tree.c 133.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
35
#include <linux/rcupdate_wait.h>
36 37
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/sched/debug.h>
39
#include <linux/nmi.h>
40
#include <linux/atomic.h>
41
#include <linux/bitops.h>
42
#include <linux/export.h>
43 44 45 46 47 48 49
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <uapi/linux/sched/types.h>
54
#include <linux/prefetch.h>
55 56
#include <linux/delay.h>
#include <linux/stop_machine.h>
57
#include <linux/random.h>
58
#include <linux/trace_events.h>
59
#include <linux/suspend.h>
P
Paul E. McKenney 已提交
60
#include <linux/ftrace.h>
61

62
#include "tree.h"
63
#include "rcu.h"
64

65 66 67 68 69
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

70 71
/* Data structures. */

72 73 74 75 76 77 78 79
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
80 81
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
82
static char sname##_varname[] = #sname; \
83 84 85 86 87 88 89 90 91
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
92
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93
struct rcu_state sname##_state = { \
94
	.level = { &sname##_state.node[0] }, \
95
	.rda = &sname##_data, \
96
	.call = cr, \
97
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
98 99
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
100
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 102
	.orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
	.orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
103
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104
	.name = RCU_STATE_NAME(sname), \
105
	.abbr = sabbr, \
106
	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
107
	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
108
}
109

110 111
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112

113
static struct rcu_state *const rcu_state_p;
114
LIST_HEAD(rcu_struct_flavors);
115

116 117 118
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
119 120 121
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
122 123
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124
module_param(rcu_fanout_leaf, int, 0444);
125
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
126
/* Number of rcu_nodes at specified level. */
127
int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
128
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129 130
/* panic() on RCU Stall sysctl. */
int sysctl_panic_on_rcu_stall __read_mostly;
131

132
/*
133 134 135 136
 * The rcu_scheduler_active variable is initialized to the value
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 * RCU can assume that there is but one task, allowing RCU to (for example)
137
 * optimize synchronize_rcu() to a simple barrier().  When this variable
138 139 140 141 142
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 * to detect real grace periods.  This variable is also used to suppress
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 * is fully initialized, including all of its kthreads having been spawned.
143
 */
144 145 146
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

161 162
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
163
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
164 165
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
166 167
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
168
static void sync_sched_exp_online_cleanup(int cpu);
169

170
/* rcuc/rcub kthread realtime priority */
171
#ifdef CONFIG_RCU_KTHREAD_PRIO
172
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
173 174 175
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
176 177
module_param(kthread_prio, int, 0644);

178
/* Delay in jiffies for grace-period initialization delays, debug only. */
179 180 181 182 183 184 185 186

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

187 188
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
189
module_param(gp_init_delay, int, 0644);
190 191 192
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
193

194 195 196 197 198 199 200
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

201 202
/*
 * Number of grace periods between delays, normalized by the duration of
203
 * the delay.  The longer the delay, the more the grace periods between
204 205 206 207 208 209 210
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
211

212 213 214 215 216 217 218 219 220 221 222 223
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

224 225 226 227 228 229 230 231
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
232
	return READ_ONCE(rnp->qsmaskinitnext);
233 234
}

235
/*
236
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
237 238 239 240 241
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
242
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
243 244
}

245
/*
246
 * Note a quiescent state.  Because we do not need to know
247
 * how many quiescent states passed, just if there was at least
248
 * one since the start of the grace period, this just sets a flag.
249
 * The caller must have disabled preemption.
250
 */
251
void rcu_sched_qs(void)
252
{
253
	RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
254 255 256 257 258 259 260 261
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
262 263 264
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
265 266
}

267
void rcu_bh_qs(void)
268
{
269
	RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
270
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
271 272 273
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
274
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
275
	}
276
}
277

278 279 280 281 282 283 284 285 286
/*
 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 * control.  Initially this is for TLB flushing.
 */
#define RCU_DYNTICK_CTRL_MASK 0x1
#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
#ifndef rcu_eqs_special_exit
#define rcu_eqs_special_exit() do { } while (0)
#endif
287 288 289

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
290
	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
291 292 293 294 295 296
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

297 298 299 300 301 302 303 304 305 306 307 308 309 310
/*
 * There's a few places, currently just in the tracing infrastructure,
 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
 * a small location where that will not even work. In those cases
 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
 * can be called.
 */
static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);

bool rcu_irq_enter_disabled(void)
{
	return this_cpu_read(disable_rcu_irq_enter);
}

311 312 313 314 315 316 317
/*
 * Record entry into an extended quiescent state.  This is only to be
 * called when not already in an extended quiescent state.
 */
static void rcu_dynticks_eqs_enter(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
318
	int seq;
319 320

	/*
321
	 * CPUs seeing atomic_add_return() must see prior RCU read-side
322 323 324
	 * critical sections, and we also must force ordering with the
	 * next idle sojourn.
	 */
325 326 327 328 329 330 331
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	/* Better be in an extended quiescent state! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_CTR));
	/* Better not have special action (TLB flush) pending! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_MASK));
332 333 334 335 336 337 338 339 340
}

/*
 * Record exit from an extended quiescent state.  This is only to be
 * called from an extended quiescent state.
 */
static void rcu_dynticks_eqs_exit(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
341
	int seq;
342 343

	/*
344
	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
345 346 347
	 * and we also must force ordering with the next RCU read-side
	 * critical section.
	 */
348 349 350 351 352 353 354 355 356
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(seq & RCU_DYNTICK_CTRL_CTR));
	if (seq & RCU_DYNTICK_CTRL_MASK) {
		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
		smp_mb__after_atomic(); /* _exit after clearing mask. */
		/* Prefer duplicate flushes to losing a flush. */
		rcu_eqs_special_exit();
	}
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
}

/*
 * Reset the current CPU's ->dynticks counter to indicate that the
 * newly onlined CPU is no longer in an extended quiescent state.
 * This will either leave the counter unchanged, or increment it
 * to the next non-quiescent value.
 *
 * The non-atomic test/increment sequence works because the upper bits
 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 * or when the corresponding CPU is offline.
 */
static void rcu_dynticks_eqs_online(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

373
	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
374
		return;
375
	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
376 377
}

378 379 380 381 382 383 384 385 386
/*
 * Is the current CPU in an extended quiescent state?
 *
 * No ordering, as we are sampling CPU-local information.
 */
bool rcu_dynticks_curr_cpu_in_eqs(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

387
	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
388 389
}

390 391 392 393
/*
 * Snapshot the ->dynticks counter with full ordering so as to allow
 * stable comparison of this counter with past and future snapshots.
 */
394
int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
395 396 397
{
	int snap = atomic_add_return(0, &rdtp->dynticks);

398
	return snap & ~RCU_DYNTICK_CTRL_MASK;
399 400
}

401 402 403 404 405 406
/*
 * Return true if the snapshot returned from rcu_dynticks_snap()
 * indicates that RCU is in an extended quiescent state.
 */
static bool rcu_dynticks_in_eqs(int snap)
{
407
	return !(snap & RCU_DYNTICK_CTRL_CTR);
408 409 410 411 412 413 414 415 416 417 418 419
}

/*
 * Return true if the CPU corresponding to the specified rcu_dynticks
 * structure has spent some time in an extended quiescent state since
 * rcu_dynticks_snap() returned the specified snapshot.
 */
static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
{
	return snap != rcu_dynticks_snap(rdtp);
}

420 421 422 423 424 425 426
/*
 * Do a double-increment of the ->dynticks counter to emulate a
 * momentary idle-CPU quiescent state.
 */
static void rcu_dynticks_momentary_idle(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
427 428
	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
					&rdtp->dynticks);
429 430

	/* It is illegal to call this from idle state. */
431
	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
432 433
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/*
 * Set the special (bottom) bit of the specified CPU so that it
 * will take special action (such as flushing its TLB) on the
 * next exit from an extended quiescent state.  Returns true if
 * the bit was successfully set, or false if the CPU was not in
 * an extended quiescent state.
 */
bool rcu_eqs_special_set(int cpu)
{
	int old;
	int new;
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	do {
		old = atomic_read(&rdtp->dynticks);
		if (old & RCU_DYNTICK_CTRL_CTR)
			return false;
		new = old | RCU_DYNTICK_CTRL_MASK;
	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
	return true;
454
}
455

456 457 458 459 460 461 462
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
463
 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
464 465
 *
 * The caller must have disabled interrupts.
466 467 468
 */
static void rcu_momentary_dyntick_idle(void)
{
469 470
	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
	rcu_dynticks_momentary_idle();
471 472
}

473 474 475
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
476
 * The caller must have disabled interrupts.
477
 */
478
void rcu_note_context_switch(bool preempt)
479
{
480
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
481
	trace_rcu_utilization(TPS("Start context switch"));
482
	rcu_sched_qs();
483
	rcu_preempt_note_context_switch(preempt);
484 485 486 487
	/* Load rcu_urgent_qs before other flags. */
	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
		goto out;
	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
488
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
489
		rcu_momentary_dyntick_idle();
490
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
491 492
	if (!preempt)
		rcu_note_voluntary_context_switch_lite(current);
493
out:
494
	trace_rcu_utilization(TPS("End context switch"));
495
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
496
}
497
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
498

499
/*
500
 * Register a quiescent state for all RCU flavors.  If there is an
501 502
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
503
 * RCU flavors in desperate need of a quiescent state, which will normally
504 505
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
506 507 508 509 510
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
511 512 513
 */
void rcu_all_qs(void)
{
514 515
	unsigned long flags;

