995
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7996
static struct rq *find_busiest_queue(struct lb_env *env,
7997
				     struct sched_group *group)
7998 7999
{
	struct rq *busiest = NULL, *rq;
8000
	unsigned long busiest_load = 0, busiest_capacity = 1;
8001 8002
	int i;

8003
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8004
		unsigned long capacity, wl;
8005 8006 8007 8008
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8009

8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8032
		capacity = capacity_of(i);
8033

8034
		wl = weighted_cpuload(rq);
8035

8036 8037
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8038
		 * which is not scaled with the cpu capacity.
8039
		 */
8040 8041 8042

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8043 8044
			continue;

8045 8046
		/*
		 * For the load comparisons with the other cpu's, consider
8047 8048 8049
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
8050
		 *
8051
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8052
		 * multiplication to rid ourselves of the division works out
8053 8054
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8055
		 */
8056
		if (wl * busiest_capacity > busiest_load * capacity) {
8057
			busiest_load = wl;
8058
			busiest_capacity = capacity;
8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8072
static int need_active_balance(struct lb_env *env)
8073
{
8074 8075 8076
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8077 8078 8079

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8080 8081
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8082
		 */
T
Tim Chen 已提交
8083 8084
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8085
			return 1;
8086 8087
	}

8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8101 8102 8103
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8104 8105
static int active_load_balance_cpu_stop(void *data);

8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	/* Try to find first idle cpu */
8119
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8120
		if (!idle_cpu(cpu))
8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8134
	return balance_cpu == env->dst_cpu;
8135 8136
}

8137 8138 8139 8140 8141 8142
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8143
			int *continue_balancing)
8144
{
8145
	int ld_moved, cur_ld_moved, active_balance = 0;
8146
	struct sched_domain *sd_parent = sd->parent;
8147 8148
	struct sched_group *group;
	struct rq *busiest;
8149
	struct rq_flags rf;
8150
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8151

8152 8153
	struct lb_env env = {
		.sd		= sd,
8154 8155
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8156
		.dst_grpmask    = sched_group_span(sd->groups),
8157
		.idle		= idle,
8158
		.loop_break	= sched_nr_migrate_break,
8159
		.cpus		= cpus,
8160
		.fbq_type	= all,
8161
		.tasks		= LIST_HEAD_INIT(env.tasks),
8162 8163
	};

8164
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8165

8166
	schedstat_inc(sd->lb_count[idle]);
8167 8168

redo:
8169 8170
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8171
		goto out_balanced;
8172
	}
8173

8174
	group = find_busiest_group(&env);
8175
	if (!group) {
8176
		schedstat_inc(sd->lb_nobusyg[idle]);
8177 8178 8179
		goto out_balanced;
	}

8180
	busiest = find_busiest_queue(&env, group);
8181
	if (!busiest) {
8182
		schedstat_inc(sd->lb_nobusyq[idle]);
8183 8184 8185
		goto out_balanced;
	}

8186
	BUG_ON(busiest == env.dst_rq);
8187

8188
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8189

8190 8191 8192
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8193 8194 8195 8196 8197 8198 8199 8200
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8201
		env.flags |= LBF_ALL_PINNED;
8202
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8203

8204
more_balance:
8205
		rq_lock_irqsave(busiest, &rf);
8206
		update_rq_clock(busiest);
8207 8208 8209 8210 8211

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8212
		cur_ld_moved = detach_tasks(&env);
8213 8214

		/*
8215 8216 8217 8218 8219
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8220
		 */
8221

8222
		rq_unlock(busiest, &rf);
8223 8224 8225 8226 8227 8228

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8229
		local_irq_restore(rf.flags);
8230

8231 8232 8233 8234 8235
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8255
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8256

8257 8258 8259
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8260
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8261
			env.dst_cpu	 = env.new_dst_cpu;
8262
			env.flags	&= ~LBF_DST_PINNED;
8263 8264
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8265

8266 8267 8268 8269 8270 8271
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8272