516 517 518 519 520 521 522 523 524
	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
		return;
	preempt_disable();
	/* Load rcu_urgent_qs before other flags. */
	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
		preempt_enable();
		return;
	}
	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
525
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
526
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
527
		local_irq_save(flags);
528
		rcu_momentary_dyntick_idle();
529 530
		local_irq_restore(flags);
	}
531
	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
532
		rcu_sched_qs();
533
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
534
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
535
	preempt_enable();
536 537 538
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

539 540 541 542 543 544
#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
static long blimit = DEFAULT_RCU_BLIMIT;
#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
static long qhimark = DEFAULT_RCU_QHIMARK;
#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
static long qlowmark = DEFAULT_RCU_QLOMARK;
545

E
Eric Dumazet 已提交
546 547 548
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
549

550 551
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
552
static bool rcu_kick_kthreads;
553 554 555

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);
556
module_param(rcu_kick_kthreads, bool, 0644);
557

558 559 560 561 562 563 564
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

565
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
566
				  struct rcu_data *rdp);
567 568 569 570
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
571
static void force_quiescent_state(struct rcu_state *rsp);
572
static int rcu_pending(void);
573 574

/*
575
 * Return the number of RCU batches started thus far for debug & stats.
576
 */
577 578 579 580 581 582 583 584
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
585
 */
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
612
 */
613
unsigned long rcu_batches_completed_sched(void)
614
{
615
	return rcu_sched_state.completed;
616
}
617
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
618 619

/*
620
 * Return the number of RCU BH batches completed thus far for debug & stats.
621
 */
622
unsigned long rcu_batches_completed_bh(void)
623 624 625 626 627
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
/*
 * Return the number of RCU expedited batches completed thus far for
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 * numbers mean idle.  The value returned will thus be roughly double
 * the cumulative batches since boot.
 */
unsigned long rcu_exp_batches_completed(void)
{
	return rcu_state_p->expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);

/*
 * Return the number of RCU-sched expedited batches completed thus far
 * for debug & stats.  Similar to rcu_exp_batches_completed().
 */
unsigned long rcu_exp_batches_completed_sched(void)
{
	return rcu_sched_state.expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);

650 651 652 653 654
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
655
	force_quiescent_state(rcu_state_p);
656 657 658
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

659 660 661 662 663
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
664
	force_quiescent_state(&rcu_bh_state);
665 666 667
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

668 669 670 671 672 673 674 675 676
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

692 693 694 695 696 697 698 699 700 701 702 703 704 705
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

706 707 708 709 710 711 712 713 714 715
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
716
		rsp = rcu_state_p;
717 718 719 720 721 722 723 724 725 726
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
727
	if (rsp == NULL)
728
		return;
729 730 731
	*flags = READ_ONCE(rsp->gp_flags);
	*gpnum = READ_ONCE(rsp->gpnum);
	*completed = READ_ONCE(rsp->completed);
732 733 734
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

735 736 737 738 739 740 741 742 743 744 745
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
762
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
763 764
	int *fp = &rnp->need_future_gp[idx];

765
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
766
	return READ_ONCE(*fp);
767 768
}

769
/*
770 771 772
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
773
 */
774
static bool
775 776
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
777
	RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
778
	if (rcu_gp_in_progress(rsp))
779
		return false;  /* No, a grace period is already in progress. */
780
	if (rcu_future_needs_gp(rsp))
781
		return true;  /* Yes, a no-CBs CPU needs one. */
782
	if (!rcu_segcblist_is_enabled(&rdp->cblist))
783
		return false;  /* No, this is a no-CBs (or offline) CPU. */
784
	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
785
		return true;  /* Yes, CPU has newly registered callbacks. */
786 787 788
	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
					   READ_ONCE(rsp->completed)))
		return true;  /* Yes, CBs for future grace period. */
789
	return false; /* No grace period needed. */
790 791
}

792
/*
P
Paul E. McKenney 已提交
793
 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
794
 *
P
Paul E. McKenney 已提交
795 796
 * Enter idle, doing appropriate accounting.  The caller must have
 * disabled interrupts.
797
 */
P
Paul E. McKenney 已提交
798
static void rcu_eqs_enter_common(bool user)
799
{
800 801
	struct rcu_state *rsp;
	struct rcu_data *rdp;
P
Paul E. McKenney 已提交
802
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
803

804
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
P
Paul E. McKenney 已提交
805
	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
806 807
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
808 809
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
810

P
Paul E. McKenney 已提交
811
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
812
		rcu_ftrace_dump(DUMP_ORIG);
813 814 815
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
816
	}
817 818 819 820
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
821
	rcu_prepare_for_idle();
822
	__this_cpu_inc(disable_rcu_irq_enter);
P
Paul E. McKenney 已提交
823 824
	rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
	rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
825
	__this_cpu_dec(disable_rcu_irq_enter);
826
	rcu_dynticks_task_enter();
827 828

	/*
829
	 * It is illegal to enter an extended quiescent state while
830 831
	 * in an RCU read-side critical section.
	 */
832 833 834 835 836 837
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
838
}
839

840 841 842
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
843
 */
844
static void rcu_eqs_enter(bool user)
845 846 847
{
	struct rcu_dynticks *rdtp;

848
	rdtp = this_cpu_ptr(&rcu_dynticks);
849
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
P
Paul E. McKenney 已提交
850 851 852 853
		     (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
	if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rcu_eqs_enter_common(user);
	else
854
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
855
}
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
871 872 873
	unsigned long flags;

	local_irq_save(flags);
874
	rcu_eqs_enter(false);
875
	rcu_sysidle_enter(0);
876
	local_irq_restore(flags);
877
}
878
EXPORT_SYMBOL_GPL(rcu_idle_enter);
879

880
#ifdef CONFIG_NO_HZ_FULL
881 882 883 884 885 886 887 888 889 890
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
891
	rcu_eqs_enter(1);
892
}
893
#endif /* CONFIG_NO_HZ_FULL */
894

895 896 897 898 899
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
900
 * sections can occur.  The caller must have disabled interrupts.
901
 *
902 903 904 905 906 907 908 909
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
910
 */
911
void rcu_irq_exit(void)
912 913 914
{
	struct rcu_dynticks *rdtp;

915
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
916
	rdtp = this_cpu_ptr(&rcu_dynticks);
917
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
P
Paul E. McKenney 已提交
918 919 920 921 922 923 924
		     rdtp->dynticks_nesting < 1);
	if (rdtp->dynticks_nesting <= 1) {
		rcu_eqs_enter_common(true);
	} else {
		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
		rdtp->dynticks_nesting--;
	}
925
	rcu_sysidle_enter(1);
926 927 928 929 930 931 932 933 934 935 936
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
937 938 939 940
	local_irq_restore(flags);
}

/*
941
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
942 943 944 945 946
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
947
static void rcu_eqs_exit_common(long long oldval, int user)
948
{
949
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
950

951
	rcu_dynticks_task_exit();
952
	rcu_dynticks_eqs_exit();
953
	rcu_cleanup_after_idle();
954
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
955 956
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
957 958
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
959

960
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
961
				  oldval, rdtp->dynticks_nesting);
962
		rcu_ftrace_dump(DUMP_ORIG);
963 964 965
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
966 967 968
	}
}

969 970 971
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
972
 */
973
static void rcu_eqs_exit(bool user)
974 975 976 977
{
	struct rcu_dynticks *rdtp;
	long long oldval;

978
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
979
	rdtp = this_cpu_ptr(&rcu_dynticks);
980
	oldval = rdtp->dynticks_nesting;
981
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
982
	if (oldval & DYNTICK_TASK_NEST_MASK) {
983
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
984
	} else {
985
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
986
		rcu_eqs_exit_common(oldval, user);
987
	}
988
}
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
1003 1004 1005
	unsigned long flags;

	local_irq_save(flags);
1006
	rcu_eqs_exit(false);
1007
	rcu_sysidle_exit(0);
1008
	local_irq_restore(flags);
1009
}
1010
EXPORT_SYMBOL_GPL(rcu_idle_exit);
1011

1012
#ifdef CONFIG_NO_HZ_FULL
1013 1014 1015 1016 1017 1018 1019 1020
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
1021
	rcu_eqs_exit(1);
1022
}
1023
#endif /* CONFIG_NO_HZ_FULL */
1024

1025 1026 1027 1028 1029
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
1030
 * sections can occur.  The caller must have disabled interrupts.
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

1049
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1050
	rdtp = this_cpu_ptr(&rcu_dynticks);
1051 1052
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
1053 1054
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
1055
	if (oldval)
1056
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1057
	else
1058 1059
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
1071 1072 1073 1074 1075 1076
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
1077 1078 1079 1080 1081
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
1082 1083 1084
 */
void rcu_nmi_enter(void)
{
1085
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1086
	int incby = 2;
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
1099
	if (rcu_dynticks_curr_cpu_in_eqs()) {
1100
		rcu_dynticks_eqs_exit();
1101 1102 1103 1104
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
1105 1106 1107 1108 1109
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
1110 1111 1112 1113
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
1114 1115 1116
 */
void rcu_nmi_exit(void)
{
1117
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1118

1119 1120 1121 1122 1123 1124
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1125
	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1126 1127 1128 1129 1130 1131 1132

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
1133
		return;
1134 1135 1136 1137
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
1138
	rcu_dynticks_eqs_enter();
1139 1140
}

1141 1142
/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1143
 *
1144 1145 1146
 * Return true if RCU is watching the running CPU, which means that this
 * CPU can safely enter RCU read-side critical sections.  In other words,
 * if the current CPU is in its idle loop and is neither in an interrupt
1147
 * or NMI handler, return true.
1148
 */
1149
bool notrace rcu_is_watching(void)
1150
{
1151
	bool ret;
1152

1153
	preempt_disable_notrace();
1154
	ret = !rcu_dynticks_curr_cpu_in_eqs();
1155
	preempt_enable_notrace();
1156
	return ret;
1157
}
1158
EXPORT_SYMBOL_GPL(rcu_is_watching);
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * If a holdout task is actually running, request an urgent quiescent
 * state from its CPU.  This is unsynchronized, so migrations can cause
 * the request to go to the wrong CPU.  Which is OK, all that will happen
 * is that the CPU's next context switch will be a bit slower and next
 * time around this task will generate another request.
 */
void rcu_request_urgent_qs_task(struct task_struct *t)
{
	int cpu;

	barrier();
	cpu = task_cpu(t);
	if (!task_curr(t))
		return; /* This task is not running on that CPU. */
	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
}

1178
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1179 1180 1181 1182 1183 1184 1185

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1186 1187 1188 1189 1190 1191
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
1192 1193
 * the fact that a CPU enters the scheduler after completing the teardown
 * of the CPU.
1194
 *
1195 1196
 * This is also why RCU internally marks CPUs online during in the
 * preparation phase and offline after the CPU has been taken down.
1197 1198 1199 1200 1201 1202
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1203 1204
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1205 1206 1207
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1208
		return true;
1209
	preempt_disable();
1210
	rdp = this_cpu_ptr(&rcu_sched_data);
1211
	rnp = rdp->mynode;
1212
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1213 1214 1215 1216 1217 1218
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1219
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1220

1221
/**
1222
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1223
 *
1224 1225 1226
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1227
 */
1228
static int rcu_is_cpu_rrupt_from_idle(void)
1229
{
1230
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1231 1232 1233 1234 1235
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1236
 * is in dynticks idle mode, which is an extended quiescent state.
1237
 */
1238 1239
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1240
{
1241
	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1242
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1243
	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1244
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1245
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1246
				 rdp->mynode->gpnum))
1247
			WRITE_ONCE(rdp->gpwrap, true);
1248
		return 1;
1249
	}
1250
	return 0;
1251 1252 1253 1254 1255 1256
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1257
 * for this same CPU, or by virtue of having been offline.
1258
 */
1259 1260
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1261
{
1262
	unsigned long jtsq;
1263
	bool *rnhqp;
1264
	bool *ruqp;
1265 1266
	unsigned long rjtsc;
	struct rcu_node *rnp;
1267 1268 1269 1270 1271 1272 1273 1274 1275

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1276
	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1277
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1278 1279 1280 1281
		rdp->dynticks_fqs++;
		return 1;
	}

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	/* Compute and saturate jiffies_till_sched_qs. */
	jtsq = jiffies_till_sched_qs;
	rjtsc = rcu_jiffies_till_stall_check();
	if (jtsq > rjtsc / 2) {
		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
		jtsq = rjtsc / 2;
	} else if (jtsq < 1) {
		WRITE_ONCE(jiffies_till_sched_qs, 1);
		jtsq = 1;
	}

1293
	/*
1294 1295 1296 1297
	 * Has this CPU encountered a cond_resched_rcu_qs() since the
	 * beginning of the grace period?  For this to be the case,
	 * the CPU has to have noticed the current grace period.  This
	 * might not be the case for nohz_full CPUs looping in the kernel.
1298
	 */
1299
	rnp = rdp->mynode;
1300
	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1301
	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1302
	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1303 1304 1305
	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
		return 1;
1306 1307 1308
	} else {
		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
		smp_store_release(ruqp, true);
1309 1310
	}

1311 1312
	/* Check for the CPU being offline. */
	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1313
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1314 1315 1316
		rdp->offline_fqs++;
		return 1;
	}
1317 1318

	/*
1319 1320 1321 1322 1323 1324
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
1325
	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1338
	 */
1339 1340 1341 1342 1343
	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
	if (!READ_ONCE(*rnhqp) &&
	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
		WRITE_ONCE(*rnhqp, true);
1344 1345
		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
		smp_store_release(ruqp, true);
1346
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1347 1348
	}

1349 1350 1351 1352 1353 1354
	/*
	 * If more than halfway to RCU CPU stall-warning time, do
	 * a resched_cpu() to try to loosen things up a bit.
	 */
	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
		resched_cpu(rdp->cpu);
1355

1356
	return 0;
1357 1358 1359 1360
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1361
	unsigned long j = jiffies;
1362
	unsigned long j1;
1363 1364 1365

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1366
	j1 = rcu_jiffies_till_stall_check();
1367
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1368
	rsp->jiffies_resched = j + j1 / 2;
1369
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1370 1371
}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1382 1383 1384 1385 1386 1387 1388 1389 1390
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1391
	gpa = READ_ONCE(rsp->gp_activity);
1392
	if (j - gpa > 2 * HZ) {
1393
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1394
		       rsp->name, j - gpa,
1395
		       rsp->gpnum, rsp->completed,
1396 1397
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1398
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1399
		if (rsp->gp_kthread) {
1400
			sched_show_task(rsp->gp_kthread);
1401 1402
			wake_up_process(rsp->gp_kthread);
		}
1403
	}
1404 1405
}

1406
/*
1407 1408 1409 1410
 * Dump stacks of all tasks running on stalled CPUs.  First try using
 * NMIs, but fall back to manual remote stack tracing on architectures
 * that don't support NMI-based stack dumps.  The NMI-triggered stack
 * traces are more accurate because they are printed by the target CPU.
1411 1412 1413 1414 1415 1416 1417 1418
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1419
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1420 1421 1422
		for_each_leaf_node_possible_cpu(rnp, cpu)
			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
				if (!trigger_single_cpu_backtrace(cpu))
1423
					dump_cpu_task(cpu);
B
Boqun Feng 已提交
1424
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1425 1426 1427
	}
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
/*
 * If too much time has passed in the current grace period, and if
 * so configured, go kick the relevant kthreads.
 */
static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
{
	unsigned long j;

	if (!rcu_kick_kthreads)
		return;
	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1439 1440
	if (time_after(jiffies, j) && rsp->gp_kthread &&
	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1441
		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1442
		rcu_ftrace_dump(DUMP_ALL);
1443 1444 1445 1446 1447
		wake_up_process(rsp->gp_kthread);
		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
	}
}

1448 1449 1450 1451 1452 1453
static inline void panic_on_rcu_stall(void)
{
	if (sysctl_panic_on_rcu_stall)
		panic("RCU Stall\n");
}

1454
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1455 1456 1457 1458
{
	int cpu;
	long delta;
	unsigned long flags;
1459 1460
	unsigned long gpa;
	unsigned long j;
1461
	int ndetected = 0;
1462
	struct rcu_node *rnp = rcu_get_root(rsp);
1463
	long totqlen = 0;
1464

1465 1466 1467 1468 1469
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1470 1471
	/* Only let one CPU complain about others per time interval. */

1472
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1473
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1474
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1475
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1476 1477
		return;
	}
1478 1479
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1480
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1481

1482 1483 1484 1485 1486
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1487
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1488
	       rsp->name);
1489
	print_cpu_stall_info_begin();
1490
	rcu_for_each_leaf_node(rsp, rnp) {
1491
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1492
		ndetected += rcu_print_task_stall(rnp);
1493
		if (rnp->qsmask != 0) {
1494 1495 1496
			for_each_leaf_node_possible_cpu(rnp, cpu)
				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
					print_cpu_stall_info(rsp, cpu);
1497 1498 1499
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1500
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1501
	}
1502 1503

	print_cpu_stall_info_end();
1504
	for_each_possible_cpu(cpu)
1505 1506
		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
							    cpu)->cblist);
1507
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1508
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1509
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1510
	if (ndetected) {
1511
		rcu_dump_cpu_stacks(rsp);
1512 1513 1514

		/* Complain about tasks blocking the grace period. */
		rcu_print_detail_task_stall(rsp);
1515
	} else {
1516 1517
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1518 1519 1520
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1521
			gpa = READ_ONCE(rsp->gp_activity);
1522
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1523
			       rsp->name, j - gpa, j, gpa,
1524 1525
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1526 1527 1528 1529
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1530

1531 1532
	rcu_check_gp_kthread_starvation(rsp);

1533 1534
	panic_on_rcu_stall();

1535
	force_quiescent_state(rsp);  /* Kick them all. */
1536 1537 1538 1539
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1540
	int cpu;
1541 1542
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1543
	long totqlen = 0;
1544

1545 1546 1547 1548 1549
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1550 1551 1552 1553 1554
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1555
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1556 1557 1558
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1559
	for_each_possible_cpu(cpu)
1560 1561
		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
							    cpu)->cblist);
1562 1563 1564
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1565 1566 1567

	rcu_check_gp_kthread_starvation(rsp);

1568
	rcu_dump_cpu_stacks(rsp);
1569

1570
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1571 1572 1573
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1574
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1575

1576 1577
	panic_on_rcu_stall();

1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1586 1587 1588 1589
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1590 1591 1592
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1593 1594
	unsigned long j;
	unsigned long js;
1595 1596
	struct rcu_node *rnp;

1597 1598
	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
	    !rcu_gp_in_progress(rsp))
1599
		return;
1600
	rcu_stall_kick_kthreads(rsp);
1601
	j = jiffies;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1620
	gpnum = READ_ONCE(rsp->gpnum);
1621
	smp_rmb(); /* Pick up ->gpnum first... */
1622
	js = READ_ONCE(rsp->jiffies_stall);
1623
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1624
	gps = READ_ONCE(rsp->gp_start);
1625
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1626
	completed = READ_ONCE(rsp->completed);
1627 1628 1629 1630
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1631
	rnp = rdp->mynode;
1632
	if (rcu_gp_in_progress(rsp) &&
1633
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1634 1635 1636 1637

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1638 1639
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1640