8273 8274 8275 8276
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8277
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8278

8279
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8280 8281 8282
				*group_imbalance = 1;
		}

8283
		/* All tasks on this runqueue were pinned by CPU affinity */
8284
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8285
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8286 8287 8288 8289 8290 8291 8292 8293 8294
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8295 8296
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8297
				goto redo;
8298
			}
8299
			goto out_all_pinned;
8300 8301 8302 8303
		}
	}

	if (!ld_moved) {
8304
		schedstat_inc(sd->lb_failed[idle]);
8305 8306 8307 8308 8309 8310 8311 8312
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8313

8314
		if (need_active_balance(&env)) {
8315 8316
			unsigned long flags;

8317 8318
			raw_spin_lock_irqsave(&busiest->lock, flags);

8319 8320 8321
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8322
			 */
8323
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8324 8325
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8326
				env.flags |= LBF_ALL_PINNED;
8327 8328 8329
				goto out_one_pinned;
			}

8330 8331 8332 8333 8334
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8335 8336 8337 8338 8339 8340
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8341

8342
			if (active_balance) {
8343 8344 8345
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8346
			}
8347

8348
			/* We've kicked active balancing, force task migration. */
8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8362
		 * detach_tasks).
8363 8364 8365 8366 8367 8368 8369 8370
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8388
	schedstat_inc(sd->lb_balanced[idle]);
8389 8390 8391 8392 8393

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8394
	if (((env.flags & LBF_ALL_PINNED) &&
8395
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8396 8397 8398
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8399
	ld_moved = 0;
8400 8401 8402 8403
out:
	return ld_moved;
}

8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8420
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8421 8422 8423
{
	unsigned long interval, next;

8424 8425
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8426 8427 8428 8429 8430 8431
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8432 8433 8434 8435
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8436
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8437
{
8438 8439
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8440 8441
	struct sched_domain *sd;
	int pulled_task = 0;
8442
	u64 curr_cost = 0;
8443

8444 8445 8446 8447 8448 8449
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8450 8451 8452 8453 8454 8455 8456 8457
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8458 8459
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8460 8461 8462
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8463
			update_next_balance(sd, &next_balance);
8464 8465
		rcu_read_unlock();

8466
		goto out;
8467
	}
8468

8469 8470
	raw_spin_unlock(&this_rq->lock);

8471
	update_blocked_averages(this_cpu);
8472
	rcu_read_lock();
8473
	for_each_domain(this_cpu, sd) {
8474
		int continue_balancing = 1;
8475
		u64 t0, domain_cost;
8476 8477 8478 8479

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8480
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8481
			update_next_balance(sd, &next_balance);
8482
			break;
8483
		}
8484

8485
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8486 8487
			t0 = sched_clock_cpu(this_cpu);

8488
			pulled_task = load_balance(this_cpu, this_rq,
8489 8490
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8491 8492 8493 8494 8495 8496

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8497
		}
8498

8499
		update_next_balance(sd, &next_balance);
8500 8501 8502 8503 8504 8505

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8506 8507
			break;
	}
8508
	rcu_read_unlock();
8509 8510 8511

	raw_spin_lock(&this_rq->lock);

8512 8513 8514
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8515
	/*
8516 8517 8518
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8519
	 */
8520
	if (this_rq->cfs.h_nr_running && !pulled_task)
8521
		pulled_task = 1;
8522

8523 8524 8525
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8526
		this_rq->next_balance = next_balance;
8527

8528
	/* Is there a task of a high priority class? */
8529
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8530 8531
		pulled_task = -1;

8532
	if (pulled_task)
8533 8534
		this_rq->idle_stamp = 0;

8535 8536
	rq_repin_lock(this_rq, rf);

8537
	return pulled_task;
8538 8539 8540
}

/*
8541 8542 8543 8544
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8545
 */
8546
static int active_load_balance_cpu_stop(void *data)
8547
{
8548 8549
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8550
	int target_cpu = busiest_rq->push_cpu;
8551
	struct rq *target_rq = cpu_rq(target_cpu);
8552
	struct sched_domain *sd;
8553
	struct task_struct *p = NULL;
8554
	struct rq_flags rf;
8555