1641
		/* They had a few time units to dump stack, so complain. */
1642
		print_other_cpu_stall(rsp, gpnum);
1643 1644 1645
	}
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1657 1658 1659
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1660
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1661 1662
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
1675 1676
	lockdep_assert_held(&rnp->lock);

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1694 1695 1696 1697 1698
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1699
				unsigned long c, const char *s)
1700 1701 1702 1703 1704 1705 1706 1707 1708
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1709 1710
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1711 1712 1713
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1714 1715 1716
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1717 1718
{
	unsigned long c;
1719
	bool ret = false;
1720 1721
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

1722 1723
	lockdep_assert_held(&rnp->lock);

1724 1725 1726 1727 1728
	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1729
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1730
	if (rnp->need_future_gp[c & 0x1]) {
1731
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1732
		goto out;
1733 1734 1735 1736 1737 1738 1739
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1740 1741 1742 1743 1744 1745 1746
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1747 1748
	 */
	if (rnp->gpnum != rnp->completed ||
1749
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1750
		rnp->need_future_gp[c & 0x1]++;
1751
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1752
		goto out;
1753 1754 1755 1756 1757 1758 1759
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1760 1761
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1762 1763 1764 1765

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
1766
	 * earlier.  Adjust callbacks as needed.
1767 1768
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1769 1770
	if (!rcu_is_nocb_cpu(rdp->cpu))
		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1771 1772 1773 1774 1775 1776

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1777
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1778 1779 1780 1781 1782 1783 1784 1785
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1786
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1787
	} else {
1788
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1789
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1790 1791 1792
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1793
		raw_spin_unlock_rcu_node(rnp_root);
1794 1795 1796 1797
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1798 1799 1800 1801
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
1802
 * whether any additional grace periods have been requested.
1803 1804 1805 1806 1807 1808 1809 1810 1811
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1812 1813
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1814 1815 1816
	return needmore;
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1827
	    !READ_ONCE(rsp->gp_flags) ||
1828 1829
	    !rsp->gp_kthread)
		return;
1830
	swake_up(&rsp->gp_wq);
1831 1832
}

1833 1834 1835 1836 1837 1838 1839
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1840 1841
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1842 1843 1844
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1845
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1846 1847
			       struct rcu_data *rdp)
{
1848
	bool ret = false;
1849

1850 1851
	lockdep_assert_held(&rnp->lock);

1852 1853
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1854
		return false;
1855 1856

	/*
1857 1858 1859 1860 1861 1862 1863 1864
	 * Callbacks are often registered with incomplete grace-period
	 * information.  Something about the fact that getting exact
	 * information requires acquiring a global lock...  RCU therefore
	 * makes a conservative estimate of the grace period number at which
	 * a given callback will become ready to invoke.	The following
	 * code checks this estimate and improves it when possible, thus
	 * accelerating callback invocation to an earlier grace-period
	 * number.
1865
	 */
1866 1867
	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
		ret = rcu_start_future_gp(rnp, rdp, NULL);
1868 1869

	/* Trace depending on how much we were able to accelerate. */
1870
	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1871
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1872
	else
1873
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1874
	return ret;
1875 1876 1877 1878 1879 1880 1881 1882
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1883
 * Returns true if the RCU grace-period kthread needs to be awakened.
1884 1885 1886
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1887
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1888 1889
			    struct rcu_data *rdp)
{
1890 1891
	lockdep_assert_held(&rnp->lock);

1892 1893
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1894
		return false;
1895 1896 1897 1898 1899

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
1900
	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1901 1902

	/* Classify any remaining callbacks. */
1903
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1904 1905
}

1906
/*
1907 1908 1909
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1910
 * Returns true if the grace-period kthread needs to be awakened.
1911
 */
1912 1913
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1914
{
1915
	bool ret;
1916
	bool need_gp;
1917

1918 1919
	lockdep_assert_held(&rnp->lock);

1920
	/* Handle the ends of any preceding grace periods first. */
1921
	if (rdp->completed == rnp->completed &&
1922
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1923

1924
		/* No grace period end, so just accelerate recent callbacks. */
1925
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1926

1927 1928 1929
	} else {

		/* Advance callbacks. */
1930
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1931 1932 1933

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1934
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1935
	}
1936

1937
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1938 1939 1940 1941 1942 1943
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1944
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1945 1946
		need_gp = !!(rnp->qsmask & rdp->grpmask);
		rdp->cpu_no_qs.b.norm = need_gp;
1947
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1948
		rdp->core_needs_qs = need_gp;
1949
		zero_cpu_stall_ticks(rdp);
1950
		WRITE_ONCE(rdp->gpwrap, false);
1951
	}
1952
	return ret;
1953 1954
}

1955
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1956 1957
{
	unsigned long flags;
1958
	bool needwake;
1959 1960 1961 1962
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1963 1964 1965
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1966
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1967 1968 1969
		local_irq_restore(flags);
		return;
	}
1970
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
1971
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1972 1973
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1974 1975
}

1976 1977 1978 1979 1980 1981 1982
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1983
/*
1984
 * Initialize a new grace period.  Return false if no grace period required.
1985
 */
1986
static bool rcu_gp_init(struct rcu_state *rsp)
1987
{
1988
	unsigned long oldmask;
1989
	struct rcu_data *rdp;
1990
	struct rcu_node *rnp = rcu_get_root(rsp);
1991

1992
	WRITE_ONCE(rsp->gp_activity, jiffies);
1993
	raw_spin_lock_irq_rcu_node(rnp);
1994
	if (!READ_ONCE(rsp->gp_flags)) {
1995
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
1996
		raw_spin_unlock_irq_rcu_node(rnp);
1997
		return false;
1998
	}
1999
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
2000

2001 2002 2003 2004 2005
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
2006
		raw_spin_unlock_irq_rcu_node(rnp);
2007
		return false;
2008 2009 2010
	}

	/* Advance to a new grace period and initialize state. */
2011
	record_gp_stall_check_time(rsp);
2012 2013
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2014
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
2015
	raw_spin_unlock_irq_rcu_node(rnp);
2016

2017 2018 2019 2020 2021 2022 2023
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
2024
		rcu_gp_slow(rsp, gp_preinit_delay);
2025
		raw_spin_lock_irq_rcu_node(rnp);
2026 2027 2028
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
2029
			raw_spin_unlock_irq_rcu_node(rnp);
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
2063
		raw_spin_unlock_irq_rcu_node(rnp);
2064
	}
2065 2066 2067 2068 2069 2070 2071 2072

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
2073
	 * leaf node has been initialized.
2074 2075 2076 2077 2078
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2079
		rcu_gp_slow(rsp, gp_init_delay);
2080
		raw_spin_lock_irq_rcu_node(rnp);
2081
		rdp = this_cpu_ptr(rsp->rda);
2082 2083
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
2084
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2085
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2086
			WRITE_ONCE(rnp->completed, rsp->completed);
2087
		if (rnp == rdp->mynode)
2088
			(void)__note_gp_changes(rsp, rnp, rdp);
2089 2090 2091 2092
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
2093
		raw_spin_unlock_irq_rcu_node(rnp);
2094
		cond_resched_rcu_qs();
2095
		WRITE_ONCE(rsp->gp_activity, jiffies);
2096
	}
2097

2098
	return true;
2099
}
2100

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

2121 2122 2123
/*
 * Do one round of quiescent-state forcing.
 */
2124
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2125
{
2126 2127
	bool isidle = false;
	unsigned long maxj;
2128 2129
	struct rcu_node *rnp = rcu_get_root(rsp);

2130
	WRITE_ONCE(rsp->gp_activity, jiffies);
2131
	rsp->n_force_qs++;
2132
	if (first_time) {
2133
		/* Collect dyntick-idle snapshots. */
2134
		if (is_sysidle_rcu_state(rsp)) {
2135
			isidle = true;
2136 2137
			maxj = jiffies - ULONG_MAX / 4;
		}
2138 2139
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
2140
		rcu_sysidle_report_gp(rsp, isidle, maxj);
2141 2142
	} else {
		/* Handle dyntick-idle and offline CPUs. */
2143
		isidle = true;
2144
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2145 2146
	}
	/* Clear flag to prevent immediate re-entry. */
2147
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2148
		raw_spin_lock_irq_rcu_node(rnp);
2149 2150
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2151
		raw_spin_unlock_irq_rcu_node(rnp);
2152 2153 2154
	}
}

2155 2156 2157
/*
 * Clean up after the old grace period.
 */
2158
static void rcu_gp_cleanup(struct rcu_state *rsp)
2159 2160
{
	unsigned long gp_duration;
2161
	bool needgp = false;
2162
	int nocb = 0;
2163 2164
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2165
	struct swait_queue_head *sq;
2166

2167
	WRITE_ONCE(rsp->gp_activity, jiffies);
2168
	raw_spin_lock_irq_rcu_node(rnp);
2169 2170 2171
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2172

2173 2174 2175 2176 2177 2178 2179 2180
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2181
	raw_spin_unlock_irq_rcu_node(rnp);
2182

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2193
		raw_spin_lock_irq_rcu_node(rnp);
2194 2195
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2196
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2197 2198
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2199
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2200
		/* smp_mb() provided by prior unlock-lock pair. */
2201
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2202
		sq = rcu_nocb_gp_get(rnp);
B
Boqun Feng 已提交
2203
		raw_spin_unlock_irq_rcu_node(rnp);
2204
		rcu_nocb_gp_cleanup(sq);
2205
		cond_resched_rcu_qs();
2206
		WRITE_ONCE(rsp->gp_activity, jiffies);
2207
		rcu_gp_slow(rsp, gp_cleanup_delay);
2208
	}
2209
	rnp = rcu_get_root(rsp);
2210
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2211
	rcu_nocb_gp_set(rnp, nocb);
2212

2213
	/* Declare grace period done. */
2214
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2215
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2216
	rsp->gp_state = RCU_GP_IDLE;
2217
	rdp = this_cpu_ptr(rsp->rda);
2218 2219 2220
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2221
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2222
		trace_rcu_grace_period(rsp->name,
2223
				       READ_ONCE(rsp->gpnum),
2224 2225
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2226
	raw_spin_unlock_irq_rcu_node(rnp);
2227 2228 2229 2230 2231 2232 2233
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2234
	bool first_gp_fqs;
2235
	int gf;
2236
	unsigned long j;
2237
	int ret;
2238 2239 2240
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2241
	rcu_bind_gp_kthread();
2242 2243 2244 2245
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2246
			trace_rcu_grace_period(rsp->name,
2247
					       READ_ONCE(rsp->gpnum),
2248
					       TPS("reqwait"));
2249
			rsp->gp_state = RCU_GP_WAIT_GPS;
2250
			swait_event_interruptible(rsp->gp_wq,
2251
						 READ_ONCE(rsp->gp_flags) &
2252
						 RCU_GP_FLAG_INIT);
2253
			rsp->gp_state = RCU_GP_DONE_GPS;
2254
			/* Locking provides needed memory barrier. */
2255
			if (rcu_gp_init(rsp))
2256
				break;
2257
			cond_resched_rcu_qs();
2258
			WRITE_ONCE(rsp->gp_activity, jiffies);
2259
			WARN_ON(signal_pending(current));
2260
			trace_rcu_grace_period(rsp->name,
2261
					       READ_ONCE(rsp->gpnum),
2262
					       TPS("reqwaitsig"));
2263
		}
2264

2265
		/* Handle quiescent-state forcing. */
2266
		first_gp_fqs = true;
2267 2268 2269 2270 2271
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2272
		ret = 0;
2273
		for (;;) {
2274
			if (!ret) {
2275
				rsp->jiffies_force_qs = jiffies + j;
2276 2277 2278
				WRITE_ONCE(rsp->jiffies_kick_kthreads,
					   jiffies + 3 * j);
			}
2279
			trace_rcu_grace_period(rsp->name,
2280
					       READ_ONCE(rsp->gpnum),
2281
					       TPS("fqswait"));
2282
			rsp->gp_state = RCU_GP_WAIT_FQS;
2283
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2284
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2285
			rsp->gp_state = RCU_GP_DOING_FQS;
2286
			/* Locking provides needed memory barriers. */
2287
			/* If grace period done, leave loop. */
2288
			if (!READ_ONCE(rnp->qsmask) &&
2289
			    !rcu_preempt_blocked_readers_cgp(rnp))
2290
				break;
2291
			/* If time for quiescent-state forcing, do it. */
2292 2293
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2294
				trace_rcu_grace_period(rsp->name,
2295
						       READ_ONCE(rsp->gpnum),
2296
						       TPS("fqsstart"));
2297 2298
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2299
				trace_rcu_grace_period(rsp->name,
2300
						       READ_ONCE(rsp->gpnum),
2301
						       TPS("fqsend"));
2302
				cond_resched_rcu_qs();
2303
				WRITE_ONCE(rsp->gp_activity, jiffies);
2304 2305 2306 2307 2308 2309 2310 2311 2312
				ret = 0; /* Force full wait till next FQS. */
				j = jiffies_till_next_fqs;
				if (j > HZ) {
					j = HZ;
					jiffies_till_next_fqs = HZ;
				} else if (j < 1) {
					j = 1;
					jiffies_till_next_fqs = 1;
				}
2313 2314
			} else {
				/* Deal with stray signal. */
2315
				cond_resched_rcu_qs();
2316
				WRITE_ONCE(rsp->gp_activity, jiffies);
2317
				WARN_ON(signal_pending(current));
2318
				trace_rcu_grace_period(rsp->name,
2319
						       READ_ONCE(rsp->gpnum),
2320
						       TPS("fqswaitsig"));
2321 2322 2323 2324 2325 2326
				ret = 1; /* Keep old FQS timing. */
				j = jiffies;
				if (time_after(jiffies, rsp->jiffies_force_qs))
					j = 1;
				else
					j = rsp->jiffies_force_qs - j;
2327
			}
2328
		}
2329 2330

		/* Handle grace-period end. */
2331
		rsp->gp_state = RCU_GP_CLEANUP;
2332
		rcu_gp_cleanup(rsp);
2333
		rsp->gp_state = RCU_GP_CLEANED;
2334 2335 2336
	}
}

2337 2338 2339
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2340
 * the root node's ->lock and hard irqs must be disabled.
2341 2342 2343 2344
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2345 2346
 *
 * Returns true if the grace-period kthread must be awakened.
2347
 */
2348
static bool
2349 2350
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2351
{
2352
	lockdep_assert_held(&rnp->lock);
2353
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2354
		/*
2355
		 * Either we have not yet spawned the grace-period
2356 2357
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2358
		 * Either way, don't start a new grace period.
2359
		 */
2360
		return false;
2361
	}
2362 2363
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2364
			       TPS("newreq"));
2365

2366 2367
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2368
	 * could cause possible deadlocks with the rq->lock. Defer
2369
	 * the wakeup to our caller.
2370
	 */
2371
	return true;
2372 2373
}

2374 2375 2376 2377 2378 2379
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2380 2381
 *
 * Returns true if the grace-period kthread needs to be awakened.
2382
 */
2383
static bool rcu_start_gp(struct rcu_state *rsp)
2384 2385 2386
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2387
	bool ret = false;
2388 2389 2390 2391 2392 2393 2394 2395 2396

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2397 2398 2399
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2400 2401
}

2402
/*
2403 2404 2405 2406 2407 2408 2409
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2410
 */
P
Paul E. McKenney 已提交
2411
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2412
	__releases(rcu_get_root(rsp)->lock)
2413
{
2414
	lockdep_assert_held(&rcu_get_root(rsp)->lock);
2415
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2416
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2417
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2418
	rcu_gp_kthread_wake(rsp);
2419 2420
}

2421
/*
P
Paul E. McKenney 已提交
2422 2423 2424
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2425 2426 2427 2428 2429
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2430 2431
 */
static void
P
Paul E. McKenney 已提交
2432
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2433
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2434 2435
	__releases(rnp->lock)
{
2436
	unsigned long oldmask = 0;
2437 2438
	struct rcu_node *rnp_c;

2439 2440
	lockdep_assert_held(&rnp->lock);

2441 2442
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2443
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2444

2445 2446 2447 2448
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2449
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2450 2451
			return;
		}
2452
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2453
		rnp->qsmask &= ~mask;
2454 2455 2456 2457
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2458
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2459 2460

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2461
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2462 2463 2464 2465 2466 2467 2468 2469 2470
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2471
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2472
		rnp_c = rnp;
2473
		rnp = rnp->parent;
2474
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2475
		oldmask = rnp_c->qsmask;
2476 2477 2478 2479
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2480
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2481
	 * to clean up and start the next grace period if one is needed.
2482
	 */
P
Paul E. McKenney 已提交
2483
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2484 2485
}

2486 2487 2488 2489 2490 2491 2492
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2493
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2494 2495 2496
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2497
	unsigned long gps;
2498 2499 2500
	unsigned long mask;
	struct rcu_node *rnp_p;

2501
	lockdep_assert_held(&rnp->lock);
2502 2503
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2504
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2505 2506 2507 2508 2509 2510
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2511 2512
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2513 2514 2515 2516 2517
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2518 2519
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2520
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2521
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2522
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2523
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2524 2525
}

2526
/*
P
Paul E. McKenney 已提交
2527
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2528
 * structure.  This must be called from the specified CPU.
2529 2530
 */
static void
2531
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2532 2533 2534
{
	unsigned long flags;
	unsigned long mask;
2535
	bool needwake;
2536 2537 2538
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2539
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2540 2541
	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2542 2543

		/*
2544 2545 2546 2547
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2548
		 */
2549
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2550
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
B
Boqun Feng 已提交
2551
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2552 2553 2554 2555
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2556
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2557
	} else {
2558
		rdp->core_needs_qs = false;
2559 2560 2561 2562 2563

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2564
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2565

2566 2567
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2568 2569
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2582 2583
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2584 2585 2586 2587 2588

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2589
	if (!rdp->core_needs_qs)
2590 2591 2592 2593 2594 2595
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2596
	if (rdp->cpu_no_qs.b.norm)
2597 2598
		return;

P
Paul E. McKenney 已提交
2599 2600 2601 2602
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2603
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2604 2605
}

2606
/*
2607 2608
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2609
 * ->orphan_lock.
2610
 */
2611 2612 2613
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2614
{
2615 2616
	lockdep_assert_held(&rsp->orphan_lock);

P
Paul E. McKenney 已提交
2617
	/* No-CBs CPUs do not have orphanable callbacks. */
2618
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2619 2620
		return;

2621 2622
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2623 2624
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2625
	 */
2626 2627
	rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
	rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
2628 2629

	/*
2630 2631 2632 2633 2634
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
2635
	 */
2636
	rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2637 2638

	/*
2639 2640 2641
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2642
	 */
2643
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
2644

2645 2646
	/* Finally, disallow further callbacks on this CPU.  */
	rcu_segcblist_disable(&rdp->cblist);
2647 2648 2649 2650
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2651
 * orphanage.  The caller must hold the ->orphan_lock.
2652
 */
2653
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2654
{
2655
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2656

2657 2658
	lockdep_assert_held(&rsp->orphan_lock);

P
Paul E. McKenney 已提交
2659
	/* No-CBs CPUs are handled specially. */
2660 2661
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2662 2663
		return;