8556
	rq_lock_irq(busiest_rq, &rf);
8557 8558 8559 8560 8561

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8562 8563 8564

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8565
		goto out_unlock;
8566 8567 8568 8569 8570 8571 8572 8573 8574

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8575
	rcu_read_lock();
8576 8577 8578 8579 8580 8581 8582
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8583 8584
		struct lb_env env = {
			.sd		= sd,
8585 8586 8587 8588
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8589
			.idle		= CPU_IDLE,
8590 8591 8592 8593 8594 8595 8596
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8597 8598
		};

8599
		schedstat_inc(sd->alb_count);
8600
		update_rq_clock(busiest_rq);
8601

8602
		p = detach_one_task(&env);
8603
		if (p) {
8604
			schedstat_inc(sd->alb_pushed);
8605 8606 8607
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8608
			schedstat_inc(sd->alb_failed);
8609
		}
8610
	}
8611
	rcu_read_unlock();
8612 8613
out_unlock:
	busiest_rq->active_balance = 0;
8614
	rq_unlock(busiest_rq, &rf);
8615 8616 8617 8618 8619 8620

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8621
	return 0;
8622 8623
}

8624 8625 8626 8627 8628
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8629
#ifdef CONFIG_NO_HZ_COMMON
8630 8631 8632 8633 8634 8635
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8636
static struct {
8637
	cpumask_var_t idle_cpus_mask;
8638
	atomic_t nr_cpus;
8639 8640
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8641

8642
static inline int find_new_ilb(void)
8643
{
8644
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8645

8646 8647 8648 8649
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8650 8651
}

8652 8653 8654 8655 8656
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8657
static void nohz_balancer_kick(void)
8658 8659 8660 8661 8662
{
	int ilb_cpu;

	nohz.next_balance++;

8663
	ilb_cpu = find_new_ilb();
8664

8665 8666
	if (ilb_cpu >= nr_cpu_ids)
		return;
8667

8668
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8669 8670 8671 8672 8673 8674 8675 8676
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8677 8678 8679
	return;
}

8680
void nohz_balance_exit_idle(unsigned int cpu)
8681 8682
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8683 8684 8685 8686 8687 8688 8689
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8690 8691 8692 8693
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8694 8695 8696
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8697
	int cpu = smp_processor_id();
8698 8699

	rcu_read_lock();
8700
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8701 8702 8703 8704 8705

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8706
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8707
unlock:
8708 8709 8710 8711 8712 8713
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8714
	int cpu = smp_processor_id();
8715 8716

	rcu_read_lock();
8717
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8718 8719 8720 8721 8722

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8723
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8724
unlock:
8725 8726 8727
	rcu_read_unlock();
}

8728
/*
8729
 * This routine will record that the cpu is going idle with tick stopped.
8730
 * This info will be used in performing idle load balancing in the future.
8731
 */
8732
void nohz_balance_enter_idle(int cpu)
8733
{
8734 8735 8736 8737 8738 8739
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8740 8741 8742 8743
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
	if (!is_housekeeping_cpu(cpu))
		return;

8744 8745
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8746

8747 8748 8749 8750 8751 8752
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8753 8754 8755
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8756 8757 8758 8759 8760
}
#endif

static DEFINE_SPINLOCK(balancing);

8761 8762 8763 8764
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8765
void update_max_interval(void)
8766 8767 8768 8769
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8770 8771 8772 8773
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8774
 * Balancing parameters are set up in init_sched_domains.
8775
 */
8776
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8777
{
8778
	int continue_balancing = 1;
8779
	int cpu = rq->cpu;
8780
	unsigned long interval;
8781
	struct sched_domain *sd;
8782 8783 8784
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8785 8786
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8787