2664
	/* Do the accounting first. */
2665
	rdp->n_cbs_adopted += rsp->orphan_done.len;
2666
	if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
2667
		rcu_idle_count_callbacks_posted();
2668
	rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
2669 2670 2671 2672 2673 2674 2675

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

2676 2677
	/* First adopt the ready-to-invoke callbacks, then the done ones. */
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
2678
	WARN_ON_ONCE(rsp->orphan_done.head);
2679
	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2680
	WARN_ON_ONCE(rsp->orphan_pend.head);
2681 2682
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
		     !rcu_segcblist_n_cbs(&rdp->cblist));
2683 2684 2685 2686 2687 2688 2689
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
2690 2691 2692
	RCU_TRACE(unsigned long mask;)
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2693

2694 2695 2696
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2697
	RCU_TRACE(mask = rdp->grpmask;)
2698 2699
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2700
			       TPS("cpuofl"));
2701 2702
}

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2725
	lockdep_assert_held(&rnp->lock);
2726 2727
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2728 2729 2730 2731 2732 2733
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2734
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2735
		rnp->qsmaskinit &= ~mask;
2736
		rnp->qsmask &= ~mask;
2737
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2738 2739
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2740 2741
			return;
		}
B
Boqun Feng 已提交
2742
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2743 2744 2745
	}
}

2746
/*
2747
 * The CPU has been completely removed, and some other CPU is reporting
2748 2749
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2750 2751
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2752
 */
2753
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2754
{
2755
	unsigned long flags;
2756
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2757
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2758

2759 2760 2761
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2762
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2763
	rcu_boost_kthread_setaffinity(rnp, -1);
2764

2765
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2766
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2767
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2768
	rcu_adopt_orphan_cbs(rsp, flags);
2769
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2770

2771 2772 2773 2774 2775
	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
		  !rcu_segcblist_empty(&rdp->cblist),
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
		  rcu_segcblist_first_cb(&rdp->cblist));
2776 2777 2778 2779 2780 2781
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2782
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2783 2784
{
	unsigned long flags;
2785 2786 2787
	struct rcu_head *rhp;
	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
	long bl, count;
2788

2789
	/* If no callbacks are ready, just return. */
2790 2791 2792 2793 2794 2795
	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
		trace_rcu_batch_start(rsp->name,
				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
		trace_rcu_batch_end(rsp->name, 0,
				    !rcu_segcblist_empty(&rdp->cblist),
2796 2797
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2798
		return;
2799
	}
2800 2801 2802

	/*
	 * Extract the list of ready callbacks, disabling to prevent
2803 2804
	 * races with call_rcu() from interrupt handlers.  Leave the
	 * callback counts, as rcu_barrier() needs to be conservative.
2805 2806
	 */
	local_irq_save(flags);
2807
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2808
	bl = rdp->blimit;
2809 2810 2811
	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2812 2813 2814
	local_irq_restore(flags);

	/* Invoke callbacks. */
2815 2816 2817 2818 2819 2820 2821 2822 2823
	rhp = rcu_cblist_dequeue(&rcl);
	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
		debug_rcu_head_unqueue(rhp);
		if (__rcu_reclaim(rsp->name, rhp))
			rcu_cblist_dequeued_lazy(&rcl);
		/*
		 * Stop only if limit reached and CPU has something to do.
		 * Note: The rcl structure counts down from zero.
		 */
2824
		if (-rcl.len >= bl &&
2825 2826
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2827 2828 2829 2830
			break;
	}

	local_irq_save(flags);
2831
	count = -rcl.len;
2832 2833
	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
			    is_idle_task(current), rcu_is_callbacks_kthread());
2834

2835 2836
	/* Update counts and requeue any remaining callbacks. */
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2837 2838
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->n_cbs_invoked += count;
2839
	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2840 2841

	/* Reinstate batch limit if we have worked down the excess. */
2842 2843
	count = rcu_segcblist_n_cbs(&rdp->cblist);
	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2844 2845
		rdp->blimit = blimit;

2846
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2847
	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2848 2849
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
2850 2851 2852
	} else if (count < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = count;
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2853

2854 2855
	local_irq_restore(flags);

2856
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2857
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2858
		invoke_rcu_core();
2859 2860 2861 2862 2863
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2864
 * Also schedule RCU core processing.
2865
 *
2866
 * This function must be called from hardirq context.  It is normally
2867
 * invoked from the scheduling-clock interrupt.
2868
 */
2869
void rcu_check_callbacks(int user)
2870
{
2871
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2872
	increment_cpu_stall_ticks();
2873
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2874 2875 2876 2877 2878

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2879
		 * a quiescent state, so note it.
2880 2881
		 *
		 * No memory barrier is required here because both
2882 2883 2884
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2885 2886
		 */

2887 2888
		rcu_sched_qs();
		rcu_bh_qs();
2889 2890 2891 2892 2893 2894 2895

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2896
		 * critical section, so note it.
2897 2898
		 */

2899
		rcu_bh_qs();
2900
	}
2901
	rcu_preempt_check_callbacks();
2902
	if (rcu_pending())
2903
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2904 2905
	if (user)
		rcu_note_voluntary_context_switch(current);
2906
	trace_rcu_utilization(TPS("End scheduler-tick"));
2907 2908 2909 2910 2911
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2912 2913
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2914
 * The caller must have suppressed start of new grace periods.
2915
 */
2916 2917 2918 2919
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2920 2921 2922 2923
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
2924
	struct rcu_node *rnp;
2925

2926
	rcu_for_each_leaf_node(rsp, rnp) {
2927
		cond_resched_rcu_qs();
2928
		mask = 0;
2929
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2930
		if (rnp->qsmask == 0) {
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2954
		}
2955 2956
		for_each_leaf_node_possible_cpu(rnp, cpu) {
			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2957 2958 2959 2960
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2961
		}
2962
		if (mask != 0) {
2963 2964
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2965 2966
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
2967
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2968 2969 2970 2971 2972 2973 2974 2975
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2976
static void force_quiescent_state(struct rcu_state *rsp)
2977 2978
{
	unsigned long flags;
2979 2980 2981 2982 2983
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2984
	rnp = __this_cpu_read(rsp->rda->mynode);
2985
	for (; rnp != NULL; rnp = rnp->parent) {
2986
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2987 2988 2989 2990
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2991
			rsp->n_force_qs_lh++;
2992 2993 2994 2995 2996
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2997

2998
	/* Reached the root of the rcu_node tree, acquire lock. */
2999
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
3000
	raw_spin_unlock(&rnp_old->fqslock);
3001
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
3002
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
3003
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3004
		return;  /* Someone beat us to it. */
3005
	}
3006
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
3007
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3008
	rcu_gp_kthread_wake(rsp);
3009 3010 3011
}

/*
3012 3013 3014
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
3015 3016
 */
static void
3017
__rcu_process_callbacks(struct rcu_state *rsp)
3018 3019
{
	unsigned long flags;
3020
	bool needwake;
3021
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3022

N
Nicholas Mc Guire 已提交
3023
	WARN_ON_ONCE(!rdp->beenonline);
3024

3025 3026 3027 3028
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
3029
	local_irq_save(flags);
3030
	if (cpu_needs_another_gp(rsp, rdp)) {
3031
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3032
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3033
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3034 3035
		if (needwake)
			rcu_gp_kthread_wake(rsp);
3036 3037
	} else {
		local_irq_restore(flags);
3038 3039 3040
	}

	/* If there are callbacks ready, invoke them. */
3041
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3042
		invoke_rcu_callbacks(rsp, rdp);
3043 3044 3045

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
3046 3047
}

3048
/*
3049
 * Do RCU core processing for the current CPU.
3050
 */
3051
static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3052
{
3053 3054
	struct rcu_state *rsp;

3055 3056
	if (cpu_is_offline(smp_processor_id()))
		return;
3057
	trace_rcu_utilization(TPS("Start RCU core"));
3058 3059
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
3060
	trace_rcu_utilization(TPS("End RCU core"));
3061 3062
}

3063
/*
3064 3065 3066
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3067
 * are running on the current CPU with softirqs disabled, the
3068
 * rcu_cpu_kthread_task cannot disappear out from under us.
3069
 */
3070
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3071
{
3072
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3073
		return;
3074 3075
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
3076 3077
		return;
	}
3078
	invoke_rcu_callbacks_kthread();
3079 3080
}

3081
static void invoke_rcu_core(void)
3082
{
3083 3084
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
3085 3086
}

3087 3088 3089 3090 3091
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
3092
{
3093 3094
	bool needwake;

3095 3096 3097 3098
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
3099
	if (!rcu_is_watching())
3100 3101
		invoke_rcu_core();

3102
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3103
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3104
		return;
3105

3106 3107 3108 3109 3110 3111 3112
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
3113 3114
	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
		     rdp->qlen_last_fqs_check + qhimark)) {
3115 3116

		/* Are we ignoring a completed grace period? */
3117
		note_gp_changes(rsp, rdp);
3118 3119 3120 3121 3122

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3123
			raw_spin_lock_rcu_node(rnp_root);
3124
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3125
			raw_spin_unlock_rcu_node(rnp_root);
3126 3127
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3128 3129 3130 3131
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3132
			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3133
				force_quiescent_state(rsp);
3134
			rdp->n_force_qs_snap = rsp->n_force_qs;
3135
			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3136
		}
3137
	}
3138 3139
}

3140 3141 3142 3143 3144 3145 3146
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3147 3148 3149 3150 3151 3152
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3153
static void
3154
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3155
	   struct rcu_state *rsp, int cpu, bool lazy)
3156 3157 3158 3159
{
	unsigned long flags;
	struct rcu_data *rdp;