8788
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8789

8790
	rcu_read_lock();
8791
	for_each_domain(cpu, sd) {
8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8804 8805 8806
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8818
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8819 8820 8821 8822 8823 8824 8825 8826

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8827
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8828
				/*
8829
				 * The LBF_DST_PINNED logic could have changed
8830 8831
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8832
				 */
8833
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8834 8835
			}
			sd->last_balance = jiffies;
8836
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8837 8838 8839 8840 8841 8842 8843 8844
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8845 8846
	}
	if (need_decay) {
8847
		/*
8848 8849
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8850
		 */
8851 8852
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8853
	}
8854
	rcu_read_unlock();
8855 8856 8857 8858 8859 8860

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8861
	if (likely(update_next_balance)) {
8862
		rq->next_balance = next_balance;
8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8877 8878
}

8879
#ifdef CONFIG_NO_HZ_COMMON
8880
/*
8881
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8882 8883
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8884
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8885
{
8886
	int this_cpu = this_rq->cpu;
8887 8888
	struct rq *rq;
	int balance_cpu;
8889 8890 8891
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8892

8893 8894 8895
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8896 8897

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8898
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8899 8900 8901 8902 8903 8904 8905
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8906
		if (need_resched())
8907 8908
			break;

V
Vincent Guittot 已提交
8909 8910
		rq = cpu_rq(balance_cpu);

8911 8912 8913 8914 8915
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
8916 8917 8918
			struct rq_flags rf;

			rq_lock_irq(rq, &rf);
8919
			update_rq_clock(rq);
8920
			cpu_load_update_idle(rq);
8921 8922
			rq_unlock_irq(rq, &rf);

8923 8924
			rebalance_domains(rq, CPU_IDLE);
		}
8925

8926 8927 8928 8929
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8930
	}
8931 8932 8933 8934 8935 8936 8937 8938

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8939 8940
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8941 8942 8943
}

/*
8944
 * Current heuristic for kicking the idle load balancer in the presence
8945
 * of an idle cpu in the system.
8946
 *   - This rq has more than one task.
8947 8948 8949 8950
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8951 8952
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8953
 */
8954
static inline bool nohz_kick_needed(struct rq *rq)
8955 8956
{
	unsigned long now = jiffies;
8957
	struct sched_domain_shared *sds;
8958
	struct sched_domain *sd;
T
Tim Chen 已提交
8959
	int nr_busy, i, cpu = rq->cpu;
8960
	bool kick = false;
8961

8962
	if (unlikely(rq->idle_balance))
8963
		return false;
8964

8965 8966 8967 8968
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8969
	set_cpu_sd_state_busy();
8970
	nohz_balance_exit_idle(cpu);
8971 8972 8973 8974 8975 8976

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8977
		return false;
8978 8979

	if (time_before(now, nohz.next_balance))
8980
		return false;
8981

8982
	if (rq->nr_running >= 2)
8983
		return true;
8984

8985
	rcu_read_lock();
8986 8987 8988 8989 8990 8991 8992
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
8993 8994 8995 8996 8997
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8998
	}
8999

9000 9001 9002 9003 9004 9005 9006 9007
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
9008

9009
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
9010 9011 9012 9013 9014
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
9015

T
Tim Chen 已提交
9016 9017 9018 9019 9020 9021
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
9022
unlock:
9023
	rcu_read_unlock();
9024
	return kick;
9025 9026
}
#else
9027
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
9028 9029 9030 9031 9032 9033
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9034
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9035
{
9036
	struct rq *this_rq = this_rq();
9037
	enum cpu_idle_type idle = this_rq->idle_balance ?
9038 9039 9040
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9041
	 * If this cpu has a pending nohz_balance_kick, then do the
9042
	 * balancing on behalf of the other idle cpus whose ticks are
9043 9044 9045 9046
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9047
	 */
9048
	nohz_idle_balance(this_rq, idle);
9049
	rebalance_domains(this_rq, idle);
9050 9051 9052 9053 9054
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9055
void trigger_load_balance(struct rq *rq)
9056 9057
{
	/* Don't need to rebalance while attached to NULL domain */
9058 9059 9060 9061
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9062
		raise_softirq(SCHED_SOFTIRQ);
9063
#ifdef CONFIG_NO_HZ_COMMON
9064
	if (nohz_kick_needed(rq))
9065
		nohz_balancer_kick();
9066
#endif
9067 9068
}