3160 3161 3162
	/* Misaligned rcu_head! */
	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));

3163
	if (debug_rcu_head_queue(head)) {
3164 3165 3166 3167 3168 3169 3170
		/*
		 * Probable double call_rcu(), so leak the callback.
		 * Use rcu:rcu_callback trace event to find the previous
		 * time callback was passed to __call_rcu().
		 */
		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
			  head, head->func);
3171
		WRITE_ONCE(head->func, rcu_leak_callback);
3172 3173
		return;
	}
3174 3175 3176
	head->func = func;
	head->next = NULL;
	local_irq_save(flags);
3177
	rdp = this_cpu_ptr(rsp->rda);
3178 3179

	/* Add the callback to our list. */
3180
	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
P
Paul E. McKenney 已提交
3181 3182 3183 3184
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3198
		WARN_ON_ONCE(!rcu_is_watching());
3199 3200
		if (rcu_segcblist_empty(&rdp->cblist))
			rcu_segcblist_init(&rdp->cblist);
3201
	}
3202 3203
	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
	if (!lazy)
3204
		rcu_idle_count_callbacks_posted();
3205

3206 3207
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3208 3209
					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
					 rcu_segcblist_n_cbs(&rdp->cblist));
3210
	else
3211 3212 3213
		trace_rcu_callback(rsp->name, head,
				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
				   rcu_segcblist_n_cbs(&rdp->cblist));
3214

3215 3216
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3217 3218 3219
	local_irq_restore(flags);
}

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
/**
 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_sched() assumes
 * that the read-side critical sections end on enabling of preemption
 * or on voluntary preemption.
 * RCU read-side critical sections are delimited by :
 *  - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
 *  - anything that disables preemption.
 *
 *  These may be nested.
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
3238
 */
3239
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3240
{
P
Paul E. McKenney 已提交
3241
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3242
}
3243
EXPORT_SYMBOL_GPL(call_rcu_sched);
3244

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
/**
 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_bh() assumes
 * that the read-side critical sections end on completion of a softirq
 * handler. This means that read-side critical sections in process
 * context must not be interrupted by softirqs. This interface is to be
 * used when most of the read-side critical sections are in softirq context.
 * RCU read-side critical sections are delimited by :
 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 *  OR
 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 *  These may be nested.
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
3265
 */
3266
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3267
{
P
Paul E. McKenney 已提交
3268
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3269 3270 3271
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3272 3273 3274 3275 3276 3277 3278 3279
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3280
		    rcu_callback_t func)
3281
{
3282
	__call_rcu(head, func, rcu_state_p, -1, 1);
3283 3284 3285
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3297 3298
	int ret;

3299
	might_sleep();  /* Check for RCU read-side critical section. */
3300 3301 3302 3303
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3304 3305
}

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3340 3341 3342
 */
void synchronize_sched(void)
{
3343 3344 3345 3346
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3347 3348
	if (rcu_blocking_is_gp())
		return;
3349
	if (rcu_gp_is_expedited())
3350 3351 3352
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3364 3365 3366
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3367 3368 3369
 */
void synchronize_rcu_bh(void)
{
3370 3371 3372 3373
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3374 3375
	if (rcu_blocking_is_gp())
		return;
3376
	if (rcu_gp_is_expedited())
3377 3378 3379
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3380 3381 3382
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3403
	return smp_load_acquire(&rcu_state_p->gpnum);
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3429
	newstate = smp_load_acquire(&rcu_state_p->completed);
3430 3431 3432 3433 3434
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3487 3488 3489 3490 3491 3492 3493 3494 3495
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3496 3497
	struct rcu_node *rnp = rdp->mynode;

3498 3499 3500 3501 3502
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3503 3504 3505 3506
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3507
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3508
	if (rcu_scheduler_fully_active &&
3509
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3510
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3511
		rdp->n_rp_core_needs_qs++;
3512
	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3513
		rdp->n_rp_report_qs++;
3514
		return 1;
3515
	}
3516 3517

	/* Does this CPU have callbacks ready to invoke? */
3518
	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3519
		rdp->n_rp_cb_ready++;
3520
		return 1;
3521
	}
3522 3523

	/* Has RCU gone idle with this CPU needing another grace period? */
3524 3525
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3526
		return 1;
3527
	}
3528 3529

	/* Has another RCU grace period completed?  */
3530
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3531
		rdp->n_rp_gp_completed++;
3532
		return 1;
3533
	}
3534 3535

	/* Has a new RCU grace period started? */
3536 3537
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3538
		rdp->n_rp_gp_started++;
3539
		return 1;
3540
	}
3541

3542 3543 3544 3545 3546 3547
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3548
	/* nothing to do */
3549
	rdp->n_rp_need_nothing++;
3550 3551 3552 3553 3554 3555 3556 3557
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3558
static int rcu_pending(void)
3559
{
3560 3561 3562
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3563
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3564 3565
			return 1;
	return 0;
3566 3567 3568
}

/*
3569 3570 3571
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3572
 */
3573
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3574
{
3575 3576 3577
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3578 3579
	struct rcu_state *rsp;

3580
	for_each_rcu_flavor(rsp) {
3581
		rdp = this_cpu_ptr(rsp->rda);
3582
		if (rcu_segcblist_empty(&rdp->cblist))
3583 3584
			continue;
		hc = true;
3585
		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3586
			al = false;
3587 3588
			break;
		}
3589 3590 3591 3592
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3593 3594
}

3595 3596 3597 3598
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3599
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3600 3601 3602 3603 3604 3605
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3606 3607 3608 3609
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3610
static void rcu_barrier_callback(struct rcu_head *rhp)
3611
{
3612 3613 3614
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3615
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3616
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3617
		complete(&rsp->barrier_completion);
3618
	} else {
3619
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3620
	}
3621 3622 3623 3624 3625 3626 3627
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3628
	struct rcu_state *rsp = type;
3629
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3630

3631
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3632 3633 3634 3635 3636 3637 3638 3639
	rdp->barrier_head.func = rcu_barrier_callback;
	debug_rcu_head_queue(&rdp->barrier_head);
	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
		atomic_inc(&rsp->barrier_cpu_count);
	} else {
		debug_rcu_head_unqueue(&rdp->barrier_head);
		_rcu_barrier_trace(rsp, "IRQNQ", -1, rsp->barrier_sequence);
	}
3640 3641 3642 3643 3644 3645
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3646
static void _rcu_barrier(struct rcu_state *rsp)
3647
{
3648 3649
	int cpu;
	struct rcu_data *rdp;
3650
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3651

3652
	_rcu_barrier_trace(rsp, "Begin", -1, s);
3653

3654
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3655
	mutex_lock(&rsp->barrier_mutex);
3656

3657 3658 3659
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3660 3661 3662 3663 3664
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

3665 3666 3667
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3668

3669
	/*
3670 3671
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3672 3673
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3674
	 */
3675
	init_completion(&rsp->barrier_completion);
3676
	atomic_set(&rsp->barrier_cpu_count, 1);
3677
	get_online_cpus();
3678 3679

	/*
3680 3681 3682
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3683
	 */
P
Paul E. McKenney 已提交
3684
	for_each_possible_cpu(cpu) {
3685
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3686
			continue;
3687
		rdp = per_cpu_ptr(rsp->rda, cpu);
3688
		if (rcu_is_nocb_cpu(cpu)) {
3689 3690
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3691
						   rsp->barrier_sequence);
3692 3693
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3694
						   rsp->barrier_sequence);
3695
				smp_mb__before_atomic();
3696 3697 3698 3699
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3700
		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3701
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3702
					   rsp->barrier_sequence);
3703
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3704
		} else {
3705
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3706
					   rsp->barrier_sequence);
3707 3708
		}
	}
3709
	put_online_cpus();
3710 3711 3712 3713 3714

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3715
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3716
		complete(&rsp->barrier_completion);
3717 3718

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3719
	wait_for_completion(&rsp->barrier_completion);
3720

3721 3722 3723 3724
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

3725
	/* Other rcu_barrier() invocations can now safely proceed. */
3726
	mutex_unlock(&rsp->barrier_mutex);
3727 3728 3729 3730 3731 3732 3733
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3734
	_rcu_barrier(&rcu_bh_state);
3735 3736 3737 3738 3739 3740 3741 3742
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3743
	_rcu_barrier(&rcu_sched_state);
3744 3745 3746
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

3758
	lockdep_assert_held(&rnp->lock);
3759 3760 3761 3762 3763
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
3764
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3765
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
3766
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3767 3768 3769
	}
}

3770
/*
3771
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3772
 */
3773 3774
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3775 3776
{
	unsigned long flags;
3777
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3778 3779 3780
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3781
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3782
	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3783
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3784
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3785
	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3786
	rdp->cpu = cpu;
3787
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3788
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
3789
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3790 3791 3792 3793 3794 3795 3796
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3797
 */
3798
static void
3799
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3800 3801
{
	unsigned long flags;
3802
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3803 3804 3805
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3806
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3807 3808
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3809
	rdp->blimit = blimit;
3810 3811 3812
	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
	    !init_nocb_callback_list(rdp))
		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3813
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3814
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3815
	rcu_dynticks_eqs_online();
B
Boqun Feng 已提交
3816
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3817

3818 3819 3820 3821 3822
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3823
	rnp = rdp->mynode;
3824
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3825 3826 3827
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
3828 3829
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
3830
	rdp->cpu_no_qs.b.norm = true;
3831
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3832
	rdp->core_needs_qs = false;
3833
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
3834
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3835 3836
}