9069 9070 9071
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9072 9073

	update_runtime_enabled(rq);
9074 9075 9076 9077 9078
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9079 9080 9081

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9082 9083
}

9084
#endif /* CONFIG_SMP */
9085

9086 9087 9088
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
9089
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9090 9091 9092 9093 9094 9095
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9096
		entity_tick(cfs_rq, se, queued);
9097
	}
9098

9099
	if (static_branch_unlikely(&sched_numa_balancing))
9100
		task_tick_numa(rq, curr);
9101 9102 9103
}

/*
P
Peter Zijlstra 已提交
9104 9105 9106
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9107
 */
P
Peter Zijlstra 已提交
9108
static void task_fork_fair(struct task_struct *p)
9109
{
9110 9111
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9112
	struct rq *rq = this_rq();
9113
	struct rq_flags rf;
9114

9115
	rq_lock(rq, &rf);
9116 9117
	update_rq_clock(rq);

9118 9119
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9120 9121
	if (curr) {
		update_curr(cfs_rq);
9122
		se->vruntime = curr->vruntime;
9123
	}
9124
	place_entity(cfs_rq, se, 1);
9125

P
Peter Zijlstra 已提交
9126
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9127
		/*
9128 9129 9130
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9131
		swap(curr->vruntime, se->vruntime);
9132
		resched_curr(rq);
9133
	}
9134

9135
	se->vruntime -= cfs_rq->min_vruntime;
9136
	rq_unlock(rq, &rf);
9137 9138
}

9139 9140 9141 9142
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9143 9144
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9145
{
9146
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9147 9148
		return;

9149 9150 9151 9152 9153
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9154
	if (rq->curr == p) {
9155
		if (p->prio > oldprio)
9156
			resched_curr(rq);
9157
	} else
9158
		check_preempt_curr(rq, p, 0);
9159 9160
}

9161
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9162 9163 9164 9165
{
	struct sched_entity *se = &p->se;

	/*
9166 9167 9168 9169 9170 9171 9172 9173 9174 9175
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9176
	 *
9177 9178 9179 9180
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9181
	 */
9182 9183 9184 9185 9186 9187
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(se, UPDATE_TG);
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9213
static void detach_entity_cfs_rq(struct sched_entity *se)
9214 9215 9216
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9217
	/* Catch up with the cfs_rq and remove our load when we leave */
9218
	update_load_avg(se, 0);
9219
	detach_entity_load_avg(cfs_rq, se);
9220
	update_tg_load_avg(cfs_rq, false);
9221
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9222 9223
}

9224
static void attach_entity_cfs_rq(struct sched_entity *se)
9225
{
9226
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9227 9228

#ifdef CONFIG_FAIR_GROUP_SCHED
9229 9230 9231 9232 9233 9234
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9235

9236
	/* Synchronize entity with its cfs_rq */
9237
	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9238
	attach_entity_load_avg(cfs_rq, se);
9239
	update_tg_load_avg(cfs_rq, false);
9240
	propagate_entity_cfs_rq(se);
9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9266 9267 9268 9269

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9270

9271 9272 9273 9274 9275 9276 9277 9278
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9279

9280
	if (task_on_rq_queued(p)) {
9281
		/*
9282 9283 9284
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9285
		 */
9286 9287 9288 9289
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9290
	}
9291 9292
}

9293 9294 9295 9296 9297 9298 9299 9300 9301
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9302 9303 9304 9305 9306 9307 9308
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9309 9310
}

9311 9312 9313 9314 9315 9316 9317
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9318
#ifdef CONFIG_SMP
9319 9320 9321
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->propagate_avg = 0;
#endif
9322 9323
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9324
#endif
9325 9326
}