3837 3838 3839 3840
/*
 * Invoked early in the CPU-online process, when pretty much all
 * services are available.  The incoming CPU is not present.
 */
3841
int rcutree_prepare_cpu(unsigned int cpu)
3842
{
3843 3844 3845
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3846
		rcu_init_percpu_data(cpu, rsp);
3847 3848 3849 3850 3851 3852 3853

	rcu_prepare_kthreads(cpu);
	rcu_spawn_all_nocb_kthreads(cpu);

	return 0;
}

3854 3855 3856
/*
 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
 */
3857 3858 3859 3860 3861 3862 3863
static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);

	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
}

3864 3865 3866 3867
/*
 * Near the end of the CPU-online process.  Pretty much all services
 * enabled, and the CPU is now very much alive.
 */
3868 3869 3870 3871
int rcutree_online_cpu(unsigned int cpu)
{
	sync_sched_exp_online_cleanup(cpu);
	rcutree_affinity_setting(cpu, -1);
3872 3873
	if (IS_ENABLED(CONFIG_TREE_SRCU))
		srcu_online_cpu(cpu);
3874 3875 3876
	return 0;
}

3877 3878 3879 3880
/*
 * Near the beginning of the process.  The CPU is still very much alive
 * with pretty much all services enabled.
 */
3881 3882 3883
int rcutree_offline_cpu(unsigned int cpu)
{
	rcutree_affinity_setting(cpu, cpu);
3884 3885
	if (IS_ENABLED(CONFIG_TREE_SRCU))
		srcu_offline_cpu(cpu);
3886 3887 3888
	return 0;
}

3889 3890 3891
/*
 * Near the end of the offline process.  We do only tracing here.
 */
3892 3893 3894 3895 3896 3897 3898 3899 3900
int rcutree_dying_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_cpu(rsp);
	return 0;
}

3901 3902 3903
/*
 * The outgoing CPU is gone and we are running elsewhere.
 */
3904 3905 3906 3907 3908 3909 3910 3911 3912
int rcutree_dead_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		rcu_cleanup_dead_cpu(cpu, rsp);
		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
	}
	return 0;
3913 3914
}

3915 3916 3917 3918 3919 3920
/*
 * Mark the specified CPU as being online so that subsequent grace periods
 * (both expedited and normal) will wait on it.  Note that this means that
 * incoming CPUs are not allowed to use RCU read-side critical sections
 * until this function is called.  Failing to observe this restriction
 * will result in lockdep splats.
3921 3922 3923 3924
 *
 * Note that this function is special in that it is invoked directly
 * from the incoming CPU rather than from the cpuhp_step mechanism.
 * This is because this function must be invoked at a precise location.
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
 */
void rcu_cpu_starting(unsigned int cpu)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
3935
		rdp = per_cpu_ptr(rsp->rda, cpu);
3936 3937 3938 3939 3940 3941 3942 3943 3944
		rnp = rdp->mynode;
		mask = rdp->grpmask;
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
		rnp->qsmaskinitnext |= mask;
		rnp->expmaskinitnext |= mask;
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	}
}

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
#ifdef CONFIG_HOTPLUG_CPU
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
3962
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3963 3964
}

3965 3966 3967 3968 3969 3970 3971 3972
/*
 * The outgoing function has no further need of RCU, so remove it from
 * the list of CPUs that RCU must track.
 *
 * Note that this function is special in that it is invoked directly
 * from the outgoing CPU rather than from the cpuhp_step mechanism.
 * This is because this function must be invoked at a precise location.
 */
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
void rcu_report_dead(unsigned int cpu)
{
	struct rcu_state *rsp;

	/* QS for any half-done expedited RCU-sched GP. */
	preempt_disable();
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(rcu_sched_state.rda), true);
	preempt_enable();
	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
#endif

3987 3988 3989 3990
/*
 * On non-huge systems, use expedited RCU grace periods to make suspend
 * and hibernation run faster.
 */
3991 3992 3993 3994 3995 3996 3997
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3998
			rcu_expedite_gp();
3999 4000 4001
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
4002 4003
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
4004 4005 4006 4007 4008 4009 4010
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4011
/*
4012
 * Spawn the kthreads that handle each RCU flavor's grace periods.
4013 4014 4015 4016
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
4017
	int kthread_prio_in = kthread_prio;
4018 4019
	struct rcu_node *rnp;
	struct rcu_state *rsp;
4020
	struct sched_param sp;
4021 4022
	struct task_struct *t;

4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

4034
	rcu_scheduler_fully_active = 1;
4035
	for_each_rcu_flavor(rsp) {
4036
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4037 4038
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
4039
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4040
		rsp->gp_kthread = t;
4041 4042 4043 4044
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
4045
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4046
		wake_up_process(t);
4047
	}
4048
	rcu_spawn_nocb_kthreads();
4049
	rcu_spawn_boost_kthreads();
4050 4051 4052 4053
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

4054
/*
4055 4056 4057 4058 4059 4060
 * This function is invoked towards the end of the scheduler's
 * initialization process.  Before this is called, the idle task might
 * contain synchronous grace-period primitives (during which time, this idle
 * task is booting the system, and such primitives are no-ops).  After this
 * function is called, any synchronous grace-period primitives are run as
 * expedited, with the requesting task driving the grace period forward.
4061
 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4062
 * runtime RCU functionality.
4063 4064 4065 4066 4067
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
4068 4069 4070
	rcu_test_sync_prims();
	rcu_scheduler_active = RCU_SCHEDULER_INIT;
	rcu_test_sync_prims();
4071 4072
}

4073 4074 4075
/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4076
static void __init rcu_init_one(struct rcu_state *rsp)
4077
{
4078 4079
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4080 4081
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4082 4083

	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4084 4085 4086 4087 4088
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4089
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4090

4091 4092 4093
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4094

4095 4096
	/* Initialize the level-tracking arrays. */

4097
	for (i = 1; i < rcu_num_lvls; i++)
4098 4099
		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
	rcu_init_levelspread(levelspread, num_rcu_lvl);
4100 4101 4102

	/* Initialize the elements themselves, starting from the leaves. */

4103
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4104
		cpustride *= levelspread[i];
4105
		rnp = rsp->level[i];
4106
		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
B
Boqun Feng 已提交
4107 4108
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4109
						   &rcu_node_class[i], buf[i]);
4110 4111 4112
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4113 4114
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4115 4116 4117 4118
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4119 4120
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4121 4122 4123 4124 4125
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4126
				rnp->grpnum = j % levelspread[i - 1];
4127 4128
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4129
					      j / levelspread[i - 1];
4130 4131
			}
			rnp->level = i;
4132
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4133
			rcu_init_one_nocb(rnp);
4134 4135
			init_waitqueue_head(&rnp->exp_wq[0]);
			init_waitqueue_head(&rnp->exp_wq[1]);
4136 4137
			init_waitqueue_head(&rnp->exp_wq[2]);
			init_waitqueue_head(&rnp->exp_wq[3]);
4138
			spin_lock_init(&rnp->exp_lock);
4139 4140
		}
	}
4141

4142 4143
	init_swait_queue_head(&rsp->gp_wq);
	init_swait_queue_head(&rsp->expedited_wq);
4144
	rnp = rsp->level[rcu_num_lvls - 1];
4145
	for_each_possible_cpu(i) {
4146
		while (i > rnp->grphi)
4147
			rnp++;
4148
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4149 4150
		rcu_boot_init_percpu_data(i, rsp);
	}
4151
	list_add(&rsp->flavors, &rcu_struct_flavors);
4152 4153
}

4154 4155
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4156
 * replace the definitions in tree.h because those are needed to size
4157 4158 4159 4160
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4161
	ulong d;
4162
	int i;
4163
	int rcu_capacity[RCU_NUM_LVLS];
4164

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4178
	/* If the compile-time values are accurate, just leave. */
4179
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4180
	    nr_cpu_ids == NR_CPUS)
4181
		return;
4182 4183
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4184 4185

	/*
4186 4187 4188 4189
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4190
	 */
4191
	if (rcu_fanout_leaf < 2 ||
4192
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4193
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4194 4195 4196 4197 4198 4199
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4200
	 * with the given number of levels.
4201
	 */
4202
	rcu_capacity[0] = rcu_fanout_leaf;
4203
	for (i = 1; i < RCU_NUM_LVLS; i++)
4204
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4205 4206

	/*
4207
	 * The tree must be able to accommodate the configured number of CPUs.
4208
	 * If this limit is exceeded, fall back to the compile-time values.
4209
	 */
4210 4211 4212 4213 4214
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4215

4216
	/* Calculate the number of levels in the tree. */
4217
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4218
	}
4219
	rcu_num_lvls = i + 1;
4220

4221
	/* Calculate the number of rcu_nodes at each level of the tree. */
4222
	for (i = 0; i < rcu_num_lvls; i++) {
4223
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4224 4225
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4226 4227 4228

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4229
	for (i = 0; i < rcu_num_lvls; i++)
4230 4231 4232
		rcu_num_nodes += num_rcu_lvl[i];
}

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4255
void __init rcu_init(void)
4256
{
P
Paul E. McKenney 已提交
4257
	int cpu;
4258

4259 4260
	rcu_early_boot_tests();

4261
	rcu_bootup_announce();
4262
	rcu_init_geometry();
4263 4264
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4265 4266
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4267
	__rcu_init_preempt();
J
Jiang Fang 已提交
4268
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4269 4270 4271 4272 4273 4274

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
4275
	pm_notifier(rcu_pm_notify, 0);
4276
	for_each_online_cpu(cpu) {
4277
		rcutree_prepare_cpu(cpu);
4278
		rcu_cpu_starting(cpu);
4279 4280
		if (IS_ENABLED(CONFIG_TREE_SRCU))
			srcu_online_cpu(cpu);
4281
	}
4282 4283
}

4284
#include "tree_exp.h"
4285
#include "tree_plugin.h"