P
Peter Zijlstra 已提交
9327
#ifdef CONFIG_FAIR_GROUP_SCHED
9328 9329 9330 9331 9332 9333 9334 9335
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9336
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9337
{
9338
	detach_task_cfs_rq(p);
9339
	set_task_rq(p, task_cpu(p));
9340 9341 9342 9343 9344

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9345
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9346
}
9347

9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9361 9362 9363 9364 9365 9366 9367 9368 9369
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9370
		if (tg->se)
9371 9372 9373 9374 9375 9376 9377 9378 9379 9380
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9381
	struct cfs_rq *cfs_rq;
9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9408
		init_entity_runnable_average(se);
9409 9410 9411 9412 9413 9414 9415 9416 9417 9418
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9430
		update_rq_clock(rq);
9431
		attach_entity_cfs_rq(se);
9432
		sync_throttle(tg, i);
9433 9434 9435 9436
		raw_spin_unlock_irq(&rq->lock);
	}
}

9437
void unregister_fair_sched_group(struct task_group *tg)
9438 9439
{
	unsigned long flags;
9440 9441
	struct rq *rq;
	int cpu;
9442

9443 9444 9445
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9446

9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9479
	if (!parent) {
9480
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9481 9482
		se->depth = 0;
	} else {
9483
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9484 9485
		se->depth = parent->depth + 1;
	}
9486 9487

	se->my_q = cfs_rq;
9488 9489
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9514 9515
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9516 9517

		/* Propagate contribution to hierarchy */
9518
		rq_lock_irqsave(rq, &rf);
9519
		update_rq_clock(rq);
9520 9521 9522 9523
		for_each_sched_entity(se) {
			update_load_avg(se, UPDATE_TG);
			update_cfs_shares(se);
		}
9524
		rq_unlock_irqrestore(rq, &rf);
9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9540 9541
void online_fair_sched_group(struct task_group *tg) { }

9542
void unregister_fair_sched_group(struct task_group *tg) { }
9543 9544 9545

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9546

9547
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9548 9549 9550 9551 9552 9553 9554 9555 9556
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9557
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9558 9559 9560 9561

	return rr_interval;
}

9562 9563 9564
/*
 * All the scheduling class methods:
 */
9565
const struct sched_class fair_sched_class = {
9566
	.next			= &idle_sched_class,
9567 9568 9569
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9570
	.yield_to_task		= yield_to_task_fair,
9571

I
Ingo Molnar 已提交
9572
	.check_preempt_curr	= check_preempt_wakeup,
9573 9574 9575 9576

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9577
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9578
	.select_task_rq		= select_task_rq_fair,
9579
	.migrate_task_rq	= migrate_task_rq_fair,
9580

9581 9582
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9583

9584
	.task_dead		= task_dead_fair,
9585
	.set_cpus_allowed	= set_cpus_allowed_common,
9586
#endif
9587

9588
	.set_curr_task          = set_curr_task_fair,
9589
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9590
	.task_fork		= task_fork_fair,
9591 9592

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9593
	.switched_from		= switched_from_fair,
9594
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9595

9596 9597
	.get_rr_interval	= get_rr_interval_fair,

9598 9599
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9600
#ifdef CONFIG_FAIR_GROUP_SCHED
9601
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9602
#endif
9603 9604 9605
};

#ifdef CONFIG_SCHED_DEBUG
9606
void print_cfs_stats(struct seq_file *m, int cpu)
9607
{
9608
	struct cfs_rq *cfs_rq, *pos;
9609

9610
	rcu_read_lock();
9611
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9612
		print_cfs_rq(m, cpu, cfs_rq);
9613
	rcu_read_unlock();
9614
}
9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9636 9637 9638 9639 9640 9641

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9642
#ifdef CONFIG_NO_HZ_COMMON
9643
	nohz.next_balance = jiffies;
9644 9645 9646 9647 9648
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}